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1 Introduction

If two dissimilar materials are bonded together with a very thin layer of ma-

terial sandwiched in between them, the layer may be modeled as an interface

in the form of a line (for plane problems) or a surface (in the case of three-

dimensional problems). The boundary conditions to impose on the line or

surface interface depend on the properties of the material in the thin layer

and may be derived using asymptotic analysis (see, for example, Benveniste

and Miloh [5]). Such a line or surface interface model helps to simplify the

mathematics involved in the analysis of the multi-layered material.

In the context of heat conduction theory, the line or surface interface

is regarded as thermally low conducting if the thin layer is occupied by a

material of extremely low thermal conductivity. As an example, the interface

between two imperfectly joined materials, which contains microscopic gaps

filled with air, may be modeled as low conducting. On the other hand, if

a material of extremely high thermal conductivity occupies the thin layer,

the interface is said to be thermally high conducting. In a thermal system

comprising a computer chip and a heat sink, the interface between the two

components (the chip and the sink) may be modeled as high conducting if

they are joined together by a thin layer of carbon nanotubes (Desai, Geer

and Sammakia [7]).

Interfacial conditions for thermally non-ideal interfaces that are either

low or high conducting are given in Benveniste [4] and Miloh and Benveniste

[8]. As one may intuitively expect, the temperature field varies continuously

across a high conducting interface but it exhibits a jump across a low con-

ducting interface. The normal heat flux is continuous on a low conducting

interface but not on a high conducting one. The temperature jump across

a low conducting interface is proportional in magnitude to the normal heat

flux on the interface. For a high conducting interface, the jump in the nor-

mal heat flux is expressed in terms of second order spatial derivatives of the

temperature on the interface.

To obtain a boundary element method for analyzing the two-dimensional

steady-state temperature distribution in a bimaterial with a straight im-

perfect (low conducting) interface, Ang, Choo and Fan [2] have derived a

Green’s function that satisfies appropriate conditions on the interface be-
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tween two dissimilar half-spaces. A hypersingular boundary integral formu-

lation is given by Ang [1] for two-dimensional heat conduction across an

arbitrarily curved low conducting interface in a bimaterial.

The analysis in [1] is extended here to derive a hypersingular boundary

integral formulation for axisymmetric steady-state heat conduction across a

curved low conducting interface in a bimaterial. Moreover, the case of a high

conducting interface is considered here. The extension is by no means trivial,

as the fundamental solution of the axisymmetric heat equation is rather com-

plicated being expressed in terms of the complete elliptic integrals of the first

and second kind. Together with the boundary integral equation for axisym-

metric heat conduction, the hypersingular boundary integral formulation for

each of the two types of interfaces is used to derive a simple boundary ele-

ment procedure for computing numerically the temperature distribution in

the bimaterial. The boundary element procedure is applied to solve some

particular problems involving axisymmetric heat conduction in bimaterials

with either low conducting or high conducting interfaces.

2 The problem

Consider a bimaterial comprising regions R1 and R2 which have thermal con-

ductivities κ1 and κ2 respectively. With reference to a Cartesian coordinate

system denoted by Oxyz, the regions R1 and R2 are symmetrical about the

z-axis, that is, the regions R1 and R2 can be respectively obtained by rotat-

ing two-dimensional regions Ω1 and Ω2 on the rz (axisymmetric coordinate)

plane by an angle of 360o about the z-axis. (Note that r =
p
x2 + y2.) As

shown in Figure 1, the interface between Ω1 and Ω2 is given by the curve Γ0
and the boundaries of R1 and R2 are respectively the surfaces of revolution

generated by rotating Γ0 ∪Γ1 and Γ0 ∪Γ2 about the z-axis, where Γ1 and Γ2
are curves which form outer boundaries of Ω1 and Ω2 respectively. In Figure

1, Γ0, Γ1 and Γ2 are sketched as open curves, each with an endpoint on the

z-axis. In general, they do not have to be always open curves with endpoints

on the z-axis. For example, Γ0 may be a horizontal straight line segment

above the z-axis, that is, Γ0 may be parallel to the z-axis. Furthermore,

unlike in Figure 1, Γ1 ∪Γ2 may possibly form a simple closed curve as in, for
example, the case in which R1 ∪ R2 is a hollow cylinder.
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Figure 1. A geometrical sketch of the bimaterial on the rz plane.

The problem of interest here is to determine the steady-state axisymmet-

ric temperature distribution T (x) by solving the governing partial differential

equation

∂2T

∂r2
+
1

r

∂T

∂r
+

∂2T

∂z2
= 0 for x = (r, z) ∈ Ω1 ∪ Ω2, (1)

subject to the boundary conditions

T (x) = f0(x) for x ∈ Ξ1,

P (x;n(x)) = f1(x) + f2(x)T (x) for x ∈ Ξ2, (2)

and the interfacial conditions given by either

κ1Q1(x) = κ2 Q2(x) = λ(x)∆T (x) for x ∈ Γ0, (3)

or

∆T (x) = 0
κ1Q1(x)− κ2 Q2(x) = −α(x)S(T (x))

