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Abstract 

An anti-plane electro-elastic dynamic problem involving a stress-free and electrically impermeable planar crack in a piezoelectric 
body is considered. In the Laplace transform domain, Green’s functions satisfying appropriate conditions on the crack are 
constructed numerically by using the hyper-singular integral method. They are then used to obtain a boundary element method for 
solving the crack problem in the Laplace transform domain. Discretization of the crack faces into elements is not required. The 
relevant crack tip stress and electrical displacement intensity factors in the Laplace transform domain can be computed easily and 
inverted numerically to obtain the corresponding intensity factors in the physical time domain. For a special case of the problem, the 
boundary element solution is verified using a semi-analytic Fourier integral transform solution.  
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1. Introduction 

The Green’s function boundary integral method for solving 
elasto-static crack problems is well established (see [2], [3], [6] 
and [8]). Green’s functions satisfying relevant boundary 
conditions on the crack faces may be derived to develop 
boundary element procedures that do not require the crack faces 
to be discretized into elements. The Green’s functions give 
highly accurate numerical procedures for computing the crack 
tip stress intensity factors. They are, however, difficult to obtain 
in analytic closed-form for cracks with arbitrary geometries, 
configurations and boundary conditions.  

To solve a wider range of crack problems, Telles et al. [10] 
constructed numerically the required Green’s functions by the 
hyper-singular integral method. This approach was extended by 
Ang and Telles [4] to solve a static problem involving multiple 
interacting planar cracks in an anisotropic body. More recently, 
Athanasius et al. [5] derived numerical Green’s functions for 
planar cracks in piezoelectric solids under static loading. 

The numerical Green’s function approach is further 
developed here to solve an anti-plane electro-elastic dynamic 
problem involving a stress-free and electrically impermeable 
planar crack in a piezoelectric body.  In the Laplace transform 
domain, Green’s functions satisfying appropriate conditions on 
the crack faces are constructed numerically and employed to 
obtain a boundary element method to solve the problem. Once 
the problem is solved, the crack tip stress and electrical 
displacement intensity factors in the Laplace transform domain 
can be extracted easily and inverted numerically to the 
corresponding intensity factors in the physical time domain. For 
a specific case of the problem in which the crack lies in the 
center of a square domain having dimensions that are very large 
compared to the length of the crack, the stress intensity factor 
computed is found to be in good agreement with the one 
calculated from a semi-analytic Fourier integral transform 
solution. Dynamic crack tip stress and electrical displacement 
intensity factors are also calculated for another specific case 
involving a rectangular piezoelectric domain with electroded 
parts of the boundary.   

2. The problem 

With reference to a Cartesian coordinate frame  
consider a homogeneous piezoelectric solid whose geometry 
does not change along the 	axis. The interior of the solid 
contains a planar crack in the region – , 	0, ∞ ∞. As shown in Fig. 1, on the  plane, the 
interior of the solid is given by , the exterior boundary by the 
simple closed curve  and the crack appears as a straight 
horizontal cut of length 2  on the   axis. 

 
Figure 1: A geometrical sketch of the problem 

The piezoelectric solid undergoes an anti-plane 
deformation. Specifically, its electrical poling is along the 	axis, its displacement is such that its 	component is the 
only non-zero component and the displacement and electrical 
potential are functions of  	, 	 and time only. 

At each and every point on the exterior boundary , either 
the displacement or the traction and either the electrical 
potential or the normal electrical displacement are suitably 
prescribed. The prescribed quantities are independent of 	 but 
they may vary with time. The displacement and its first order 
partial derivative with respect to time are initially zero at all 
points inside the solid, that is, the solid is initially undeformed 



CMM-2011 – Computer Methods in Mechanics 9–12 May 2011, Warsaw, Poland 

 

and at rest. The crack is assumed to be stress-free and 
electrically impermeable. 

The problem is to determine the displacement and the 
electrical potential throughout the solid. Of particular interest is 
the calculation of the dynamic crack tip stress and electrical 
displacement intensity factors. 

3. Basic equations 

The mechanical equilibrium equation and the electric 
Maxwell equation in the piezoelectric solid are given by 

 		and		 0,																																																						 1  

 
where  is the  component of the displacement,  are the 
anti-plane stresses,  is the  component of the in-plane 
electrical displacement,  is the (mass) density of the solid and  
denotes time. Note that in (1) summation is implied over the 
repeated subscript  running from 1 to 2. 

