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Abstract

A boundary integral equation method is proposed for the numer-
ical solution of the two-dimensional diffusion equation subject to a
nonlocal condition. The nonlocal condition is in the form of a double
integral giving the specification of mass in a region which is a subset
of the solution domain. A specific test problem is solved using the
method.
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1 INTRODUCTION

In non-dimensionalised form, the partial differential equation that governs

two-dimensional linear and isotropic diffusion processes is given by

∂2u

∂x2
+

∂2u

∂y2
=

∂u

∂t
. (1)

A class of problems of practical interest is to solve (1) for the unknown

function u(x, y, t) for time t ≥ 0 in a two-dimensional region R (on the 0xy
plane) subject to the initial and boundary conditions

u(x, y, 0) = f(x, y) for (x, y) ∈ R, (2)

u(x, y, t) = g(x, y, t) for (x, y) ∈ C1 and t ≥ 0, (3)

u(x, y, t) = h(x, y)z(t) for (x, y) ∈ C2 and t ≥ 0, (4)

∂

∂n
[u(x, y, t)] = k(x, y, t) for (x, y) ∈ C3 and t ≥ 0, (5)

and the non-local (integral) conditionZZ
S

u(x, y, t)dxdy = m(t) for t ≥ 0. (6)

where f, g, h, k and m are known and suitably prescribed functions, z is an

unknown function to be determined, the region R is bounded by a simple

closed curve C, the curves C1, C2 and C3 are non-intersecting and such that

C1 ∪ C2 ∪ C3 = C, S is a given subregion of R that is independent of time t
and is bounded by a simple closed curve D given by D = C2 ∪ C4, the open
curve C4 lies completely in the interior of R, and ∂u/∂n = n ·∇u, n is the
unit normal vector on C pointing away from R. From a physical standpoint,

(6) specifies the total amount of mass of the diffusing quantity u (or the total

amount of heat energy, in the case of heat diffusion) which the the region

S can possess at any time t. Condition (4) with z(t) being unknown implies

that the concentration of the diffusing quantity (or the temperature) on some

part of the boundary must be controlled in a certain way in order that the
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Figure 1: A sketch of the geometry of the problem. The solution domain is
bounded by a simple closed curve C which comprises three distinct parts C1,
C2 and C3 over which different boundary conditions are given. The specifi-
cation of mass (nonlocal condition) is given in the shaded region bounded by
C2 ∪ C4. The curve C4 lies in the interior of the solution domain.
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region S carries the required amount of mass (or heat energy). For a sketch

of the geometry of the problem, refer to Figure 1.

The class of problems defined by (1)-(6) arises in many practical applica-

tions in heat transfer, control theory, thermoelasticity and medical sciences.

A specific application which involves the use of the absorption of light to

measure the concentration of a diffusing chemical is described in Noye and

Dehghan [6]. Special cases of the problem, such as R being a rectangular

region, have been solved directly by many researchers, e.g. Gumel, Ang and

Twizell [5]; Noye and Dehghan [6, 7]; Noye, Dehghan and van der Hoek [8];

Cannon, Lin and Matheson [3]; Wang and Lin [11] using the finite-difference

methods. With the exception of [6], the case S = R, i.e. C4 = C1 ∪ C3, was
studied in all the references just cited.

The present paper makes use of a boundary integral equation method

(BIEM) for the numerical solution of (1)-(6) in the Laplace transform (LT)

space. The physical solution is recovered by using the Stehfest’s algorithm

[10] for the numerical inversion of the Laplace transformation. This ap-

proach should provide a useful and interesting alternative to the existing

finite-difference methods. It can be easily implemented on the computer for

solution domains of arbitrary shape. The BIEM for solving (1) with either

u or ∂u/∂n completely specified at each and every point on the boundary

of the solution domain is well established but continues to be a research

subject of considerable interest, see e.g. Rizzo and Shippy [9] and Chen et

al [4]. The application of the BIEM to diffusion problems with non-local

conditions, such as the one defined by (1)-(6), would lead to a formulation

involving unknowns at nodal points throughout the physical solution domain,

if the non-local conditions are not properly treated. In the present paper,

the LT of the non-local condition (6) is recast into a form which involves the

LT of u at points (x, y) on only the boundary C. Consequently, the linear

algebraic equations in the BIEM do not involve unknowns at points in the

interior of the physical domain R.
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2 FORMULATION IN LT SPACE

We shall reformulate the problem described in Section 1 by taking the LT

of all functions and equations involved with respect to the time parameter t.

