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Abstract

The estimation of the effective stiffness coefficients of a pair of mi-

croscopically damaged interfaces in a trimaterial under antiplane de-

formations is considered here. The trimaterial is made of a thin elastic

layer sandwiched between two elastic half-spaces. The parallel planar

interfaces are modeled as containing periodic arrays of randomly gen-

erated micro-cracks. The micromechanical-statistical model of the

interfaces is formulated and numerically solved in terms of hypersin-

gular boundary integral equations in which the displacement jumps

across the micro-cracks are unknown functions. The numerical results

obtained from the model demonstrate that the effective stiffness co-

efficients are influenced by the elastic moduli of the trimaterial, the

thickness of the elastic layer and the densities of the micro-cracks.
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1 Introduction

Multilayered structures play an increasingly important role in many engi-

neering applications. Bonded layers of materials may be created by chemical

or physical deposition processes (Knoll and Advincula [13]). During such

processes, residual stresses may be induced by mismatches in the elastic or

thermal properties of the different materials, giving rise to the formation of

micro-cracks on the interface between two dissimilar materials (Zhang et al.

[18]). Microscopic gaps may also exist on the interface because of the micro-

roughness of surfaces. Thus, in general, the different layers in a multilayered

structure are imperfectly bonded.

At the macro-level, an interface weakened by micro-defects may be mod-

eled as a spring-like imperfect interface characterized by a stiffness tensor.

In the macroscopic model, the displacement field is discontinuous across the

spring-like interface and the tractions on the interface are linearly related

to the displacement jumps over the interface (Benveniste and Miloh [4] and

Jones and Whittier [11]).

Many researchers have studied boundary value problems involving the

macro spring-like interface (see, for example, Ang [2], Fan and Wang [9] and

Hashin [10]). There are, however, relatively few studies on the microme-

chanical estimation of the effective stiffness of the imperfect interface. Fan

and Sze [8] presented a finite element based three-phase model for estimating

the electric conduction coefficient of a micro-cracked interface between two

dielectric half-spaces. The three-phase model takes into consideration only

the density of the interfacial micro-cracks. To model the interface more re-

alistically, Wang et al. [16] proposed a micromechanical-statistical approach

in which the sizes and positions of the micro-cracks are randomly generated.

In [16], a selected number of micro-cracks of varying sizes are randomly
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generated and positioned to form a finite interval of the microscopically dam-

aged interface between two elastic half-spaces. The interval containing the

micro-cracks is periodically reproduced on the remaining parts of the inter-

face. The micromechanical-statistical model in [16] is formulated and solved

in terms of hypersingular integral equations. In such a hypersingular integral

formulation, the unknown functions are the displacement jumps over micro-

cracks on the interface (Ang [3]). Thus, no post processing is needed to

compute the interface displacement jumps which are required in estimating

the effective stiffness of the interface. In [16], the micro-crack length is as-

sumed to follow a normal distribution. For a more realistic distribution of the

micro-crack sizes, Wang et al. [17] employed a chi-square (2) distribution

of a low degree of freedom to generate the micro-crack length.

The estimation of the effective stiffness coefficients of a pair of micro-

scopically damaged interfaces in a trimaterial under antiplane deformations

is considered in the current paper. The trimaterial is made of a thin elas-

tic layer sandwiched between two elastic half-spaces. The micromechanical-

statistical approach in [16] and [17] is used to model the two parallel planar

interfaces. The resulting boundary value problem is formulated in terms of

hypersingular boundary integral equations. Once the hypersingular bound-

ary equations are solved, the effective stiffness coefficients of the interfaces

may be readily computed. The effects of the elastic moduli of the trimaterial,

the thickness of the elastic layer and the densities of the micro-cracks on the

effective stiffness coefficients of the two interfaces are investigated.
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2 A micromechanical problem of a pair of
micro-cracked interfaces

With reference to a Cartesian coordinate system 123, a thin elastic layer

occupies the region 0  2   and is sandwiched between two elastic half-

spaces in the regions 2  0 and 2   The interfaces 2 = 0 and 2 = 

between the layer and the half-spaces are microscopically damaged, contain-

ing interfacial micro-cracks. The micro-cracks have geometries independent

of the 3 coordinate. For convenience, the micro-cracked interfaces 2 = 0

and 2 =  are denoted by I and II respectively.

The materials in the layer and half-spaces are anisotropic, having possi-

bly dissimilar elastic properties. The trimaterial is assumed to undergo an

antiplane elastostatic deformation along the 3 direction. The 1 and 2

components of the elastic displacement are zero and the 3 component, de-

noted by 3, is a function of 1 and 2 only. According to Hooke’s Law, the

antiplane stresses 3 ( = 1 2) are related to the spatial derivatives of 3 by

3 = (2)
3


 (1)

where (2) are elastic moduli of the anisotropic materials given by

(2) =

⎧⎪⎨⎪⎩

(1)
 for 2  


(2)
 for 0  2  


(3)
 for 2  0

(2)

with 
()
 being constants such that 

()
 = 

()
 and 

()
11 

()
22 − (()12 )2  0 The

usual Einsteinian convention of summing over a repeated index is assumed

here for only Latin subscripts from 1 to 2.

From (1) and the equilibrium equations of elastostatics, the antiplane

displacement 3 satisfies the elliptic partial differential equation




((2)

3


) = 0 (3)
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If the displacement 3 and stress 3 along a macroscopic portion of the

microscopically damaged interface I or interface II is homogenized using

b3(b1 0±) =
1

2

Z 1+
1− 3(1 0

±)1

b3(b1 ±) =
1

2

Z 1+
1− 3(1 

±)1

b3(b1 0±) =
1

2

Z 1+
1− 3(1 0

±)1

b3(b1 ±) =
1

2

Z 1+
1− 3(1 

±)1 (4)

where b1 and  denote the midpoint and length of the macroscopic portion

respectively, then the boundary conditions for the macro-level spring-like

model for the interfaces are given by (see Wang et al. [16] and Hashin [10])

bI∆b3I(b1) = b32(b1 0+) = b32(b1 0−)bII∆b3II(b1) = b32(b1 +) = b32(b1 −) (5)

where ∆b3I(b1) = b3(1 0+) − b3(1 0−) and ∆b3II(b1) = b3(1 +) −b3(1 −) are the displacement jumps across interfaces I and II respectively
and bI and bII denote the effective stiffness of interfaces I and II respectively.
The two interfaces are assumed to be homogeneous at the macro level, hence

