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Abstract

A boundary element method based on the Cauchy’s integral for-
mulae and the theory of complex hypersingular integrals is devised
for the numerical solution of boundary value problems governed by a
system of second order elliptic partial differential equations. The ellip-
tic system has applications in physical problems involving anisotropic
media.
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1 INTRODUCTION

Consider the system of second order elliptic partial differential equations

given by
2X
j=1

2X
p=1

NX
k=1

aijkp
∂2φk

∂xj∂xp
= 0 (i = 1, 2, · · · , N), (1)

where φk (k = 1, 2, · · · , N) are functions of x1 and x2 and aijkp (j, p = 1, 2 and
i, k = 1, 2, · · · , N) are real constant coefficients which satisfy the symmetry
conditions aijkp = akpij and are such that

2X
j=1

2X
p=1

NX
i=1

NX
k=1

aijkpλijλkp > 0 for every non-zero N × 2 real matrix [λij].

(2)

We are interested in solving (1) in a region R bounded by a simple closed
curve C (on the 0x1x2 plane) subject to

φk(x1, x2) = µk(x1, x2) for (x1, x2) ∈ C1
Pi(x1, x2) = Qi(x1, x2) for (x1, x2) ∈ C2

)
(3)

where µk and Qi are suitably prescribed functions of x1 and x2, C1 and C2
are non-intersecting curves such that C = C1 ∪ C2 and

Pi =
2X
j=1

2X
p=1

NX
k=1

aijkp
∂φk
∂xp

nj (i = 1, 2, · · · , N) (4)

with nj (j = 1, 2) being components of the unit outer normal vector to R on

C.
The boundary value problem defined by (1) and (3) has important appli-

cations in engineering. As an example, the steady-state temperature distri-

bution in a flat plate which is thermally anisotropic and homogeneous obeys
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(1) with N = 1. The temperature and heat flux are given by φ1 and (P1, P2)

respectively, and a1j1p are the heat conduction coefficients.

The plane static deformation of a homogeneous anisotropic elastic solid is

governed by (1) with N = 2 and x1 and x2 as the Cartesian coordinates. The

Cartesian displacement and traction are given by (φ1,φ2) and (P1, P2) respec-

tively. The coefficients aijkp are the elastic moduli of the material occupying

the solid. For a specific case, the elastostatic behaviour of a transversely-

isotropic material which has transverse planes perpendicular to the 0x1x2

plane and which undergoes plane deformation is governed by

C
∂2φ1
∂x21

+ L
∂2φ1
∂x22

+ (F + L)
∂2φ2

∂x1∂x2
= 0,

A
∂2φ2
∂x22

+ L
∂2φ2
∂x21

+ (F + L)
∂2φ1

∂x1∂x2
= 0, (5)

a special case which can be recovered from (1) if we let N = 2 and a2222 = A,

a1111 = C, a1122 = a2211 = F, a1212 = a2121 = a1221 = a2112 = L and the

remaining aijkl be zero.

Clements and Rizzo [1] provided a real boundary integral equation method

(based on fundamental solutions) for the numerical solution of the boundary

value problem defined by (1) and (3). In the present paper, a complex vari-

able boundary element method (CVBEM) is proposed as a useful alternative

numerical technique for solving the problem. The method is implemented

using constant elements and used to solve some specific problems.

Based on the Cauchy’s integral formula, the CVBEM was originally in-

troduced by Hromadka II and Lai [2] for the special case aijkp = δjpδi1δk1

[δij is the kronecker-delta], i.e. where the system (1) reduces to the two-

dimensional Laplace’s equation. Further development and refinement of the

method were carried out by Hromadka II and his co-researchers (e.g. Hro-

madka and Yen [3], Whitley and Hromadka II [6], Hromadka II and Whitley
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[4], [7], and Hromadka II [5]).

