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Abstract

A boundary integral method is proposed for the numerical solu-
tion of the three-dimensional heat equation subject to specification of
energy. A specific test problem is solved using the method.
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1 INTRODUCTION

Consider solving the three-dimensional heat equation
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for the unknown function u(x,y, z,t) (the temperature) for (z,y,z) € V and
t > 0, subject to the initial and boundary conditions

u(,y,2,0) = f(z,y,2) for (z,y,2) €V, (2)

u(z,y, 2,t) = g(z,y, 2,t) for (x,y,2z) € Sy and t > 0, (3)

u(®,y, 2, t) = h(z,y,2)q(t) for (z,y,2) € Sy and £ >0, (4)

aﬁ (u(x,y, 2,t)] = k(z,y, 2,t) for (z,y,2z) € Sz and t > 0, (5)
n

and the non-local (integral) condition

/// (2.4, 2 )dzdydz = m(t) for ¢ >0, (6)

where V is a three-dimensional region bounded by a simple closed surface S,
S1, Sg and S3 are non-intersecting surfaces such that S; U S, U S35 =S, f, g,
h, k and m are suitably prescribed functions and ¢ is an unknown function
to be determined. Notice that Ou/0n = n - Vu where n is the unit normal
vector on S pointing away from V. Notice that (6) specifies the total energy
present in the region V' at any time ¢ > 0.

The problem defined by (1)-(6) arises in many important applications in
heat transfer, control theory, thermoelasticity and medical science. To the
best of the authors’ knowledge, thus far, it has been solved only for cases
where the unknown function u depends on one or at most two of the spatial
variables z, y and z, see e.g. Cannon, Lin and Matheson [3]; Dehghan [4];
Gumel, Ang and Twizell [5]; Noye and Dehghan [6, 7]; Noye, Dehghan and
van der Hoek [8]; Wang and Lin [12].

The present paper proposes a boundary integral method (BIM) for the
numerical solution of the three-dimensional problem defined by (1)-(6) in the
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Laplace transform (LT) space. The physical solution is recovered by using
the Stehfest’s algorithm [11] for the numerical inversion of the Laplace trans-
formation. For the cases involving one- or two-dimensional physical spaces in
the references cited above, the finite-difference methods are employed to solve
the problem, usually for regions with special geometries such as a rectangu-
lar region. Thus, apart from extending the work to the three-dimensional
physical space, the proposed BIM should provide a useful and interesting
alternative to the finite-difference methods for solving this type of problems.

2 FORMULATION IN LT SPACE

Let us define the LT operator £ on a function r(z,y, z,t) (t > 0) by

L{r(z,y,zt);t — p} = /000 r(z,y, z,t) exp(—pt)dt (7)

where p is the LT parameter. For our purpose here, we shall take p to be
real and positive.
If we apply £ on (1)-(6), the problem in the LT space is then to solve
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for U(z,y,z;p) = L{u(z,y,z,t);t — p} (for (z,y,z) € V and a suitably
selected value of p) subject to

U(z,y,zp) = G(z,y, 2 p) for (z,y,2) € 51, (9)
U(z,y,2p) = h(z,y,2)®(p) for (z,y,2) € S, (10)
Uy, zp) = Ky, z) for (n,0.2) € S, (1)

and

/// U(z,y, z;p)dxdydz = M (p), (12)



where

;p) = L{g(z,y,2,t);t — p},
(p) L{q(t);t — p},
;p) = L{k(z,y, 2,1);t — p},
M(p) = L{m(t);t — p}. (13)

Notice that ®(p) is an unknown function to be determined.
Using (8) and the divergence theorem, we find that (12) can be rewritten

/S / %[U(m,y,z;p)] ds = pM(p / / f@,y, 2)dzdydz.  (14)

Notice that the right hand side of (14) is known and the left hand side
containing an unknown function is expressed in terms of a surface integral.

To facilitate the task of solving (8)-(11) together with (14), we make the
substitution

as

U(z,y,z;p) = Upart(z,y, 2;0) + T'(x,y, 2, p), (15)

where Upart (%, Y, 2;p) is any particular solution of (8).
According to Atkinson [2], a particular solution of (8) is given by

U (2, 2: ) // (&m0 @,y 25 6,1, s p)dedndy,  (16)

where I'(z,y, z;&,1,1;p) is given by (23) below (in Section 3) and R is a
three-dimensional region which may be chosen to assume any specific ge-

ometry convenient for computing numerically the triple integral as long as
V CR.



