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1 INTRODUCTION

In the present note, we outline a complex variable boundary element method

(CVBEM) for the numerical solution of the two-dimensional Helmholtz equa-

tion or its modified form as given by

∂2φ

∂x2
+

∂2φ

∂y2
+ κφ = 0 in R (1)

subject to the boundary condition

φ = f(x, y) for (x, y) ∈ C1
∂φ

∂n
= g(x, y) for (x, y) ∈ C2 (2)

where f and g are suitably prescribed functions, κ is a given real non-zero
constant, R is a two-dimensional region bounded by a simple closed curve

C, C1 and C2 are non-intersecting curves such that C1 ∪ C2 = C, ∂φ/∂n =
nx∂φ/∂x+ny∂φ/∂y and [nx, ny] is the unit normal vector to C pointing away

from R.

Hromadka and Lai [5] were among the earliest researchers to apply the

Cauchy integral formula to derive a CVBEM for solving numerically potential

problems governed by the two-dimensional Laplace equation. Recently, Ang

and Park [1] proposed a version of the CVBEM for the numerical solution of

a general system of elliptic partial differential equations in two-dimensional

space. Park and Ang [7] extended the work to include an elliptic partial

differential equation with variable coefficients. The approach in [1] and [7]

differs from that in [5] in the treatment of the flux boundary conditions.

The flux boundary conditions were treated using a differentiated form of the

Cauchy integral formula in [1] and [7]. The same CVBEM approach was

also independently introduced by Chen and Chen [3] for two-dimensional

potential problems with or without degenerate boundaries.

A CVBEM formulation for the numerical solution of the boundary value

problem (BVP) defined by (1)-(2) can be recovered from the analysis in Park

and Ang [7]. It may be worthwhile to extract and write out explicitly this
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formulation as the Helmholtz equation or its modified form is an important

partial differential equation in engineering science. To assess the validity of

the formulation, it is applied to solve a specific test problem.

2 COMPLEX FORMULATION

Following the analysis in Clements [4], we obtain a general solution of (1) in

terms of a complex function Φ(z) (z = x+ iy, i =
√−1) which is analytic in

R as follows:

φ(x, y) = Re

(
Φ(z) +

∞X
m=1

mhm(x)

Z z

a

(z − t)m−1Φ(t)dt
)
, (3)

where hm(x) is the m-th order polynomial function of x defined by

hm(x) =
mX
r=1

β(r)m x
r,

β(r)m = − κ
2mr

β(r−1)m−1 for m ≥ 1 and r = 1, 2, · · · ,m, (4)

with β(0)0 = 1 and β(0)m = 0 for m ≥ 1.
From the recurrence relation for β

(r)
m in (4), notice that the terms in the

infinite series in (3) decay as the reciprocal of a factorial expression in m as

m increases. Intuitively, this may seem to suggest that the series converges.

A more rigorous investigation showing that the series converges uniformly

may be carried out after the manner of Bergman [2]. This is beyond the

scope of the present note, however.

With (3), the BVP defined by (1)-(2) can now reformulated as a problem

which requires us to construct a complex function Φ which is analytic in

R ∪ C and such that

Re

(
Φ(z) +

∞X
m=1

mhm(x)

Z z

a

(z − t)m−1Φ(t)dt
)

= f(x, y) for (x, y) ∈ C1, (5)
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and

Re{(nx + iny)[Φ0(z) + h1(x)Φ(z)

+

∞X
m=2

m(m− 1)hm(x)
Z z

a

(z − t)m−2Φ(t)dt]

+ nx

∞X
m=1

mh0m(x)
Z z

a

(z − t)m−1Φ(t)dt}

= g(x, y) for (x, y) ∈ C2. (6)

3 CVBEM

To construct approximately Φ(z) which is analytic in R and satisfy (5)-(6),

we follow closely the analysis in Park and Ang [7].

For c ∈ R, the Cauchy integral formula and its differentiated form are

given by

2πiΦ(c) =

I
C

Φ(z)dz

z − c and 2πiΦ0(c) =
I
C

Φ(z)dz

[z − c]2 , (7)

where C is assigned an anticlockwise direction.