The constitutive relations are 
 	 	 		and		 	 	 ,						 2  

 
where  is the electrical potential and ,  and  (all 
assumed constants here) are respectively the elastic shear 
modulus, the piezoelectric coefficient and the dielectric 
coefficient of the piezoelectric solid. 

Use of (1) and (2) yields the governing partial differential 
equations 

 1 			and		 	 0,										 3  

 

where /   is the speed of the shear 

wave.  
     With the introduction of the following non-dimensionalized 
variables 
 ̅ , ̅ ,																																																																																						 

̅ , ̅ , ̅ ̅ , ̅ , ̅ ,																																																							 
̅ , ̅ , ̅ ̅ , ̅ , ̅ ,																																														 4  

̅ , ̅ , ̅ ̅ , ̅ , ̅ ,																																																				 
̅ , ̅ , ̅ ̅ , ̅ , ̅ ,																																																								 

 
the constitutive relations in (2) can be re-written in non-
dimensionalized form by 
 	 ̅ ̅ 	 ̅ 		and		 	 ̅ 	 ̅ ,																										 5  

 
and the governing equations in (3) by 

̅ ̅ ̅ 		and		 ̅ ̅ 	 0,																												 6  

 
where ̅ / . 
     Henceforth, the analysis presented here deals with only non-
dimensionalized variables. For convenience, the overhead bar 
used to denote non-dimensionalized variables will be omitted. 
Thus, for example, ̅  and  will be written as simply  and 

 respectively. 

4. Formulation in Laplace transform space 

Application of the Laplace transform (with respect to the 
non-dimensionalized time 0) on (6) yields 

 ∗ ∗ 0		and		 	 ∗ ∗ 0,																				 7  

 
where  is the Laplace transform parameter (assumed real here) 
and * denotes the Laplace transform of the function, that is, the 
Laplace transform of the function , ,  is ∗ , ,  
defined by 
 ∗ , , , , exp .																														 8  

 
In the Laplace transform space, the problem is to solve (7) 

in the piezoelectric solid subject to prescribed values of either ∗ or ∗ (the Laplace transform of the non-dimensionalized 
anti-plane traction) and either ∗ or ∗	(the Laplace transform 
of the non-dimensionalized normal electrical displacement) at 
each and every point on the exterior boundary  and the 
conditions on the crack as given by 
 lim→ ∗ , , 0	and lim→ ∗ , , 0																								 																																																																										for 1 1.			 9  
 
Note  that the functions  ∗  and ∗	 are respectively defined by ∗ , , ∗ , , ,  and ∗ , ,,∗ , , , , where 	 , , ,  is the 
outward unit normal  vector to   at the point , .  

5. Boundary integral equations 

The governing partial differential equations in (7) may be 
re-cast into boundary integral equations given by 
 , ∗ , , ∗ , , Γ , , , , 											 
 																											 ∗ , , ∗ , ,  
 																																								 Ψ , , , , , ,								 10  
 
and  
 , ∗ , , ∗ , ,         
 ∗ , , ∗ , , Λ , , ,  

 																					 ∗ , , Φ , , , , , 11  
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where 1/ 1 , , 1 if ,  lies in 
the interior of the solution domain, , 1/2 if ,  
lies on a smooth part of  	and the Green’s functions 	Ψ and Φ 
are given by 
 Ψ , , , , 12 , , , 																												 
 																																																		 Ψ , , , , ,                     
 Φ , , , 12 ln , , , 																																							 
 																																								 	Φ , , , ,																											 
 Γ , , , , , Ψ , , , , ,															 
 Λ , , , , Φ , , , ,														 12  

 
where , , , ,  is the 
zero-th order modified Bessel function defined in [1] and Ψ  
and Φ  are solutions of 
 Ψ Ψ 0		and		 Φ 0,																																					 13  

 
chosen to satisfy the conditions (on the crack) given by 
 lim→ Ψ , 0, ,2 , 0, , 		for 1 1,						 14  

 
and 
 lim→ Φ 2 , 0, , 		for 1 1,										 15  

 
with  being the first order modified Bessel function. 

Note that there is no integration over the crack faces in the 
boundary integral equations in (10) and (11) because of (14) 
and (15). 

A numerical procedure for constructing the functions Ψ  
and Φ  is given below. 

