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Abstract
The problem of determining the two-dimensional steady state tem-

perature field in a bimaterial with a curved microscopically imperfect
interface is considered. The temperature jump across the interface
is proportional in magnitude to the interfacial heat flux. The condi-
tions on the interface are formulated in terms of a boundary integral
equation containing both Cauchy principal and Hadamard finite-part
integrals. A numerical method based on this formulation is outlined
for the numerical solution of the problem under consideration. It is
applied to solve some specific problems.
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1 Introduction

Microscopic gaps inevitably exist along the common boundary (interface)

between two bodies, no matter how well joined they may be. Because of

this, there has recently been a surging interest in the investigation of micro-

scopically imperfect interfaces (see e.g. Fan and Sze [1], Fan and Wang [2],

Torquato and Rintoul [3], and other references therein). For heat conduc-

tion problems, a macroscopic model for taking into account the presence of

microscopic imperfections allows for an interfacial temperature jump which

is proportional in magnitude to the heat flux on the interface.

A Green’s function satisfying the two-dimensional steady state thermal

conditions on a straight homogeneously imperfect interface in a bimaterial

is derived by Ang et al. [4]. With the Green’s function, a boundary inte-

gral method which does not require the discretisation of the interface may be

obtained for a class of steady state heat conduction problems involving bima-

terials. The use of the Green’s function gives accurate numerical values for

the temperature, particularly at points very close to the interface. However,

in general, a suitable Green’s function may be difficult (if not impossible) to

derive explicitly and analytically for an imperfect interface which is curved

or inhomogeneous (or both).

The present paper considers a two-dimensional steady state heat conduc-

tion problem involving a thermally isotropic bimaterial with a curved inho-

mogeneously imperfect interface. A boundary integral formula is obtained

for the temperature in the bimaterial. It is applied to express the inter-

facial conditions in terms of a boundary integral equation which contains

both Cauchy principal and Hadamard finite-part integrals. The hypersin-

gular boundary integral formulation is such that there is only one unknown

function (given by the interfacial temperature jump) appearing in the inte-

grand of the integrals over the interface. A numerical method based on this

boundary integral formulation is outlined for the numerical solution of the

heat conduction problem under consideration. It is applied to solve some

specific problems.
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Figure 1: (a) The interface Γ is an open curve and C is a simple closed
curve forming the exterior boundary of the bimaterial. (b) Both Γ and C
are simple closed curves, with Γ lying in the interior of the region enclosed
by C. (c) The interface Γ consists of two parts Γ1 and Γ2 and the boundary
C comprises three parts C1, C2 and C3, where C1 and C2 are the boundaries
of the two holes and C3 is the exterior boundary of the bimaterial.

2 Mathematical statement of the problem

With reference to a Cartesian coordinate frame Oxyz, a body has a geometry

which does not vary along the z direction. The body comprises two possibly

dissimilar materials joined along a curved boundary (interface) Γ. The regions

occupied by the two dissimilar materials are denoted by R1 and R2. There

may be several possible cases for the geometries of the interface Γ and the

remaining boundary C of the bimaterial. Figure 1 (a) gives a sketch for the

case in which Γ is an open curve and C is a simple closed curve. In Figure

1 (b), Γ and C are both simple closed curves, with R1 being the region in

between the curves Γ and C and R2 the region enclosed by Γ. The bimaterial
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may also contain holes as shown in Figure 1 (c). The boundaries of the holes

form parts of C.

The bond between the materials in R1 and R2 at the interface Γ is mi-

croscopically damaged such that the interfacial thermal conditions are given

by

k1 lim
²→0

(n
(int)
1

∂T

∂x
+ n

(int)
2

∂T

∂y
)

¯̄̄̄
(x,y)=(ξ+|²|n(int)1 ,η+|²|n(int)2 )

= k2 lim
²→0

(n
(int)
1

∂T

∂x
+ n

(int)
2

∂T

∂y
)

¯̄̄̄
(x,y)=(ξ−|²|n(int)1 ,η−|²|n(int)2 )

for (ξ, η) ∈ Γ,

(1)

and

k1 lim
²→0

(n
(int)
1

∂T

∂x
+ n

(int)
2

∂T

∂y
)

¯̄̄̄
(x,y)=(ξ+|²|n(int)1 ,η+|²|n(int)2 )

= λ∆T (ξ, η) for (ξ, η) ∈ Γ, (2)

where T (x, y) is the steady state temperature field in the bimaterial, k1 and

k2 are the thermal conductivities of the materials in R1 and R2 respectively,

n
(int)
1 and n

(int)
2 are respectively the x and y components of the unit normal

vector to Γ pointing into R1, λ is a given positive coefficient and ∆T (ξ, η) is

the interfacial temperature jump defined by

∆T (ξ, η) = lim
²→0
[T (ξ + |²|n(int)1 , η + |²|n(int)2 )− T (ξ − |²|n(int)1 , η − |²|n(int)2 )].

