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Abstract
A dual-reciprocity boundary element procedure is presented for
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subject to a non-local condition. The non-local condition specifies
the total amount of heat energy stored inside the solid under consid-
eration. An unknown control function (of time) which governs the
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1 Introduction

Of interest here is the non-classical heat conduction problem which requires

solving the parabolic heat equation subject to a non-local condition. The

non-local condition is given by a domain integral which specifies the total

amount of heat energy stored in the solid under consideration. On a certain

part of the boundary of the solid, the temperature is specified in terms of an

unknown control function (of time) to be determined.

Such a problem has been solved numerically using the finite difference

methods, usually for relatively simple solution domains (like a square) with

temperature specified on the whole boundary. For some examples of finite

difference solutions, one may refer to the works of Wang and Lin [1], Cannon,

Lin and Matheson [2], Noye, Dehghan and van der Hoek [3], Gumel, Ang and

Twizell [4], Dehghan [5], and many other references therein.

Ang [6] and Ang and Gumel [7] applied the boundary element method

together with the Laplace transformation to solve the problem for two- and

three-dimensional solution domains. The domain integral in the non-local

condition was reduced to an integral involving only the heat flux on the

boundary of the solution domain. The physical solution was recovered from

the Laplace transformation domain through the use of a numerical technique

for inverting Laplace transformation. More recently, Ang [8] presented a

dual-reciprocity boundary element method together with discontinuous linear

elements and a time-stepping scheme for solving a generalized (anisotropic)

heat equation subject to the non-local condition.

In the present paper, the dual-reciprocity boundary element approach de-

scribed in Wang, Mattheij and ter Morsche [9] is applied to compute numeri-

cally the temperature field which varies axially and radially in an axisymmet-

ric body which contains a prescribed amount of heat energy. Discontinuous

linear elements are employed in the approximations of temperature and heat
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flux on the boundary. In general, the discontinuous linear elements have

been found to perform better than the continuous ones, as the former can

model more accurately heat flux which is discontinuous at sharp edges of the

boundary of the solution domain. Furthermore, in general, the temperature

prescribed on the boundary may also be discontinuous at certain points. The

first order time derivative of the temperature is approximated using a central

finite difference formula. In order to check its validity, the method presented

is used to solve two specific problems whose exact solutions are known.

2 The problem

With reference to an Oxyz Cartesian coordinate system, consider a thermally

isotropic solid whose geometry is symmetrical about the z-axis. If r and θ

denote the polar coodinates defined by x = r cos θ and y = r sin θ, the

temperature distribution inside the solid is assumed to be independent of

θ, given by T (r, z, t), where t denotes time. For a homogeneous solid, the

conservation of energy and the Fourier’s law of heat conduction requires the

temperature to satisfy the axisymmetric heat equation

∂2T

∂r2
+
1

r

∂T

∂r
+

∂2T

∂z2
=

ρc

κ

∂T

∂t
in R for t ≥ 0, (1)

where R denotes the region occupied by the solid and the positive constants

ρ, c and κ are respectively the density, specific heat capacity and thermal

conductivity of the solid.

Equation (1) is to be solved subject to the initial-boundary conditions

T (r, z, 0) = f0(r, z) in R,

T (r, z, t) = p(t)f1(r, z) on S1 for t > 0,

T (r, z, t) = f2(r, z, t) on S2 for t > 0,

∂T

∂n
= f3(r, z, t) on S3 for t > 0, (2)
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and the non-local condition

ρc

ZZZ
R

[T (r, z, t)− T0]rdrdθdz = ε(t) for t > 0, (3)

where S1, S2 and S3 are non-intersecting surfaces such that S1∪S2∪S3 = S,
S is the (surface) boundary of the region R, ∂T/∂n denotes the outward

normal derivative of T on S, f0(r, z), f1(r, z), f2(r, z, t), f3(r, z, t) and ε(t)

are suitably given functions, p(t) is a control function to be determined, and

T0 is the temperature corresponding to absolute zero (for example, T0 '
−273.13oC if T (r, z, t) is given using the Celcius scale).
Note that (3) implies that the total heat energy which is stored inside

the solid is known and given by ε(t).    In a physical sense, the control func-

tion p(t) allows one to regulate the total amount of heat energy through

manipulating the temperature on a certain of the boundary.