6. Numerical Green’s functions 

Guided by the analysis in [4] and [5], for ,  and ,  in the interior of the  plane containing the crack 1 1, 0, we take  Ψ  and Φ  to be given by 
 Ψ , , , ,  	 , 0, , ∆Ψ , , ,2 , 0, , , 
 Φ , , , ∆Φ , ,2 , 0, , ,																					 16  

 
where ∆Ψ , , ,  and ∆Φ , ,  respectively give the 
jumps of the functions Ψ , , , ,  and Φ , , ,  
across the crack at the point , , 0  1 1 . 

Use of (16) in (14) and (15) yields the hyper-singular 
integral equations 
 ∆Ψ , , , ∆Ψ , , , Ω , ,  

 , 0, ,, 0, , 		for 1 1,																									 17 	 
 

and 
 
 ∆Φ , , , 0, , 	 
 																																																											for 1 1,																	 18  
 
where   and  denote integrals  to be interpreted in the 
Hadamard finite-part and Cauchy principal sense respectively 
and 
 Ω , , | || | 1 .																																 19  

 
To solve (17) and (18) for ∆Ψ  and ∆Φ  using the 

collocation technique described in [7], we let 
 ∆Ψ , , , ≅ 1 , , , 
 ∆Φ , , ≅ 1 , ,																	 20  

 
where  ( 1 1) is the -th order Chebyshev 
polynomial of the second kind and  and  are coefficients 
yet to be determined.  

Substituting (20) into (17) and (18) and collocating at ≡ cos	 2 1 2  for 	 1, 2, … , , we obtain 
 , , Ξ ,  

 , 0, ,, 0, , 		for		 1, 2, … , ,																									 21  

 
and 
 , , 0, ,  																																																																						for		 1, 2, … , ,						 22  
 
where 
 Ξ , 	 1 Ω , , .																				 23  
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We can easily invert (21) and (22) as systems of linear 
algebraic equations to obtain  and . The Green’s functions Ψ and Φ		in (12) can then be evaluated using 
 Ψ , , , , 12 , , , 																												 
 , , , 0, , 12 , 0, , , 
                Φ , , , 12 ln , , , 																																							 
 , 1 	2 , 0, , .																								 24  

 
The integrands in the integrals in (24) are well-defined over  1 1 for points ,  that are not on the crack. Hence, 

for the evaluation of the Green’s functions Ψ and Φ		in the 
boundary integrals of (12), the integrals in (24) can be easily 
and accurately evaluated by using a suitable numerical 
integration formula in [1] (as explained in [4], [5], [7] and [10]). 

7. Boundary element method 

The exterior boundary  is discretized into   straight 
elements denoted by  ( 1, 2, … , ). We assume that ∗ , , , ∗ , , , ∗ , ,   and  ∗ , ,  do 
not vary spatially over   and are approximately given by 

, ,   and   respectively. 
The boundary integral equations in (10) and (11) may be 

approximated as 
 12 Γ , , , , ,  

 																										 	 
  																										 Ψ , , , , ,  

 																																						for			 1, 2, … , ,																																			 25  
 
and 
 12  

 Λ , , , ,  

 																	 Φ , , , ,  

 																																						for			 1, 2, … , ,																																		 26  
 
where  ,  is the midpoint of the element  . 

There are 2  unknown functions of the Laplace transform 
parameter 	  in (25) and (26). Depending on the prescribed 

boundary conditions on the exterior boundary , either  		or		  and either   or    are not 
known on  . We may solve (25) and (26) as a system of 2  
linear algebraic equations for the 2  unknown functions of .  
Once , ,   and   are all known, the 
crack tip stress and electric displacement intensity factors can 
be extracted as explained below.  

8. Stress and electric displacement intensity factors 

The (non-dimensionalized) stress and electric displacement 
intensity factors at the crack tip 0, 1 , denoted by   and 

 respectively, are defined by 
 lim→ 2 1 	 , 0, , 

 lim→ 2 1 	 , 0, .																												 27  

                 
Following closely the analysis in [4], [5] and [10], in order 

to extract the intensity factors in the Laplace transform domain, 
we first solve for the jumps in ∗ , ,  and ∗ , ,  
across the opposite crack faces by solving the hyper-singular 
integral equations 
 12 ∆ ∗ , 12 ∆ ∗ , Ω , ,  

 , 	for	 1 1,																																																							 28  
 
and 
 12 ∆ ∗ , ∆ ∗ ,

 

 , 	for	 1 1,																																																							 29  
 
where ∆ ∗ ,  and ∆ ∗ ,   respectively give the jumps in ∗ , ,  and ∗ , ,  at the point , , 0  on 
the crack and 
 , 12 ∗ , , , , ,  

 	 ∗ , , ∗ , , , , , , , 
 , 12 ∗ , , ∗ , , , ,  

 																															 	 ∗ , , , , , , 
 , , , , , , 0, , , 0  

 																										 , ,  
 , , , 0, , , 0  

 																											 , , }, 
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, , , , , , 0, , , 0 , 
 , , 1, , , 0 2 ,  

 																												 , , 
 , , , , , 0 .																																													 30  

 
Note that ,  and  ,  in (30) may be interpreted as the 
Laplace transforms of the internal loads (stress and electrical 
displacement) on the crack. 