(3)

For an inhomogeneously imperfect interface, λ is assumed to vary continu-

ously from point to point on the interface Γ.

At each and every point on the boundary C, a linear combination of the

temperature and the heat flux is specified, that is,

α(x, y)T (x, y) + β(x, y)H(x, y) = g(x, y) for (x, y) ∈ C, (4)

where α and β are given functions such that α2 + β2 6= 0 at all points on C,
g is a suitably given function and H is the heat flux across C. The heat flux
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H is defined by

H(x, y) = −k(x, y)[n1(x, y)∂T
∂x

+ n2(x, y)
∂T

∂y
], (5)

where k(x, y) is the thermal conductivity and n1 and n2 are respectively the

x and y components of the unit normal outward vector to C. The value of

k(x, y) is either k1 or k2 depending on whether the point (x, y) on C belongs

to the material in R1 or R2.

The body is assumed to be thermally isotropic with thermal conductivi-

ties k1 and k2 being constants. According to the law of conservation of heat

energy, the steady state temperature T (x, y) is then required to satisfy the

two-dimensional Laplace’s equation

∂2T

∂x2
+

∂2T

∂y2
= 0 for (x, y) ∈ R1 ∪R2. (6)

Mathematically, the problem of interest here is to solve the Laplace’s

equation (6) for T (x, y) subject to the interfacial conditions (1) and (2) as

well as the boundary condition (4).

3 Hypersingular boundary integral formula-

tion

Using (6) together with (1) and (2), one may apply the reciprocal theorem

and the fundamental solution for the two-dimensional Laplace’s equation

(Clements [5]) to obtain the following formula for the temperature at any

point in the interior of R1 or R2:

T (ξ, η) =

Z
C

[T (x, y)Ω(x, y; ξ, η) + Φ(x, y; ξ, η)H(x, y)]ds(x, y)

+

Z
Γ

∆T (x, y)[λ(x, y)∆Φ(x, y; ξ, η)− Ω(int)(x, y; ξ, η)]ds(x, y)

for (ξ, η) ∈ R1 ∪R2, (7)
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where

Φ(x, y; ξ, η) =
1

4πk(x, y)
ln([x− ξ]2 + [y − η]2),

Ω(x, y; ξ, η) =
n1(x, y)(x− ξ) + n2(x, y)(y − η)

2π([x− ξ]2 + [y − η]2)
,

∆Φ(x, y; ξ, η) =
k2 − k1
4πk1k2

ln([x− ξ]2 + [y − η]2),

Ω(int)(x, y; ξ, η) =
n
(int)
1 (x, y)(x− ξ) + n

(int)
2 (x, y)(y − η)

2π([x− ξ]2 + [y − η]2)
. (8)

For the case in which (ξ, η) lies on a smooth part of the boundary C, the

boundary integral equation (7) should be modified to become

1

2
T (ξ, η) = C

Z
C

[T (x, y)Ω(x, y; ξ, η) + Φ(x, y; ξ, η)H(x, y)]ds(x, y)

+

Z
Γ

∆T (x, y)[λ(x, y)∆Φ(x, y; ξ, η)− Ω(int)(x, y; ξ, η)]ds(x, y)

for (ξ, η) ∈ C (smooth part), (9)

where C denotes that the integral is to be interpreted in the Cauchy principal
sense.