Introducing the theory of complex Hadamard finite-part (hypersingular)

integrals, Linkov and Mogilevskaya [8] formulated a CVBEM to solve cer-

tain elastostatic problems governed by a particular system of elliptic partial

differential equations. The theory of complex hypersingular integrals is also

successfully applied here to develop a CVBEM for solving (1) numerically

subject to (3).

2 BASIC EQUATIONS

The system (1) admits solutions of the form (Clements and Rizzo [1])

φk(x1, x2) = Re

(
NX

α=1

Akαfα(zα)

)
, (6)

where fα are holomorphic functions of zα = x1 + pαx2 in R, pα are the
solutions, with positive imaginary parts, of the (2N)-th order polynomial

(characteristic) equation

det
³h
ai1k1 + pai2k1 + pai1k2 + p

2ai2k2
i´
= 0, (7)

and Akα are solutions of the homogeneous system of equations

NX
k=1

h
ai1k1 + pαai2k1 + pαai1k2 + p

2
αai2k2

i
Akα = 0. (8)

Notice that, because of (2), equation (7) admits only non-real solutions which

occur in complex conjugate pairs.

From (4) and (6), we find that

Pi(x1, x2) = Re

⎧⎨⎩
2X
j=1

NX
α=1

Lijαf
0
α(zα)nj

⎫⎬⎭ , (9)
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where the prime denotes differentiation with respect to the relevant argument

and

Lijα =
NX
k=1

(aijk1 + pαaijk2)Akα. (10)

Since fα are holomorphic functions of zα in R, Cauchy’s integral formulae
give

2πifα(ξ1 + pαξ2) =
I
(x1,x2)∈C

fα(x1 + pαx2)d (x1 + pαx2)

(x1 + pαx2 − ξ1 − pαξ2)
(11)

2πif 0α(ξ1 + pαξ2) =
I
(x1,x2)∈C

fα(x1 + pαx2)d (x1 + pαx2)

(x1 + pαx2 − ξ1 − pαξ2)2
(12)

for (ξ1, ξ2) ∈ R. Notice that f 0(z) denotes the first order derivative of f with
respect to z. We assume C is assigned an anticlockwise direction.
For the case where (ξ1, ξ2) lies on a smooth part of C, the formulae (11)

and (12) can be modified to become

πifα(ξ1 + pαξ2) = P
I
(x1,x2)∈C

fα(x1 + pαx2)d (x1 + pαx2)

(x1 + pαx2 − ξ1 − pαξ2)
(13)

πif 0α(ξ1 + pαξ2) = H
I
(x1,x2)∈C

fα(x1 + pαx2)d (x1 + pαx2)

(x1 + pαx2 − ξ1 − pαξ2)2
(14)

where P and H denote that the integral is to be interpreted in the Cauchy

principal and Hadamard finite-part sense, respectively. For further details on

the theory of complex Cauchy principal and Hadamard finite-part integrals,

refer to Linkov and Mogilevskaya [8].

3 CVBEM

A CVBEM for the approximate solution of the boundary value problem de-

fined by (1) and (3) may be devised using (6), (9) and (11)-(14) as follows.

The boundary C is discretised by putting M closely-packed well-spaced

out points (x
(1)
1 , x

(1)
2 ), (x

(2)
1 , x

(2)
2 ), · · · , (x

(k)
1 , x

(k)
2 ), · · · , and (x

(M)
1 , x

(M)
2 ) (in
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anticlockwise direction) on it. If we denote the straight line segment from

(x
(k)
1 , x

(k)
2 ) to (x

(k+1)
1 , x

(k+1)
2 ) by C(k) [k = 1, 2, · · · ,M ], then we make the ap-

proximation C ' C(1)∪C(2)∪ · · ·∪C(M). [Note that we take (x(M+1)1 , x
(M+1)
2 ) =

(x
(1)
1 , x

(1)
2 ).]

Let us write

uk(x1, x2) + ivk(x1, x2) =
NX

α=1

Akαfα(zα), (15)

where uk and vk are real functions [uk = φk].