The problem is to find T (r, z, t) and p(t) from (1) subject to (2) and (3).

The mathematical problem described here may also arise in the diffusion

of substance subject to specification of mass. The class of problems defined

by the equations in (1)-(3) has practical applications in heat transfer, control

theory, thermoelasticity and medical sciences. A specific application which

involves the use of the absorption of light to measure the concentration of a

diffusing chemical is described in Noye and Dehghan [10]. Another example

of applications is concerned with controlling the quantity of drug in biological

tissues.

3 Integro-differential formulation

Assume that the solution domain R and its boundary S are obtained by

rotating respectively the two-dimensional region Ω and the open curve Γ in

Figure 1 by an angle of 360o about the z-axis. In Figure 1, Γ is an open curve

having endpoints A and B on the z-axis. In general, Γ may also be a closed
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curve, as in, for example, the case in which R is the hollow cylindrical region

defined by u < r < v, 0 < z < w, where u, v and w are positive constants.

Figure 1

An integro-differential equation in terms of integrals over Γ and Ω can be

derived from (1), that is,

γ(ξ, η)T (ξ, η, t)

=
ρc

κ

ZZ
Ω

G(r, z; ξ, η)
∂

∂t
[T (r, z, t)]dA(r, z)

+

Z
Γ

(T (r, z, t)
∂

∂n
[G(r, z; ξ, η)]−G(r, z; ξ, η) ∂

∂n
[T (r, z, t)])rds(r, z)

for (ξ, η) ∈ Ω ∪ Γ, (4)

where γ(ξ, η) = 1 if (ξ, η) lies in the interior of Ω, γ(ξ, η) = 1/2 if (ξ, η) lies

on a smooth part of Γ, dA(r, z) denotes the area of an infinitesimal portion

of the region Ω, ds(r, z) denotes the length of an infinitesimal part of the
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curve Γ, ∂T/∂n is the outward normal derivative of T on the curve Γ, and

G(r, z; ξ, η) = − K(m(r, z; ξ, η))

π
p
a(r, z; ξ, η) + b(r; ξ)

,

∂

∂n
[G(r, z; ξ, η)] = − 1

π
p
a(r, z; ξ, η) + b(r; ξ)

× {nr
2r
[
ξ2 − r2 + (η − z)2
a(r, z; ξ, η)− b(r; ξ)E(m(r, z; ξ, η))
−K(m(r, z; ξ, η))]

+ nz
η − z

a(r, z; ξ, η)− b(r; ξ)E(m(r, z; ξ, η))},

m(r, z; ξ, η) =
2b(r; ξ)

a(r, z; ξ, η) + b(r; ξ)
,

a(r, z; ξ, η) = ξ2 + r2 + (η − z)2, b(r; ξ) = 2rξ, (5)

where nr and nz are the components of the outward unit normal vector on

Γ (Figure 1) in the r and z direction respectively, and K and E denote the

complete elliptic integral of the first and second kind respectively (as defined

in Abramowitz and Stegun [17]).

Details on the derivation of (4) may be found in Brebbia, Telles and

Wrobel [16].

If we differentiate both sides of (3) partially with respect to t and apply

the divergence theorem, we obtain

2π

Z
Γ

κr
∂

∂n
[T (r, z, t)]ds(r, z) =

d

dt
(ε(t)) for t > 0. (6)

The problem stated in Section 2 can now be reformulated as one which

requires finding T (r, z, t) and p(t) from (4) together with (2) and (6).

4 Dual-reciprocity boundary element method

For a numerical procedure, the curve Γ in Figure 1 is discretized into N

straight line elements denoted by Γ(1), Γ(2), · · · , Γ(N−1) and Γ(N ). The start-
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ing and ending points of a typical element Γ(k) are given by (r(k), z(k)) and

(r(k+1), z(k+1)) respectively. On the element Γ(k), choose two points

(ξ(k), η(k)) = (r(k), z(k)) + τ (r(k+1) − r(k), z(k+1) − z(k)),
(ξ(N+k), η(N+k)) = (r(k), z(k)) + (1− τ )(r(k+1) − r(k), z(k+1) − z(k)), (7)

where τ is a chosen number such that 0 < τ < 1/2.