the effective stiffness coefficients bI and bII are constant.
Note that the antiplane stress b32 in (5) is the antiplane traction on the

micro-cracks. This is because the micro-cracks lie on the horizontal planes

2 = 0 and 2 = 

At the microscopic level, the two interfaces are modeled as containing

periodical arrays of interfacial micro-cracks. For a simplified model, each

of the interfaces contains  arbitrarily positioned micro-cracks of possibly

different lengths lying on a period interval of the interface of length . On
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the part of interface I where 0  1   the tips of a typical -th micro-

crack are given by (
()
I  0) and (

()
I  0), where 

()
I and 

()
I are constants

such that 0  
(1)
I  

(1)
I  

(2)
I  

(2)
I  · · ·  

()
I  

()
I   On

the remaining parts of interface I, the interfacial micro-cracks lie at where


()
I +   1  

()
I +  for  = 1 2 · · ·   and  = ±1 ±2 · · · 

The part of interface II where 0  1  0 +  contains  micro-cracks

with tips (
()
II  0) and (

()
II  0) (for  = 1 2 · · ·  ), where 0 is a given

positive number such that 0 ≤ 0   and ()II and ()II are such that

0  
(1)
II  

(1)
II  

(2)
II  

(2)
II  · · ·  

()
II  

()
II  0 + . The micro-

cracks on interface II outside where 0  1  0 +  lie in the regions

()II +   1  ()II +  2 = 0 for  = 1 2 · · ·   and  = ±1 ±2
· · ·  Figure 1 gives a sketch of the geometry of the problem for  = 3 The

uncracked parts of the interfaces are perfectly bonded.

Figure 1. A sketch of the geometry of the problem for  = 3.
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The damage ratios of interfaces I and II are respectively defined by

I =
1



X
=1

(
()
I − 

()
I ) and II =

1



X
=1

(
()
II − 

()
II ) (6)

From (6), because of the assumption that the two interfaces have the same

number of micro-cracks, the damage ratios can be shown to be related to

the average lengths of the micro-cracks on the interfaces by III = bIbII,
where bI and bII are the average lengths of the micro-cracks on interfaces I
and II respectively.

A micromechanical problem of interest is to estimate the effective stiffness

coefficients bI and bII of the pair of micro-cracked interfaces by taking into
consideration some details of the micro-cracks.

3 Micromechanical-statistical model

3.1 Statistical approach

The micromechanical-statistical approach described in [16] and [17] is used

here to estimate the stiffness coefficients bI and bII of the pair of micro-
cracked interfaces. A pair of micro-cracked interfaces is randomly formed as

follows. The lengths of the  micro-cracks (within a period length of each

of the interfaces) are randomly generated to follow a chi-square distribution

of degree of freedom  , which is denoted by 2() The micro-crack length

distribution on interface I may be different from that on interface II. The

distance 0 in Figure 1 is also randomly determined within the range 0 ≤ 0

 . The micro-cracks are positioned randomly on over the period intervals

0  1   and 0  1  0 +  on interfaces I and II respectively.

For fixed values of the elastic constants 
()
 ( = 1 2 3) in (2) the non-

dimensionalized thickness bI of the layer and the damage ratios I and II in
7



(6),  pairs of micro-cracked interfaces are generated randomly as described

above for estimating the effective stiffness of interfaces I and II. (Note that all

the interfaces contain the same number of micro-cracks per period interval

of the interface.) If the non-dimensionalized effective stiffness coefficientsbIbI(2)22 and bIIbII(2)22 of the -th pair of interfaces are respectively given
by 

()
I and 

()
II ( = 1 2 · · ·  ), then the mean value I of bIbI(2)22 and

the standard deviation I of bIbI(2)22 from the mean are given by

I =
1



X
=1


()
I and I =

vuut 1

 − 1
X
=1

(
()
I − I)

2 (7)

and the mean value II of bIIbII(2)22 and the corresponding standard devia-
tion II by

II =
1



X
=1


()
II and II =

vuut 1

 − 1
X
=1

(
()
II − II)

2 (8)

3.2 Boundary value problem

The boundary value problem to solve for the micromechanical-statistical

model in order to estimate the stiffness coefficients of the interfaces is stated

below.

The trimaterial is subject to an external antiplane shear stress load at in-

finity. The micro-cracks along interfaces I and II are assumed to be traction-

free. The displacement 3 and the stress 32 are continuous across the un-

cracked parts of the interfaces. Mathematically, the conditions on interfaces
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I and II are given by

32(1 0
±) = 0 for (1 0) ∈ I,

32(1 
±) = 0 for (1 ) ∈ II,

∆3I(1) = 0
32(1 0

+) = 32(1 0
−)

¾
for (1 0) ∈ I

∆3II(1) = 0
32(1 

+) = 32(1 
−)

¾
for (1 ) ∈ II (9)

where∆3I(1) = 3(1 0
+)−3(1 0−)∆3II(1) = 3(1 

+)−3(1 −),
I and II denote the micro-cracked parts of interfaces I and II respectively

and I and II denote the perfectly bonded parts of interfaces I and II re-

spectively.

If the displacement 3 and the stress 32 are written as

3 = 
(ext)
3 + 

(imp)
3 

32 = 
(ext)
32 + 

(imp)
32  (10)

where 
(ext)
3 and 

(ext)
32 are respectively the displacement and the stress fields

in the trimaterial for the corresponding case where the interfaces I and II do

not contain any micro-crack, then (9) may be rewritten as


(imp)
32 (1 0

±) = −(ext)32 (1 0
±) for (1 0) ∈ I,


(imp)
32 (1 

±) = −(ext)32 (1 
±) for (1 ) ∈ II,

∆
(imp)
3I (1) = 0


(imp)
32 (1 0

+) = 
(imp)
32 (1 0

−)

)
for (1 0) ∈ I

∆
(imp)
3II (1) = 0


(imp)
32 (1 

+) = 
(imp)
32 (1 

−)

)
for (1 ) ∈ II (11)

where ∆
(imp)
3I (1) and ∆

(imp)
3II (1) are respectively defined by ∆

(imp)
3I (1) =


(imp)
3 (1 0

+)−(imp)3 (1 0
−) and∆

(imp)
3II (1) = 

(imp)
3 (1 

+)−(imp)3 (1 
−)
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Note that 
(imp)
3 and 

(imp)
32 may be regarded as respectively the displacement

and the stress induced by the micro-cracks. The load acting on the trimaterial

at infinity is assumed to be such that 
(ext)
3 , 

(ext)
32 , 

(imp)
3 and 

(imp)
32 are

periodic functions of 1 with period  on any plane 2 =  (constant).

