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Abstract

Hypersingular integral equations are derived for the problem of
arbitrarily-located planar cracks lying in the interior of two dissimi-

lar anisotropic elastic half-spaces which adhere perfectly to each other.
The unknown functions in the integral equations are the crack-opening
displacements. The integral equations are solved numerically for spe-
cific examples involving particular transversely-isotropic materials in
order to compute physical quantities of interest such as the crack tip
stress intensity factors or the crack energy.

Note. This has been a draft of the article which was published in
Engineering Analysis with Boundary Elements 20 (1997) 135-143.

1 INTRODUCTION

During the last ten years or so, there has been a growing interest among
many researchers in formulating crack problems using hypersingular integral
equations, e.g. Ioakimidis [1], Lin’kov and Mogilevskaya [2], Takakuda et al.
[3], Nied [4] and Ang and Clements [5]. An advantage of using such an inte-
gral formulation is that the unknown functions in the integral equations are
directly related to the crack-opening displacements. Furthermore, effective
numerical methods for solving the integral equations, such as the collocation
technique in Kaya and Erdogan [6], are available.
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In the present paper, the plane problem of several arbitrarily-located
planar cracks in two dissimilar anisotropic elastic half-spaces which adhere
perfectly to each other is formulated in terms of a system of hypersingular
integral equations. The cracks are assumed to open up under the action of
suitably prescribed internal tractions. In the formulation, the continuity con-
ditions on the interface between the dissimilar materials are enforced exactly.
Thus, in the numerical solution of the integral equations, discretisation of the
interface is conveniently avoided.
The integral equations derived are valid for the most general anisotropic

materials. The materials are not required to possess any symmetries in their
anisotropy. However, we solve those equations, numerically, using a colloca-
tion technique, for only specific examples of the problem, involving particular
transversely-isotropic materials. Numerical results for the crack tip stress in-
tensity factors or the crack energy are obtained.
From a practical standpoint, the problem under consideration may be of

useful relevance to composite and anisotropic structures which can now be
found in an increasingly wider range of applications in modern technology.
The need to assess the reliability and integrity of these structures has indeed
generated much interest among many researchers in the analysis of stress
in anisotropic layered materials, particularly those containing cracks, e.g.
Lahiri et al. [7], Ang [8, 9], Clements [10], Clements et al. [11] and Willis
[12].

2 STATEMENT OF THE PROBLEM

Referring to an 0x1x2x3 Cartesian coordinate system, consider an infinite
elastic medium which comprises two regions: x2 > 0 (region 1) and x2 < 0
(region 2). The regions are occupied by two possibly different anisotropic
materials which adhere rigidly to each other along the x2 = 0 interface.
There are several arbitrarily-located planar cracks in the elastic medium.
It is assumed that the geometries of the cracks do not vary along the x3-
direction and the cracks do not intersect with one another or the interface
separating the two regions.
Let us denote those cracks in region 1 (if any) by C (1), C(2), ...,C (N−1)

and C (N) and any other remaining cracks in region 2 by C (N+1), C(N+2),
...,C(N+M−1) and C(N+M). (Thus, there are N + M cracks present.) On
the 0x1x2 plane, the tips of the crack C (m) are denoted by (α(m), β(m)) and
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(γ(m), δ(m)).
The cracks are opened up by suitably prescribed internal tractions which

are independent of x3 and time. The displacements and stresses (generated
by the presence of the cracks) vanish at infinity. The problem is to determine
the displacement and stress fields throughout the composite medium.

3 BASIC EQUATIONS

Here, we present the basic equations of the theory of elasticity, which will be
used for the solution of the problem described above.
In the absence of body forces, the equilibrium equations for a homoge-

neous anisotropic elastic material, are given by the system

cijkl
∂2uk

∂xj∂xl
= 0, (1)

where uk are the Cartesian displacements and cijkl are the elastic moduli of
the material. The latin subscripts i, j, k and l in (1) take the values of 1, 2
and 3. The usual convention of summing over a repeated index is assumed
for latin subscripts only.
If the displacements uk are independent of x3 then (1) admit solutions of

the form

uk(x
˜
) = Re{

X
α

Akαfα(zα)}, (2)

where
P

α denotes summation over α from 1 to 3, Re denotes the real part
of a complex number, x

˜
= (x1, x2), fα(zα) are holomorphic functions of

zα = x1 + ταx2, τα are roots, having positive imaginary parts, of the sextic
equation

det[ci1k1 + τci1k2 + τci2k1 + τ2ci2k2] = 0, (3)

and Akα are related to τα by

[ci1k1 + ταci1k2 + ταci2k1 + τ 2αci2k2]Akα = 0. (4)