Through the use of (7), condition (2) can be written as

(1− k2 − k1
2k2

)λ(ξ, η)∆T (ξ, η)

=

Z
C

[T (x, y)Λ(x, y; ξ, η) +
k1

k(x, y)
Ω(int)(ξ, η;x, y)H(x, y)]ds(x, y)

+
k2 − k1
k2

C
Z
Γ

∆T (x, y)λ(x, y)Ω(int)(ξ, η;x, y)ds(x, y)

−H
Z
Γ

∆T (x, y)Λ(int)(x, y; ξ, η)ds(x, y) for (ξ, η) ∈ Γ, (10)

where H denotes that the integral is to be interpreted in the Hadamard
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finite-part sense and

Λ(x, y; ξ, η) =
k1
2π
(n
(int)
1 (ξ, η)[n1(x, y)([x− ξ]2 − [y − η]2)

+2n2(x, y)(x− ξ)(y − η)]

+n
(int)
2 (ξ, η)[n2(x, y)([y − η]2 − [x− ξ]2)

+2n1(x, y)(x− ξ)(y − η)])/([x− ξ]2 + [y − η]2)2,

Λ(int)(x, y; ξ, η) =
k1
2π
(n
(int)
1 (ξ, η)[n

(int)
1 (x, y)([x− ξ]2 − [y − η]2)

+2n
(int)
2 (x, y)(x− ξ)(y − η)]

+n
(int)
2 (ξ, η)[n

(int)
2 (x, y)([y − η]2 − [x− ξ]2)

+2n
(int)
1 (x, y)(x− ξ)(y − η)])/([x− ξ]2 + [y − η]2)2.

(11)

4 Numerical procedure

A simple procedure based on (9) and (10) together with (4) for determin-

ing numerically T and H on C and the interfacial temperature jump ∆T is

outlined here. Once T and H are completely known on C and ∆T is deter-

mined, the temperature T at any point (ξ, η) in the interior of R1 ∪ R2 can
be calculated by evaluating numerically the integrals on the right hand side

of (7).

The boundary C is discretised into N straight line elements denoted by

C1, C2, · · · , CN−1 and CN and the interface Γ into M straight line elements

Γ1, Γ2, · · · , ΓM−1 and ΓM . Over an element of C, T and H are approximated

as constants. Similarly, ∆T is taken to be constant over an element of Γ.

More specifically, one makes the approximation

T (x, y) ' Tn
H(x, y) ' Hn

¾
for (x, y) ∈ Cn (n = 1, 2, · · · , N),

∆T (x, y) ' ∆Tm for (x, y) ∈ Γm (m = 1, 2, · · · ,M), (12)

where Tn, Hn and ∆Tm are constants to be determined.
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With (12), if one lets (ξ, η) in (9) to be the midpoint (ξp, ηp) of the element

Cp, one obtains

1

2
Tp =

δp[ln(
1
2
δp)− 1]

2πk(ξp, ηp)
Hp

+
NX
n=1
n6=p

{Tn
Z
Cn

Ω(x, y; ξp, ηp)ds(x, y) +Hn

Z
Cn

Φ(x, y; ξp, ηp)ds(x, y)}

+
MX
m=1

∆Tm

Z
Γm

[λm∆Φ(x, y; ξp, ηp)− Ω(int)(x, y; ξp, ηp)]ds(x, y)

for p = 1, 2, · · · , N, (13)

where δp is the length of Cp, λm is the value of λ(x, y) at (x, y) = (ξN+m, ηN+m)

and (ξN+m, ηN+m) is the midpoint of Γm.

Similarly, letting (ξ, η) in (10) be the midpoint (ξN+r, ηN+r) of Γr, one

finds that

(1− k2 − k1
2k2

)λr ∆Tr = − 2k1
πδN+r

∆Tr

+
NX
n=1

{Tn
Z
Cn

Λ(x, y; ξN+r, ηN+r)ds(x, y)

+Hn

Z
Cn

k1
k(x, y)

Ω(int)(ξN+r, ηN+r;x, y)ds(x, y)}

+
MX
m=1
m6=r

∆Tm

Z
Γm

[
k2 − k1
k2

λmΩ
(int)(ξN+r, ηN+r;x, y)

−Λ(int)(x, y; ξN+r, ηN+r)]ds(x, y)
for r = 1, 2, · · · ,M, (14)

where δN+r is the length of Γr.

Applying (4) at the midpoint of each element of the boundary C gives

α(ξp, ηp)Tp + β(ξp, ηp)Hp = g(ξp, ηp) for p = 1, 2, · · · , N. (15)
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Equations (13), (14) and (15) constitute a system of 2N + M linear

algebraic equations in 2N + M unknowns given by Tp, Hp and ∆Tr for

p = 1, 2, · · · , N and r = 1, 2, · · · ,M . Once the values of these unknowns
are found, the temperature at any interior point in the bimaterial may be

computed approximately by using the formula

T (ξ, η) '
NX
n=1

{Tn
Z
Cn

Ω(x, y; ξ, η)ds(x, y) +Hn

Z
Cn

Φ(x, y; ξ, η)ds(x, y)}

+
MX
m=1

∆Tm

Z
Γm

[λm∆Φ(x, y; ξ, η)− Ω(int)(x, y; ξ, η)]ds(x, y)

for (ξ, η) ∈ R1 ∪R2. (16)

All the integrals over the straight line elements Cn or Γm in (13), (14)

and (16) are proper. Analytical formulae can be obtained for the integrals

as follows.

