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Abstract

A model for axisymmetric steady-state heat conduction in a multi-
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presented. An analytical solution in terms of series involving Bessel
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behaviors of carbon nanotube based composites. Some results are
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This is a preprint of the article in:
International Journal of Engineering Science 45 (2007) 22-33
Detail s are avai labl e at t he foll owi ng URL:
http://doi.dx.org/10.1016/j.ijengsci.2006.09.002

1

http://doi.dx.org/10.1016/j.ijengsci.2006.09.002


1 Introduction

Heat conduction in cylindrical solid systems has important applications in

many areas of modern engineering, such as in thermal analysis of computer

chips and carbon nanotubes. Because of this, it has attracted the attention of

many researchers. For example, Kennedy (1960) obtained a series solution in

terms of Bessel functions for the temperature in a homogeneous cylinder and

applied it to derive a formula for the spreading resistance in semi-conductor

devices, and Hui and Tan (1994) employed Dini series and Hankel transform

to find the temperature distribution in a cylindrical head spreader bonded to

a semi-infinite heat sink. More recently, Desai, Geer and Sammakia (2006)

presented an analytical model for the axisymmetric steady-state heat conduc-

tion in three contiguous dissimilar co-axial cylindrical solids of different radii

and showed how it could be used for analyzing thermal management systems

in electronic packaging. More references on the analysis of heat conduction

in cylindrical systems may be found in the papers cited above.

In the present paper, a model for axisymmetric steady-state heat con-

duction in a multi-material cylindrical system containing a thermal super-

conductor is presented. The cylindrical system, as sketched in Figure 1, is

made up of three dissimilar materials in the regions denoted by R1, R2 and

R3. The interfaces between the materials are perfectly bonded. A uniform

temperature is prescribed on each of the flat ends of the multi-material cylin-

der. The curved part of the exterior boundary of the cylinder is thermally

insulated. The surface temperature of the thermal superconductor is taken

to be an unknown constant to be determined. The total heat energy flowing

across the surface of the thermal superconductor is specified as zero.

An analytical solution is derived for the model in terms of series contain-

ing Bessel functions. The coefficients of the truncated series are determined

by solving a system of linear algebraic equations. The solution is applied to

examine a few specific cases of the model. A particular case of interest con-

cerns the thermal analysis of a carbon nanotube based composite, such as the

calculation of the equivalent (effective) thermal conductivity of a cylindrical

representative volume element containing a carbon nanotube.
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2 Mathematical statement of the model

With reference to an Oxyz Cartesian coordinate system, the multi-material

cylindrical system under consideration here comprises the regions R1, R2 and

R3 given by

R1 = {(x, y, z) : x2 + y2 < r22, 0 < z < `1},
R2 = {(x, y, z) : r21 < x2 + y2 < r22, `1 < z < `2},
R3 = {(x, y, z) : x2 + y2 < r22, `2 < z < `3}. (1)

The regions R1, R2 and R3 are occupied by possibly dissimilar thermally

isotropic and homogeneous materials with thermal conductivities k1, k2 and

k3 respectively. The region x
2 + y2 < r21, `1 < z < `2, is occupied by a

thermal superconductor. Refer to Figure 1.

Figure 1. Geometrical sketches of the multi-material cylindrical system.
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The temperature in the multi-material cylindrical system is assumed to

be dependent on the coordinates r and z only. Here r is the perpendicular

distance of the point (x, y, z) from the z axis, that is, r =
p
x2 + y2. Let

the temperature in Ri be given by Ti(r, z). The temperature Ti is required

to satisfy the Laplace’s equation in Ri, that is,

∂2Ti
∂r2

+
1

r

∂Ti
∂r

+
∂2Ti
∂z2

= 0 in Ri (i = 1, 2, 3). (2)

The interfaces between the dissimilar materials are assumed to be per-

fectly bonded so that

T2(r, `1) = T1(r, `1)
T2(r, `2) = T3(r, `2)

k2 (∂T2/∂z)|z=`1 = k1 (∂T1/∂z)|z=`1
k2 (∂T2/∂z)|z=`2 = k3 (∂T3/∂z)|z=`2

 for r1 < r < r2. (3)