It can be shown that the roots of (3) cannot be real and they occur in complex
conjugate pairs. We will assume that there are 3 distinct complex conjugate
pairs of roots for (3). For further details, refer to Clements [13] or Stroh [14].
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The Cartesian stresses σkj which correspond to the displacements in (2)
are given by

σkj(x
˜
) = Re{

X
α

Lkjαf
0
α(zα)}, (5)

where the prime denotes differentiation with respect to the relevant argument
and Lkjα = (ckjp1 + ταckjp2)Apα.
If the system (1) holds in a region R (in the 0x1x2 plane) bounded by a

curve D, it can be shown that (see Clements [13])

uk(x
˜
) =

Z
D

[ur(ξ
˜
)Γrk(x

˜
, ξ
˜
)− pr(ξ

˜
)Φrk(x

˜
, ξ
˜
)]dS(ξ

˜
) for x

˜
∈ R, (6)

where ξ
˜
= (ξ1, ξ2), pr are the tractions acting across D and

Φrk(x
˜
, ξ
˜
) =

1

2π
Re{

X
α

ArαNαj ln(cα − zα)}djk ,

Γrk(x
˜
, ξ
˜
) =

1

2π
Re{

X
α

LrjαNαp(cα − zα)−1}nj(ξ
˜
)dpk, (7)

where cα = ξ1 + ταξ2, nj(ξ
˜
) are the components of the unit normal outward

vector to D at ξ
˜
, [Nαj] is the inverse of [Ajβ], [djk] is defined by the relation

− i
2

X
α

{Lj2αNαp − Lj2αNαp}dpk = δjk,

where i =
√−1, z denotes the complex conjugate of z and δjk is the kronecker-

delta.
Now, if R covers the entire 0x1x2 plane and contains several straight cuts

(of finite lengths) denoted by L1,L2, ...,LN−1 and LN in its interior, and if
the displacements uk(x

˜
) behave as O(|x

˜
|−s) (s > 0), as |x

˜
| →∞, then, from

(6), the displacements uk(x
˜
) can be written as:

uk(x
˜
) =

NX
m=1

Z
L+m

∆ur(ξ
˜
)Γrk(x

˜
, ξ
˜
)dS(ξ

˜
), (8)
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where L−m and L
+
m denote respectively the “lower” and “upper” faces of the

cut Lm and ∆ur(ξ
˜
) = [ur(ξ

˜
)]+ − [ur(ξ

˜
)]−, with [ur(ξ

˜
)]± denoting the value

of ur(ξ
˜
) for ξ

˜
∈ L±m. Note that in the derivation of (8) we assume that there

is no discontinuity in the stress across the cuts and make use of the fact
that Φrk(x

˜
, ξ
˜
) are single-valued functions for all x

˜
and ξ

˜
on the 0x1x2 plane

(provided that ξ
˜
6= x

˜
).

4 HYPERSINGULAR INTEGRAL FORMU-
LATION

For the solution of the problem under consideration, guided by (8), we choose
the displacements in region n to be given by

u
(n)
k (x˜

) =
N+MX
m=1

Z
C
(m)
+

∆up(ξ
˜
)U

(n)
pk (x˜

, ξ
˜
)dS(ξ

˜
), (9)

where C
(m)
+ denotes the “upper” face of the crack C(m), ∆up give the crack-

opening displacements and

U
(n)
pk (x˜

, ξ
˜
) =

1

2π
Re{

X
α

L
(n)
pjα N

(n)
αr (c

(n)
α − z(n)α )−1}nj(ξ

˜
)d
(n)
rk +G

(n)
pk (x˜

, ξ
˜
),

(10)

where c
(n)
α = ξ1+ τ (n)α ξ2 and z

(n)
α = x1 + τ (n)α x2. The superscript (n) indicates

that the constants Lpjα, Nαr, drk and τα, as defined in the preceding section,
are to be computed using the elastic moduli of the material in region n.
For (9) to be a solution of (1), the functions G(n)pk (x˜

, ξ
˜
) in (10) must satisfy

c
(n)
rskq

∂2G(n)pk
∂xs∂xq

= 0 for all x
˜
in region n. (11)

Now, since we require the different materials making up the composite
to adhere rigidly to each other along the x2 = 0 interface, the functions
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G(n)pk (x˜
, ξ
˜
) must be chosen in such a way that, for −∞ < x1 <∞,

U (1)pk (x1, 0
+, ξ

˜
) = U (2)pk (x1,0

−, ξ
˜
), (12)

S(1)pk2(x1, 0
+, ξ

˜
) = S(2)pk2(x1,0

−, ξ
˜
), (13)

where S(n)pkj = c(n)kjrs∂U
(n)
pr /∂xs. In addition, G

(n)
pk (x˜

, ξ
˜
) are required to vanish

as |x
˜
| →∞ (in region n).