To solve (28) and (29) approximately, let 
 ∆ ∗ , ≅ 1 , 

 ∆ ∗ , ∆ ∗ , ≅ 1 ,									 31  

 
where   and   are obtained by inverting 

 12 Ξ ,  

 , 		for		 1, 2, … , ,																																																						 32  
 
and 
 12 , 	for		 1, 2, … , .										 33  

 
Note that ,  and  ,  as given in (30) can be evaluated 
numerically by discretizing the boundary  into elements as 
described in the previous section and using the values of 

, ,   and   obtained from (25) and 
(26). 

If   and  are the Laplace transform of   
and  respectively then (see [7]) 

 12 1 1 , 
 12 1 .																																																		 34  

 
The  Stehfest’s algorithm [9] may be used to recover  

and  from (34) as follows: 
 ≅ ln 2 ln 2 , 
 

≅ ln 2 ln 2 ,																																							 
 1 !, , 
 2 !! 1 ! ! 2 !,																														 35  

 
where  [(n + 1)/2]  denotes the integer part of  (n + 1)/2.  

9. A semi-analytic Fourier transform solution  

For a particular case of the piezoelectric crack problem 
under consideration, take the electrically impermeable crack 1 1, 0, to be in the square domain ℓ ℓ, ℓ ℓ, where ℓ is a given positive constant such that ℓ 1. The boundary conditions on the sides of the square 
domain are taken to be given by 

 , ℓ,	 , ℓ, 		 		for		 ℓ ℓ,		 
 ℓ, , 0	 ℓ, , 0		 		for		 ℓ ℓ.																															 36  

 
For ℓ	>>	1, the Fourier integral transformation may be used 

to derive a semi-analytic solution for the problem in the Laplace 
transform domain as follows. 

Let  ∗ and ∗ be given by 
 ∗ , , sinh	cosh	 ℓ , , , 
 ∗ , , sinh	cosh	 ℓ , , .																 37  

 
For any ℓ 1, the boundary conditions in (36) are exactly 

satisfied if we take , , 0 and , , 0. For ℓ	>>	1	 (that is, for the case in which the size of the square 
domain is very much larger than the length of the centrally 
located crack), if , ,  and , ,  have negligible 
effects on the electro-elastic fields at large distance from the 
crack then the functions , ,  and , ,  are 
solutions of   
 0		and		 	 0,																						 38  

 
satisying the conditions 
 lim→ 	 1cosh ℓ 		for 1 1, 
 lim→ 1 		for	 1 1,																									 
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→ 0		and		 	→ 0		as		 → ∞.																												 39 	 
 
For solving (38) subject to (39), we take 

 , , Re , exp	 ,  

 																							 , exp , , 
 , , , ,  
 																				 Re , exp	  

 																				 , exp ,										 40  
 

where Re denotes the real part of a complex number,  is 
the unit-step Heaviside function, ,  and ,  and ,  are real functions yet to be determined.  

It is easy to check that with (40) the far-field conditions 
given in the last line of (39) are satisfied and the partial 
derivatives /  and /  are continuous on the plane 0 which contains the crack. 

To ensure that , ,  and , ,  are continuous 
in the region  | | 1, 0, we take 
 , 1 , cos , 

 , 1 , cos ,																																									 41  

 
where ,  and ,  can be shown to be to be related to 
the displacement jump ∆ ∗  and the potential jump  ∆ ∗ by 
 , ∆ ∗ , 																									, ∆ ∗ , ∆ ∗ , 		for 1 1.									 42  

 
From (40), (41) and (42), the conditions on the first two 

lines of (39) give the hyper-singular integral equations 
 
 1 , , Θ , ,  

 										 , Θ , ,  

 																										 1cosh ℓ 			for 1 1,																 43  

 
and 
 

 1 , 1 			for 1 1,																			 44  

 
 

where 
 Θ , , 2 	Shi| |sinh	| | 
 																	 12 Ei| | | | cosh| | , 
 Θ , , 1 2 1  

 																																									 cos cos ,																							 45  
 
with Ei  and  being the exponential integrals and Shi  the hyperbolic sine integral defined in [1]. 