The temperature is taken to be a yet to be determined constant Tsc on

the surface S of the thermal superconductor, that is,

T1(r, `1) = Tsc for 0 ≤ r < r1, (4)

T2(r1, z) = Tsc for `1 < z < `2, (5)

T3(r, `2) = Tsc for 0 ≤ r < r1, (6)

Furthermore, it is required that

k2r1

Z `2

`1

∂T2
∂r

¯̄̄̄
r=r1

dz +

Z r1

0

(k3
∂T3
∂z

¯̄̄̄
z=`2

− k1 ∂T1
∂z

¯̄̄̄
z=`1

)rdr = 0. (7)

Note that (7) states that the total heat energy flowing across the surface S

into the thermal superconductor is zero.

The conditions on the outer boundary of the multi-material cylindrical

system are given by

T1(r, 0) = Tbottom
T3(r, `3) = Ttop

¾
for 0 ≤ r < r2, (8)

and

∂Ti
∂r

¯̄̄̄
r=r2

= 0 for `i−1 < z < `i (i = 1, 2, 3), (9)
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where `0 = 0 and Tbottom and Ttop are suitably prescribed constants. Ac-

cording to (8), the temperature is a constant on each of the flat ends of

the cylinder. The condition in (9) implies that the curved part of the outer

boundary is thermally insulated.

The temperature distribution in the multi-material cylindrical system

(with the thermal superconductor) is determined by solving (2) subject to

(3)-(9).

3 Analytical solution of the model

Through application of the method of separation of variables on (2) together

with (5), (8) and (9), one finds that T1, T2 and T3 may be written as

T1(r, z) = Tbottom + a0
z

r2
+

∞X
n=1

anJ0(j1,n
r

r2
) sinh(j1,n

z

r2
),

T2(r, z) = Tsc +
∞X
n=1

[J0(σn
r

r2
)− J0(σnr1/r2)

Y0(σnr1/r2)
Y0(σn

r

r2
)]

×[bn cosh(σn
r2
[z − 1

2
(`1 + `2)]) + cn sinh(

σn
r2
[z − 1

2
(`1 + `2)])],

T3(r, z) = Ttop + d0
(z − `3)
r2

+
∞X
n=1

dnJ0(j1,n
r

r2
) sinh(j1,n

(z − `3)
r2

), (10)

where J0 and Y0 are the zeroth order Bessel functions of the first and the

second kinds respectively, a0, d0, an, bn, cn and dn (n = 1, 2, · · · ) are real
constant coefficients yet to the determined, j1,n are the zeroes of the first order

Bessel function of the first kind, that is, J1(j1,n) = 0 and j1,n < j1,n+1 for n =

1, 2, · · · , and σn are such that J0(σnr1/r2)Y1(σn) − Y0(σnr1/r2)J1(σn) = 0
and σn < σn+1 for n = 1, 2, · · · .
Now the first line in (3) and (4) may be collectively written as

T1(r, `1) =

½
Tsc for 0 ≤ r < r1,

T2(r, `1) for r1 < r < r2.
(11)

If (11) is multiplied by r and then integrated over the interval 0 ≤ r ≤ r2,
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one obtains

1

2
(Tbottom + a0

`1
r2
− Tsc)r22

=
∞X
n=1

A0n[bn cosh(
σn
2r2
[`2 − `1])− cn sinh( σn

2r2
[`2 − `1])], (12)

where

A0n =

Z r2

r1

r[J0(σn
r

r2
)− J0(σnr1/r2)

Y0(σnr1/r2)
Y0(σn

r

r2
)]dr

=
r1r2

σnY0(σnr1/r2)
[J0(σn

r1
r2
)Y1(σn

r1
r2
)− Y0(σn r1

r2
)J1(σn

r1
r2
)]

for n = 1, 2, · · · . (13)

Note that Tsc is an unknown constant to be determined.