For the solution of (11) subject to (12) and (13), we choose

G
(1)
pk (x˜

, ξ
˜
) =

1

2π
Re{

X
α

A(1)kα

Z ∞

0

Epα(u, ξ
˜
) exp(iuz(1)α )du},

G(2)pk (x˜
, ξ
˜
) =

1

2π
Re{

X
α

A(2)kα

Z ∞

0

Fpα(u, ξ
˜
) exp(−iuz(2)α )du}, (14)

where Epα(u, ξ
˜
) and Fpα(u, ξ

˜
) are functions yet to be determined. The system

(11) is satisfied by the choice in (14).
Conditions (12) can be rewritten asZ ∞

−∞
U (1)pk (x1, 0

+, ξ
˜
) exp(−iγx1)dx1 =

Z ∞

−∞
U (2)pk (x1, 0

−, ξ
˜
) exp(−iγx1)dx1,

(15)

where γ > 0 is a real constant.
Using the results (Erdélyi et al. [15])Z ∞

−∞
(a − ix)−1 exp(−ixy)dx = H(y)2π exp(−ay),Z ∞

−∞
(a+ ix)−1 exp(−ixy)dx = −H(−y)2π exp(ay), (16)

where a is a constant such that Re{a} > 0 and H(x) is the Heaviside unit-
step function, we find that (15) becomesX

α

{A(1)kαEpα(u, ξ
˜
) −A(2)kαF pα(u, ξ

˜
)}

=
X
α

inj(ξ
˜
){H(−ξ2)[T (2)pjαk exp(−iuc(2)α )− T (1)pjαk exp(−iuc(1)α )]

+H(ξ2)[T
(2)

pjαk exp(−iuc(2)α )− T
(1)

pjαk exp(−iuc(1)α )]}, (17)
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where T (n)pjαk = L
(n)
pjαN

(n)
αr d

(n)
rk .

Similarly, conditions (13) can be rewritten asZ ∞

−∞
S(1)pk2(x1, 0

+, ξ
˜
) exp(−iγx1)dx1 =

Z ∞

−∞
S(2)pk2(x1,0

−, ξ
˜
) exp(−iγx1)dx1,

(18)

to give rise toX
α

{L(1)k2αEpα(u, ξ
˜
)− L(2)k2αF pα(u, ξ

˜
)}

=
X
α

inl(ξ
˜
){H(−ξ2)[Q(2)pk2lα exp(−iuc(2)α ) −Q(1)pk2lα exp(−iuc(1)α )]

+H(ξ2)[Q
(2)

pk2lα exp(−iuc(2)α )−Q
(1)

pk2lα exp(−iuc(1)α )]}, (19)

where Q
(n)
pkjlα = (c

(n)
kjr1 + τ(n)α c(n)kjr2)T

(n)
plαr.

Our task now is to solve (17) and (19) for Epα(u, ξ
˜
) and Fpα(u, ξ

˜
). We

obtain

Epα(u, ξ
˜
) =

X
β ,γ

Vαβ{H(−ξ2)[(N
(2)

βkT
(2)
plγk −M

(2)

βkQ
(2)
pk2lγ) exp(−iuc(2)γ )

− (N (2)

βkT
(1)
plγk −M

(2)

βkQ
(1)
pk2lγ) exp(−iuc(1)γ )]

+H(ξ2)[(N
(2)

βkT
(2)

plγk −M
(2)

βkQ
(2)

pk2lγ) exp(−iuc(2)γ )

− (N (2)

βkT
(1)

plγk −M
(2)

βkQ
(1)

pk2lγ) exp(−iuc(1)γ )]}inl(ξ
˜
), (20)

and

F pα(u, ξ
˜
) =

X
β,γ

Wαβ{H(−ξ2)[(N
(1)

βk T
(2)
plγk −M

(1)

βkQ
(2)
pk2lγ) exp(−iuc(2)γ )

− (N (1)

βkT
(1)
plγk −M

(1)

βkQ
(1)
pk2lγ) exp(−iuc(1)γ )]

+H(ξ2)[(N
(1)

βk T
(2)

plγk −M
(1)

βkQ
(2)

pk2lγ) exp(−iuc(2)γ )

− (N (1)

βkT
(1)

plγk −M
(1)

βkQ
(1)

pk2lγ) exp(−iuc(1)γ )]}inl(ξ
˜
), (21)
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where [Vαβ ] and [Wαβ] are obtained from the relationsX
β

Vαβ [N
(2)

βkA
(1)
kγ −M

(2)

βkL
(1)
k2γ] = δαγ,

X
β

Wαβ [M
(1)

βkL
(2)

k2γ −N (1)
βk A

(2)

kγ ] = δαγ.