If the temperature T at (ξ(k), η(k)) and (ξ(N+k), η(N+k)) is denoted by

T (k)(t) and T (N+k)(t) respectively, then the boundary temperature is ap-

proximated using

T (r, z, t) ' [s(k)(r, z)− (1− τ )`(k)]T (k)(t)− [s(k)(r, z)− τ`(k)]T (N+k)(t)

(2τ − 1)`(k)
for (r, z) ∈ Γ(k), (8)

where `(k) = s(k)(r(k+1), z(k+1)) and s(k)(r, z) is the arc length along the ele-

ment Γ(k) as defined by

s(k)(r, z) =
q
(r − r(k))2 + (z − z(k))2. (9)

Similarly, q(r, z, t) = ∂T/∂n is approximated using

q(r, z, t) ' [s(k)(r, z)− (1− τ )`(k)]q(k)(t)− [s(k)(r, z)− τ`(k)]q(N+k)(t)

(2τ − 1)`(k)
for (r, z) ∈ Γ(k), (10)

if q(k)(t) = q(ξ(k), η(k), t) and q(N+k)(t) = q(ξ(N+k), η(N+k), t).

Note that the approximations in (8) and (10) do not guarantee that

T (r, z, t) and q(r, z, t) are continuous from one element to the next and are

known as discontinuous linear elements in the literature (see, for example,

Paŕis and Cañas [18]).
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With (8) and (10), the integro-differential equation (4) can be approxi-

mately written as

γ(ξ, η)T (ξ, η, t)

=
ρc

κ

ZZ
Ω

G(r, z; ξ, η)
∂

∂t
[T (r, z, t)]dA(r, z)

+
NX
k=1

1

(2τ − 1)`(k){[−(1− τ)`(k)F(k)2 (ξ, η) + F (k)
4 (ξ, η)]T (k)(t)

+ [τ`(k)F(k)2 (ξ, η)−F (k)
4 (ξ, η)]T (N+k)(t)

− [−(1− τ)`(k)F(k)1 (ξ, η) + F(k)3 (ξ, η)]q(k)(t)

− [τ`(k)F (k)
1 (ξ, η)− F(k)3 (ξ, η)]q(N+k)(t)}, (11)

where

F (k)
1 (ξ, η) =

Z
Γ(k)

G(r, z; ξ, η)rds(r, z),

F (k)
2 (ξ, η) =

Z
Γ(k)

∂

∂n
[G(r, z; ξ, η)]rds(r, z),

F (k)
3 (ξ, η) =

Z
Γ(k)

s(r, z)G(r, z; ξ, η)rds(r, z),

F (k)
4 (ξ, η) =

Z
Γ(k)

s(r, z)
∂

∂n
[G(r, z; ξ, η)]rds(r, z). (12)

The integrals over Γ(k) in (12) may be evaluated using numerical integration

formula such as the Gaussian quadratures.

The integral over the domainΩ in (11) is treated using the dual-reciprocity

method. To do this, L well-spaced out collocation points are chosen in the in-

terior of Ω. Denote the selected points by (ξ(2N+1), η(2N+1)), (ξ(2N+2), η(2N+2)),

· · · , (ξ(2N+L−1), η(2N+L−1)) and (ξ(2N+L), η(2N+L)). The points (ξ(k), η(k)) and
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(ξ(N+k), η(N+k)) on the element Γ(k) (k = 1, 2, · · · , N) are also used as
collocation points.

The domain integral is approximated as follows:ZZ
Ω

G(r, z; ξ, η)
∂

∂t
[T (r, z, t)]dA(r, z)

'
2N+PX
k=1

d

dt
[T (k)(t)]

2N+PX
j=1

W (kj)Ψ(j)(ξ, η) (13)

where T (k)(t) = T (ξ(k), η(k)) for k = 1, 2, · · · , 2N +L, the coefficients W (kj)

are defined implicitly by

2N+LX
j=1

W (kj)φ(p)(ξ(j), η(j)) =

½
0 if p 6= k
1 if p = k

for p, k = 1, 2, · · · , 2N + L,

and

Ψ(j)(ξ, η) = γ(ξ, η)χ(j)(ξ, η) +

Z
Γ

rG(r, z; ξ, η)
∂

∂n
[χ(j)(ξ, η)]ds(r, z)