Integrating (11) multiplied by rJ0(j1,mr/r2) (m = 1, 2, · · · ) over 0 ≤ r ≤
r2 yields

1

2
amr

2
2 sinh(j1,m

`1
r2
)(J0(j1,m))

2

=
∞X
n=1

Amn[bn cosh(
σn
2r2
[`2 − `1])− cn sinh( σn

2r2
[`2 − `1])]

for m = 1, 2, · · · . (14)

where

Amn =

Z r2

r1

r[J0(σn
r

r2
)− J0(σnr1/r2)

Y0(σnr1/r2)
Y0(σn

r

r2
)]J0(j1,m

r

r2
)dr

=
r2

j21,m − σ2n
[−r2σnJ0 (j1,m) J1 (σn) + r1σnJ0(j1,m r1

r2
)J1(σn

r1
r2
)

−r1j1,mJ1(j1,m r1
r2
)J0(σn

r1
r2
)− J0(σnr1/r2)

Y0(σnr1/r2)
{−r2σnJ0 (j1,m)Y1 (σn)

+r1σnJ0(j1,m
r1
r2
)Y1(σn

r1
r2
)− r1j1,mJ1(j1,m r1

r2
)Y0(σn

r1
r2
)}]

for m,n = 1, 2, · · · . (15)
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Similarly, the second line of (3) and (6) may be applied to obtain

1

2
(Ttop +

d0(`2 − `3)
r2

− Tsc)r22

=
∞X
n=1

A0n[bn cosh(
σn
2r2
[`2 − `1]) + cn sinh( σn

2r2
[`2 − `1])], (16)

and

1

2
dmr

2
2 sinh(j1,m

[`2 − `3]
r2

)(J0(j1,m))
2

=
∞X
n=1

Amn[bn cosh(
σn
2r2
[`2 − `1]) + cn sinh( σn

2r2
[`2 − `1])]

for m = 1, 2, · · · . (17)

To treat the condition on the third line of (3), a yet to be determined

function Q1(r) is introduced to represent the unknown heat flux flowing out

of the thermal superconductor through the surface 0 ≤ r < r1, z = `1. As

the temperature is a constant at all points on the surface of the thermal

superconductor, one may expect Q1(r1) = 0 and take Q1(r) to be in the

series form

Q1(r) =
∞X
n=1

fnJ0(j0,n
r

r1
), (18)

where fn are real constant coefficients to be determined and j0,n are the zeroes

of the zeroth order Bessel function of the first kind, that is, J0(j0,n) = 0 and

j0,n < j0,n+1 for n = 1, 2, · · · .
The condition on the third line of (3) may now be written as:

k1 (∂T1/∂z)|z=`1 =
½

Q1(r) for 0 ≤ r < r1,
k2 (∂T2/∂z)|z=`1 for r1 < r < r2.

(19)

If one proceeds in a similar manner as in the derivation of (12), (14), (16)

and (17), one finds that (19) gives rise to

1

2
k1a0r2 =

∞X
n=1

1

r2
k2A0nσn[−bn sinh( σn

2r2
[`2 − `1]) + cn cosh( σn

2r2
[`2 − `1])]

+r21

∞X
n=1

fn
j0,n

J1(j0,n) (20)
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and

1

2
k1j1,mamr2 cosh(j1,m

`1
r2
)[J0(j1,m)]

2

=
∞X
n=1

fnj0,nJ1(j0,n)J0(j1,mr1/r2)

(j0,n/r1)2 − (j1,m/r2)2

+
∞X
n=1

1

r2
k2Amnσn[−bn sinh( σn

2r2
[`2 − `1]) + cn cosh( σn

2r2
[`2 − `1])]

for m = 1, 2, · · · . (21)

For the last condition in (3), the unknown function Q2(r) representing

the heat flux flowing into the thermal superconductor through the surface

0 ≤ r < r1, z = `2, is written in the series form

Q2(r) =
∞X
n=1

gnJ0(j0,n
r

r1
), (22)

where gn are constant coefficients to be determined.