To this end, let us define the LT operator L on a function r(x, y, t) (t ≥ 0)
by

L{r(x, y, t); t→ p} def=
Z ∞

0

r(x, y, t) exp(−pt)dt (7)

where p is the LT parameter. In the present paper, we shall assume that p

is real and positive.

Applying L on (1)-(6), we find that the problem in the LT space is then

to solve

∂2U

∂x2
+

∂2U

∂y2
− pU = −f(x, y) (8)

for U(x, y; p) = L{u(x, y, t); t → p} (for (x, y) ∈ R and a suitably selected

value of p) subject to

U(x, y; p) = G(x, y; p) for (x, y) ∈ C1, (9)

U(x, y; p) = h(x, y)Φ(p) for (x, y) ∈ C2, (10)

∂

∂n
[U(x, y; p)] = K(x, y; p) for (x, y) ∈ C3, (11)

and ZZ
S

U(x, y; p)dxdy =M(p), (12)

where G(x, y; p) = L{g(x, y, t); t → p}, Φ(p) = L{z(t); t → p}, K(x, y; p) =
L{k(x, y, t); t → p} and M(p) = L{m(t); t → p}. Notice that Φ(p) is an
unknown function to be determined.

Using (8) and the divergence theorem, we find that (12) can be rewritten

as Z
C2∪C4

∂

∂n
[U(x, y; p)] ds = pM(p)−

ZZ
S

f(x, y)dxdy. (13)
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Notice that the right hand side of (13) is known and the left hand side

containing an unknown function is expressed in terms of a boundary integral.

To facilitate the task of solving (8)-(11) together with (13), we make the

substitution

U(x, y; p) = Upart(x, y; p) + V (x, y; p), (14)

where Upart(x, y; p) is any particular solution of (8).

According to Atkinson [2], a particular solution of (8) is given by

Upart(x, y; p) = −
ZZ
T

f(ξ, η)Γ(x, y; ξ, η; p)dξdη, (15)

where Γ(x, y; ξ, η; p) is given by (23) below (in Section 3) and T is a two-

dimensional region which may be chosen to assume any specific geometry

convenient for computing numerically the double integral as long as R ⊆ T.
In the specific example considered in Section 5, we take T = R because R is

a simple square region.

With the substitution in (14), (8)-(11) and (13) become:

∂2V

∂x2
+

∂2V

∂y2
− pV = 0 (16)

V (x, y; p) = G(x, y; p)− Upart(x, y; p) for (x, y) ∈ C1, (17)

V (x, y; p) = h(x, y)Φ(p)− Upart(x, y; p) for (x, y) ∈ C2, (18)

∂

∂n
[V (x, y; p)] = K(x, y; p)− ∂

∂n
[Upart(x, y; p)] for (x, y) ∈ C3, (19)Z

C2∪C4

∂

∂n
[V (x, y; p)] ds = pM(p)−

ZZ
S

f(x, y)dxdy

−
Z
C2∪C4

∂

∂n
[Upart(x, y; p)] ds, (20)

Since Upart satisfies (8), the integral over C2 ∪ C4 on the right hand side of
(20) can be transformed back to a domain integral over S in order to rewrite

(20) in the formZ
C2∪C4

∂

∂n
[V (x, y; p)] ds = pM(p)− p

ZZ
S

Upart(x, y; p)dxdy, (21)
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if one wishes to avoid evaluating ∂[Upart(x, y; p)]/∂n when dealing with the

non-local condition.

3 BIEM

For (ξ, η) ∈ R ∪ C, the standard boundary integral solution of the homo-
geneous modified Helmholtz equation (16) is given by (see, e.g. Rizzo and

Shippy [9])

λ(ξ, η)V (ξ, η; p)

=

Z
C

{V (x, y; p) ∂
∂n
[Γ(x, y; ξ, η; p)]− Γ(x, y; ξ, η; p)

∂

∂n
[V (x, y; p)]}ds, (22)

where λ (ξ, η) = 1 if (ξ, η) ∈ R and 0 < λ(ξ, η) < 1 if (ξ, η) ∈ C and

Γ(x, y; ξ, η; p) = − 1
2π
K0(r

√
p) (23)

where r =
q
(x− ξ)2 + (y − η)2 and K0 is the modified Bessel function of

the second kind and of order zero.