Inverting (15), we obtain

fα(zα) =
NX
k=1

Nαk [uk(x1, x2) + ivk(x1, x2)] , (16)

where [Nαk] is the inverse of [Akα]. The existence of [Nkα] is guaranteed if p1,

p2, · · · , pN−1 and pN are all distinct (Clements and Rizzo [1]).
Approximating uk and vk by

uk(x1, x2) ' u(q)k
vk(x1, x2) ' v(q)k

)
for (x1, x2) ∈ C(q), (17)

then for (ξ1, ξ2) ∈ R ∪ C the imaginary parts of both (11) and (13) give rise
to the approximation

vp(ξ1, ξ2) '
1

2π

MX
m=1

NX
k=1

n
−u(m)k Γ

(m)
pk (ξ1, ξ2) + v

(m)
k Θ

(m)
pk (ξ1, ξ2)

o
, (18)

where u
(p)
k and v

(p)
k are constants, Γ

(m)
pk (ξ1, ξ2) and Θ

(m)
pk (ξ1, ξ2) are real pa-

rameters defined by

Γ
(m)
pk (ξ1, ξ2) + iΘ

(m)
pk (ξ1, ξ2)

=
NX

α=1

ApαNαk

h
γ(m)α (ξ1, ξ2) + iθ

(m)
α (ξ1, ξ2)

i
,
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γ(m)α (ξ1, ξ2) = ln
¯̄̄
z(m+1)α − cα

¯̄̄
− ln

¯̄̄
z(m)α − cα

¯̄̄
and

θ(m)α (ξ1, ξ2) =

⎧⎪⎨⎪⎩
Ω(m)α (ξ1, ξ2) if −π ≤ Ω(m)α (ξ1, ξ2) ≤ π

Ω(m)α (ξ1, ξ2) + 2π if −2π ≤ Ω(m)α (ξ1, ξ2) < −π
Ω(m)α (ξ1, ξ2)− 2π if π < Ω(m)α (ξ1, ξ2) ≤ 2π

where Ω(m)α (ξ1, ξ2) =Arg(z
(m+1)
α − cα)−Arg(z(m)α − cα), Arg(z) denotes the

principal value of the argument of the complex number z, z(m)α = x
(m)
1 +

pαx
(m)
2 and cα = ξ1 + pαξ2.

If the region R is convex, then θ(m)α (ξ1, ξ2) can be calculated directly from

θ(m)α (ξ1, ξ2) = cos
−1

⎛⎜⎝
¯̄̄
z(m+1)α − cα

¯̄̄2
+
¯̄̄
z(m)α − cα

¯̄̄2
−
¯̄̄
z(m+1)α − z(m)α

¯̄̄2
2
¯̄̄
z
(m+1)
α − cα

¯̄̄ ¯̄̄
z
(m)
α − cα

¯̄̄
⎞⎟⎠ .

By letting (ξ1, ξ2) = (y
(p)
1 , y

(p)
2 ) ≡ (x

(p+1)
1 + x

(p)
1 , x

(p+1)
2 + x

(p)
2 )/2 (the mid-

point of C(p)) in (18), we obtain the approximate system

v(q)p =
1

2π

MX
m=1

NX
k=1

n
−u(m)k Γ

(m)
pk (y

(q)
1 , y

(q)
2 ) + v

(m)
k Θ

(m)
pk (y

(q)
1 , y

(q)
2 )

o
(19)

for p = 1, 2, · · · , N and q = 1, 2, · · · ,M. Equations (19) constitute a system
of MN linear algebraic equations in 2MN unknowns u