It follows that

1

2
k3d0r2 =

∞X
n=1

1

r2
k2A0nσn[bn sinh(

σn
2r2
[`2 − `1]) + cn cosh( σn

2r2
[`2 − `1])]

+r21

∞X
n=1

gn
j0,n

J1(j0,n) (23)

and

1

2
k3j1,mdmr2 cosh(j1,m

[`2 − `3]
r2

)[J0(j1,m)]
2

=
∞X
n=1

gnj0,nJ1(j0,n)J0(j1,mr1/r2)

(j0,n/r1)2 − (j1,m/r2)2

+
∞X
n=1

1

r2
k2Amnσn[bn sinh(

σn
2r2
[`2 − `1]) + cn cosh( σn

2r2
[`2 − `1])]

for m = 1, 2, · · · . (24)
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Lastly, the condition in (7) gives rise to

2k2r1

∞X
n=1

[−J1(σn r1
r2
) +

J0(σnr1/r2)

Y0(σnr1/r2)
Y1(σn

r1
r2
)]bn sinh(

σn
2r2
[`2 − `1])

+
∞X
n=1

(gn − fn) r
2
1

j0,n
J1(j0,n)

= 0 (25)

To summarize, the temperature distribution in the multi-material cylin-

drical system is given by (10) together with (12), (14), (16), (17), (20), (21),

(23), (24) and (25).

For the purpose of practical computation, all the series above must be

truncated. This may be done by replacing ∞ in the series by a finite but

sufficiently large integer N∞. Firstly, the required unknown constants Tsc, bn,
cn, fn and gn (n = 1, 2, · · · , N∞) are determined by solving the truncated
form of (25) (with ∞ replaced by N∞ in the series), that is,

2
N∞X
n=1

[−J1(σn r1
r2
) +

J0(σnr1/r2)

Y0(σnr1/r2)
Y1(σn

r1
r2
)]bn sinh(

σn
2r2
[`2 − `1])

+
N∞X
n=1

r1
k2
(gn − fn)J1(j0,n)

j0,n

= 0 (26)

together with

N∞X
n=1

A0n
r22
[bn(cosh(

σn
2r2
[`2 − `1]) + k2`1σn

k1r2
sinh(

σn
2r2
[`2 − `1]))

+cn(− sinh( σn
2r2
[`2 − `1])− k2`1σn

k1r2
cosh(

σn
2r2
[`2 − `1]))]

− `1r
2
1

k1r22

N∞X
n=1

fn
j0,n

J1(j0,n) +
1

2
Tsc

=
1

2
Tbottom , (27)
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N∞X
n=1

Amn
r22
[bn cosh(

σn
2r2
[`2 − `1])− cn sinh( σn

2r2
[`2 − `1])]

−
N∞X
n=1

k2σnAmn sinh(j1,m`1/r2)

r22k1j1,m cosh(j1,m`1/r2)

×[−bn sinh( σn
2r2
[`2 − `1]) + cn cosh( σn

2r2
[`2 − `1])]

−
N∞X
n=1

fnj0,nJ1(j0,n)J0(j1,mr1/r2) sinh(j1,m`1/r2)

k1j1,m[(j0,n/r1)2 − (j1,m/r2)2]r2 cosh(j1,m`1/r2)
= 0 for m = 1, 2, · · · , 2N∞ − 1, (28)

N∞X
n=1

A0n
r22
[bn(cosh(

σn
2r2
[`2 − `1])− (`2 − `3)k2σn

k3r2
sinh(

σn
2r2
[`2 − `1]))

+cn(sinh(
σn
2r2
[`2 − `1])− (`2 − `3)k2σn

k3r2
cosh(

σn
2r2
[`2 − `1]))]

−(`2 − `3)r
2
1

k3r22

N∞X
n=1

gn
j0,n

J1(j0,n) +
1

2
Tsc

=
1

2
Ttop, (29)

and

N∞X
n=1

Amn
r22
[bn cosh(

σn
2r2
[`2 − `1]) + cn sinh( σn

2r2
[`2 − `1])]