The boundary C is discretized by putting N closely-packed points on it.

Two consecutive points are joined by straight line segments or elements C(1),

C(2), ..., C(N−1) and C(N). We make the following approximations:

C ≈ C(1) ∪ C(2) ∪ ... ∪ C(N−1) ∪ C(N), (24)

V (x, y; p) ≈ V (k) for (x, y) ∈ C(k) (k = 1, 2, ..., N), (25)

∂

∂n
[V (x, y; p)] ≈W (k) for (x, y) ∈ C(k) (k = 1, 2, ..., N), (26)

where V (k) and W (k) (k = 1, 2, ..., N) are constants to be determined.

With (24)-(26), by letting (ξ, η) be the midpoint of C(i) given by (ξ(i), η(i)),

(22) can be approximately rewritten as

1

2
V (i) =

NX
k=1

½
V (k)

Z
C(k)

∂

∂n

h
Γ(x, y; ξ(i), η(i); p)

i
ds

−W (k)

Z
C(k)

Γ(x, y; ξ(i), η(i); p)ds

¾
for i = 1, 2, ..., N. (27)

7



In (27), in taking λ
³
ξ(i), η(i)

´
= 1/2, we assume that

³
ξ(i), η(i)

´
lies on a

smooth part of C.

Now if Φ(p) in (18) is given then from (17)-(19) either V (k) or W (k) (not

both) is known over C(k). It follows that (27) constitutes a system of N linear

algebraic equations in N unknowns. Since Φ(p) is not known, additional

equations are needed to complete the system of linear algebraic equations.

The additional equations are obtained as outlined below.

Discretize the curve C4 into J straight line segments denoted by C
(N+1),

C(N+2), · · · , C(N+J−1) and C(N+J) and make the approximation

∂ [V (x, y; p)] /∂n ≈W (N+k) for (x, y) ∈ C(N+k)(k = 1, 2, ..., J), (28)

whereW (N+k) are constants to be determined and the normal derivative of V

on C(N+k) (or C4) is in the direction pointing away from S. If the boundary

elements obtained by discretizing C2 are labelled C
(1), C(2), · · · , C(Q−1) and

C(Q) (Q < N) then (21) may be used to give the approximation

QX
k=1

W (k)L(k) +
JX
k=1

W (N+k)L(N+k) = pM(p)− p
ZZ
S

Upart(x, y; p)dxdy, (29)

where L(k) is the length of the straight line C(k).

Although (29) caters for the unknown parameter Φ(p), it contains an

additional J unknown constants W (N+k) (k = 1, 2, · · · , J). More equations
are required. Applying the standard boundary integral equation in (22) for

the regions S and R\S respectively, and letting (ξ, η) be the midpoint of
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C(N+i) (i = 1, 2, · · · , J), we obtain

1

2
V (N+i) =

QX
k=1

½
V (k)

Z
C(k)

∂

∂n

h
Γ(x, y; ξ(N+i), η(N+i); p)

i
ds

−W (k)

Z
C(k)

Γ(x, y; ξ(N+i), η(N+i); p)ds

¾
+

JX
k=1

½
V (N+k)

Z
C(N+k)

∂

∂n

h
Γ(x, y; ξ(N+i), η(N+i); p)

i
ds

−W (N+k)

Z
C(N+k)

Γ(x, y; ξ(N+i), η(N+i); p)ds

¾
for i = 1, 2, ..., J,

(30)

and

1

2
V (N+i) =

NX
k=Q+1

½
V (k)

Z
C(k)

∂

∂n

h
Γ(x, y; ξ(N+i), η(N+i); p)

i
ds

−W (k)

Z
C(k)

Γ(x, y; ξ(N+i), η(N+i); p)ds

¾
−

JX
k=1

½
V (N+k)

Z
C(N+k)

∂

∂n

h
Γ(x, y; ξ(N+i), η(N+i); p)

i
ds

−W (N+k)

Z
C(N+k)

Γ(x, y; ξ(N+i), η(N+i); p)ds

¾
for i = 1, 2, ..., J,

(31)

where V (N+i) is the approximate constant value of V (x, y) over C(N+i) and

(ξ(N+i), η(N+i)) is the midpoint of C(N+i).