−
Z
Γ

rχ(j)(ξ, η)
∂

∂n
[G(r, z; ξ, η)]ds(r, z)

for j = 1, 2, · · · , 2N + L,

φ(p)(r, z) = 4E(m(r, z; ξ(p), η(p)))
q
a(r, z; ξ(p), η(p)) + b(r; ξ(p)),

χ(p)(ξ, η) =
1

9
(a(r, z; ξ(p), η(p)) + b(r; ξ(p)))

q
a(r, z; ξ(p), η(p)) + b(r; ξ(p))

× [(m(r, z; ξ(p), η(p))− 1)K(m(r, z; ξ(p), η(p)))
+ (4− 2m(r, z; ξ(p), η(p)))E(m(r, z; ξ(p), η(p)))]. (14)

Details on the local interpolating functions φ(p)(r, z) and the corresponding

functions χ(p)(ξ, η) are given in Wang, Mattheij and ter Morsche [9].
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It may be worth mentioning here that other approximating functions have

been proposed in the literature for treating the domain integral. Examples

are the global approximation functions in Partridge, Brebbia and Wrobel

[11], Bai and Lu [12] and Benz and Rencis[13], the axisymmetric augmented

thin plate splines in Šarler [14] and the axisymmetric multiquadrics in Šarler,

Jelić, Kovačević, Lakner and Perko [15]. The approximation functions in [9]

are used here as they give rise to a relatively less complicated formulation.

If one makes the approximations

T (k)(t) ' 1

2
[T (k)(t+

1

2
∆t) + T (k)(t− 1

2
∆t)],

d

dt
[T (k)(t)] ' 1

∆t
[T (k)(t+

1

2
∆t)− T (k)(t− 1

2
∆t)], (15)

uses (13) and lets (ξ, η) in (11) be given by (ξ(n), η(n)) for n = 1, 2, · · · ,
2N + L, one obtains

1

2
γ(ξ(n), η(n))[T (n)(t+

1

2
∆t) + T (n)(t− 1

2
∆t)]

=
ρc

κ∆t

2N+PX
k=1

[T (k)(t+
1

2
∆t)− T (k)(t− 1

2
∆t)]

2N+PX
j=1

W (kj)Ψ(j)(ξ(n), η(n))

+
NX
k=1

1

(2τ − 1)`(k){
1

2
[−(1− τ)`(k)F(k)2 (ξ(n), η(n)) + F (k)

4 (ξ(n), η(n))]

× [T (k)(t+ 1
2
∆t) + T (k)(t− 1

2
∆t)]

+
1

2
[τ`(k)F (k)

2 (ξ
(n), η(n))− F(k)4 (ξ(n), η(n))]

× [T (N+k)(t+ 1
2
∆t) + T (N+k)(t− 1

2
∆t)]

− [−(1− τ )`(k)F (k)
1 (ξ(n), η(n)) + F (k)

3 (ξ(n), η(n))]q(k)(t)

− [τ`(k)F (k)
1 (ξ(n), η(n))− F (k)

3 (ξ(n), η(n))]q(N+k)(t)}
for n = 1, 2, · · · , 2N + L. (16)

Note that ∆t is a small positive number.
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At each of the boundary collocation points (ξ(1), η(1)), (ξ(2), η(2)), · · · ,
(ξ(2N−1), η(2N−1)) and (ξ(2N ), η(2N)), either the temperature or its normal

derivative (not both) is specified in accordance with the boundary condi-

tions given in (2). If the temperature is given by either the second or third

line of (2) at (ξ(k), η(k)) (k = 1, 2, · · · , 2N) then q(k)(t) is unknown. Oth-
erwise, if the normal derivative of the temperature is given by the fourth

line of (2) at (ξ(k), η(k)) (k = 1, 2, · · · , 2N) then T (k)(t) is unknown. The
temperature is not known at all L interior collocation points.