From (14), (20) and (21), we obtain

G
(1)
pk (x˜

, ξ
˜
) = − 1

2π
Re{

X
α,β,γ

A
(1)
kαVαβ

×{H(−ξ2)[(N
(2)

βq T
(2)
plγq −M

(2)

βqQ
(2)
pq2lγ)[z

(1)
α − c(2)γ ]

−1

− (N (2)

βq T
(1)
plγq −M

(2)

βqQ
(1)
pq2lγ)[z

(1)
α − c(1)γ ]

−1]

+H(ξ2)[(N
(2)

βq T
(2)

plγq −M
(2)

βqQ
(2)

pq2lγ)[z
(1)
α − c(2)γ ]

−1

− (N (2)

βq T
(1)

plγq −M
(2)

βqQ
(1)

pq2lγ)[z
(1)
α − c(1)γ ]

−1]}nl(ξ
˜
)}, (22)

and

G(2)pk (x˜
, ξ
˜
) = − 1

2π
Re{

X
α,β ,γ

A(2)kαW αβ

× {H(−ξ2)[(N
(1)

βq T
(2)

plγq −M
(1)

βqQ
(2)

pq2lγ)[z
(2)
α − c(2)γ ]

−1

− (N (1)

βq T
(1)

plγq −M
(1)

βqQ
(1)

pq2lγ)[z
(2)
α − c(1)γ ]

−1]

+H(ξ2)[(N
(1)

βq T
(2)

plγq −M
(1)

βqQ
(2)
pq2lγ)[z

(2)
α − c(2)γ ]

−1

− (N (1)

βq T
(1)

plγq −M
(1)

βqQ
(1)

pq2lγ)[z
(2)
α − c(1)γ ]

−1]}nl(ξ
˜
)}. (23)

The displacements u(n)k (x˜
), as given by (9) together with (10), (22) and

(23), satisfy (1) in region n, and the continuity conditions on the interface
x2 = 0. The remaining conditions to be satisfied are those on the crack faces,
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specifically given by

σ(1)kj (x˜
)nj(x

˜
)→ −σ(0)kj (y

˜
)nj(y

˜
) as x

˜
→ y

˜
∈ C (m)+ (m = 1, 2, ...,N), (24)

σ(2)kj (x˜
)nj(x

˜
)→ −σ(0)kj (y

˜
)nj(y

˜
) as x

˜
→ y

˜
∈ C (m)+

(m = N + 1, N + 2, ...,N +M), (25)

where σ(0)kj are suitably prescribed internal stresses.

From (9), (10), (22) and (23), the stresses σ(n)kj (x˜
) can be written as

σ(n)kj (x˜
) =

1

2π

M+NX
m=1

Z
C
(m)
+

∆up(ξ
˜
)

× [Re{
X
α

Q(n)pkjlα(c
(n)
α − z(n)α )−2} +Z(n)pkjl(x˜

, ξ
˜
)]nl(ξ

˜
)dS(ξ

˜
), (26)

where Q(n)pkjlα are as defined below (19), and

Z(1)pkjl(x˜
, ξ
˜
) = Re{

X
α,β ,γ

L(1)kjαVαβ

× {H(−ξ2)[(N
(2)

βq T
(2)
plγq −M

(2)

βqQ
(2)
pq2lγ)[z

(1)
α − c(2)γ ]

−2

− (N (2)

βq T
(1)
plγq −M

(2)

βqQ
(1)
pq2lγ)[z

(1)
α − c(1)γ ]

−2]

+H(ξ2)[(N
(2)

βq T
(2)

plγq −M
(2)

βqQ
(2)

pq2lγ)[z
(1)
α − c(2)γ ]

−2

− (N (2)

βq T
(1)

plγq −M
(2)

βqQ
(1)

pq2lγ)[z
(1)
α − c(1)γ ]

−2]}}, (27)

and

Z(2)pkjl(x˜
, ξ
˜
) = Re{

X
α,β,γ

L(2)kjαWαβ

× {H(−ξ2)[(N
(1)

βq T
(2)

plγq −M
(1)

βqQ
(2)

pq2lγ)[z
(2)
α − c(2)γ ]

−2

− (N (1)

βq T
(1)

plγq −M
(1)

βqQ
(1)

pq2lγ)[z
(2)
α − c(1)γ ]

−2]

+H(ξ2)[(N
(1)

βq T
(2)

plγq −M
(1)

βqQ
(2)
pq2lγ)[z

(2)
α − c(2)γ ]

−2

− (N (1)

βq T
(1)

plγq −M
(1)

βqQ
(1)

pq2lγ)[z
(2)
α − c(1)γ ]

−2]}}. (28)
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Notice that Z(n)pkjl(x˜
, ξ
˜
) = 0 if c(1)rskq = c

(2)
rskq, as expected.

