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Abstract

A mode III problem of a planar crack in an infinite elastic medium
with shear modulus of the form µ = µ0 [1 + ²µ1(x, y)], where µ0 is a
given positive constant, ² is a parameter of sufficiently small magni-
tude and µ1 is a partially differentiable function of x and y, is exam-
ined. It is assumed that the problem has a series solution. The first
two terms of the series are explicitly derived and used to obtain an
approximate formula for the mode III crack tip stress intensity fac-
tor. The stress intensity factor is calculated for specific cases involving
particular variations of the shear modulus.
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1 Introduction

The mathematical problem of determining the stress distribution around a
crack in an inhomogeneous medium with elastic coefficients that vary contin-
uously in space is inherently difficult to solve. Thus, it is usually considered
only for special cases in which the elastic moduli assume certain specific el-
ementary forms, such as linear or exponential variations (see, for example,
Clements et al, 1997, 1978; Dhaliwal and Singh, 1978; and Gerasoulis and
Srivasta, 1980).
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The present paper examines a mode III problem which involves a planar
crack in an infinite elastic medium with a slightly varying shear modulus of
the rather general form

µ = µ0 [1 + ²µ1(x, y)] (1)

where µ0 is a given positive constant, ² is a positive real parameter such that
² << 1 and µ1 is any suitable function which is partially differentiable with
respect to x and y in the domain of interest. It is assumed that the problem
has a series solution expanded in terms of non-negative integer powers of ².
A Fourier integral transform technique is employed to obtain explicit expres-
sions for the first two terms of the series. An approximate expression for the
relevant stress intensity factor can then be derived.
Ang and Clements (1987) had used the solution approach mentioned

above to solve the special case in which the planar crack lies on the plane
y = 0 and µ1 is a function of y alone, i.e. the shear modulus varies only
in the direction perpendicular to the crack. The analysis was also extended
to in-plane deformations by them, and then to a penny-shaped crack under
torsion and normal extension by Ang (1987) and Erg

..
uven and Gross (1999)

respectively, also with the elastic coefficients varying only in the direction
normal to the crack. The work in the present paper is a generalisation of the
mode III crack problem considered by Ang and Clements (1987).

2 Basic equations

With reference to a Cartesian coordinate frame 0xyz, take an elastic medium
undergoing an antiplane deformation in such a way that the only non-zero
component of the displacement is the one in the z-direction and is given by
the function w(x, y). The only non-zero Cartesian stresses are then given by

σxz = σzx = µ
∂w

∂x
and σyz = σzy = µ

∂w

∂y
. (2)

The antiplane deformation of the medium is governed by the partial dif-
ferential equation

∂

∂x

µ
µ
∂w

∂x

¶
+

∂

∂y

µ
µ
∂w

∂y

¶
= 0. (3)
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If µ is given by Eq. (1), then Eq. (3) becomes

[1 + ²µ1(x, y)]∇2w + ²[∂µ1
∂x

· ∂w
∂x

+
∂µ1
∂y

· ∂w
∂y
] = 0, (4)

where ∇2 denotes the Laplacian operator.
Following Ang and Clements (1987), we assume that w can be written in

the series form

w =
∞X
n=0

²nφn(x, y), (5)

where, from Eq. (4), φn are functions satisfying

∇2φ0 = 0, (6)

and

∇2φn = −µ1∇2φn−1 − ∂µ1
∂x

· ∂φn−1
∂x

− ∂µ1
∂y

· ∂φn−1
∂y

for n ≥ 1. (7)

Notice that Eqs. (6) and (7) are obtained by setting the coefficients of ²n to
zero after substituting Eq. (5) into Eq. (4).
From Eqs. (2) and (5), the stress σyz may be written as

σyz = µ0[
∂φ0
∂y

+
∞X
n=0

²n+1
µ
∂φn+1
∂y

+ µ1
∂φn
∂y

¶
]. (8)

3 A mode III crack problem

Consider an an infinite elastic medium with shear modulus as given by Eq.
(1), where µ1is such that µ1(x, y) = µ1(−x, y) = µ1(x,−y). The medium
contains a crack in the region −a < x < a, y = 0, −∞ < z < ∞, where
a is a given positive constant. It is subject to a mode III deformation so
that the basic equations given in the previous section are valid. An internal
stress σyz = −s0(x) (−a < x < a), where s0 is an even function of x, acts
on the crack. The problem is to determine the displacement and stress fields
throughout the medium.
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From a mathematical standpoint, the problem is to solve Eq. (3) in the
half plane region y > 0 subject to

w(x, 0) = 0 for |x| > a, (9)

σyz(x, 0) = −s0(x) for − a < x < a. (10)

In addition, the stresses are required to vanish as x2 + y2 →∞ (within the
half plane region y > 0).
If we assume that the problem under consideration has a series solution

of the form Eq. (5) and if we are interested in only the first two terms of the
series solution, then from Eqs. (5)-(8) the problem can be replaced by two
consecutive boundary value problems as defined below.