(m)
k and v

(m)
k (k =

1, 2, · · · , N ; m = 1, 2, · · · ,M).
Over each of the line segments C(m) (m = 1, 2, · · · ,M), either φk or Pi

are specified according to (3). Thus, from (3), (6), (9) and (14), we obtain

either

u
(p)
k = µk(y

(p)
1 , y

(p)
2 ) if φk are specified over C(p), (20)

or

1

π

MX
m=1

NX
α=1

2X
j=1

NX
k=1

n³
Jijαkq

(pm)
α −Kijαkw

(pm)
α

´
v
(m)
k

+
³
Jijαkw

(pm)
α +Kijαkq

(pm)
α

´
u(m)α

o
n
(p)
j

= Qi(y
(p)
1 , y

(p)
2 ) if Pi are specified over C(p), (21)
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where Jijαk = Re{LijαNαk}, Kijαk = Im{LijαNαk}, n(m)j are the components

of the unit normal vector to R on C(m), q(pm)α and w(pm)α are real constants

such that q(pm)α + iw(pm)α = (z(m)α − c(p)α )−1 − (z(m+1)α − c(p)α )−1 and c(p)α =

(z(p)α + z(p+1)α )/2. We find that (20) and/or (21) gives rise to an additional

MN equations in u(m)α and v(m)α .

We may solve (19) [for p = 1, 2, · · · , N and q = 1, 2, · · · ,M ] together with
(20) and/or (21) as a system of 2MN linear algebraic equations for the 2MN

unknowns u
(m)
k and v

(m)
k (k = 1, 2, · · · , N ; m = 1, 2, · · · ,M). However, from

numerical experiments, we find that, depending on the discretisation of the

boundary C, (19) [for p = 1, 2, · · · , N and q = 1, 2, · · · ,M ] together with (20)
and/or (21) may be poorly conditioned and may give rise to numerical values

of vk that are extremely large in magnitude, ruining subsequent calculations

of φk in the interior of R. Perhaps this observation is not surprising at all
due to the fact that vk are not uniquely determined by the boundary value

problem under consideration (but uk = φk are).

One method which is used successfully to overcome the difficulty associ-

ated with the poorly conditioned system of linear algebraic equations is to

fix the value of vk across the segment C(M), e.g set v(M)k = 0, and solve (19),

with p = 1, 2, · · · , N and q = 1, 2, · · · ,M − 1, together with (20) and/or (21)
as a well conditioned system of (2M − 1)N linear algebraic equations.

Once u
(m)
k and v

(m)
k (k = 1, 2, · · · , N ; m = 1, 2, · · · ,M) are all known, we

can compute fα approximately via

fα(ξ1 + pαξ2) '
1

2πi

MX
m=1

NX
k=1

Nαk

h
u
(m)
k (ξ1, ξ2) + iv

(m)
k (ξ1, ξ2)

i
×
³
γ(m)α (ξ1, ξ2) + iθ

(m)
α (ξ1, ξ2)

´
(22)

and hence φk(ξ1, ξ2) [using (6)] at any point (ξ1, ξ2) in the interior of R.
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4 SPECIFIC PROBLEMS

We shall now apply the CVBEM described above to solve some specific prob-

lems.

Problem 1. Take the elliptic partial differential equation

5
∂2φ

∂x21
+ 2

∂2φ

∂x1∂x2
+

∂2φ

∂x22
= 0 (23)

which is a special case of (1) with N = 1 and a1j1p = 5δj1δp1 + δj1δp2 +

δj2δp1 + δj2δp2.

We apply the CVBEM to solve (23) in the square region R given by

R = {(x1, x2) : 0 < x1 < 1, 0 < x2 < 1}

subject to the conditions

∂φ

∂x2

¯̄̄̄
¯
x2=1

=
x21 − 8x1 − 4
(x21 + 4)

2 for 0 < x1 < 1,

φ(0, x2) =
−x2 + 1

(−x2 + 1)2 + 4x22
for 0 < x2 < 1,

φ(x1, 0) =
1

(x1 + 1)
for 0 < x1 < 1,

φ(1, x2) =
2− x2

(2− x2)2 + 4x22
for 0 < x2 < 1. (24)

It can be easily verified by substitution that the boundary value problem

defined by (23) and (24) has the exact solution

φ(x1, x2) =
x1 − x2 + 1

(x1 − x2 + 1)2 + 4x22
. (25)

To apply the CVBEM to solve the boundary value problem, we place M

equally spaced out nodal points on the square boundary (the nodal points in-

clude the four vertices of the square). Once the relevant holomorphic function

is completely determined on the square boundary, we compute φ(x1, x2) at

9



various points in the interior of the square region. The numerical results ob-

tained by using M = 40 and M = 120 are compared with the exact solution

(25) in Table 1. It is obvious that the numerical values compare favourably

with the exact ones. More importantly, there is a noticeable improvement

in the numerical results as the number of nodal points increases from 40 to

120.