To discretise the curve boundary C, M well-spaced out points (x(1), y(1)),

(x(2), y(2)), · · · , (x(M−1), y(M−1)) and (x(M), y(M)) are placed on it in an anti-
clockwise order. Denote the directed straight line segment from (x(k), y(k))

to (x(k+1), y(k+1)) by C(k) (k = 1, 2, · · · ,M). [We define (x(M+1), y(M+1)) =
(x(1), y(1)).] We make the approximation:

C ' C(1) ∪ C(2) ∪ · · · ∪ C(M−1) ∪ C(M). (8)

Proceeding as in Park and Ang [7], we find that the real part of (7)

approximately gives rise to:

MX
m=1

©
U (m)γ(z(m), z(m+1), bz(p))

−V (m) £θ(z(m), z(m+1), bz(p))− 2πδpm¤ª = 0 for p = 1, 2, · · · ,M, (9)
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where δpm is the Kronecker-delta, z
(m) = x(m) + iy(m), bz(p) = [z(p) + z(p+1)]/2

is the midpoint of the line segment C(p), U (p) and V (p) are real constants such

that U (p) + iV (p) = Φ(bz(p)) and
γ(a, b, c) = ln |b− c|− ln |a− c|

θ(a, b, c) =

 Θ(a, b, c) if Θ(a, b, c) ∈ [−π, π]
Θ(a, b, c) + 2π if Θ(a, b, c) ∈ [−2π,−π)
Θ(a, b, c)− 2π if Θ(a, b, c) ∈ (π, 2π]

Θ(a, b, c) = Arg(b− c)− Arg(a− c), (10)

where Arg(z) denotes the principal argument of the complex number z.

In (9) is a system of M linear algebraic equations containing 2M un-

knowns U (m) and V (m) (m = 1, 2, · · · ,M). Another M equations are needed

to complete the system. These come from the boundary conditions (5)-(6)

as:

U (p) +

pX
r=1

¡
Γ(pr)U (r) −Ψ(pr)V (r)

¢
= f(bx(p), by(p)) if φ is specified on C(p), (11)

or

1

π

MX
r=1

{ [w(z(r), z(r+1), bz(p))n(p)x + q(z(r), z(r+1), bz(p))n(p)y ]U (r)
+ [q(z(r), z(r+1), bz(p))n(p)x − w(z(r), z(r+1), bz(p))n(p)y ]V (r) }
+ [n(p)x R

(p)
1 − n(p)y S(p)1 ]U (p) − [n(p)x S(p)1 + n(p)y R

(p)
1 ]V

(p)

+

pX
r=1

³eΓ(pr)U (r) − eΨ(pr)V (r)
´

= g(bx(p), by(p)) if ∂φ/∂n is specified on C(p), (12)

where bx(p) = (x(p) + x(p+1))/2, by(p) = (y(p) + y(p+1))/2, R(p)m , S(p)m , Γ(pr), Ψ(pr),
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eΓ(pr), eΨ(pr), eR(p)m , eS(p)m , q and w are real parameters defined by
Γ(pr) + iΨ(pr) =

∞X
m=1

m(R(p)m + iS(p)m )Λ
(pr)
m ,

eΓ(pr) + ieΨ(pr) = (n(p)x + in(p)y )
∞X
m=2

m(m− 1)(R(p)m + iS(p)m )Λ
(pr)
m−1

+
∞X
m=1

mn(p)x (
eR(p)m + ieS(p)m )Λ(pr)m ,

Λ(pr)m = (1− δrp)

Z z(r+1)

z(r)
[bz(p) − t]m−1dt+ δrp

Z bz(r)
z(r)

[bz(p) − t]m−1dt,
R(p)m + iS(p)m = hm(bx(p)), eR(p)m + ieS(p)m = h0m(bx(p)),

q(a, b, c) + iw(a, b, c) = − 1

b− c +
1

a− c. (13)

In deriving (12) from (6), we use the differentiated form of the Cauchy

integral formula to express Φ0(bz(p)) in terms of U (r) and V (r) (r = 1, 2,

· · · ,M) as described in references [1], [3] and [7].
Also, in deriving (11) and (12), we have to deal with the integralsZ bzp

a

(bzp − t)m−1Φ(t)dt for m = 1, 2, · · · . (14)