Problem 1. For y > 0, solve Eq. (6) subject to

φ0(x, 0) = 0 for |x| > a, (11)

σ(0)yz (x, 0) = −s0(x) for − a < x < a, (12)

where σ
(0)
yz = µ0∂φ0/∂y.

Problem 2. For y > 0, solve

∇2φ1 = −∂µ1
∂x

· ∂φ0
∂x
− ∂µ1

∂y
· ∂φ0
∂y
, (13)

subject to

φ1(x, 0) = 0 for |x| > a, (14)

σ(1)yz (x, 0) = 0 for − a < x < a, (15)

where

σ(1)yz = µ0[
∂φ1
∂y

+ µ1
∂φ0
∂y
]. (16)
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4 Solution of problem 1

The solution of problem 1 is well documented in the literature for crack
problems. In the quarter plane x ≥ 0, y ≥ 0, it is given by

φ0(x, y) =

Z ∞

0

E(ξ) exp(−ξy) cos(ξx)dξ, (17)

where

E(ξ) =

Z a

0

r(t)J0(ξt)dt,

r(t) =
2t

πµ0

Z t

0

s0(u)du√
t2 − u2 for 0 < t < a, (18)

where J0 is a Bessel function of order zero. Notice that because of the
assumed symmetries in µ1 and s0 it is sufficient to state the solution of the
problem in the region x ≥ 0, y ≥ 0 only.
On the plane y = 0, the stress σ

(0)
yz is given by

σ(0)yz (x, 0) = −µ0
d

dx

Z min(x,a)

0

r(t)dt√
x2 − t2 for x ≥ 0. (19)

5 Solution of problem 2

To seek for the solution of problem 2 (in the quarter plane x ≥ 0, y ≥ 0), let

φ1 =

Z ∞

0

[G(ξ, y) + F (ξ)] exp(−ξy) cos(ξx)dξ, (20)

where G(ξ, y) and F (ξ) are functions to be determined.
Direct substitution of Eqs. (17) and (20) into Eq. (13) yieldsZ ∞

0

[
∂2G

∂y2
− 2ξ ∂G

∂y
] exp(−ξy) cos(ξx)dξ

= −∂µ1
∂x

· ∂φ0
∂x
− ∂µ1

∂y
· ∂φ0
∂y
. (21)

Application of a Fourier inversion theorem on Eq. (21) gives

[
∂2G

∂y2
− 2ξ ∂G

∂y
] exp(−ξy)

= −2
π

Z ∞

0

[
∂µ1
∂x

· ∂φ0
∂x

+
∂µ1
∂y

· ∂φ0
∂y
] cos(ξx)dx. (22)
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If we assume that µ1 can be written in the form

µ1(x, y) =

Z ∞

0

U(ξ, y) cos(ξx)dξ, (23)

then through the use of the convolution (Faltung) theorem (see Gradshteyn
and Rhyszik, 1980) we find that Eq. (22) can be rewritten as

∂2G

∂y2
− 2ξ ∂G

∂y
= −exp(ξy)

2
Γ(ξ, y), (24)

where

Γ(ξ, y) =

Z ∞

0

sE(s) exp(−sy) [(s+ ξ)U(s+ ξ, y) + (s− ξ)U(s− ξ, y)

−Uy(s+ ξ, y)− Uy(|s− ξ|, y)] ds, (25)

where Uy denotes the partial derivative of U with respect to y.
A solution of Eq. (24) is given by

G(ξ, y) =
1

4ξ

Z y

[exp(ξt)− exp(ξ[2y − t])]Γ(ξ, t)dt. (26)

From Eq. (20), condition Eq. (14) is satisfied if

F (ξ) +G(ξ, 0) =

Z a

0

v(t)J0(ξt)dt, (27)

where v(t) is a function yet to be determined.