Thus, if T (n)(t − 1
2
∆t) (n = 1, 2, · · · , 2N + L) is assumed known, then

(16) constitutes a system of 2N +L linear algebraic equations in 2N +L+1

unknown functions of t. (One should not forget that the control function p(t)

which appears in the second line of (2) is an unknown function yet to be

determined.) Another equation is needed to complete the system.

The last linear algebraic equation is obtained from (6) using (10), that is,

2πκ

NX
k=1

[H(k)
1 − (1− τ)H(k)

2 ](q
(k) + q(N+k)) =

d

dt
[ε(t)], (17)

where

H(k)
1 =

1

(2τ − 1)(
1

2
`(k)r(k) +

1

3
[`(k)]2n(k)z ),

H(k)
2 =

1

(2τ − 1)(`
(k)r(k) +

1

2
[`(k)]2n(k)z ). (18)

Note that n
(k)
z is the z component of the outward unit normal vector to the

boundary element Γ(k).

The linear algebraic equations in (16) and (17) may be solved as follows.

If one lets t = 1
2
∆t, then one can determine T (k)(0) (k = 1, 2, · · · , 2N + L)

using the initial condition in (2) and solve the linear algebraic equations

for p(1
2
∆t), T (2N+k)(∆t) (k = 1, 2, · · · , L) and either T (i)(∆t) or q(i)(1

2
∆t)

(i = 1, 2, · · · , 2N ). With T (k)(∆t) (k = 1, 2, · · · , 2N + L) now known and
t = 3

2
∆t in (16) and (17), the unknowns p(3

2
∆t), T (2N+k)(2∆t) (k = 1, 2,
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· · · , L) and either T (i)(2∆t) or q(i)(3
2
∆t) (i = 1, 2, · · · , 2N) can be found.

Letting t = 5
2
∆t, 7

2
∆t , · · · in a consecutive manner, one can solve for the

unknowns at higher and higher time levels.

5 Specific problems

For the mere purpose of checking its validity, the numerical procedure out-

lined in Section 4 is now applied to solve two specific problems with known

exact solutions.

Problem 1. The region R is given by 0 ≤ r < 1, 0 < z < 1. The axisym-
metric heat equation given by

∂2T

∂r2
+
1

r

∂T

∂r
+

∂2T

∂z2
=
1

3

∂T

∂t
, (19)

is to be solved in R subject to the initial-boundary conditions

T (r, z, 0) = cos(
πz

2
) for 0 ≤ r < 1, 0 < z < 1,

T (r, 0, t) = p(t) for 0 ≤ r < 1 and t > 0,
T (r, `, t) = 0 for 0 ≤ r < 1 and t > 0,

∂T

∂n
= 0 on r = 1, 0 < z < 1 and t > 0, (20)

and the non-local condition

1Z
0

2πZ
0

1Z
0

T (r, z, t)rdrdθdz = 2 exp(−3π
2t

4
) ≡ ε(t) for t > 0. (21)

It is easy to check that the exact solution of this problem is

T (r, z, t) = cos(
πz

2
) exp(−3π

2t

4
),

p(t) = exp(−3π
2t

4
). (22)

12



For this particular problem, the boundary Γ comprises three line segments

of unit length. For the numerical solution of the problem, Γ is discretized

into 3M elements, each of length 1/M and the L interior collocation points

are chosen to be equally spaced out in the interior of the region R. (Note

that N = 3M .)

In Table 1, the numerical values of the temperature obtained using M =

10, L = 16, τ = 0.25 (for the discontinuous linear elements) and ∆t = 0.01

are compared with the exact temperature in (22) at selected interior points

and at t = 0.05. The numerical and exact values are in reasonably good

agreement with each other. When the computation is refined using M =

20, L = 81 and ∆t = 0.001, it is obvious that the numerical values show

convergence to the exact solution.

Table 1. Comparison of numerical and exact values of the temperature

T at selected interior points and at t = 0.05.