For convenience, we may visualise the crack C (m) as being a closed curve
which is assigned a clockwise direction and which encloses an elliptical region
having an area that tends to zero. We take the “upper” face C (m)+ to be the
part of the ellipse from the tip (α(m), β(m)) to (γ(m), δ(m)).
Conditions (24) and (25) can be written as

1

π
Re

(X
α

L(q)Q(1)pkjlαn
(q)
j n

(q)
l

{(γ(q) −α(q)) + τ (1)α (δ(q) − β(q))}2

)
H
Z 1

−1

∆u
(q)
p (s)

(t− s)2 ds

+
1

4π

M+NX
m=1

L(m)
Z 1

−1
∆u(m)p (s)n(m)l n(q)j

× [Re{(1− δmq)
X
α

Q(1)pkjlα(Ξ
(mq)(s, t) + τ (1)α Θ(mq)(s, t))−2}

+ Z(1)pkjl(X
(q)(t), Y (q)(t),X (m)(s), Y (m)(s))]ds

= −σ(0)kj (X(q)(t), Y (q)(t))n(q)j for − 1 < t < 1 (q = 1,2, ...,N ), (29)

and

1

π
Re

(X
α

L(q)Q
(2)
pkjlαn

(q)
j n

(q)
l

{(γ(q) −α(q)) + τ (2)α (δ(q) − β(q))}2

)
H
Z 1

−1

∆u
(q)
p (s)

(t− s)2 ds

+
1

4π

M+NX
m=1

L(m)
Z 1

−1
∆u(m)p (s)n(m)l n(q)j

× [Re{(1− δmq)
X
α

Q
(2)
pkjlα(Ξ

(mq)(s, t) + τ (2)α Θ(mq)(s, t))−2}

+ Z(2)pkjl(X
(q)(t), Y (q)(t),X (m)(s), Y (m)(s))]ds

= −σ(0)kj (X(q)(t), Y (q)(t))n
(q)
j

for − 1 < t < 1 (q = N + 1,N + 2, ..., N +M), (30)

where H denotes that the integral is to be interpreted in the Hadamard
finite-part sense, ∆u(q)p (s) = ∆up(X (q)(s), Y (q)(s)), 2X(q)(s) = (γ(q)+ α(q)) +

s(γ(q)−α(q)), 2Y (q)(s) = (δ(q)+β(q))+ s(δ(q)− β(q)), n(q)1 = (δ(q)−β(q))/L(q),

n(q)2 = −(γ(q)−α(q))/L(q), L(q) =
p
(δ(q) − β(q))2 + (γ(q) − α(q))2, Ξ(mq)(s, t) =

X(m)(s) −X(q)(t), and Θ(mq)(s, t) = Y (m)(s)− Y (q)(t).
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Equations (29) and (30) constitute a system of 3(N +M) hypersingular
integral equations, from which we can solve for the 3(N + M) unknown

functions ∆u
(q)
p (s) (q = 1,2, ..., N +M ; p = 1, 2, 3). In general, these integral

equations have to be solved numerically. An accurate and effective numerical
technique for solving them is given in Kaya and Erdogan [6].

5 SPECIFIC EXAMPLES

We will now solve the hypersingular integral equations (29) and (30), nu-
merically, for specific examples of the problem described in Section 2, and
compute the crack tip stress intensity factors or the crack energy.
The elastic behaviour of a transversely isotropic material which has trans-

verse planes parallel to the 0x2x3 plane and which undergoes plane deforma-
tions is governed by the system

C
∂2u1
∂x21

+L
∂2u1
∂x22

+ (F + L)
∂2u2

∂x1∂x2
= 0,

A
∂2u2
∂x22

+L
∂2u2
∂x21

+ (F + L)
∂2u1

∂x1∂x2
= 0, (31)

where A, F , C and L are the elastic coefficients of the materials. Notice that
(31) is a special case of the more general system (1).
Equation (3) now becomes

ALτ4 − (F 2 + 2FL− AC)τ 2 +CL = 0, (32)

from which we obtain τ1 and τ2.
From (4), we find that the constants Akα are given by