Thus, after employing the boundary conditions (17)-(19), the system of

linear algebraic equations (27)-(31) can be solved for the unknowns which

include Φ(p), V (i) and W (i) for i = 1, 2, · · · , Q and also for i = N + 1, N +
2, · · · , N + J, and either V (i) or W (i) for i = Q + 1, Q + 2, · · · , N. Notice
that if the boundary condition (17) or (19) holds over C(i) then V (i) or

W (i) is known respectively. This is why either V (i) or W (i) (not both) for
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i = Q + 1, Q + 2, · · · , N are unknowns. (Boundary elements where (17) or

(19) holds are labelled C(Q+1), C(Q+2), · · · , C(N−1) and C(N).)
The derivation above is for S ⊂ R. What about the special case where

S = R? For this special case, (29)-(31) can be replaced by just a single

equation, i.e.

NX
k=1

W (k)L(k) = pM(p)− p
ZZ
R

Upart(x, y; p)dxdy, (32)

and the unknowns are Φ(p), V (i) and W (i) for i = 1, 2, · · · , Q and either V (i)
or W (i) for i = Q+ 1, Q+ 2, · · · , N.
Once V (k) and W (k) are determined, we can compute V (x, y; p) at any

interior point (ξ, η) approximately via

V (ξ, η; p) ≈
NX
k=1

½
V (k)

Z
C(k)

∂

∂n
[Γ(x, y; ξ, η; p)] ds

−W (k)

Z
C(k)

Γ(x, y; ξ, η; p)ds

¾
. (33)

4 LT INVERSION

The physical solution u(x, y, t) and z(t) can be recovered approximately from

U(x, y; p) and Φ(p) by using a LT inversion technique. According to the

Stehfest’s algorithm [10] which is nowadays increasingly used in applied me-

chanics for the numerical inversion of LT (e.g. Ang [1]), we obtain

u(x, y, t) ≈ ln(2)
t

2PX
n=1

cnU

µ
x, y;

n ln(2)

t

¶
,

z(t) ≈ ln(2)
t

2PX
n=1

cnΦ

µ
n ln(2)

t

¶
, (34)

where P is a positive integer and

cn = (−1)n+P
min(n,P )X

m=[(n+1)/2]

mP (2m)!

(P −m)!m!(m− 1)!(n−m)!(2m− n)! , (35)
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where [r] denotes the integer part of the real number r.

As numerical techniques for inverting Laplace transform are highly sus-

ceptible to round-off errors, P cannot be selected to be as large as we like.

On the other hand, choosing P to be too small may yield numerical results of

lower accuracy. The optimum choice of P depends on the arithmetical pre-

cision of the computer (Stehfest [10]). Perhaps the best way to choose the

optimum P is through testing the computer code of (34) on inverting known

Laplace transforms of some elementary test functions. For the test problem

in Section 5 below, programming in double precision using the Fortran 77

language on a Pentium III 450 MHz (64 Mb SDRAM) desktop computer, we

find that to achieve satisfactory results the range of P which may be used is

from 4 to 6, i.e. between 8 and 12 terms may be used in the approximation

(34). With better machines, it may be possible to use a higher value of P,

e.g. P = 10, as reported in (Stehfest [10]).

5 A TEST PROBLEM

For testing the BIEM, we construct a problem involving a square region R

given by 0 < x < 1, 0 < y < 1. The region S where the specification of mass

is given is

S = {(x, y) : y < x(1− x), x ≥ 0, y ≥ 0}. (36)
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The initial-boundary conditions and the non-local condition are:

u(x, y, 0) = sin(
π

2
[x+ y]) + exp(

πx

2
) sin(

πy

2
) for (x, y) ∈ R, (37)

u(0, y, t) = [1 + exp(−π2t

2
)] sin(

πy

2
) for 0 < y < 1, (38)

u(1, y, t) = exp(−π2t

2
) sin(

π

2
[1 + y]) + exp(

π

2
) sin(

πy

2
) for 0 < y < 1, (39)

u(x, 1, t) = exp(−π2t

2
) sin(

π

2
[x+ 1]) + exp(

πx

2
) for 0 < x < 1, (40)

u(x, 0, t) = sin(
πx

2
)z(t) for 0 < x < 1, (41)ZZ

S

u(x, y, t)dxdy = α exp(−π2t

2
) + β, (42)

where

α =

Z 1

0

Z x(1−x)