−
N∞X
n=1

k2σnAmn sinh(j1,m[`2 − `3]/r2)
r22k3j1,m cosh(j1,m[`2 − `3]/r2)

×[bn sinh( σn
2r2
[`2 − `1]) + cn cosh( σn

2r2
[`2 − `1])]

−
N∞X
n=1

gnj0,nJ1(j0,n)J0(j1,mr1/r2) sinh(j1,m[`2 − `3]/r2)
k3j1,m[(j0,n/r1)2 − (j1,m/r2)2]r2 cosh(j1,m[`2 − `3]/r2)

= 0 for m = 1, 2, · · · , 2N∞ − 1. (30)

Note that (27), (28), (29) and (30) are derived from (12), (14), (16), (17),

(20), (21), (23), (24) by eliminating a0, am, d0 and dm (m = 1, 2, · · · , N∞).
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The values of the constants j0,n j1,n and σn required for setting up (26), (27),

(28), (29) and (30) may be easily obtained by using mathematical software

packages such as Mathematica and Maple.

Once Tsc, bn exp(σn[`2 − `1]/[2r2]), cn exp(σn[`2 − `1]/[2r2]), fn and gn
(n = 1, 2, · · · , N∞) are determined from (26), (27), (28), (29) and (30), the

other remaining unknown constants a0, am, d0 and dm may then directly be

computed from (12), (14), (16) and (17) (m = 1, 2, · · · , N∞).

4 Carbon nanotube based composites

Carbon nanotubes are well known for their strongly enhanced properties

such as high thermal conductivities (Iijima, 1991; and Berber, Kwon and

Tomanék, 2000). In a recent work, Zhang, Tanaka and Matsumoto (2004)

modeled a carbon nanotube as a thermal superconductor which has an un-

known uniform temperature on its exterior surface boundary. For the steady-

state heat conduction, the total heat energy flowing out of the superconduc-

tor (which models the carbon nanotube) into its embedding substrate is zero.

Thus, the axisymmetric heat conduction model in Section 2 above may be

applied to study the thermal behaviors of a carbon nanotube based compos-

ite.

If k1 = k2 = k3 = k and `1 + `2 = `3 then the model may be regarded

as a homogeneous cylindrical representative volume element containing a

centrally located carbon nanotube, similar to the one considered in Singh,

Tanaka and Endo (2006). The effective (equivalent) thermal conductivity ke
of the cylindrical representative volume element may be estimated using

ke ' − qave`3
Ttop − Tbottom , (31)

where qave is the average heat flux on the surface 0 ≤ r < r2, z = `3 given by

qave = − k

πr22

Z 2π

0

Z r2

0

∂T3
∂z

¯̄̄̄
z=`3

rdrdθ = −kd0
r2
. (32)

Note that (32) is derived using the expression for T3 in (10).
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5 Specific cases

Case 1. The regions R1, R2 and R3 are taken to be occupied by the same

material elastomer S160 which has a thermal conductivity of 0.56 Wm−1K−1

and are such that `1 + `2 = `3 = 100 nm and r2 = 10 nm. The tempera-

ture values Tbottom and Ttop are taken to be 200 K and 100 K respectively.

This case corresponds to the homogeneous cylindrical representative volume

element containing a single carbon nanotube (mentioned in Section 4).

The effective thermal conductivity ke of the representative volume ele-

ment is computed using (31) and (32) with N∞ = 16 for r1 which is assigned
the magnitudes 2.5, 5.0 and 7.5 nm and for selected values of ` = `2 − `1
(the length of the carbon nanotube) over the interval 0 < ` < 100 (nm).

When the calculation is repeated using N∞ = 32, the value of ke is found

to converge to at least 2 significant figures. If ` is very small compared to

the length of the representative volume element, convergence to 3 or even 4

significant figures may be observed.