[Akα] =

Ã
− iτ1(F+L)

C+Lτ2
1
− iτ2(F+L)

C+Lτ2
2

i i

!
. (33)

Other relevant constants like Lkjα and Nαp can be computed using (33).
From now on, unless otherwise indicated, the latin and greek subscripts take
the value of 1 and 2 only. For further details, refer to Clements [13].
To obtain some numerical results for the examples considered below, we

will use the elastic constants for magnesium and titanium. For magnesium,
these constants are given by A = 5.96, F = 2.14, C = 6.14 and L = 1.64;
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for titanium, they are A = 16.2, F = 6.9, C = 18.1 and L = 4.67. If these
constants are multiplied by 1011, their units are in dynes per centimeter
square.

5.1 Planar cracks normal to the interface in regions 1
and 2

Let us now consider the situation where each of regions 1 and 2 contains a
planar crack lying on a plane which is perpendicular to the interface x2 = 0.
More specifically, we takeM = N = 1, with (α(1),β(1)) = (0, a), (γ(1), δ(1)) =
(0, b), (α(2),β(2)) = (0,−a) and (γ(2), δ(2)) = (0,−b), where a and b are
positive constants such that b > a.
We assume that the internal stresses σ(0)kj are such that σ

(0)
11 = P0 (P0 is a

given positive constant) and σ(0)12 = σ(0)21 = 0 on both cracks.
For this particular situation, we find that (29) and (30) reduce to:

H
Z 1

−1

χ(1)∆u(s)

(t− s)2 ds + l
2

Z 1

−1
∆u(s)Z(1)1111(0, k + lt,0, k + ls)ds

− l2
Z 1

−1

χ(1)∆v(s)

(2k + l[s+ t])2
ds− l2

Z 1

−1
∆v(s)Z(1)1111(0, k + lt,0,−k − ls)ds

= −2πP0 for − 1 < t < 1, (34)

and

−H
Z 1

−1

χ(2)∆v(s)

(t− s)2 ds− l
2

Z 1

−1
∆v(s)Z(2)1111(0,−k − lt, 0,−k − ls)ds

+ l2
Z 1

−1

χ(2)∆u(s)

(2k + l[s+ t])2
ds+ l2

Z 1

−1
∆u(s)Z(2)1111(0,−k − lt,0, k + ls)ds

= −2πP0 for − 1 < t < 1, (35)

where k = (a + b)/2, l = (b − a)/2, χ(n) = Re{Pα[τ
(n)
α ]−2Q(n)1111α}, ∆u(s) =

∆u(1)1 (s)/l and∆v(s) = ∆u(2)1 (s)/l. Notice that, due to symmetry, ∆u
(1)
2 (s) =

∆u(2)2 (s) = 0.
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To solve (34) and (35) numerically, we make the approximations

∆u(s) ' √1− s2
JX
j=1

φjUj−1(s),

∆v(s) '
√
1− s2

JX
j=1

ψjUj−1(s), (36)

where φj and ψj are real constant coefficients to be determined and Uj(x) is
the j-th order Chebyshev polynomial of the second kind.
Substituting (36) into (34) and (35) leads to:

JX
j=1

φj

½
−πjUj−1(t)χ(1) + l2

Z 1

−1

√
1− s2Uj−1(s)

×Z(1)1111(0, k + lt,0, k + ls)ds
o

− l2
JX
j=1

ψj

Z 1

−1

√
1− s2Uj−1(s)

×
½

χ(1)

(2k + l[s+ t])2
+Z(1)1111(0, k + lt, 0,−k − ls)

¾
ds

= −2πP0 for − 1 < t < 1, (37)

and
JX
j=1

ψj

½
πjUj−1(t)χ(2) − l2

Z 1

−1

√
1− s2Uj−1(s)

×Z(2)1111(0,−k − lt,0,−k − ls)ds
o

+ l2
NX
j=1

φj

Z 1

−1

√
1− s2Uj−1(s)

×
½

χ(2)

(2k + l[s+ t])2
+Z(2)1111(0,−k − lt, 0, k + ls)

¾
ds

= −2πP0 for − 1 < t < 1. (38)

For any given t ∈ (−1,1), it is possible to compute the integrals in (37) and
(38) accurately by using the quadrature formula (25.4.40) in Abramowitz
and Stegun [16].
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Now, there are 2J unknown constants φj and ψj in (37) and (38). We
choose the free parameter t in (37) and (38) to be given in turn by

t = tp = cos([2p− 1]π/[2J ]) for p = 1, 2, ..., J,

in order to generate a system of 2J linear algebraic equations in φj and
ψj . The system thus generated is readily solved using standard computer
packages.
With regions 1 and 2 occupied by titanium and magnesium respectively,

we solve (34) and (35) numerically in order to compute the stress intensity
factors at the tips (0,±a) defined by

K
(1)
I = lim

y→a−
p
2(a− y)σ(1)11 (0, y) and K (2)

I = lim
y→−a+

p
2(y + a)σ

(2)
11 (0, y).