With (ext)3 and (ext)32 assumed given, the boundary value problem of in-

terest here is to solve the partial differential equation (3) together with (2)

subject to the interfacial conditions in (11) and the far field condition given

by 
(imp)
32 → 0 as |2|→∞ In Subsection 3.3 below, it (the boundary value

problem) is formulated in terms of hypersingular boundary integral equa-

tions with the displacement jumps ∆
(imp)
3I (1) and ∆

(imp)
3II (1) across the

micro-cracks as unknown functions to be determined.

Once the displacement jumps ∆
(imp)
3I (1) and ∆

(imp)
3II (1) across the

micro-cracks are determined, the effective stiffness bI and bII may be esti-
mated by using

bI X
=1

Z 
()
I


()
I

∆
(imp)
3I (1)1 =

Z 

0


(ext)
32 (1 0)1

bII X
=1

Z 
()
I I


()
I I

∆
(imp)
3II (1)1 =

Z 0+

0


(ext)
32 (1 )1 (12)

3.3 Hypersingular boundary integral equations

To formulate the boundary value problem in Subsection 3.2 above in terms

of hypersingular boundary integral equations, the trimaterial in Figure 1 is

divided up into two separate subdomains defined by 2  2 and 2  2.

The boundary integral equations for antiplane elasticity (in Clements [7]) are

then used together with the Green’s function for a perfect interface between

two half-spaces (in Berger and Tewary [5]) to derive hypersingular boundary

integral equations separately for each of the subdomains.
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From the boundary integral equations for the lower subdomain 2  2,

the hypersingular boundary integral equations for the stress 
(imp)
32 on the

artificial boundary 2 = −2 and interface I (where 2 = 0+) are respectively

given by

1

2

(imp)
32 (1 

−2)

= − 1
2
=

Z 

0


(imp)
3 (1 

−2)[
1

(1 − 1)
2
+Θ(1 1)]1

+
1

2

(2) − (3)

(2) + (3)

Z 

0


(imp)
3 (1 

−2)Re{Ω(1 1 ( (2) −  (2))−2)}1

− (2) − (3)

2((2) + (3))

Z 

0


(imp)
32 (1 

−2)Re{Γ(1 1 ( (2) −  (2))−2)}1

+
(3)

((2) + (3))

X
=1

Z 
()
I


()
I

∆
(imp)
3I (1) Re{Ω(1 1− (2)−2)}1

for 0  1   (13)

and Z 

0

(imp)3 (1 
−2)Re{Ω(1 1  (2)−2)}1

−
Z 

0


(imp)
32 (1 

−2)Re{Γ(1 1  (2)−2)}1

−
X
=1

=

Z 
()
I


()
I

∆(imp)3I (1)[
1

(1 − 1)
2
+Θ(1 1)]1

=


(3)
((2) + (3))(ext)32 (1 0)

for 
()
I  1  

()
I for  = 1 2  (14)

where =
R
denotes that the integral is to be interpreted in the Hadamard finite-

part sense, () =

q

()
11 

()
22 − [()12 ]2  () = (− 

()
12 + ())

()
22   =

√−1
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Θ(1 1) Ω(1 1 ) and Γ(1 1 ) are defined by

Θ(1 1) =
1

2
Ψ1(

+ 1 − 1


) +
1

2
Ψ1(

+ 1 − 1


)

Ω(1 1 ) =
1

(1 − 1 + )2
+
1

2
Ψ1(

+ 1 − 1 + 


)

+
1

2
Ψ1(

− 1 + 1 − 


)

Γ(1 1 ) =


1 − 1 + 
− 


Ψ(

+ 1 − 1 + 


)

+



Ψ(

− 1 + 1 − 


) (15)

with Ψ() and Ψ1() being the digamma and trigamma functions respec-

tively (See Abramowitz and Stegun [1]). Note that (14) is derived from the

interfacial conditions on I and I in (11).

From the boundary integral equations for the upper subdomain 2  2,

the hypersingular integral equations for the stress 
(imp)
32 on the artificial

boundary 2 = +2 and interface II (where 2 = −) are given by

1

2

(imp)
32 (1 

+2)

=
1

2
=

Z 0+

0


(imp)
3 (1 

+2)[
1

(1 − 1)
2
+Θ(1 1)]1

− (2) − (1)

2((2) + (1))

Z 0+

0


(imp)
3 (1 

+2)

×Re{Ω(1 1−( (2) −  (2))+2)}1
+

(2) − (1)

2((2) + (1))

Z 0+

0


(imp)
32 (1 

+2)

×Re{Γ(1 1−( (2) −  (2))+2)}1

+
(1)

((2) + (1))

X
=1

Z 
()
I I


()
I I

∆
(imp)
3II (1)Re{Ω(1 1  (2)+2)}1

for 0  1  0 +  (16)
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and Z 0+

0


(imp)
3 (1 

+2)Re{Ω(1 1− (2)+2)}1

−
Z 0+

0


(imp)
32 (1 

+2)Re{Γ(1 1− (2)+2)}1

+
X
=1

=

Z 
()
I I


()
I I

∆
(imp)
3II (1)[

1

(1 − 1)
2
+Θ(1 1)]1

= − 

(1)
((2) + (1))

(ext)
32 (1 )

for ()II  1  ()II for  = 1 2  (17)

In (13), (14), (16) and (17), the unknown functions are the displacement

jumps ∆
(imp)
3I (1) and ∆

(imp)
3II (1) across the micro-cracks on interfaces I

and II respectively, the displacements 
(imp)
3 (1 

+2) and 
(imp)
3 (1 

−2)

and the stresses (imp)32 (1 
+2) and (imp)32 (1 

−2) There are six unknown

functions but only four equations. To complete the formulation, continuity

conditions are imposed on the artificially created boundary 2 = 2 as

follows:


(imp)
3 (1 

+2) = 
(imp)
3 (1 

−2)

(imp)
32 (1 

+2) = 
(imp)
32 (1 

−2)

)
for −∞  1 ∞ (18)

Note that ∆
(imp)
3I (1), ∆

(imp)
3II (1), 

(imp)
3 (1 

±2) and 
(imp)
32 (1 

±2) are

all periodic functions of 1 with period 

Once∆
(imp)
3I (1) and∆

(imp)
3II (1) are obtained by solving the hypersingu-

lar boundary integral equations (13), (14), (16) and (17) together with (18),

the effective stiffness bI and bII for the interface I and interface II respectively
may be estimated by using (12).
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3.4 Numerical procedure

The numerical procedure for solving the boundary hypersingular integral

equations in (13), (14), (16) and (17) together with (18) is outlined here.