Table 1. Comparison of numerical values of φ at various interior points

(x1, x2) with the exact solution.
(x1, x2) M = 40 M = 120 Exact
(0.10,0.10) 1.0062 0.9693 0.9615
(0.10,0.50) 0.4835 0.4423 0.4412
(0.50,0.10) 0.6983 0.7021 0.7000
(0.90,0.10) 0.5215 0.5486 0.5488
(0.50,0.50) 0.5127 0.5005 0.5000
(0.50,0.90) 1.6765 1.6645 1.6667
(0.70,0.90) 1.9536 2.0601 2.0619

Problem 2. Let the elliptic partial differential equation be given by

∂2φ

∂x21
+ 4

∂2φ

∂x22
= 0 (26)

which is a special case of (1) with N = 1 and a1j1p = δj1δp1 + 4δj2δp2.

The boundary C is chosen to be a pentagon with vertices A (0, 0), B

(0, 1), C (1, 1), D (1/2, 1/2) and E (1, 0). For this particular case, R is a

concave region.
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For a specific boundary value problem, we solve (26) in R subject to

φ(0, x2) = cos
µ
1

2
x2

¶
for 0 < x2 < 1 (on AB),

φ(x1, 1) = exp(x1) cos
µ
1

2

¶
for 0 < x1 < 1 (on BC),

φ(x1, x1) = exp(x1) cos
µ
1

2
x1

¶
for

1

2
< x1 < 1 (on CD),

φ(x1, 1− x1) = exp(x1) cos
µ
1

2
[1− x1]

¶
for

1

2
< x1 < 1 (on DE),

φ(x1, 0) = exp(x1) for 0 < x1 < 1 (on AE). (27)

It can be easily verified by direct substitution that the exact solution of

the boundary value problem is

φ(x1, x2) = exp(x1) cos
µ
1

2
x2

¶
. (28)

We discretise the sides AB, BC and AE into 20 equal length boundary

elements per side and each of DE and CD into 10 elements per side (so

that M = 80) and apply the CVBEM to solve (26) in the concave region R
subject to (27). Once all the relevant holomorphic functions are constructed

approximately by the CVBEM, we compute φ at various interior points in

the concave region.

The numerical values of φ thus obtained at selected interior points are

compared with the exact values from (28) in Table 2. The numerical and

exact values show reasonable agreement with each other.
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Table 2. Comparison of numerical values of φ at various interior points

(x1, x2) in the concave region with the exact solution.
(x1, x2) CVBEM Exact

(0.25, 0.25) 1.282 1.274
(0.25, 0.50) 1.253 1.244
(0.25, 0.75) 1.203 1.195
(0.50, 0.25) 1.639 1.636
(0.50, 0.75) 1.538 1.534
(0.60, 0.25) 1.798 1.808
(0.60, 0.75) 1.686 1.695

Problem 3. Consider the system of partial differential equations (5) with

A = 16, C = 18, F = 7 and L = 4, i.e.