The hyper-singular integral equation in (44) can be easily 
inverted to obtain 

 , 1 1 ,																																																																			 46  
 
which gives 1/  and hence 1 for 0. 

To solve (43) approximately, let 
 , ≅ 1 ,																																						 47  

 
where  are to be determined from 
 Υ ,  

 																									 1cosh ℓ 			for	 1, 2, … , ,																			 48  

 
where 
 Υ , 	 1 Θ , ,  

 																																		 1 Θ , , .						 49  

 
Once  are determined from (48),  can be 

computed by 
  1 1 1 ,																 50  

 
and inverted to obtain  using (35). 

10. Numerical results for specific problems 

To test the validity of the numerical Green’s function 
boundary element approach presented here, it is applied to solve 
the piezoelectric crack problem in Section 9 for a large ℓ. 
Specifically, we take  ℓ 20.  

Each side of the square domain is discretized into 40 equal 
length elements. For the approximations in (20) and (31),  is 
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taken to be 10, that is, 10 collocation points are employed on 
the crack to solve the hyper-singular integral equations (17), 
(18), (28), (29) and (43). To invert numerically the Laplace 
transform of of , 4 is used in (35). The material 
constants for the piezoelectric material PZT-BaTio3 are chosen 
for the calculation. The non-dimensionalized  as defined 
below (6) is given by 0.2993. 

In Fig. 2, numerical values of the stress intensity factor  
computed from the boundary element solution are plotted 
against time  and compared with the values calculated from 
(50) which is derived from the semi-analytic Fourier transform 
solution.  The two sets of values for 	are in good agreement 
with each other. 

 
 

 
Figure 2: Plots of  against t 

 
For another specific problem, consider now the case in 

which the electrically impermeable crack 1 1, 0, 
lies in the interior of the rectangular slab ℓ ℓ,  

, where 	ℓ and  are constants such that ℓ 1 and 0.  
Parts of the exterior boundary of the rectangular slab are 

electroded such that 
 , , 		for		 ℓ, 

 , , ∓ 		for		 ℓ ,																										 51  
 
where 	2  is the gap between the two electrodes on each 
horizontal side of the slab. On the non-electroded parts of the 
boundary, the normal electrical displacement is zero. All the 
four sides of the slab are stress-free. 

The sides of the rectangular slab are discretized into not 
more than 150 elements. As before, we take 0.2993 (that 
is, we take the piezoelectric material to be PZT-BaTio3) and use 10  and 4  in the numerical calculation. 

For ℓ 5.0 and 0.5, the crack tip stress intensity factor 
 and electrical displacement intensity factor  obtained by 

using the numerical Green’s function boundary element 
procedure are plotted against  for 0.05 10	in Fig. 3 and 
4 respectively for selected values of . As may be expected, the 
peak values of  and  become larger as  decreases. 

Furthermore, as is visibly obvious in Fig. 3 and 4,   and  
attain their peak values at earlier times if   is smaller. 
 

 
Figure 3: Influence of  on  

 

 
Figure 4: Influence of 	on  

Lastly, for  ℓ 5.0 and 0.5, we examine the influence 
of the half-gap  between the two electrodes on each horizontal 
side of the slab on   and . From Fig. 5 and 6, it appears 
that decreasing  has the effect of increasing the peak values of 

 and . For 2.0, the magnitudes of  and  are 
comparatively small. 

 

 
Figure 5: Influence of  on  
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Figure 6: Influence of  on  

11. Summary and final remark 

Green's functions are constructed numerically in the 
Laplace transform space for an electrically impermeable planar 
crack in an infinite piezoelectric solid undergoing an anti-plane 
dynamic deformation. We apply the Green's functions to derive 
a simple boundary element method for solving numerically anti-
plane dynamic piezoelectric crack problems involving finite 
solution domains. The boundary element procedure requires 
only the exterior boundary of the solution domain to be 
discretized into boundary elements, that is, no discretization of 
the crack faces is needed. For a special case of the problem, the 
boundary element solution is verified using a semi-analytic 
Fourier integral transform solution. The analysis presented here 
for deriving the numerical Green’s functions can be readily 
extended to multiple planar cracks and curved cracks. 
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