0

sin(
π

2
(x+ y))dydx ≈ 0.126 280 295 9,

β =

Z 1

0

Z x(1−x)

0

exp(
πx

2
) sin(

πy

2
)dydx ≈ 5. 941796 306× 10−2. (43)

The exact solution for the specific problem above is given by

u(x, y, t) = exp(−π2t

2
) sin(

π

2
[x+ y]) + exp(

πx

2
) sin(

πy

2
) (44)

with

z(t) = exp(−π2t

2
). (45)

For the purpose of executing the BIEM, following (15), we take a partic-

ular solution of (8) to be given by

Upart(x, y; p) = −
Z 1

0

Z 1

0

[sin(
π

2
[ξ + η]) + exp(

πξ

2
) sin(

πη

2
)]

× Γ(x, y; ξ, η; p)dξdη (46)

which can be evaluated using a numerical quadrature. The integrand in

(46) behaves like ln(r) for small r, where r is the distance separating (x, y)
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Figure 2: A graphical comparison of the numerical and exact z(t).

and (ξ, η). From numerical experiments, we found that integrals with such

integrands may be evaluated with reasonably good accuracy by merely using

a simple midpoint rule, provided that the domain of integration is finely

discretized into many square cells. Thus, the midpoint rule is applied to

compute (46).

Discretizing the boundary of the square region into 80 equal length ele-

ments (each of length 0.05 units) and the curve y = x(1 − x) for x ∈ [0, 1]
into 20 elements with endpoints given by (k/20, k[20 − k]/400) for k =
0, 1, 2, · · · , 20, we apply the BIEM to solve the specific problem described

above in the LT space. We use P = 4 in (34) to recover the solution in the

physical space. The numerical results for the function z(t) thus obtained for

t ∈ [0, 1/2] are graphed and compared in Figure 2 with the exact solution
given by (45). As can be seen in Figure 2, there is a reasonably good agree-

ment between the numerical and the exact values of z. For t = 1/10, we also

compute u numerically at selected points (x, y) in the interior of the square

13



(solution) domain. The numerical values are compared and found to agree

well with the exact ones given by (44). Refer to Table 1. When the number

of elements used in the computation is doubled or trebled, an improvement

in the accuracy of the numerical results may be observed.

Table 1: Numerical results for u(x, y, 1/10) at selected points (x, y) in the

interior of the solution domain.
Point (x, y) BIEM Exact
(0.50, 0.50) 2.170 2.161
(0.30, 0.80) 2.129 2.127
(0.20, 0.30) 1.059 1.053
(0.70, 0.10) 1.067 1.050
(0.10, 0.10) 0.3745 0.3717
(0.90, 0.80) 4.194 4.187

6 CONCLUSION

The problem of solving the two-dimensional diffusion equation subject to a

nonlocal condition in the form of an integral taken over part of the solution

domain is formulated in the LT space. A simple BIEM is then proposed for

the numerical solution of the problem in the LT space. The physical solution

is recovered through the use of a numerical technique for inverting LT. Such

a method of solution is used to solve a specific problem which has a known

exact solution. The numerical results obtained agree well with the exact

solution.

In the proposed method, the nonlocal condition in the LT space is recast

in such a way that the LT of the unknown function u (in the diffusion equa-

tion) appears only in the integrand of a boundary integral. Although domain

integrals do appear in the integral formulation, their integrands do not con-

tain unknown functions. Thus, the manipulation of unknown data is carried

out on only the boundary of the solution domain, as in a typical BIEM. This

makes the proposed method easier to implement on the computer, compared

with other techniques such as the finite difference and the finite element
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methods. It is particularly suitable for problems having solution domains

that are irregular in shape.

The execution speed of the BIEM can be greatly improved if the compu-

tation for the different values of the LT parameter p is carried out in parallel

using a computer with multiple processors.
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