The unknowns 
(imp)
3 (1 

−2) and 
(imp)
32 (1 

−2) in (13) are defined

for 0 ≤ 1 ≤ , while the unknowns 
(imp)
3 (1 

+2) and 
(imp)
32 (1 

+2) in

(16) are defined for 0 ≤ 1 ≤ 0 +  For the numerical treatment of (13)

and (16), the interval 0 ≤ 1 ≤ 0 is divided into 0 equal length elements

given by () ≤ 1 ≤ (+1) for  = 1 2 · · ·  0, the interval 0 ≤ 1 ≤ 

into 1 equal length elements given by (0+) ≤ 1 ≤ (0++1) for  = 1

2 · · ·  1 and the interval  ≤ 1 ≤ + 0 into 0 equal length elements

given by (0+1+) ≤ 1 ≤ (0++1) for  = 1 2 · · ·  0 Thus, the interval

0 ≤ 1 ≤ +0 is discretized into 20 +1 elements. For convenience, the

element defined by () ≤ 1 ≤ (+1) is denoted by () ( = 1 2 · · · 
20 +1)

From (18), the functions 
(imp)
3 (1 

±2) and 
(imp)
32 (1 

±2) may be

approximated over the first 0 + 1 elements (in the interval 0 ≤ 1 ≤ )

by


(imp)
3 (1 

±2) ' 1
() + ()


(imp)
32 (1 

±2) ' 1
() + ()

)
over () ( = 1 2 · · ·  0 +1)

(19)

where () () () and () are constants yet to be determined. Since


(imp)
3 (1 

±2) and (imp)32 (1 
±2) are periodic functions of 1 with period

 they may be approximated over the last 0 elements (in  ≤ 1 ≤ +0)

by using


(imp)
3 (1 

±2) ' (1 − )() + ()

(imp)32 (1 
±2) ' (1 − )() + ()

)
over ()

( = 0 +1 + 10 +1 + 2 · · · 0 +1 +0) (20)
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Note that the approximations for the antiplane displacement and traction

in (19) and (20) are the discontinuous linear elements described in París

and Cañas [14]. Such approximations give more accurate results than the

constant elements.

The number of unknown constants in (19) and (20) is 4(0 + 1) The

hypersingular boundary integral equations in (13) and (16) may be collocated

over 0  1   and 0  1  0 +  respectively to generate 4(0 +1)

equations. For this purpose, two collocation points are chosen in the interior

of each element. Specifically, on the element (), the two interior collocation

points are given by


()
1 =

1

4

()
1 +

3

4

(+1)
1 and 

()
2 =

3

4

()
1 +

1

4

(+1)
1

( = 1 2 · · ·  0 +1) (21)

Note that the elements involved in (13) are (1) (2) · · ·  (0+1−1) and

(0+1) (the first0+1 elements), while those in (16) are 
(0+1) (0+2)

· · ·  (20+1−1) and (20+1) (the last 0 +1 elements).

As in Kaya and Erdogan [12], to incorporate the correct behaviors of the

displacement jumps ∆
(imp)
3I (1) and ∆

(imp)
3II (1) across the micro-cracks on

interfaces I and II respectively, we make the approximation

∆(imp)3I (1) '
q
(1 − ()I )(

()
I − 1)

×

()
IX

=1


()
I  (−1)(

21 − 
()
I − 

()
I


()
I − 

()
I

)

for 
()
I  1  

()
I ( = 1 2 ) (22)
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and

∆
(imp)
3II (1) '

q
(1 − 

()
II )(

()
II − 1)

×

()
I IX

=1


()
II  (−1)(

21 − 
()
II − 

()
II


()
II − 

()
II

)

for 
()
II  1  

()
II ( = 1 2 ) (23)

where ()I and ()II are constants yet to be determined,  ()
I and  ()

II are

positive integers and  ()(1) is the -th order Chebyshev polynomial of

the second kind. Different approaches for approximating the displacement

jumps across the cracks may be found in Ang [3]. The approximations in (22)

and (23) give a very accurate and efficient numerical technique for analyzing

cracks.

There are (
(1)
I +

(2)
I + · · ·+

()
I +

(1)
II +

(2)
II + · · ·+

()
II ) unknown

constants in (22) and (23). The hypersingular boundary equations in (14)

and (17) may be collocated over 
()
I  1  

()
I and 

()
II  1  

()
II to

generate (
(1)
I + 

(2)
I + · · · + 

()
I + 

(1)
II + 

(2)
II + · · · + 

()
II ) equations.

Specifically, the collocation points over 
()
I  1  

()
I are given by


()
I =


()
I + 

()
I

2
+


()
I − 

()
I

2
cos(

[2− 1]
2

()
I

)

for  = 1 2 · · ·   ()
I ( = 1 2 ) (24)

and those over 
()
II  1  

()
II by


()
II =


()
II + 

()
II

2
+


()
II − 

()
II

2
cos(

[2− 1]
2

()
II

)

for  = 1 2 · · ·   ()
II ( = 1 2 ) (25)

If the approximations (19), (20), (22) and (23) are substituted into (13),

(14), (16) and (17), the hypersingular boundary equations (13) and (16) are
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collocated at 
()
 ( = 1 2) (in (21)) for  = 1 2 · · ·  0 + 1 and  =

0+1 0+2 · · ·  20+1 respectively and (14) and (17) at the collocation

points defined in (24) and (25) respectively, a system of linear algebraic

equations can be set up for determining all the yet to be determined constant

coefficients in (19), (20), (22) and (23). The linear algebraic equations are

solved without any difficulty by using the  decomposition technique (Press

et al. [15]). Once 
()
I and 

()
II are determined, (22) and (23) may be

substituted into (12) to compute bI and bII approximately.
4 A numerical verification of the hypersingu-

lar boundary integral equations

A three-phase model based on the self-consistent scheme of Christensen and

Lo [6] may be developed for estimating the effective stiffness of a micro-

cracked interface. In such a model, the interface is made up of a simplified

micro-structure and an effective region interacting with each other (see Fan

and Sze [8] and Wang et al. [16]). The model is of limited applicability, as it

takes into consideration only the density of the micro-cracks on the interface.