With the substitution in (15), (8)-(11) and (14) become:

o*T  9*T  O°T
+

— T = 1
a2+ oy? 022 pr=0 (17)
T(x>y7 Z,p) :G(l’ay,%p) _Upart(x7y7z;p) for (flf,y,z) € 517 (18)
T(z,y,zp) = h(z,y,2)2(p) — Upare(x,y, 2 p) for (z,y,2) € S, (19)

0 0
% [T(x,y,z;p)] = K(SE,y,Z;p) - % [Upart(xaya Z;p)] fOI‘ (SC,y,Z) S S37
(20)

// o T(x,y,z;p)] ds = pM(p /// vart (T, Y, 23 p)dedydz.  (21)

3 BIM IN LT SPACE

If ®(p) is known, the BIM for solving (17)-(20) is standard (Rizzo and Shippy
[10]). As ®(p) is unknown, the usual boundary integral procedure has to be
slightly modified to take into consideration the extra equation (21).

For (¢,m,v) € S UV, the standard boundary integral solution of the
homogeneous modified Helmholtz equation (17) is given by

A& m, )T (5 m, ;) //{T T,y 2; p [F(:r,y,zsf,n,w;p)]

—T(z,y, 2, @b;p)(% [T(z,y,z;p)|}ds,  (22)

where A (&,n,v) = 1if (§,n,¢) € V and 0 < A(&,n,¢) < 1if (§,n,¢) € S
and

I(z,y,2:&m,95p) = —ﬁ exp(—ry/p), (23)

where r = /(2 — € + (y — ) + (= — )?.
The surface boundary S is discretized into N surface elements S, S,



ey S=1 and SO) . We make the following approximations:

S~SHUSPuy...ush-Hys™, (24)
T(z,y,zp) ~T® for (z,y,2) € S® (k=1,2,...,N), (25)

5}
O 0y zip)] & WO for (2.2) €S9 (F=12...N), (20

where 7" and W®*) (k = 1,2,..., N) are constants to be determined.
With (24)-(26), by letting (£,7,%) be the midpoint of S® given by
(€@ @ @) (22) can be approximately rewritten as

N
|~y 5, o
16 _ (*) 6) ) ).
ST =) (T //an [T(2,y, 2,00, ¢ p)] ds

k=1 )

—Ww // D(z,y, 26D 0D O p)ds 3 fori=1,2,..,N. (27)
S(k)

In (27), in taking A(€®, 7@, @) = 1/2, we assume that (£7), 5@ @) lies
on a smooth part of S.

Now if ®(p) in (19) is given then from (18)-(20) either T or W®) (not
both) is known over S®). It follows that (27) constitutes a system of N linear
algebraic equations in N unknowns. Since ®(p) is not known, there are really
N + 1 unknowns. An additional equation is needed to complete the system

of linear algebraic equations. This comes from (21) in the form:

k=1

N
> W®WA® = pM(p) —p / / / Upart (, Y, 2; p)ddydz, (28)
14

where A®) is the area of the surface S®.

Once T™® and W®*) are determined, we can compute T(x,y,z;p) at any



interior point (&, 7,) approximately via

N

T(¢,n,¢;p) ~ T® //%[F(:v,y,zsﬁ,mw;p)]ds

k=1 S0k

—w® / / D(z,y, 2 €m0 p)ds b . (20)

S (k)

4 SOLUTION IN THE PHYSICAL SPACE

The physical solution u(x,y,t) and ¢(t) can be recovered approximately from
U(z,y;p) and ®(p) by using a LT inversion technique. According to the
Stehfest’s algorithm [11] which is nowadays increasingly used in applied me-
chanics for the numerical inversion of LT (e.g. Ang [1]), we obtain

2P
In(2 In(2
u(z,y, 2, 1) %yzcnU (fv,y,Z;n o )),

n=1 ¢
In(2) <% nln(2
o)~ =25 e (M) (30)
n=1
where P is a positive integer and
min(n,P) P
2m)!
o = (=1)"*P m 31
e = (=1) D P = m)imlim — i —m)iem = Y
m=[(n+1)/2]

where [r] denotes the integer part of the real number r. Note that each term in
the LT inversion formula in (30) corresponds to one value of the LT transform
parameter p, i.e. p=nln(2)/t.

