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Abstract

A complex variable boundary element method is outlined for the
numerical solution of the two-dimensional Helmholtz equation or its
modified form in a simply connected region subject to suitable bound-
ary conditions. It is applied to solve a specific test problem.
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1 INTRODUCTION

In the present note, we outline a complex variable boundary element method
(CVBEM) for the numerical solution of the two-dimensional Helmholtz equa-
tion or its modified form as given by
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@+a—y2+%¢:OinR (1)

subject to the boundary condition

¢ = f(z,y) for (z,y) € Cy
99
5, — 9@y) for (z,y) € Cy (2)
where f and ¢ are suitably prescribed functions, sr is a given real non-zero
constant, R is a two-dimensional region bounded by a simple closed curve
C, Cy and Cy are non-intersecting curves such that C; U Cy = C, 9¢/0n =
nz0¢/0x+mn,0¢/0y and [n,, n,| is the unit normal vector to C' pointing away
from R.

Hromadka and Lai [5] were among the earliest researchers to apply the
Cauchy integral formula to derive a CVBEM for solving numerically potential
problems governed by the two-dimensional Laplace equation. Recently, Ang
and Park [1] proposed a version of the CVBEM for the numerical solution of
a general system of elliptic partial differential equations in two-dimensional
space. Park and Ang [7] extended the work to include an elliptic partial
differential equation with variable coefficients. The approach in [1] and [7]
differs from that in [5] in the treatment of the flux boundary conditions.
The flux boundary conditions were treated using a differentiated form of the
Cauchy integral formula in [1] and [7]. The same CVBEM approach was
also independently introduced by Chen and Chen [3] for two-dimensional
potential problems with or without degenerate boundaries.

A CVBEM formulation for the numerical solution of the boundary value
problem (BVP) defined by (1)-(2) can be recovered from the analysis in Park
and Ang [7]. It may be worthwhile to extract and write out explicitly this
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formulation as the Helmholtz equation or its modified form is an important
partial differential equation in engineering science. To assess the validity of
the formulation, it is applied to solve a specific test problem.

2 COMPLEX FORMULATION

Following the analysis in Clements [4], we obtain a general solution of (1) in
terms of a complex function ®(z) (z = x + iy, i = v/—1) which is analytic in

R as follows:

¢(z,y) = Re {@(z) + Z mh,,(x) /Z(z — t)m—ldD(t)dt} , (3)

m=1

where h,,(z) is the m-th order polynomial function of z defined by

hm(x) = Zﬁy(;)xr’
r=1
() — __% gr-1) =
B =5 —Om form>1landr=1,2,---,m, (4)
mr

with ﬁéo) =1 and ﬁ,(,?) =0 for m > 1.

From the recurrence relation for 8 in (4), notice that the terms in the
infinite series in (3) decay as the reciprocal of a factorial expression in m as
m increases. Intuitively, this may seem to suggest that the series converges.
A more rigorous investigation showing that the series converges uniformly
may be carried out after the manner of Bergman [2]. This is beyond the
scope of the present note, however.

With (3), the BVP defined by (1)-(2) can now reformulated as a problem
which requires us to construct a complex function ® which is analytic in
R U C and such that

Re {CI)(Z) + > mhy(x) / Z(z - t)m‘lcb(t)dt}

= f(:li,y) for (l’,y) € Ch, (5)



and

Re{(ng + in,)[®'(z) + hi(z)®(2)
+§:m@n—1mm@X/(z—ﬂm4@@Mﬂ

+n, Z mh,, (x) /Z(z — )™ (t)dt}

= g(x,_y) for (z,y) € Cs. (6)

3 CVBEM

To construct approximately ®(z) which is analytic in R and satisfy (5)-(6),
we follow closely the analysis in Park and Ang [7].
For ¢ € R, the Cauchy integral formula and its differentiated form are

2mid(c) = f O(z)dz and 2mi®’(c) = 7{ @(z)i}z) (7)
C

c

given by

where C' is assigned an anticlockwise direction.