However, as shown numerically in [16], it may provide a good approximation

for an interface that contains a periodic array of evenly distributed micro-

cracks of equal length.

Thus, for a numerical verification that the hypersingular boundary in-

tegral equations in (13), (14), (16) and (17) are correctly derived, one may

compare the numerical solution of these equations for the special case of

evenly distributed micro-cracks with the solution for a three-phase model of

the pair of micro-cracked interfaces.
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4.1 Crack tips of evenly distributed micro-cracks on
the pair of interfaces

All the micro-cracks on interface I have the same length 2I. The distance 0

in Figure 1 is taken to be zero. They are evenly distributed on the interface,

so that the tips (
()
I  0) and (

()
I  0) of the -th micro-crack in the portion

of interface I where 0  1   2 = 0 are given by


(1)
I =



2
(1− I) 

(1)
I = 

(1)
I + 2I


()
I = 

(−1)
I +





()
I = 

()
I + 2I

⎫⎬⎭ for  = 2 3 · · ·  (26)

Similarly, the tips (
()
II  ) and (

()
II  ) of the  evenly distributed

micro-cracks of equal length 2II, which lie in the portion of interface II

where 0  1   2 =  are given by


(1)
II =



2
(1− II) 

(1)
II = 

(1)
II + 2II


()
II = 

(−1)
II +





()
II = 

()
II + 2II

⎫⎬⎭ for  = 2 3 · · ·  (27)

4.2 A three-phase model for the pair of interfaces

A geometrical sketch of the three-phase model for interfaces I and II is shown

in Figure 2. Each of the interfaces is made up of three components: micro-

cracked, perfectly bonded and effective regions. In Figure 2, all the three

components are clearly shown in the region 0  1   on interfaces I and

II. The geometries of the interfaces are periodic with period  The length

of the effective region on each of the interfaces is assumed to be very large

compared to the lengths of the micro-crack and the perfectly bonded part on

the interface. Note that 
(1)
I = 

(2)
I − 

(1)
I and 

(1)
II = 

(2)
II − 

(1)
II .
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Figure 2. A geometrical sketch of the three-phase model for interfaces I

and II.

For the three-phase model, the damage ratios for the interface I and

interface II corresponding to (6) are respectively given by

I =

(1)
I − 

(1)
I

(2)I
and II =


(1)
II − 

(1)
II

(2)II
 (28)

As in the micromechanical-statistical model, the displacement 3 and the

stress 32 maybe written into the form in (10), where 
(ext)
3 and 

(ext)
32 are

respectively the displacement and the stress fields in the trimaterial for the

corresponding case where the entire interfaces I and II are perfectly bonded,

and 
(imp)
3 and 

(imp)
32 are respectively the displacement and stress due to the

interaction between the micro-cracks and the effective regions. As before,

the internal stress fields 
(ext)
32 (1 0) and 

(ext)
32 (1 ) are assumed known.
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The interfacial conditions for the three-phase model are given by


(imp)
32 (1 0

±) = −(ext)32 (1 0) for (1 0) ∈ I,


(imp)
32 (1 

±) = −(ext)32 (1 ) for (1 ) ∈ II,

∆
(imp)
3I (1) = 0


(imp)
32 (1 0

+) = 
(imp)
32 (1 0

−)

)
for (1 0) ∈ I

∆
(imp)
3II (1) = 0


(imp)
32 (1 

+) = 
(imp)
32 (1 

−)

)
for (1 ) ∈ II

bI∆
(imp)
3I (1) = 

(ext)
32 (1 0) + 

(imp)
32 (1 0

±) for (1 0) ∈ IbII∆
(imp)
3II (1) = 

(ext)
32 (1 ) + 

(imp)
32 (1 

±) for (1 ) ∈ II (29)

where I and II denote the micro-cracked parts of interfaces I and II re-

spectively, I and II denote the perfectly bonded parts of interfaces I and II

respectively and I and II denote the effective regions on interfaces I and

II respectively.

The effective regions I and II behave according to the macro spring-

like interface model in (5) but with unknown (yet to determined) effective

stiffness bI and bII. As bI and bII in (29) are unknown coefficients, two more
equations are needed to complete the formulation for the three-phase model.

They are given by

bI Z 
(1)
I


(1)
I

∆
(imp)
3I (1)1 =

Z 
(2)
I

0


(ext)
32 (1 0)1

bII Z 
(1)
I I


(1)
I I

∆
(imp)
3II (1)1 =

Z 
(2)
I I

0


(ext)
32 (1 )1 (30)

As in the analysis in Subsection 3.3, the trimaterial in Figure 2 is di-

vided into the subdomains 2  2 and 2  2 to derive hypersingular

boundary integral equations for the three-phase model.

From the boundary integral equations for the lower subdomain 2  2,

the hypersingular integral equations for the stress 
(imp)
32 on the artificial
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boundary 2 = −2 and interface I (where 2 = 0+) are respectively given

by

1

2

(imp)
32 (1 

−2)

= − 1
2
=

Z 

0


(imp)
3 (1 

−2)[
1

(1 − 1)
2
+Θ(1 1)]1

+
1

2

(2) − (3)

(2) + (3)

Z 

0

(imp)3 (1 
−2)Re{Ω(1 1 ( (2) −  (2))−2)}1

− (2) − (3)

2((2) + (3))

Z 

0


(imp)
32 (1 

−2)Re{Γ(1 1 ( (2) −  (2))−2)}1

+
(3)

((2) + (3))

2X
=1

Z 
()
I


()
I

∆
(imp)
3I (1) Re{Ω(1 1− (2)−2)}1

for 0  1   (31)

and Z 

0


(imp)
3 (1 

−2)Re{Ω(1 1  (2)−2)}1

−
Z 

0


(imp)
32 (1 

−2)Re{Γ(1 1  (2)−2)}1

−=
Z 

()
I


()
I

∆
(imp)
3I (1)

(1 − 1)
2
1

−
2X

=1
 6=

Z 
()
I


()
I

∆
(imp)
3I (1)

(1 − 1)
2
1

−
2X

=1

Z 
()
I


()
I

∆
(imp)
3I (1)Θ(1 1)1

=
((2) + (3))(

(ext)
32 (1 0)− (2)bI∆

(imp)
3I (1))