If the coordinates of points on either Cn or Γm are expressed in terms of

linear functions of the parameter t for 0 ≤ t ≤ 1, the proper integrals may
be reduced to one of the following forms

1Z
0

ln(At2 +Bt+ C)dt,

1Z
0

dt

At2 +Bt+ C
and

1Z
0

dt

(At2 +Bt+ C)2
, (17)

where A, B and C are real coefficients which are independent of t and such

that 4AC −B2 > 0.
For 4AC − B2 > 0, the definite integrals in (17) may be evaluated ana-

lytically by usingZ
ln(At2 +Bt+ C)dt

= t(ln(A)− 2) + (t+ B

2A
) ln(t2 +

B

A
t+

C

A
)

+
1

A

√
4AC −B2 arctan( 2At+B√

4AC −B2 ) + constant,
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Z
dt

At2 +Bt+ C

=
2√

4AC −B2 arctan(
2At+B√
4AC −B2 ) + constant,

Z
dt

(At2 +Bt+ C)2

=
2At+B

(4AC −B2) (At2 +Bt+ C)
+

4A

(4AC −B2)3/2
arctan

2At+Bp
(4AC −B2) + constant.

For further details, one may refer to, for example, Ang [6].

Alternatively, if one finds the above analytical formulae cumbersome to

use, one may choose to compute the proper integrals over the straight line

elements Cn or Γm by using numerical integration.

5 Specific problems

To check its validity, the numerical procedure outlined in Section 4 is applied

here to solve two specific problems.

Problem 1. The boundary C comprises two parts Cinner and Couter as

respectively given by x2+ y2 = r2inner and x
2+ y2 = r2outer, where 0 < rinner <

router. The interface Γ is given by x
2 + y2 = r2int, where rinner < rint < router.

Thus, the regions R1 and R2 are given by r
2
int < x

2 + y2 < r2outer and r
2
inner <

x2 + y2 < r2int respectively.

Heat energy is added to or removed from the outer boundary Couter by a

convection process which is modelled by the boundary condition

H(x, y) = γ(T (x, y)− Ta) on Couter, (18)

where γ and Ta are given constants. Note that Ta is the outside ambient

temperature surrounding the body.
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The inner boundary Cinner is maintained at a fixed constant temperature,

that is,

T (x, y) = Tc on Cinner (19)

where Tc is a given constant.

It is assumed that (1) and (2) are applicable with λ being a constant,

that is, the interface Γ is homogeneous.

The exact solution of this specific problem is

T (x, y) = σi +
1

2
τ i ln(x

2 + y2) for (x, y) ∈ Ri (i = 1, 2), (20)

where

σ1 = Ta − τ 1[
k1

γrouter
+ ln(router)],

σ2 = Tc − τ 2 ln(rinner),

τ 1 =
k2
k1

τ 2,

τ 2 =
λ

χ
(Ta − Tc)

χ =
k2
rint
− λ[ln(rinner)− k2

k1
(ln(router) +

k1
γrouter

)− (1− k2
k1
) ln(rint)].

(21)

For the purpose of using the boundary integral method to solve the spe-

cific problem numerically, take router = 3/2, rint = 1, rinner = 1/2, k1 = 1/2,

k2 = 3/4, λ = 10, γ = 1, Ta = 1 and Tc = 5. The inner boundary Cinner,

the interface Γ and the outer boundary Couter are approximated as regular

polygons with N0, 2N0 and 3N0 sides respectively (so that N = 4N0 and

M = 2N0).

It would be interesting to see if the boundary integral method could

recover accurately the exact solution in (20). Equations (13), (14) and (15)

are solved using N0 = 10, 20 and 30 and the numerical values of T at various

selected points in R1 ∪R2 as computed by using (16) are compared with the
exact values in Table 1. The numerical values are in good agreement with
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the exact ones. It is also obvious that the accuracy of the numerical values

improves significantly when N0 is increased from 10 to 40.

Table 1. A comparison of the numerical values of T with the exact solution

at various selected points.