¾
for x ∈ Γ0, (4)
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where P (x;n(x)) = n(x) • [er∂T/∂r + ez∂T/∂z], n(x) = [nr(x), nz(x)] =

nr(x)er+nz(x)ez, er and ez are the unit base vectors along the r and z axes

respectively, f0(x), f1(x) and f2(x) are suitably prescribed functions, Ξ1 and

Ξ2 are non-intersecting curves (for the different boundary conditions) such

that Ξ1 ∪ Ξ2 = Γ1 ∪ Γ2, n(x) is the unit normal vector to Ξ1 ∪ Ξ2 (at the

point x) pointing out of Ω1 ∪ Ω2, nint(x) is the unit normal vector to Γ0 (at
x) pointing into Ω1, t

int(x) = [tintr (x), t
int
z (x)] is a unit tangential vector to

Γ0 (at x), λ(x) and α(x) are given positive functions, Qi(x) (for x ∈ Γ0) is

the function P (x;nint(x)) calculated using the temperature field T (x) in Ωi,

∆T (x) is the temperature jump across Γ0 (at x) as defined by

∆T (x) = lim
ε→0+

[T (x+ εnint(x))− T (x− εnint(x))] for x ∈ Γ0, (5)

and S is the differential operator defined by

S ≡ (tintr (x)
∂

∂r
+ tintz (x)

∂

∂z
)(tintr (x)

∂

∂r
+ tintz (x)

∂

∂z
). (6)

Note that (3) and (4) are the interfacial conditions on low conducting

and high conducting interfaces respectively (Benveniste [4] and Miloh and

Benveniste [8]).

3 Boundary integral equations in axisymmet-

ric coordinates

For the problem under consideration here, the boundary integral equations

for (1) (Brebbia, Telles and Wrobel [6]) give rise to

γ1(x0)T (x0) =

Z
Γ1

(T (x)G1(x;x0;n(x))−G0(x;x0)P (x;n(x)))rds(x)

−
Z
Γ0

(T (x)G1(x;x0;n
int(x))−G0(x;x0)Q1(x))rds(x)

for x0 = (r0, z0) ∈ Ω1 ∪ Γ0 ∪ Γ1, (7)
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and

γ2(x0)T (x0) =

Z
Γ2

(T (x)G1(x;x0;n(x))−G0(x;x0)P (x;n(x)))rds(x)

+

Z
Γ0

(T (x)G1(x;x0;n
int(x))−G0(x;x0)Q2(x))rds(x)

for x0 = (r0, z0) ∈ Ω2 ∪ Γ0 ∪ Γ2, (8)

where γi(x0) = 1 if x0 lies in the interior of Ωi, γi(x0) = 1/2 if x0 lies on a

smooth part of Γ0 ∪ Γi, ds(x) denotes the length of an infinitesimal part of

the curve Γ0 ∪ Γi, G0(x;x0) and G1(x;x0;n(x)) are defined by

G0(x;x0) = −
K(m(x;x0))

π
p
a(x;x0) + b(r; r0)

,

G1(x;x0;n(x)) = −
1

π
p
a(x;x0) + b(r; r0)

× {nr(x)
2r

[
r20 − r2 + (z0 − z)2
a(x;x0)− b(r; r0)

E(m(x;x0))

−K(m(x;x0))]
+ nz(x)

z0 − z
a(x;x0)− b(r; r0)

E(m(x;x0))}, (9)

with

m(x;x0) =
2b(r; r0)

a(x;x0) + b(r; r0)
,

a(x;x0) = r
2
0 + r

2 + (z0 − z)2, b(r; r0) = 2rr0,

K(m) =

π/2Z
0

dθp
1−m sin2 θ

, E(m) =

π/2Z
0

p
1−m sin2 θdθ. (10)

Note again that x = (r, z) and x0 = (r0, z0). Also, K(m) and E(m) are

the complete elliptic integrals of the first and second kind respectively. The

boundary integrals in (7) and (8) are improper and are to be interpreted in

the Cauchy principal sense if x0 lies on Γ0 or Γ1 or Γ2.
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4 Low conducting interfaces

4.1 Integral equations

For low conducting interfaces, addition of (7) and (8) together with the use

of (3) yields

γ(x0)T (x0) =

Z
Γ1∪Γ2

[T (x)G1(x;x0;n(x))−G0(x;x0)P (x;n(x))]rds(x)

−
Z
Γ0

∆T (x)[G1(x;x0;n
int(x))− (κ2 − κ1)

κ1κ2
λ(x)G0(x;x0)]rds(x)

for x0 ∈ Ω1 ∪ Ω2 ∪ Γ1 ∪ Γ2, (11)

where γ(x0) = 1 if x0 lies in the interior of Ω1∪Ω2 or on Γ0 and γ(x0) = 1/2

if x0 lies on a smooth part of Γ1 ∪ Γ2.
From (11), we may write

nintr (y)
∂

∂r0
[T (x0)] + n

int
z (y)

∂

∂z0
[T (x0)]

=

Z
Γ1∪Γ2

[T (x)Φ1(x;x0;n(x);n
int(y))

−Φ0(x;x0;nint(y))P (x;n(x))]rds(x)
−
Z
Γ0

∆T (x)[Φ1(x;x0;n
int(x);nint(y))