For the purpose of comparison, numerical values of ke are also obtained

by using two different meshless techniques, namely the hybrid boundary node

method and the element free Galerkin method. In applying the hybrid bound-

ary node method for solving the three-dimensional Laplace’s equation (as

outlined in Zhang and Yao, 2001; Zhang, Yao and Li, 2002; and Zhang,

Tanaka and Matsumoto, 2004), up to slightly over 10000 nodes are employed

on the boundary of the solution domain (that is, on the outer boundary

of the representative volume element and the interface between the carbon

nanotube and the elastomer). The element free Galerkin method for axisym-

metric heat conduction (see, for example, Singh, Tanaka and Endo, 2006) is

used here with over 2000 nodes selectively distributed throughout the solu-

tion domain on the cross section x = 0.

In Table 1, the values of ke computed using (31) and (32) with N∞ = 16
for r1 = 5.0 nm and some values of ` are compared with the numerical values

calculated using the hybrid boundary node method and the two-dimensional

element free Galerkin method. It is obvious that there is a reasonably good

agreement between the three sets of values for ke in Table 1.
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Table 1. Values of ke (in Wm
−1K−1) for r1 = 5 nm and selected `.

Length `
(in nm)

Formula
(31)-(32)

Hybrid boundary
node method

Element free
Galerkin method

5 0.5754 0.5745 0.5781
10 0.6017 0.6007 0.6040
15 0.6343 0.6334 0.6310
20 0.6720 0.6709 0.6766
25 0.7147 0.7141 0.7201
30 0.7634 0.7621 0.7656
35 0.8193 0.8178 0.8222
40 0.8839 0.8823 0.8846
45 0.9597 0.9578 0.9660
50 1.050 1.048 1.058
55 1.158 1.156 1.164
60 1.292 1.289 1.299
65 1.460 1.457 1.467
70 1.679 1.675 1.682
75 1.975 1.970 1.979
80 2.398 2.391 2.421
85 3.052 3.042 3.064
90 4.205 4.189 4.211
95 6.927 6.894 6.930

In Figure 2, the value of ke is plotted against ` over the interval 0 < ` <

100 (nm) for r1 = 2.5, 5.0 and 7.5 nm. For a given `, the effective thermal

conductivity is observed to be greater in magnitude for a larger value of r1.

However, for small `, the increase in ke is only very slight as r1 increases.

The effect of increasing r1 on ke is more significant for ` which is closer 100

nm, that is, for a carbon nanotube whose length is comparable to the length

of the representative volume element.
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Figure 2. Plots of ke against `.

Case 2. Take R1 and R3 in Figure 1 to be occupied by silicon (k1 = 120

Wm−1K−1) and aluminium (k3 = 240 Wm
−1K−1) respectively. The region

R2 is occupied by a thermal interface material of low thermal conductivity

k2 = 1 Wm−1K−1. The lengths `1, `2 and `3 are taken to be 500, 510 and
1010 µm respectively, so that the silicon and the aluminium are separated

from each other by a relatively thin layer of the thermal interface material.

The radii r1 and r2 of the multi-material cylindrical system are respectively

chosen to be 12.5 and 50 µm.

The curved part of the cylinder, that is, the surface x2+y2 = r22, 0 < z <

`3, is thermally insulated. A constant heat flux q0 = 1000000 Wm
−2 enters

the cylindrical system through the bottom surface of the cylinder x2+y2 < r22,
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z = 0, that is,

k1
∂T1
∂z

¯̄̄̄
z=0

= −q0 for 0 ≤ r < r2. (33)

Heat is removed by a convective process from the flat surface on top of the

cylinder, that is,

k3
∂T3
∂z

¯̄̄̄
z=`3

= −h[T3(r, `3)− Tamb] for 0 ≤ r < r2, (34)

where h is a specified positive constant and Tamb is the given surrounding

(ambient) temperature. Here h is taken to be 20000 Wm−2K−1 and Tamb to
be 300 K.

The problem of interest here is to examine the effect of the thermal super-

conductor (occupying the region x2+y2 = r21, `1 < z < `2) on the conduction

of heat in the cylindrical system. As before, the surface of the thermal super-

conductor has a constant temperature to be determined and the total heat

flux across that surface is zero.