On the plane y = 0, σ
(1)
yz is given by

σ(1)yz (x, 0) = µ0

(Z ∞

0

∂G

∂y

¯̄̄̄
y=0

cos(ξx)dξ − d

dx

Z min(x,a)

0

[v(t) + µ1(x, 0)r(t)] dt√
x2 − t2

)
for x ≥ 0.

(28)

Using Eq. (28), we find that condition Eq. (15) is satisfied if

d

dx

Z min(x,a)

0

v(t)dt√
x2 − t2 =

Z ∞

0

∂G

∂y

¯̄̄̄
y=0

cos(ξx)dξ − µ1(x, 0)s0(x)
µ0

for 0 < x < a. (29)
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Inversion of Eq. (29) as Abel’s integral equation gives

v(t) =
2t

π

Z t

0

1√
t2 − x2 [

Z ∞

0

∂G

∂y

¯̄̄̄
y=0

cos(ξx)dξ − µ1(x, 0)s0(x)
µ0

]dx

for 0 < t < a. (30)

For the special case where µ1(x, y) = f(y), from Eq. (23), it is obvious
that we may write

U(ξ, y) = 2f(y)δ(ξ − 0), (31)

where δ denotes the Dirac-delta function. It follows that

Γ(ξ, y) = −2ξE(ξ)f 0(y) exp(−ξy),
G(ξ, y) = ξE(ξ) exp(2ξy)

Z y

exp(−2ξt)f(t)dt,

v(t) =
2t

π

Z t

0

1√
t2 − x2

Z ∞

0

∂G

∂y

¯̄̄̄
y=0

cos(ξx)dξdx− f(0)r(t) for 0 < t < a.
(32)

The results in Eq. (32) are in essential agreement with those given by
Ang and Clements (1987) for the special case where where µ1(x, y) = f(y).

6 Stress intensity factor

At the crack tip x = a, y = 0, let us define the stress intensity factor

K = lim
x→a+

√
x− a · σyz(x, 0). (33)

If we retain only the first two terms in the series solution, we obtain the
approximation

K ' K(0) + ²K(1), (34)

where

K(i) = lim
x→a+

√
x− a · σ(i)yz (x, 0) (i = 1, 2). (35)
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From Eqs. (19) and (28), we obtain

K(0) =
µ0r(a)√
2a

,

K(1) =
µ0 [v(a) + µ1(a, 0)r(a)]√

2a

+ µ0 lim
x→a+

√
x− a ·

Z ∞

0

∂G

∂y

¯̄̄̄
y=0

cos(ξx)dξ. (36)

7 Specific cases

Assume that the crack is acted upon by a uniform internal shear stress, i.e.
s0(x) = σ0, where σ0 is a given positive constant. For this particular case,
r(t) = σ0t/µ0 and hence K

(0)/(σ0
√
2a) = 1. The function E(ξ) in Eq. (18)

is given by

ξE(ξ) =
aσ0J1(aξ)

µ0
, (37)

where J1 is the Bessel function of order one.
For the variation of the shear modulus µ, let us firstly consider the specific

case where µ1 is given by

µ1(x, y) = exp(−y
h
) cos(

x

r
), (38)

where h > 0 and r > 0 are given constants.
From Eq. (23), it is clear that U(ξ, y) may be written as

U(ξ, y) = exp(−y
h
)δ(|ξ|− 1

r
). (39)

If we use Eqs. (25), (26), (37) and (39) then after some manipulations
we obtain (for ξ ≥ 0)

∂G

∂y

¯̄̄̄
y=0

=


1
2
aσ0µ

−1
0 [J1 (a [r

−1 − ξ])
+(r + h)(2rhξ + r + h)−1J1 (a [r−1 + ξ])] if ξ < 1/r,

1
2
aσ0µ

−1
0 [(r + h)(2rhξ + r + h)

−1J1 (a [r−1 + ξ])
+(r − h)(2rhξ − h+ r)−1J1 (a [−r−1 + ξ])] if ξ > 1/r.