Point N0 = 10 N0 = 20 N0 = 40 Exact
(0.6000, 0.0000) 4.5395 4.5916 4.6061 4.6113
(0.3500, 0.6062) 4.2130 4.2640 4.2776 4.2827
(−0.6928, 0.4000) 3.9337 3.9803 3.9931 3.9980
(0.0000, 0.9000) 3.6864 3.7301 3.7421 3.7470
(0.9011,−0.6309) 3.0024 3.0425 3.0534 3.0577
(1.0392, 0.6000) 2.7292 2.7658 2.7756 2.7794
(−0.2257, 1.2803) 2.4783 2.5113 2.5201 2.5235
(−0.4788,−1.3156) 2.2462 2.2756 2.2835 2.2865

For a given N0, the numerical value of the temperature jump ∆T is found

to have the same value on all the elements of the interface Γ, as expected.

Furthermore, the percentage errors of the numerical values of ∆T are ap-

proximately 2%, 0.9% and 0.4% for N0 given by 10, 20 and 40 respectively.

Problem 2. For another specific case, the boundary C is taken as com-

prising the four sides of the square with vertices (0, 1/2), (0,−1/2), (1,−1/2)
and (1, 1/2). The interface Γ lies on part of the x axis from (0, 0) to (1, 0).

The region R1 is given by 0 < x < 1, 0 < y < 1/2, with k1 = 1, and R2 by

0 < x < 1, −1/2 < y < 0, with k2 = 2.
The interface Γ is inhomogeneous with

λ =
2(1 + x− x2)
(1 + x2)

for 0 < x < 1. (22)
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The boundary conditions on the sides of the square are given by

T (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x+ 11/6 for 0 < x < 1, y = 1/2,
1− y2 + 2y3/3 + 2y for x = 0, 0 < y < 1/2,
2− y2 + 2y3/3 + 2y for x = 1, 0 < y < 1/2,

y3/3 + y for x = 0, − 1/2 < y < 0,
y3/3 + y for x = 1, − 1/2 < y < 0,

x2/2− x/2− 13/24 for 0 < x < 1, y = −1/2.

(23)

It may be verified that the exact solution of this specific problem is given

by

T (x, y) =

½
1 + x2 − y2 − 2x2y + 2y3/3 + 2xy + 2y for (x, y) ∈ R1,

−x2y + y3/3 + xy + y for (x, y) ∈ R2.
(24)

To solve the specific problem numerically using the boundary integral

method, the interface Γ is discretised into M elements and the exterior

boundary C into 4M . All the elements are of equal length 1/M. Table 2

compares the numerical values of T at various selected points with the ex-

act solution (24). The numerical values obtained using M = 18 are more

accurate that those from M = 6.

Table 2. A comparison of the numerical values of T with the exact solution

at various selected points.

Point M = 6 M = 18 Exact
(0.1000, 0.2000) 1.4129 1.4114 1.4113
(0.3000, 0.3000) 1.7446 1.7741 1.7740
(0.7000, 0.1000) 1.7250 1.7229 1.7227
(0.9000, 0.0500) 1.9244 1.9172 1.9166
(0.2000,−0.4000) −0.4854 −0.4853 −0.4853
(0.4000,−0.2000) −0.2508 −0.2508 −0.2507
(0.6000,−0.4900) −0.6474 −0.6470 −0.6468
(0.8000,−0.0500) −0.0592 −0.0583 −0.0580

In Figure 2, the numerical and the exact interfacial temperature jump

∆T are plotted over the interval 0 < x < 1. The numerical values of ∆T
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in Figure 2 are obtained using M = 18. The two graphs are almost visually

indistinguishable.

Figure 2: Plots of the numerical and the exact interfacial temperature jump
∆T over the interval 0 < x < 1.

6 Conclusion

The problem of determining the two-dimensional steady state temperature

distribution in a bimaterial with a curved inhomogeneously imperfect inter-

face is formulated in terms of the boundary integral equations (9) and (10)

which contain Cauchy principal and Hadamard finite-part integrals. A sim-

ple boundary integral method based on (9) and (10) is devised for solving

the problem. The method reduces the problem under consideration to a sys-

tem of linear algebraic equations. Two specific problems are solved using

the boundary integral method. The numerical results obtained confirm the
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validity of the interfacial formulation (10) and the numerical procedure pre-

sented here.The numerical temperature at interior points in the bimaterial is

observed to converge to the exact value when more boundary and interfacial

elements are used in the calculation.
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