As long as the path of integration lies in the region R ∪ C, these integrals
are path-independent. We are free to choose any path from a to bzp. We take
a = z(1) (i.e. one of the endpoints of the line segment C(1)) and integrate

along the line segments C(1), C(2), · · · , C(p−2), C(p−1) and bC(p), where bC(p)
denotes the line segment from (x(p), y(p)) to (bx(p), by(p)) (i.e. the first half
of the line segment C(p)). Furthermore, over C(1), C(2), · · · , C(p−2), C(p−1)
and bC(p), we approximate Φ(t) as constants U (1) + iV (1), U (2) + iV (2), · · · ,
U (p−2) + iV (p−2), U (p−1) + iV (p−1) and U (p) + iV (p) respectively. Thus, in the
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derivation of (11) and (12), we use the approximationZ bzp
a

(bzp − t)m−1Φ(t)dt
'

pX
r=1

¡
U (p) + iV (p)

¢(
(1− δrp)

Z z(r+1)

z(r)
[bz(p) − t]m−1dt

+δrp

Z bz(r)
z(r)

[bz(p) − t]m−1dt) . (15)

Once the 2M unknown constants U (r) and V (r) (r = 1, 2, · · · ,M) are
determined from (9) together with (11) and/or (12), the solution of the BVP

under consideration can be computed approximately at any point (ξ, η) in

the interior of the solution domain using

φ(ξ, η) =
1

2πi
Re

(
MX
p=1

[U (p) + iV (p)]

× [γ(z(p), z(p+1), ξ + iη) + iθ(z(p), z(p+1), ξ + iη)]

+
∞X
m=1

mhm(ξ)
MX
p=1

[γ(z(p), z(p+1), ξ + iη) + iθ(z(p), z(p+1), ξ + iη)]

×
pX
k=1

(U (k) + iV (k))Λ(pk)m

)
. (16)

4 A TEST PROBLEM

For a test problem, let us take R to be the region inside the circle x2+y2 = 1.

If κ = −ω2, a particular solution of (1) that is valid everywhere inside R
including the circular boundary is

φ(x, y) = K0

Ã
ω

r
[x− 3

2
]2 + y2

!
, (17)

where K0 is the modified Bessel function of the second kind and of order

zero.
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We apply the CVBEM to solve numerically the partial differential equa-

tion (1) with κ = −ω2 in the circular region R subject to φ given on the

upper half of the circle x2 + y2 = 1 and ∂φ/∂n on the remaining circle. The

values of φ on the upper half of the circle and ∂φ/∂n on the remaining circle

are generated using (17). If the CVBEM really works, it should recover the

solution (17) approximately at any point (x, y) in the interior of R.

For ω = 1, approximating the circular boundary by a M -sided regular

polygon, we solve the resulting system of linear algebraic equations for the

unknowns U (k) and V (k) (k = 1, 2, · · · ,M) and use (16) to compute φ ap-

proximately at various selected interior points of R. The numerical values of

φ obtained using M = 20, M = 100 and M = 500 are compared with the

exact solution (17) in Table 1. Even for a relatively coarse discretization of

the circular boundary using M = 20 (i.e. using boundary elements each of

length 0.31 units), the numerical values of φ are reasonably accurate. From

the table, it is obvious the numerical φ converges to the correct exact solution

as M increases from 20 to 500.

Table 1. Numerical results for φ(x, y) at selected points (x, y) in the

interior of the solution domain.

(x, y) M = 20 M = 100 M = 500 Exact
(0.50, 0.50) 0.3437 0.3547 0.3562 0.3565
(0.10,−0.60) 0.2108 0.2084 0.2076 0.2075
(0.98, 0.0) 0.8146 0.8755 0.8888 0.8921
(−0.60, 0.70) 0.1066 0.09053 0.08829 0.08781
(0.0, 0.80) 0.1706 0.1662 0.1656 0.1655

Notice that in implementing the CVBEM we truncate the infinite series

in (13) and (16) by replacing∞ with a finite positive integer denoted by N∞.
One way of carrying out the truncation is simply to add up the well-ordered

terms in the series one by one until there is no significant contribution to

the infinite sum. The numerical results in Table 1 are obtained by using N∞
not more than 10. We have experimented with solving the test problem for
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different values of ω. In general, as expected, we find that if ω has a higher

magnitude it is necessary to use a larger number of boundary elements in

the computation to achieve a given level of accuracy in the numerical results.

The proposed CVBEM resembles the multiple reciprocity BEM (MRBEM)

of Nowak [6] for solving the Helmholtz equation in two ways. Firstly, the

MRBEM formulation also contains an infinite series which needs to be trun-

cated for practical implementation. Secondly, the MRBEM also requires the

discretisation of the boundary to be extremely fine when κ in (1) possesses
a very high magnitude.
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