For this case, the boundary conditions in (8) are not applicable and are

replaced by (33) and (34). Thus, the analysis in Section 3 has to be modified

to take into consideration the different boundary conditions. The modifica-

tion is not difficult to carry out. The temperature field T2(r, z) is still given as

written in (10). One may proceed as follows to modify T1(r, z) and T3(r, z).

The temperature fields T1(r, z) and T3(r, z) in (10) are modified to be

given by

T1(r, z) = −q0z
k1
+ a0 +

∞X
n=1

anJ0(j1,n
r

r2
) cosh(j1,n

z

r2
), (35)

and

T3(r, z) = Tamb − k3d0
r2h

+ d0
(z − `3)
r2

+
∞X
n=1

dnJ0(j1,n
r

r2
)

×[sinh(j1,n (z − `3)
r2

)− k3j1,n
hr2

cosh(j1,n
(z − `3)
r2

)]. (36)
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Subsequently, in the analysis from (11) until (25), one finds that (12),

(14), (16), (17), (20), (21), (23) and (24) have to be modified accordingly.

Specifically, in (12), (20), a0 and Tbottom are replaced by −q0r2/k1 and a0
respectively; sinh(j1,m`1/r2) and cosh(j1,m`1/r2) in (14) and (21) are in-

terchanged, that is, sinh(j1,m`1/r2) and cosh(j1,m`1/r2) are superceded by

cosh(j1,m`1/r2) and sinh(j1,m`1/r2) respectively and am is replaced by am; in

(16) and (23), Ttop is replaced by Tamb − k3d0/(r2h) and d0 by d0; in (17)
and (24), sinh(j1,m[`2 − `3]/r2) and cosh(j1,m[`2 − `3]/r2) are respectively
replaced by sinh(j1,m[`2 − `3]/r2) − k3j1,mh−1r−12 cosh(j1,m[`2 − `3]/r2) and
cosh(j1,m[`2 − `3]/r2)− k3j1,mh−1r−12 sinh(j1,m[`2 − `3]/r2) and dm by dm.
In setting up the system of linear algebraic equations to determine the

unknown coefficients in the representations for T1, T2 and T3, equation (26)

is still valid, but (27), (28), (29) and (30) are respectively replaced by

N∞X
n=1

A0n
r22
[bn(cosh(

σn
2r2
[`2 − `1]) + k2`1σn

k1r2
sinh(

σn
2r2
[`2 − `1]))

+cn(− sinh( σn
2r2
[`2 − `1])− k2`1σn

k1r2
cosh(

σn
2r2
[`2 − `1]))]

− `1r
2
1

k1r22

N∞X
n=1

fn
j0,n

J1(j0,n) +
1

2
Tsc − 1

2
a0

= 0 , (37)

N∞X
n=1

Amn
r22
[bn cosh(

σn
2r2
[`2 − `1])− cn sinh( σn

2r2
[`2 − `1])]

−
N∞X
n=1

k2σnAmn cosh(j1,m`1/r2)

r22k1j1,m sinh(j1,m`1/r2)

×[−bn sinh( σn
2r2
[`2 − `1]) + cn cosh( σn

2r2
[`2 − `1])]

−
N∞X
n=1

fnj0,nJ1(j0,n)J0(j1,mr1/r2) cosh(j1,m`1/r2)

k1j1,m[(j0,n/r1)2 − (j1,m/r2)2]r2 sinh(j1,m`1/r2)
= 0 for m = 1, 2, · · · , 2N∞ − 1, (38)
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N∞X
n=1

A0n
r22
[bn(cosh(

σn
2r2
[`2 − `1])− (`2 − `3)k2σn

k3r2
sinh(

σn
2r2
[`2 − `1]))

+cn(sinh(
σn
2r2
[`2 − `1])− (`2 − `3)k2σn

k3r2
cosh(

σn
2r2
[`2 − `1]))]

−(`2 − `3)r
2
1

k3r22

N∞X
n=1

gn
j0,n

J1(j0,n) +
1

2
Tsc +

k3
2r2h

d0

=
1

2
Tamb, (39)

and

N∞X
n=1

Amn
r22
[bn cosh(

σn
2r2
[`2 − `1]) + cn sinh( σn

2r2
[`2 − `1])]