To discretise the curve boundary C, M well-spaced out points (z(1), y(),
(@, y@), ... (W=D 9M=1)) and (M) 4(M)) are placed on it in an anti-
clockwise order. Denote the directed straight line segment from (z®), y*))
to () yE+H)) by C®) (k= 1,2,--- , M). [We define (x(M+1) 4M+1)) =
(z™M), y1).] We make the approximation:

C~CcWycPuy...uc™M-bHych, (8)

Proceeding as in Park and Ang [7], we find that the real part of (7)
approximately gives rise to:

E:{Iﬂm Smt1) 50

—V(m [9(2( ), 2(mH1) 2)) 27r5pm” =0 forp=1,2,---, M, (9)



where 6, is the Kronecker-delta, (™ = (™) 4 jy(m) 2 = [z 4 ,(P+1)]/2
is the midpoint of the line segment C®), U®) and V®) are real constants such
that U® + iV ®) = &(z)) and

~v(a,b,¢) =In|b—c| —In|a — |
O(a,b,c) if  O(a,b,c) € [—m, 7]
0(a,b,c) =< ©O(a,b,c)+2r if O(a,b,c) € [-2m,—)
O©(a,b,c) — 2 if  O(a,b,c) € (7,27
©(a,b,c) = Arg(b — c) — Arg(a — ¢), (10)

where Arg(z) denotes the principal argument of the complex number z.

In (9) iS a system of M linear algebraic equations containing 2M un-
knowns U™ and V(™ (m =1,2,--- , M). Another M equations are needed
to complete the system. These come from the boundary conditions (5)-(6)

as:
p
U® 4+ Z (F(pT)U(T) — \I;(pr)v(r))
r=1
= f(@®, g®) if ¢ is specified on CP, (11)
or
LM
= Z{ [w(zM), 20D ZENp®) g (20 L+ 2 ))n?(Jp)]U(T
r=1
+ [q(z(T)’Z(rJrl)’g(p))ngcp) —w(z(T),z(T“),A( ) (p]V(T }
+ [n®) Rgp) _ n(yp) Sfp)]U(p) — [n® S§ R Ve
p
+3 (f(pr>U<r) _ :I}(pr)vm>
r=1
= g(z®, 5P if 3¢p/On is specified on C'P (12)

where 2P) = (2(®) 4 z@T1)) /2 7) = () 4 P+ /2 R%’)’ 57(%’)7 e g,



ren, g B® 8P 0 and w are real parameters defined by

L) @ ®) =" m(RY) +iSEAL,
m=1

o) 4 ) — (p®) 4 in, (7)) Z m(m (®) 4 z'S,@fl’))A,(n,’;?l
m=2
+ ) mnP (R®) +iSP)AE,
m=1
L(r+1) ()
A = (=) [ EO g an, [P - g
Z(r) z("')

R® +iS® = h,, (3P), R® +iS® = p (7P,
1 1
b—c a-—c

Q(a, bv C) + iw(aa bv C) - - (13)
In deriving (12) from (6), we use the differentiated form of the Cauchy
integral formula to express @ (z®) in terms of U™ and V") (r = 1, 2,
, M) as described in references [1], [3] and [7].
Also, in deriving (11) and (12), we have to deal with the integrals

/p(Ep—t)m1<I>(t)dt form=1,2, . (14)

As long as the path of integration lies in the region R U C, these integrals
are path-independent. We are free to choose any path from a to z,. We take
a = 2z (i.e. one of the endpoints of the line segment C')) and integrate
along the line segments CV, C@ ... C®=2 C@-1) and C®), where C®)
denotes the line segment from (az(p),y( )) to ( (), 7)) (i.e. the first half
of the line segment C®). Furthermore, over CV, ¢ ... C®=2) C@-1)
and 6@), we approximate ®(t) as constants UM 4 iV U@ 4@