(r, z)
M = 10, L = 16

∆t = 0.01
M = 20, L = 81
∆t = 0.001

Exact

(0.25, 0.10) 0.6968 0.6838 0.6822
(0.25, 0.20) 0.6696 0.6581 0.6569
(0.25, 0.30) 0.6257 0.6164 0.6154
(0.50, 0.40) 0.5661 0.5595 0.5588
(0.50, 0.50) 0.4934 0.4889 0.4884
(0.50, 0.60) 0.4096 0.4063 0.4060
(0.75, 0.70) 0.3160 0.3138 0.3136
(0.75, 0.80) 0.2149 0.2136 0.2134
(0.75, 0.90) 0.1086 0.1081 0.1080

In Figure 2, the control function p(t) obtained numerically usingM = 20,

L = 81 and ∆t = 0.001 is compared with the exact one given in (22) over

the interval 0 ≤ t ≤ 0.50. It appears that the numerical procedure is capable
of recovering the control function p(t) with good accuracy.
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Figure 2

Problem 2. Here R is taken to be given by r2+ z2 < 4, 1 < z < 2 (that is,

a portion of the region inside a sphere of radius 2). The axisymmetric heat

equation (19) is to be solved in R subject to the initial-boundary conditions

T (r, z, 0) = −1 + z + [r2 + z2]−1/2 sin(π
4

√
r2 + z2)

for r2 + z2 < 4, 1 < z < 2,

T (r, 1, t) = p(t)[r2 + 1]−1/2 sin(
π

4

√
r2 + 1)

for 0 ≤ r ≤ √3 and t > 0,
T (r, z, t) = −1 + z + 1

2
exp(−3π

2t

16
)

on r2 + z2 = 4 for 1 < z < 2 and t > 0, (23)
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and the non-local condition

2Z
1

2πZ
0

√
4−z2Z
0

T (r, z, t)rdrdθdz

=
7

12
π +

16(2−√2)
π

exp(−3π
2t

16
) ≡ ε(t) for t > 0. (24)

The exact solution of the problem here is given by

T (r, z, t) = −1 + z + [r2 + z2]−1/2

× sin(π
4

√
r2 + z2) exp(−3π

2t

16
),

p(t) = exp(−3π
2t

16
). (25)

The curve Γ consists of two parts: r2 + z2 = 4, 1 < z ≤ 2 and z = 1,

0 ≤ r ≤ √3. Each of the parts is discretized into M equal length straight

line elements, so that the total number of elements (N) is given by 2M . The

L interior collocation points are selected to be well spaced out throughout

the region R.

Table 2. Comparison of numerical and exact values of the temperature

at the point (r, z) = (0.50, 1.50) and at selected time levels.

Time t
M = 10, L = 19

∆t = 0.02
M = 20, L = 58
∆t = 0.002

Exact

0.02 1.0769 1.0768 1.0768
0.04 1.0561 1.0558 1.0558
0.06 1.0362 1.0357 1.0356
0.08 1.0170 1.0162 1.0162
0.10 0.9985 0.9975 0.9974
0.12 0.9807 0.9794 0.9793
0.14 0.9635 0.9620 0.9619
0.16 0.9469 0.9452 0.9451
0.18 0.9309 0.9291 0.9290
0.20 0.9156 0.9135 0.9134
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In Table 2, two sets of numerical values of the temperature T are com-

pared with the exact temperature in (25) at the point (r, z) = (0.50, 1.50)

and at selected time levels. The first set is obtained by usingM = 10, L = 19

and ∆t = 0.02, while the second byM = 20, L = 58 and ∆t = 0.002. In both

sets, τ is chosen to be 0.25 (for the discontinuous linear elements). Accuracy

of up to 4 decimal places is achieved in the numerical calculation. Like in the

first problem above, the control function p(t) is recovered successfully here

by the dual-reciprocity boundary element method.

6 Summary

A procedure based on the dual-reciprocity boundary element method is pre-

sented for the numerical solution of the axisymmetric heat equation subject

to specification of energy. The domain integral prescribing the energy in

the solution domain is converted to a line integral. No discretization of the

solution domain is required. The procedure eventually reduces the problem

under consideration to a system of linear algebraic equations to be solved at

consecutive time levels.

Numerical results obtained by solving specific problems indicate that the

procedure may be used to obtain accurate approximate solutions. Conver-

gence of the numerical solutions to the exact ones is observed when the

calculation is refined (for example, by increasing the number of boundary

elements).
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[14] B. Šarler, Axisymmetric augmented thin plate splines, Engineering

Analysis with Boundary Elements 21 (1998) 81-85.
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