−
N∞X
n=1

k2σnAmnBm
r22k3j1,m

[bn sinh(
σn
2r2
[`2 − `1]) + cn cosh( σn

2r2
[`2 − `1])]

−
N∞X
n=1

gnj0,nJ1(j0,n)J0(j1,mr1/r2)Bm
k3j1,m[(j0,n/r1)2 − (j1,m/r2)2]r2

= 0 for m = 1, 2, · · · , 2N∞ − 1, (40)

where

Bm =
[sinh(j1,m[`2 − `3]/r2)− k3j1,mh−1r−12 cosh(j1,m[`2 − `3]/r2)]
[cosh(j1,m[`2 − `3]/r2)− k3j1,mh−1r−12 sinh(j1,m[`2 − `3]/r2)]

. (41)

Note the presence of two additional unknowns constant a0 and d0 in (37)

and (39). Thus, two more equation are needed to complete the system. These

are given by the appropriately modified forms of (12) and (16), that is,

N∞X
n=1

A0n
r22
[bn cosh(

σn
2r2
[`2 − `1])− cn sinh( σn

2r2
[`2 − `1])]− 1

2
a0 +

1

2
Tsc

= −q0`1
2k1

, (42)
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and

N∞X
n=1

A0n
r22
[bn cosh(

σn
2r2
[`2 − `1]) + cn sinh( σn

2r2
[`2 − `1])]

+(
k3
2r2h

− (`2 − `3)
2r2

)d0 +
1

2
Tsc

=
1

2
Tamb. (43)

Figure 3. Temperature along the line r = 0 in R1.
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According to calculation using N∞ = 45, the temperature on the surface
of the thermal superconductor is 352.44 K. The presence of the thermal

superconductor assists in reducing the overall temperature in R1. In Figure 3,

the temperature along the line r = 0 in R1 (for 0 ≤ z ≤ 500 µm) is compared
with the corresponding temperature when there is no thermal superconductor

(that is, when the region x2 + y2 < r22, `1 < z < `2) is completely filled

with the thermal interface material whose thermal conductivity is k2 = 1

Wm−1K−1). As expected, the graph of temperature T1(0, z) is almost a

straight line which is parallel to the line for the temperature field without

the thermal superconductor, except at points where z approaches the value

`1 = 500 µm (near the thermal superconductor). As z approaches `1 = 500

µm, the temperature drops at a more rapid rate to the surface temperature

of the thermal superconductor.

Figure 4. Graph of ∆T (r) over 12.5 ≤ r ≤ 50 µm.
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In Figure 4, the temperature change across the thermal interface material,

as defined by ∆T (r) = T (r, `1)− T (r, `2), is plotted against r for 12.5 ≤ r ≤
50 µm. The temperature change is relatively small with a magnitude of less

than 1.28 K, compared to 10 K when the region x2 + y2 < r22, `1 < z < `2 is

wholly occupied by the thermal interface material. When there is no thermal

superconductor, the temperature changes from 362.08 K on z = `1 = 500 µm

to 352.08 K on z = `2 = 510 µm (0 ≤ r ≤ 50 µm).

6 Summary

A series solution is obtained for axisymmetric steady-state heat conduction

in a multi-material cylindrical system containing a thermal superconductor.

The thermal superconductor may be used as a simple model for a carbon nan-

otube. The truncated series with less than 20 terms is applied to compute the

effective thermal conductivity of a representative volume element containing

a carbon nanotube. The results obtained are found to be in reasonably good

agreement with those calculated using computationally intensive numerical

techniques involving several thousand unknowns. The analysis as given in

Section 3 for the solution is valid for boundary conditions in which constant

temperatures are specified on the top and bottom surfaces of the composite

cylinder in Figure 1. Nevertheless, as shown in the second case studies (Sec-

tion 5), it may be easily modified to include certain other types of boundary

conditions.
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