(3)

for 
()
I  1  

()
I for  = 1 2 (32)
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where (2) is such that (12) = 0 and (22) = 1

From the boundary integral equations for the upper subdomain 2  2,

the hypersingular integral equations for the stress 
(imp)
32 on the artificial

boundary 2 = +2 and interface II (where 2 = −) are

1

2

(imp)
32 (1 

+2)

=
1

2
=

Z 

0


(imp)
3 (1 

+2)[
1

(1 − 1)
2
+Θ(1 1)]1

− (2) − (1)

2((2) + (1))

Z 

0


(imp)
3 (1 

+2)

×Re{Ω(1 1−( (2) −  (2))+2)}1
+

(2) − (1)

2((2) + (1))

Z 

0


(imp)
32 (1 

+2)

×Re{Γ(1 1−( (2) −  (2))+2)}1

+
(1)

((2) + (1))

2X
=1

Z 
()
II


()
I I

∆
(imp)
3II (1)Re{Ω(1 1  (2)+2)}1

for 0  1   (33)
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and Z 

0


(imp)
3 (1 

+2)Re{Ω(1 1− (2)−2)}1

−
Z 

0


(imp)
32 (1 

+2)Re{Γ(1 1− (2)−2)}1

+=

Z 
()
I I


()
I I

∆
(imp)
3II (1)

(1 − 1)
2
1

+
2X

=1
 6=

Z 
()
I I


()
I I

∆
(imp)
3II (1)

(1 − 1)
2
1

+
2X

=1

Z 
()
I I


()
I I

∆
(imp)
3II (1)Θ(1 1)1

=
((2) + (1))(−(ext)32 (1 ) + (2)bII∆

(imp)
3II (1))

(1)

for 
()
II  1  

()
II for  = 1 2 (34)

The hypersingular boundary integral equations (31), (32), (33) and (34)

are to be solved numerically together with (30) for ∆
(imp)
3I (1), ∆

(imp)
3II (1),


(imp)
3 (1 

±2), (imp)32 (1 
±2) and bI and bII

For the approximation of (imp)3 (1 
−2) and (imp)32 (1 

−2), the inter-

val 0 ≤ 1 ≤  is discretized into elements as described in Subsection 3.4

and (19) and (20) are still valid here. As in (22) and (23), the displacement

jumps ∆(imp)3I (1) and ∆(imp)3II (1) over the micro-cracks 
(1)
I  1  (1)I 

2 = 0 (interface I) and 
(1)
II  1  

(1)
II  2 =  (interface II) are given by

∆(imp)3I (1) '
q
(1 − (1)I )(

(1)
I − 1)

×
IX
=1


()
I  (−1)(

21 − 
(1)
I − 

(1)
I


(1)
I − 

(1)
I

)

for 
(1)
I  1  

(1)
I  (35)
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and

∆
(imp)
3II (1) '

q
(1 − 

(1)
II )(

(1)
II − 1)

×
I IX
=1


()
II  (−1)(

21 − (1)II − (1)II


(1)
II − 

(1)
II

)

for 
(1)
II  1  

(1)
II  (36)

For approximating the unknown function ∆
(imp)
3I (1) over the effective

region on interface I, the interval 
(2)
I  1  

(2)
I is discretized into 2

equal length elements given by 
(1)
I  

(2)
I  · · ·  (2−1)

I and 
(2)
I  Similarly,

for ∆
(imp)
3II (1) over the effective region on interface II, the interval 

(2)
II 

1  
(2)
II is discretized into 3 equal length elements given by 

(1)
II  

(2)
II  · · · 


(3−1)
II and 

(3)
II  The displacement jumps ∆

(imp)
3I (1) and ∆

(imp)
3II (1) over

the effective regions on interfaces I and II respectively are approximated using

∆
(imp)
3I (1) ' 1

()
I + 

()
I over 

()
I ( = 1 2 · · ·  2) (37)

and

∆
(imp)
3II (1) ' 1

()
II + 

()
II over 

()
II ( = 1 2 · · ·  3) (38)

where 
()
I  

()
I  

()
II and 

()
II are constants yet to be determined.

The hypersingular boundary integral equations (31), (32), (33) and (34)

may be discretized and collocated as explained in Subsection 3.4 to obtain

a system of linear algebraic equations with the unknown effective stiffness

coefficients bI and bII and coefficients in the approximations of the unknown
functions in the integral equations. However, the discretization of the two

equations in (30) give rise to a pair of quadratic equations in the unknown

constants. The algebraic equations may be solved numerically by using an

iterative procedure as described in Wang et al. [16].
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4.3 Numerical comparison of the effective stiffness co-
efficients

The values of the effective stiffness coefficients bI and bII computed by solv-
ing numerically the hypersingular boundary integral equations in Subsection

3.3 for the evenly distributed micro-cracks described in Subsection 4.1 are

compared here with those calculated using the corresponding three-phase

model in Subsection 4.2. The two sets of values are expected to be close to

each other. This may be used as a numerical check that the equations in

Subsections 3.3 and 3.4 and the three-phase model are correctly derived.

For the calculations here, the trimaterial is taken to be isotropic with

elastic moduli 
()
 = 

() ( = 1 2 3) where  is the kronecker-delta,

(1) and (3) are the constant shear modulus of the half-spaces 2   and

2  0 respectively and 
(2) is the constant shear modulus of the thin elastic

layer. The internal loads 
(ext)
32 (1 0) and 

(ext)
32 (1 ) in (12) and (30) are

taken to be 0 where 0 is a given constant. In (26) and (27),  is chosen

to be 10. The lengths of the micro-cracks on interfaces I and II in Figure

1 are given by the positive real numbers 2I and 2II respectively. In the

three-phase model as sketched in Figure 2, the coordinates 
(1)
I  

(1)
I  

(1)
II and


(1)
II are such that 

(1)
I − 

(1)
I = 2I and 

(1)
II − 

(1)
II = 2II For convenience, we

take 
(2)
I = 

(2)
II 

25



Figure 3. Plots of IbI(2) against I for 
(1)(2) = (3)(2) = 2 and

I = II = 03 05 and 07.