UP=2) 4 y®=2) -1 4 ;171 and UP 4 iV ® respectively. Thus, in the



derivation of (11) and (12), we use the approximation

/ (3, — )™ 10(¢)dt

¢ D 2(r+1)

~ (U +iv®) {(1-@,,) / 2@ — )t
z(T)

r=1
2(r)
+5T,,/ [2P) — t]mldt} : (15)

Once the 2M unknown constants U™ and V) (r = 1,2,---, M) are
determined from (9) together with (11) and/or (12), the solution of the BVP
under consideration can be computed approximately at any point (£,7) in
the interior of the solution domain using

1 M
o(¢.m) = 5~ Re {Z[U‘” +iV®]

p=1

X [y(2P, 2#HD € i) +i0(zW), 2P € 4 i)
M

+ th ) (W) 2D € i) 4 i0(2P), 20T €+ i)

p=1

p
x Y (U® + z'v(k))AggM} : (16)

k=1

4 A TEST PROBLEM

For a test problem, let us take R to be the region inside the circle 2% +y% = 1.

If > = —w?, a particular solution of (1) that is valid everywhere inside R
including the circular boundary is

Hz,9) = Ky (w o= 5 +y2> , (17)

where K, is the modified Bessel function of the second kind and of order
Z€ro.



We apply the CVBEM to solve numerically the partial differential equa-
tion (1) with s = —w? in the circular region R subject to ¢ given on the
upper half of the circle 2 + 3?> = 1 and d¢/dn on the remaining circle. The
values of ¢ on the upper half of the circle and d¢/0n on the remaining circle
are generated using (17). If the CVBEM really works, it should recover the
solution (17) approximately at any point (x,y) in the interior of R.

For w = 1, approximating the circular boundary by a M-sided regular
polygon, we solve the resulting system of linear algebraic equations for the
unknowns U®) and V® (k = 1,2,---, M) and use (16) to compute ¢ ap-
proximately at various selected interior points of R. The numerical values of
¢ obtained using M = 20, M = 100 and M = 500 are compared with the
exact solution (17) in Table 1. Even for a relatively coarse discretization of
the circular boundary using M = 20 (i.e. using boundary elements each of
length 0.31 units), the numerical values of ¢ are reasonably accurate. From
the table, it is obvious the numerical ¢ converges to the correct exact solution
as M increases from 20 to 500.

Table 1. Numerical results for ¢(z,y) at selected points (z,y) in the
interior of the solution domain.

(z,y) M=20| M =100 | M =500 | Exact
(0.50,0.50) | 0.3437 0.3547 0.3562 0.3565
(0.10,—0.60) | 0.2108 0.2084 0.2076 0.2075
(0.98,0.0) 0.8146 0.8755 0.8888 0.8921
(—0.60,0.70) | 0.1066 | 0.09053 | 0.08829 | 0.08781
(0.0,0.80) 0.1706 0.1662 0.1656 0.1655

Notice that in implementing the CVBEM we truncate the infinite series
in (13) and (16) by replacing oo with a finite positive integer denoted by Ne.
One way of carrying out the truncation is simply to add up the well-ordered
terms in the series one by one until there is no significant contribution to
the infinite sum. The numerical results in Table 1 are obtained by using N,
not more than 10. We have experimented with solving the test problem for



different values of w. In general, as expected, we find that if w has a higher
magnitude it is necessary to use a larger number of boundary elements in
the computation to achieve a given level of accuracy in the numerical results.
The proposed CVBEM resembles the multiple reciprocity BEM (MRBEM)
of Nowak [6] for solving the Helmholtz equation in two ways. Firstly, the
MRBEM formulation also contains an infinite series which needs to be trun-
cated for practical implementation. Secondly, the MRBEM also requires the
discretisation of the boundary to be extremely fine when s in (1) possesses
a very high magnitude.
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