As numerical techniques for inverting Laplace transform are highly sus-
ceptible to round-off errors, P cannot be selected to be as large as we like.
On the other hand, choosing P to be too small may yield numerical results
of lower accuracy. The optimum choice of P depends on the arithmetical
precision of the computer (Stehfest [11]). Perhaps the best way to choose
the optimum P is through testing the computer code of (30) on inverting

known Laplace transforms of some elementary test functions.
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5 A TEST PROBLEM

For a test problem, we take the region V to be 0 < x < 1,0 < y < 1,
0 < z < 1. The initial-boundary and nonlocal integral conditions are:

u(e,y,7,0) = sin(Zla +y + 2]) +ayz for (a,,2) € V.

(32)
u(0,y, z,t) = q(t) Sin(g[y+z]) for0<y<1, 0<z<1, t>0,
(33)
Tt s
u(z,0,2,t) = exp(—?) sin(g[aﬂ— Z)for0<ax <1, 0<z<1,t>0,
(34)
2t s
u(z,y,0,t) = exp(—?)sin(g[x +y))for0<z<1, 0<y<l1, t>0,
(35)

2
t
u(L,y,2,t) = exp(~ ) sin(g
forO<y<1, 0<z<1,t>0,
(36)

14+y+z]) +yz

2
t
u(z,1,2,t) = exp(—%) sin(g[m +1+2])+zz

for0<zr<1 0<z<1,t>0,
(37)
2t . w
uw(z,y,1,t) = eXp(—?) Sln(g[x +y+1]) +zy

forO<z<1, 0<y<l1, t>0,

(38)
27 it 1
///u(m, Yy, z, t)dxdydz = = exp(—?) + 3 for t > 0.
v
(39)
The exact solution of the test problem is given by
it . ow
u(w,y, 2 1) = exp(~ =) sin(S o+ y + 2]) + oy (10)



together with

aft) = esp(~Z D). (1)

To implement the BIM, we take

Upart<$7 Y, Z,p)
— [[[sinGie+ -0+ €Il zs6on vipdedndu. (12)
|4

The triple integral has integrand with singularity of the type 1/r at r = 0,
where r is the distance between (z,y, z) and (£, 7, ). Numerical experiments
indicate that integrals of this type can be evaluated with sufficient accuracy
by repeated applications of the midpoint rule, i.e. using the quadrature

L L L

i=1 j=1 k=1

where h = 1/L, L is a chosen positive even integer and m; = (2i — 1)h/2 (for
i=1,2,---,L). The triple integral in (28) which has well-behaved integrand
is, however, evaluated numerically by using the trapezoidal rule, i.e.

1 1 1
/ / / Upart(xaya z,p)dmdydz
0 0 0

L+1 L+1 L+1

~ 1P TN O bibibkUpant (i, £, t; p), (44)
i=1 j=1 k=1
where h is as in (43), by = by = 1/2 and b; = 1 for i = 2,3,--- , L and
ti=(—1h (fori=1,2,--- ,L+1).

Each of the six faces of the cube which encloses the region V' is discretized
into L? square (boundary) elements of equal area h%. Thus, the total num-
ber of boundary elements is given by N = 6L2. The integrals in (27) and
(29) over a boundary element are computed numerically by dividing the ele-
ment equally into 4 smaller squares and applying the simple midpoint or the
trapezoidal rule. [The midpoint rule is preferred if the integrand is singular
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at some point on the surface element, i.e. if i = k in (27).] The resulting
linear algebraic equations are solved using the LU decomposition technique
described in Press et al. [9].