From (36), the stress intensity factors are approximately given by

K(1)
I ' χ(1)

2
√
l

JX
j=1

φjUj−1(−1) and K (2)
I ' χ(2)

2
√
l

JX
j=1

ψjUj−1(−1).

Hence, once φj and ψj are determined, numerical values of the stress intensity
factors can be readily computed.
The numerical values ofK

(n)
I /(P0

√
l), thus obtained, are tabulated in Ta-

ble 1 for various values of a/l. For a given a/l, we observe thatK(1)
I /(P0

√
l) >

K(2)
I /(P0

√
l), i.e. the state of stress around the crack in region 1 (titanium) is

more severe than that around the crack in region 2 (magnesium). Notice that
titanium is a more rigid material than magnesium. Moving the cracks closer
to each other (i.e. decreasing a/l) has the effect of aggravating the stress
around the crack tips. It is clear that as a/l→∞ both non-dimensionalised

stress intensity factors K
(1)
I /(P0

√
l) and K

(2)
I /(P0

√
l) tend to unity.

In our calculations above, we typically use J = 5 in the approximation
(36). When the calculations are repeated using J = 10, convergence to 3 or 4
significant figures is observed in the numerical results obtained. However, for
cases where the cracks interact strongly with each other or the interface x2 =
0, i.e. when a/l is extremely small, it may be necessary to use larger number
of terms in (36) to achieve the same level accuracy in the computation.
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Table 1. Stress intensity factors at the tips (0,±a).
a/l K (1)

I /(P0
√
l) K (2)

I /(P0
√
l)

0.01 4.486 1.842
0.05 2.879 1.392
0.10 2.228 1.231
0.20 1.729 1.122
0.30 1.511 1.080
0.40 1.386 1.058
0.50 1.306 1.045
0.60 1.250 1.036
0.70 1.209 1.029
0.80 1.177 1.024
0.90 1.153 1.021
1.00 1.133 1.081
1.50 1.076 1.010
2.00 1.050 1.006
4.00 1.016 1.002
8.00 1.005 1.000

5.2 Parallel cracks normal to the interface in region 1

Let us consider the situation where, in region 1, there is a pair of parallel
cracks lying on plane that are perpendicular to the x2 = 0 interface. More
precisely, we take N = 2 and M = 0, with (α(1), β(1)) = (h, a), (γ(1), δ(1)) =
(h, b), (α(2), β(2)) = (−h, a) and (γ(2), δ(2)) = (−h, b), where a, b and h are
positive constants such that b > a.
As in the previous example, we assume that that the internal stresses σ(0)kj

are such that σ(0)11 = P0 (P0 is a given positive constant) and σ(0)12 = σ(0)21 = 0
on both cracks.
From the symmetry about the plane x1 = 0, we know that ∆u

(1)
1 (s) =

∆u
(2)
1 (s) and ∆u

(1)
2 (s) = −∆u(2)2 (s) for −1 < s < 1. If we define ∆u(s) =
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∆u(1)1 (s)/l and ∆v(s) =∆u(1)2 (s)/l, we find that (29) and (30) reduce to:

H
Z 1

−1

χ11∆u(s)

(t− s)2 ds + l
2

Z 1

−1
∆u(s)Re

(X
α

Q(1)1111α

(−2h + τ (1)α l{s− t})2

)
ds

+ l2
Z 1

−1
∆u(s)Z1(t, s)ds+ l

2

Z 1

−1
∆v(s)R1(t, s)ds

H
Z 1

−1

χ21∆v(s)

(t− s)2 ds + l
2

Z 1

−1
∆v(s)Re

(X
α

Q(1)2111α

(−2h+ τ
(1)
α l{s− t})2

)
ds

= −2πP0 for − 1 < t < 1, (39)

and

H
Z 1

−1

χ12∆u(s)

(t− s)2 ds + l
2

Z 1

−1
∆u(s)Re

(X
α

Q
(1)
1211α

(−2h + τ (1)α l{s− t})2

)
ds

+ l2
Z 1

−1
∆u(s)Z2(t, s)ds+ l

2

Z 1

−1
∆v(s)R2(t, s)ds

H
Z 1

−1

χ22∆v(s)