18
∂2φ1
∂x21

+ 11
∂2φ2

∂x1∂x2
+ 4

∂2φ1
∂x22

= 0,

16
∂2φ2
∂x22

+ 11
∂2φ1

∂x1∂x2
+ 4

∂2φ2
∂x21

= 0. (29)

For the system (29), the constants Akα, Lkjα and Nkα required in the

CVBEM’s calculations are given by

[Akα] =

"
−11ip1(18 + 4p21)−1 −11ip2(18 + 4p22)−1

i i

#
,

[Nkα] =
1

11ν

"
−2i (9 + 2p21) (9 + 2p22) −11ip2 (9 + 2p21)
2i (9 + 2p21) (9 + 2p

2
2) 11ip1 (9 + 2p

2
2)

#
,

[Lk1α] =

Ã
ip1

h
7− 77 (18 + 4p21)

−1i
ip2 [7− 77 (18 + 4p22)]

−1

4i (18− 7p21) / (18 + 4p21) 4i (18− 7p22) / (18 + 4p22)

!
,

[Lk2α] =

Ã
4i (18− 7p21) / (18 + 4p21) 4i (18− 7p22) / (18 + 4p22)
ip1

h
16− 77 (18 + 4p21)

−1i
ip2

h
16− 77 (18 + 4p22)

−1i ! ,
(30)
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where ν = (2p2p1 − 9) (−p2 + p1) and p1 and p2 are the solutions of 64p4 +
183p2 + 72 = 0 such that Im{p1} > 0 and Im{p2} > 0, i.e. p1 ' 1.5454241i
and p2 ' 0.68632303i.
For a particular boundary value problem, we choose the region R to be

given by

R = {(x1, x2) : 0 < x1 < 1, 0 < x2 < 1}.

We are interested in solving (29) in R subject to

Pk(x1, 1) = Re

(
2X

α=1

2Lk2α [x1 + 1 + pα]

)
for 0 < x1 < 1,

φk(0, x2) = Re

(
2X

α=1

Akα [1 + pαx2]
2

)
for 0 < x2 < 1,

φk(x1, 0) = Re

(
2X

α=1

Akα [x1 + 1]
2

)
for 0 < x1 < 1,

φk(1, x2) = Re

(
2X

α=1

Akα [2 + pαx2]
2

)
for 0 < x2 < 1. (31)

The exact solution of the boundary value problem defined by (29) and

(31) is given by

φk(x1, x2) = Re

(
2X

α=1

Akα [x1 + 1 + pαx2]
2

)
. (32)

By discretising the sides of the square into 80 equal length segments,

we apply the CVBEM to solve the boundary value problem and calculate

φk at various points in the interior of the square domain. The numerical

values of φk are compared with the exact values from (32) at various points

in the interior of the square in Table 3. It is obvious that a reasonably good

accuracy in the numerical results is achieved by the CVBEM.
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Table 3. Comparison of numerical values of (φ1,φ2) at various interior points

(x1, x2) in the square with the exact solution.
(x1, x2) CVBEM Exact

(0.25, 0.25) (3.553,−1.418) (3.562,−1.395)
(0.25, 0.50) (2.614,−2.816) (2.620,−2.790)
(0.25, 0.75) (1.064,−4.219) (1.050,−4.185)
(0.50, 0.25) (5.252,−1.695) (5.268,−1.674)
(0.50, 0.50) (4.312,−3.370) (4.325,−3.348)
(0.50, 0.75) (2.755,−5.043) (2.754,−5.021)
(0.75, 0.25) (7.254,−1.971) (7.284,−1.953)
(0.75, 0.50) (6.314,−3.920) (6.341,−3.906)
(0.75, 0.75) (4.752,−5.868) (4.770,−5.858)

5 SUMMARY

A simple CVBEM is presented for the numerical solution of boundary value

problems involving a rather general system of second order elliptic partial

differential equations. It is applied to solve some specific problems, including

one involving a concave region. For each of the problems, the numerical

results obtained compare favourably with the known (exact) solution.

The CVBEM can be efficiently implemented on the computer. Like other

boundary element methods, it requires only the boundary of the domain of

interest to be discretised. Furthermore, the coefficients of the linear algebraic

equations which approximate the boundary value problems [equations (19),

(20) and/or (21)] are easy to compute.

The proposed CVBEM can be refined further for better accuracy by using

higher order elements in the approximation of the holomorphic functions as

in Hromadka II and Lai [2], or by following recent developments in CVBEM,

e.g. Hromadka II and Whitley [4]-[7].
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