(40)
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Using Eqs. (30) and (36) together with (Watson, 1922)Z t

0

cos(ξu)du√
t2 − u2 =

π

2
J0(ξt), (41)

we find that

K(1)

σ0
√
2a
=
µ0
2σ0

Z ∞

0

∂G

∂y

¯̄̄̄
y=0

J0(aξ)dξ − 1
2
J0
³a
r

´
+
1

2
cos
³a
r

´
, (42)

where the improper integral can be evaluated numerically using a suitable
integration quadrature.
If we let r →∞ in Eqs. (42) and (40), we find that K(1)/(σ0

√
2a) tends

to the value obtained by using the results in Eq. (32), i.e. the corresponding
value of K(1)/(σ0

√
2a) for the variation µ1 = exp(−y/h) (as in one of the

examples given in Ang and Clements, 1987).
We carry out the numerical computation the non-dimensionalized stress

intensity factor k = K(1)/(σ0
√
2a) using Eq. (42). The graphs of k against

h/a (for h/a ∈ [1/20, 5]) for r/a = 1, 2 and 4 are given in Figure 1. For those
values of r/a, it is obvious that k decreases with increasing h/a, i.e. if the
exponential decay rate 1/h of µ1 becomes lower the state of stress around
the crack of fixed length 2a becomes less severe. Notice that for r/a = 1, 2
and 4, the whole crack lies in the interior of the region −πr/2 < x < πr/2
where the shear modulus µ is greater than µ0 (the shear modulus of the
corresponding homogeneous material) and where for a fixed y > 0 the shear
modulus µ increases with increasing h. From further calculations, we find
that if part of the crack lies outside the region −πr/2 < x < πr/2, e.g. if
r/a = 1/2, k does not necessarily decreases with h/a. If r/a = 1/2, the part
of the crack that lies in the region having shear modulus greater than µ0
is from the point (−πa/4, 0) to (πa/4, 0) . The remaining part of the crack,
including the crack tips, is in a region where the shear modulus µ is less than
µ0 and decreases with increasing h for a fixed y > 0. The graph of k against
h/a (for h/a ∈ [1/100, 5]) for r/a = 1/2 is given in Figure 2. In this case, k
clearly increases with increasing h/a.
Let us now consider the case where µ1 varies according to

µ1(x, y) =
a2

c2 + x2
, (43)
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Figure 1: Graphs of k against h/a for selected values of r/a.

where c > 0 is a given constant. For this particular case, Eq. (23) gives

U(ξ, y) =
a2

c
exp(−c |ξ|). (44)

It follows that

∂G

∂y

¯̄̄̄
y=0

=
a3σ0
2cµ0

Z ∞

0

J1(as)

½
exp(−c|s+ ξ|) + (s− ξ)

(s+ ξ)
exp(−c|s− ξ|)

¾
ds,

(45)
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Figure 2: Graph of k against h/a for r/a = 1/2.

and

K(1)

σ0
√
2a
=
µ0
2σ0

Z ∞

0

∂G

∂y

¯̄̄̄
y=0

J0(aξ)dξ +
a2

2(c2 + a2)

− 1
π

Z a

0

a2dx

(c2 + x2)
√
a2 − x2 . (46)

With some efforts, the improper integrals over [0,∞) in Eqs. (45) and (46)
can be calculated numerically. The definite integral over the interval [0, a] on
the right hand side of Eq. (46) can be evaluated analytically using formula
(3.3.50) in Abramowitz and Stegun (1970). Thus, the non-dimensionalized
stress intensity factor k = K(1)/(σ0

√
2a) can be computed for various values

of c/a > 0. A plot of k against c/a (for c/a ∈ [1/20, 1/2]) is given in Figure 3.
For c/a ∈ [1/20, 1/2], we find that k < 0 and k increases as c/a increases, i.e.
for the range of c/a considered the state of stress around the crack becomes
less severe as the positive parameter c/a becomes larger. Also, it appears
that k → 0 as c/a → ∞. Notice that as c/a becomes larger the material
surrounding the crack becomes softer.
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Figure 3: Graph of k against c/a.

8 Conclusion

A mode III problem concerning a planar crack in an elastic medium having
shear modulus that varies slightly in space is analysed using a perturbation
technique. An approximate expression for the relevant stress intensity factor
is derived by using the first two terms of the series solution. For two particular
variations of the shear modulus, we apply the analysis presented to compute
the stress intensity factor numerically.
The analysis can be used to recover the special case considered in Ang

and Clements (1987) where the shear modulus varies only in direction that is
perpendicular to the crack. It may also be extended or modified to generalize
the in-plane crack problem studied in Ang and Clements (1987) or possibly
the penny-shaped crack problems in Ang (1987) and Erg

..
uven and Gross

(1999) to an even more general variation in the elastic coefficients.
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Captions:
Figure 1: Graphs of k against h/a for selected values of r/a.
Figure 2: Graph of k against h/a for r/a = 1/2.
Figure 3: Graph of k against c/a.
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