(t− s)2 ds + l
2

Z 1

−1
∆v(s)Re

(X
α

Q(1)2211α

(−2h+ τ (1)α l{s− t})2

)
ds

= 0 for − 1 < t < 1, (40)

where l = (b − a)/2, χpq = Re{
P

α[τ
(1)
α ]−2Q(1)pq11α} and

Zq(t, s) = Z
(1)
1q11(h, k + lt, h, k + ls) +Z

(1)
1q11(h, k + lt,−h, k + ls),

Rq(t, s) = Z
(1)
2q11(h, k + lt, h, k + ls) − Z(1)2q11(h, k + lt,−h, k + ls),

with k = (a+ b)/2.
We proceed as before to solve (39) and (40) numerically. We approximate

∆u(s) and ∆v(s) using (36), substitute (36) into (39) and (40) and generate
a system of linear algebraic equations from which we determine φj and ψj .
For the crack x1 = h, a < x2 < b, we define the crack energy E by

E = −P0
2

Z b

a

∆u1(h,x2)dx2.

Uisng (36) and the orthogonality relation for Chebyshev polynomials, we
obtain

E ' −πlP0φ1
4

.
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Hence, once φj and ψj are determined, the crack energy E can be readily
computed.
Let us now work out the crack energy for the limiting case where a/l and

h/l both tend to infinity. For this special case (which gives the corresponding
problem of a single planar crack in an infinite homogeneous elastic space),
we find that (39) and (40) reduces to a single equation

H
Z 1

−1

χ11∆u(s)

(t− s)2 ds = −2πP0 for − 1 < t < 1,

with solution given by

∆u(s) =
2P0
χ11

√
1− s2.

Thus, the crack energy for the case where a/l → ∞ and h/l → ∞ is given
by

E0 = −πl2P 20
2χ11

.

With regions 1 and 2 occupied by titanium and magnesium respectively,
we solve (39) and (40) numerically and compute the non-dimensionalised
crack energy E/E0 for selected values of a/l and h/l in Table 2. It is clear
that for a fixed h/l the crack energy decreases with increasing a/l, i.e. the
cracks are more stable if they are located farther away from region 2. This is
perhaps to be expected as region 2 is occupied by magnesium which is a less
rigid material than titanium. We also observe that for a fixed a/l the crack
energy decreases as h/l decreases.

Table 2. Non-dimensionalised crack energy E/E0 (E0 ' 2.199952P 20 l2).
h/l

a/l
0.2500 0.5000 1.0000 2.0000 ∞

0.2500 0.6374 0.7255 0.8718 0.9899 1.0874
0.5000 0.6175 0.7019 0.8471 0.9681 1.0545
1.0000 0.6011 0.6830 0.8232 0.9484 1.0281
2.0000 0.5906 0.6707 0.8076 0.9316 1.0119
∞ 0.5828 0.6608 0.7947 0.9165 1.0000
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Table 3. Non-dimensionalised crack energy E/E0 (E0 ' 6.263115P 20 l2).
h/l

a/l
0.2500 0.5000 1.0000 2.0000 ∞

0.2500 0.5416 0.6123 0.7360 0.8566 0.9304
0.5000 0.5555 0.6279 0.7522 0.8731 0.9542
1.0000 0.5684 0.6425 0.7695 0.8850 0.9754
2.0000 0.5774 0.6530 0.7824 0.9017 0.9894
∞ 0.5845 0.6618 0.7938 0.9149 1.0000

We also compute the non-dimensionalised crack energy E/E0 for the case
where regions 1 and 2 occupied by magnesium and titanium respectively.
The results for selected values of a/l and h/l are given in Table 3. In this
case, for a fixed h/l, the crack energy increases as a/l increases, i.e. the
cracks are more stable if they are nearer to region 2 which is occupied by
more rigid material (titanium).

6 SUMMARY

In the present paper, we outlined an integral approach for solving numerically
the problem of an arbitrary number of arbitrarily-located planar cracks in
the interior of two dissimilar anisotropic half-spaces which adhere perfectly to
each other. We expressed the displacements in terms of integrals taken over
the crack faces, with the aid of a fundamental solution of elasticity which
was modified in order to satisfy the continuity conditions on the interface
separating the dissimilar half-spaces. The conditions on the cracks then give
rise to a system of hypersingular integral equations, with the crack-opening
displacements as unknown functions, to be solved. The hypersingular inte-
gral equations were solved numerically, using a collocation method, for some
specific examples of the problem involving particular transversely-isotropic
materials, in order to compute the crack tip stress intensity factors or the
crack energy.
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