Table 1. A comparison of the numerical and exact values of
i at selected time ¢.

t N =216 | N =864 | Exact
0.10 | 0.6036 0.6589 | 0.7196
0.20 | 0.4517 0.4816 | 0.5179
0.30 | 0.3297 0.3470 | 0.3727
0.40 | 0.2381 0.2482 | 0.2682
0.50 | 0.1704 0.1764 | 0.1930

Table 2. A comparison of the numerical and exact values of
u(1/2,1/2,1/2,t) at selected time t.

t | N=216 | N =864 | Exact
0.10 | 0.8328 0.8364 | 0.8447
0.20 | 0.6299 0.6356 | 0.6429
0.30 | 0.4883 0.4921 | 0.4977
0.40 | 0.3868 0.3892 | 0.3932
0.50 | 0.3140 0.3154 | 0.3180

To obtain some numerical results, we use L = 6, i.e. 216 square boundary
elements, each having sides of about 0.167 unit length (A ~ 0.167), and 8
terms (i.e. P =4) in the Laplace inversion formula (30) in order to compute
w(t) and u(z,y, z,t). In Table 1, the numerical values of u(t) together with
the exact ones at selected time ¢ are given. The numerical and the exact
values of u(x,y, z,t) are compared in Table 2 at the point (1/2,1/2,1/2) and
selected time ¢. The numerical results obtained using 216 elements can be
regarded to be in reasonably good agreement with the exact solution, if we
take into consideration the relatively coarse discretization of the boundary.
The computation is repeated using 864 elements (L = 12 or h ~ 0.083) and
P = 4. The numerical results obtained are also presented in Tables 1 and 2.
It is obvious that the calculation does yield better numerical results when the
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discretization of the boundary is refined. The CPU time needed to complete
the computation of both x4 and u at a fixed given time ¢ is about 25 seconds
on a Pentium III 450 MHz (64 Mb SDRAM) desktop computer when 216
elements and P = 4 are used; it is about 770 seconds when 864 elements and
P = 4 are used. (The proposed BIM is coded in double precision arithmetics
using the Fortran 77 programming language.)

6 DISCUSSION

The problem of the three-dimensional heat equation subject to a nonlocal
condition is considered. The nonlocal condition specifies the total energy
in the system and is expressed in terms of a volume integral. The problem
is reformulated in the LT space where the nonlocal condition is recast in a
form in which the LT of the (unknown) normal derivative of the temperature
is integrated on only the boundary of the solution domain. A simple BIM
is then proposed for solving the problem in the LT space. The physical
solution is retrieved by using a LT inversion technique. Volume integrals
do appear in the proposed method but their integrands do not contain any
unknown functions. Thus, as in a typical boundary-element method, the
manipulation of the unknown data is restricted to only the boundary of
the solution domain. Consequently, the number of unknowns involved is in
general smaller than that which arises in other numerical techniques such as
the finite-difference and the finite-element methods.

To obtain an indication of what is achievable by our simple BIM, we apply
it to solve a specific test problem on a Pentium III desktop computer. The
numerical results obtained clearly indicate that the proposed method works.
Convergence of the numerical solution is observed when the calculation is
refined by increasing the number of boundary elements.

The computational speed can be improved through parallel processing.
The proposed method can be executed independently for different values of
the LT parameter p. Thus, if the computation is carried out using a computer

with 2P co-processors (one for each value of p), the CPU time needed can be
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reduced by approximately a factor of 2P. (Notice that the number of terms
in the LT inversion formula is 2P and each term corresponds to one value
of p. In solving the specific test problem, we use P = 4 and would therefore
need to use 8 co-processors if all the terms in the inversion formula are to be
computed simultaneously.)

Some factors affecting the computational speed of the proposed BIM are
the efficiency of the solver for the linear algebraic equations and the numer-
ical evaluations of the multiple integrals in (16) and (28). There are six
integrations to carry out in the multiple integral in (28)! It appears that the
CPU time required to execute the LU decomposition technique for solving
the linear algebraic equations increases quite dramatically when the number
of elements used is significantly increased. For example, in the specific test
problem above, the CPU time used for the LU decomposition technique in-
creases by over 100 times when the number of elements increases from 216
to 864, while the corresponding CPU time for the entire calculation (which
includes boundary discretization, setting up the linear algebraic equations
and solving them) increases by around 30 times only. These factors must be
considered in any future studies if improvement in the computational speed
is sought.

In the simple BIM proposed above, the LT of the temperature and its
normal derivative are approximated as constant functions over a boundary
element. The accuracy of the boundary element method can be improved
by incorporating a higher order approximation over the boundary elements.
With a higher order approximation, the implementation of the method on the
computer may be expected to be more involved and complicated, however.
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