For (1)(2) = (3)(2) = 2, we plot and compare the two sets of

the non-dimensionalized effective stiffness coefficient IbI(2) against I

for I = II = 03 05 and 07 in Figure 3. Note that here IbI(2) =

IIbII(2) The plots obtained by the numerical procedure in Subsection 3.4

are close to the ones from the corresponding three-phase model in Subsection

4.2. For a fixed I in Figure 3, the percentage difference between the values

of IbI(2) for the two models for a selected I is less than 16% This

indicates that the hypersingular boundary integral equations in Subsection

3.3 are properly derived.

For the special case where I → 0+, Fan and Sze [8] had proposed a
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finite element based three-phase model for estimating the effective stiffness

of the interface. For a very small value of I like I = 0001, we have

checked that the values of the non-dimensionalized effective stiffness for se-

lected values of I and II in Figure 3 are in agreement to within 54% with

the finite element calculated values in [8]. The finite element calculation in

[8] involves over 10000 linear algebraic equations. In comparison, for small

values of I, our calculation requires less than a hundred linear algebraic

equations.

5 Micromechanical-statistical simulations

The micromechanical-statistical model is used here for estimating the effec-

tive stiffness coefficients for the interfaces I and II. As explained in Subsection

3.1, a pair of interfaces are formed by randomly generating interfaces I and

II and randomly choosing the distance 0 within the range 0 ≤ 0  . For

both interfaces I and II, the  micro-cracks over a period interval of each

interface have randomly generated sizes. For each interface, the micro-crack

length follows a chosen 2 distribution. The micro-cracks are randomly po-

sitioned over a period length  of each interface. For selected values of I

II bI (1)(2) and (3)(2)  pairs of randomly generated interfaces

form a sample to generate the statistical data for the effective stiffness of in-

terfaces I and II. For each pair of the interfaces, bIbI(2) and bIIbII(2) are

calculated as explained in Subsection 3.4. The non-dimensionalized effective

stiffness coefficients are given by the means of bIbI(2) and bIIbII(2) cal-

culated from the  pairs of randomly generated interfaces. As in Subsection

4.3, both the internal loads 
(ext)
32 (1 0) and 

(ext)
32 (1 ) are taken to be the

positive constant 0.
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5.1 Number of micro-cracks required for homogenizing
the effective stiffness coefficients

The number of micro-cracks required on a period interval of each interface

for homogenizing the effective stiffness of the interface is examined here. For

fixed values of I II bI (1)(2) and (3)(2) 50 pairs of interfaces are

randomly generated. The lengths of micro-cracks on interface I and interface

II follow a 2(1) and a 2(2) distribution respectively, where 1 and 2

are positive integers. If each interface requires 0 micro-cracks per period

interval for homogenizing the effective stiffness of the interface, the mean

values of bIbI(2) and bIIbII(2) from the 50 pairs of interfaces should not

vary much for  ≥0

For I = 07 II = 05 bI = 1 (1)(2) = 05 and (3)(2) = 2,

Figure 4 gives the scatter plots of the data for bIbI(2) and bIIbII(2)

against various values of , for the case where the micro-crack length for each

of the two micro-cracked interfaces follows the 2(5) distribution. The means

of bIbI(2) and bIIbII(2) are also included in Figure 4 for the different

values of  It is obvious that both the means for bIbI(2) and bIIbII(2)

decrease significantly as  increases from 10 to 40 and do not change very

much when  exceeds 40. Moreover, the scatter range of the data for the

non-dimensionalized effective stiffness of the 50 pairs of interfaces does not

change significantly as increases from 40 to 60 and is much narrower than

the scattering range of the data for between 10 and 40. For both interfaces

I and II, it appears that 40 micro-cracks per period interval of each interface

may be sufficient for homogenizing the non-dimensionalized effective stiffness

of the interface.

Further investigations carried out by using various other values for I

II bI (1)(2) (3)(2) 1 and 2 also suggest that 40 micro-cracks
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per period interval of each interface are needed to homogenize the non-

dimensionalized effective stiffness.

Figure 4. Scatter plots and mean values of bIbI(2) and bIIbII(2)

against  for I = 07 II = 05 bI = 1 (1)(2) = 05 and

(3)(2) = 2
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5.2 Effect of the micro-crack length distribution

The effect of the micro-crack length distribution on the mean values of the

non-dimensionalized effective stiffness bIbI(2) and bIIbII(2) is examined

here. For fixed values of I II bI (1)(2) and (3)(2) a sample of

50 pairs of randomly generated interfaces is used for estimating the effective

stiffness bIbI(2) and bIIbII(2) As suggested in Subsection 5.1, the number

of the micro-cracks over a period interval of each interface is taken to be

40. For both interfaces I and II, the micro-crack lengths follow a 2()

distribution.

To investigate how the different values of the degree of freedom  (that

is, different micro-crack length distributions) affect the effective stiffness for

both interfaces I and II we plot the mean values of bIbI(2) against I

for cases where the micro-cracks along both interfaces I and II are gener-

ated by the 2(5) 2(10) and 2(25) distributions for I = II 
(1)(2) =

(3)(2) = 10 and bI = 2 in Figure 5. Values of bIbI(2) predicted by

the three-phase model in Subsection 4.2 are also plotted against I in Figure

5. Note that here values of bIIbII(2) are very close to bIbI(2)

It is obvious that the non-dimensionalized effective stiffness bIbI(2) be-

comes closer to the corresponding value predicted by the three-phase model

as the degree of freedom  of the 2 distribution increases, that is, as the

micro-crack lengths generated by the 2 distributions become more normal-

like. This may be explained as follows. The ratio of the standard deviation

of the 2 distribution to the mean of the distribution is given by
p
2 This

ratio tends to zero as  increases. Thus the micro-cracks generated by the 2

distribution with a very large  may be regarded to be of equal length and

evenly distributed on each of the two interfaces. Note that the three-phase

model assumes that the micro-cracks on each interface are of equal length
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and evenly distributed on the interface.

Figure 5. Plots of bIbI(2) against I for cases where the micro-cracks

along both interfaces I and II are generated by the 2(5) 2(10) and 2(25)

distributions for I = II 
(1)(2) = (3)(2) = 10 and bI = 2. Also

included are the plots of the corresponding effective stiffness predicted by

the three-phase model.

5.3 Effects of the elastic moduli, the thickness of the
layer and the damage ratios

The effects of the elastic moduli, the thickness of the layer and the damage

ratios on the effective stiffness coefficients bI and bII are examined here. As
before, for fixed values of I II bI (1)(2) and (3)(2) 50 pairs of
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interfaces are randomly generated for the statistical simulations. For each

pair of interfaces, the number of the micro-cracks over a period interval of

each interface is taken to be 40. For each interface, the lengths of the micro-

cracks are randomly generated by using the 2(5) distribution

Figure 6. Plots of bIbI(2) against log10(
(1)(2)) for I = II = 05

(1)(2) = (3)(2) and selected values of bI
For I = II = 05 and (1)(2) = (3)(2) Figure 6 plots the non-

dimensionalized effective stiffness bIbI(2) against log10(
(1)(2)) for se-

lected values of bI As expected, the values of bIIbII(2) are observed to

be very close to bIbI(2) For larger values of (1)(2) within the range

05 ≤ log10(
(1)(2)) ≤ 3 the plots of the non-dimensionalized effective
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stiffness for the different values of bI are visually distinguishable. For a se-
lected (1)(2) such that 05 ≤ log10((1)(2)) ≤ 3 the value of bIbI(2)

is larger for larger bI For (1)(2)  100 bIbI(2) increases very slowly

with increasing (1)(2) For a fixed value of bI it appears that bIbI(2)

tends to a constant as (1)(2) increases The thickness of the thin layer

seems to have an obvious effect on the effective stiffness only if the elastic

material for the thin layer is soft enough compared to the materials in the

two half-spaces. As (1)(2) → 0+ the values of bIbI(2) tend to zero,

that is, if the thin layer is extremely hard relative to the two half-spaces, the

magnitudes of the effective stiffness for both interfaces I and II may be very

small.

Figure 7. Plots of bIbI(2) against log10(
(1)(2)) for bI = 1

(1)(2) = (3)(2) I = II = 03 05 and 07
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In Figure 7, bIbI(2) is plotted against log10(
(1)(2)) for bI = 1

(1)(2) = (3)(2) I = II = 03 05 and 07 Values of bIIbII(2) are

very close to bIbI(2) It is observed that the non-dimensionalized effective

stiffness bIbI(2) is larger when the two interfaces have smaller damage

ratios. This is not surprising as the micro-cracks are more stable and hence

the displacement jumps over the micro-cracks are smaller when the micro-

cracks are less densely located on the interface.

Figure 8. Plots of bIbI(2) against bI for (1)(2) = (3)(2) = 10

I = II = 04 05 and 06

For relatively large values of (1)(2) and (3)(2) given by (1)(2) =

(3)(2) = 10, the non-dimensionalized effective stiffness bIbI(2) is plotted
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against bI in Figure 8 for I = II = 04 05 and 06 For a fixed value of

I the effective stiffness increases as bI increases This is as expected, as
the micro-cracks on the parallel planes 2 = 0 and 2 =  are more stable

having smaller displacement jumps over the micro-cracks when the distance

between the planes are smaller. The statistical simulations for other values

of I = II and (1)(2) = (3)(2) within the range 01 ≤ I ≤ 09 and
05 ≤ log10((1)(2)) ≤ 3 give the similar results.
Figure 8 also shows that the values of IbI(2) tend to the corresponding

effective stiffness calculated in Wang et al. [17] as I→ 0+ for a fixed I

In [17], a micro-cracked interface between two dissimilar elastic half-spaces

under antiplane deformations is formulated to calculate the effective stiffness

of the damaged interface. Note that as I tends to 0
+ here each of the

micro-cracked interfaces in Figure 1 may be regarded as an interface between

two dissimilar elastic half-spaces.

For I = 05 and (1)(2) = (3)(2) = 10 Figure 9 plots the non-

dimensionalized effective stiffness coefficients bIbI(2) and bIIbII(2) against

II for selected values of bI For a fixed value of bI, both bIbI(2) andbIIbII(2) become smaller as II increases, as may be expected. This obser-

vation is not surprising as increasing the damage ratio on the interface II has

the effect of increasing the displacement jumps over the micro-cracks on both

interfaces I and II. Note that for a fixed bI the effective stiffness coefficientbIbI(2) tends to a certain finite value but IIbII(2) tends to infinity as II

approaches zero, that is, as interface II becomes more perfectly bonded like.

For a fixed bI bIIbII(2) decreases more drastically than bIbI(2) as II

increases from 0.05 to 0.9. Calculations using other values of I bI and
(1)(2) = (3)(2) within the ranges 005 ≤ I ≤ 09 0  bI ≤ 2 and
0001 ≤ (1)(2) ≤ 1000 show similar observations
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Figure 9. Plots of bIbI(2) and bIIbII(2) against II for I = 05

(1)(2) = (3)(2) = 10 and selected values of bI
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6 Summary

A micromechanical-statistical model is proposed in the present paper for the

purpose of estimating the effective stiffness coefficients of a pair of microscop-

ically damaged interfaces in a trimaterial under antiplane deformations. The

trimaterial is made of an thin elastic layer sandwiched between two elastic

half-spaces – the two microscopically damaged interfaces are parallel planes.

The interfaces are modeled as containing periodic arrays of micro-cracks. On

each interface, an arbitrary number of micro-cracks whose lengths follow a

chosen chi-square distribution (2) are randomly positioned on a period in-

terval of the interface. The micromechanical-statistical model is formulated

and numerically solved in terms of hypersingular integral equations.

The hypersingular integral formulations for the micromechanical-statistical

model are verified by comparing the values of the effective stiffness coefficients

computed for the special case where each of the interfaces has evenly distrib-

uted micro-cracks of equal length with the corresponding values calculated

by a three-phase model. The two sets of values show good agreement for

wide ranges of parameters.

For the micromechanical-statistical model, the simulations carried out

here suggest that at least 40 micro-cracks on each interface are required to

homogenize the effective stiffness of the interface. Cases where the micro-

crack lengths for the two interfaces are generated by the 2 distribution of a

higher degree of freedom give effective stiffness coefficients closer to the ones

predicted by the three-phase model.

The micromechanical-statistical model is used to study the effects of the

elastic moduli, the thickness of the layer and the damage ratios on the effec-
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tive stiffness coefficients. We observe that the effect of varying the thickness

of the thin layer on the effective stiffness coefficients is only obvious when

the thin layer is sufficiently soft compared to the two half-spaces. If the

thin layer is soft enough relative to the two half-spaces, the effective stiffness

coefficients increase as the thickness of the thin layer decreases. For fixed

elastic moduli of the trimaterial and a fixed non-dimensionalized thin layer

thickness, the effective stiffness coefficients decrease as the damage ratios of

the two interfaces increase.
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