−(κ2 − κ1)

κ1κ2
λ(x)Φ0(x;x0;n

int(y))]rds(x)

for x0 in the interior of Ω1 or Ω2, (12)

where y is a point on the interface Γ0 and the functions Φ0(x;x0;n
int(y))

and Φ1(x;x0;n(x);n
int(y)) are given by

Φ0(x;x0;n
int(y)) = G1(x0;x;n

int(y)),

Φ1(x;x0;n(x);n
int(y))

=
nintr (y)Θ(x;x0;n(x)) + n

int
z (y)Ψ(x;x0;n(x))

π
p
a(x;x0) + b(r; r0)(a(x;x0)− b(r; r0))2

, (13)
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with

Θ(x;x0;n(x)) = (r + r0)(1−m(x;x0)){
nr(x)

2r
×[¡a(x;x0)− 2r2¢E(m(x;x0))
−(a(x;x0)− b(r; r0))K(m(x;x0))]
−nz(x)(z − z0)E(m(x;x0))}
−nr(x)
2r0

[
¡
a(x;x0)− 2r20

¢
(1−m(x;x0))

×[(r − r0)K(m(x;x0))− (r + r0)E(m(x;x0))]
−2r0

¡
(r − r0)2 − (z − z0)2

¢
E(m(x;x0))]

+
nz(x)

2r0
(z − z0)[4r0(r − r0)E(m(x;x0))

+ (1−m(x;x0))
¡
a(x;x0)− 2r20

¢
× (E(m(x;x0))−K(m(x;x0)))],

Ψ(x;x0;n(x)) = −{(z − z0) (1−m(x;x0))
×[nr(x)

2r
[
¡
a(x;x0)− 2r2

¢
E(m(x;x0))

−(a(x;x0)− b(r; r0))K(m(x;x0))]
−nz(x)(z − z0)E(m(x;x0))]
+nr(x)(z − z0)[(1−m(x;x0))
×[(r − r0)K(m(x;x0))− (r + r0)E(m(x;x0))]
−2(r − r0)E(m(x;x0))]
−nz(x)[

¡
(2−m(x;x0)) (z − z0)2

− (r − r0)2
¢
E(m(x;x0))

− (1−m(x;x0)) (z − z0)2K(m(x;x0))]}. (14)

Noting that K(m) can be expanded about m = 1 as (see, for example,

[9])

K(m) = −1
2
ln(1−m) · [1− 1

4
(m− 1) + 9

64
(m− 1)2 + · · · ]

+ ln(4) +
1

4
(1− ln(4))(m− 1) + 3

128
(6 ln(4)− 7)(1−m)2 + · · · ,

(15)
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and letting x0 tend to y= (ρ0, ζ0) on Γ0 (from within the region Ω1), we find

that the interfacial conditions in (3) give rise to

[
1

κ1
− (κ2 − κ1)

2κ1κ2
]λ(y )∆T (y )

= H
Z
Γ0

∆T (x)q
a(x;y) + b(r; ρ0)

Φ3(x;y ;n
int(x);nint(y))rds(x)

−C
Z
Γ0

∆T (x)[Φ2(x;y ;n
int(x);nint(y))

−(κ2 − κ1)

κ1κ2
λ(x)Φ0(x;y ;n

int(y))]rds(x)

+

Z
Γ1∪Γ2

[T (x)Φ1(x;y ;n(x);n
int(y))

−Φ0(x;y ;nint(y))P (x;n(x))]rds(x)
for y = (ρ0, ζ0) ∈ Γ0 (smooth part), (16)

where C and H denotes that the integral over Γ0 is to be interpreted in the

Cauchy principal and the Hadamard finite-part sense respectively and

Φ2(x;y ;n
int(x);nint(y)) = Φ1(x;y ;n

int(x);nint(y))

+
Φ3(x;y ;n

int(x);nint(y))q
a(x;y) + b(r; ρ0)

,

Φ3(x;y ;n
int(x);nint(y))

= −{(nintr (x)nintr (y)− nintz (x)nintz (y))([r − ρ0]
2 − [z − ζ0]

2)

+2[nintr (y)n
int
z (x) + n

int
r (x)n

int
z (y)]

×(r − ρ0)(z − ζ0)}
1

π(a(x;y)− b(r; ρ0))2
.

(17)

The derivation of (16) is given in Ang [1] for two-dimensional heat con-

duction across a low conducting interface. The fundamental solution of the

governing partial differential equation for the two-dimensional heat conduc-

tion has a relatively simple form.
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4.2 Boundary element procedure

If T (x) and P (x;n(x)) are completely known on Γ1 ∪Γ2 and if the tempera-
ture jump ∆T (x) across the weak conducting interface Γ0 is also known, (11)

together with γ(x0) = 1 gives the temperature at any point x0 in the interior

of Ω1 or Ω2. Here we describe a boundary element procedure for determining

T (x) or P (x;n(x)) (whichever is unknown) on Γ1 ∪ Γ2 and also ∆T (x) on

Γ0.

We discretize the boundary Γ1∪Γ2 into N straight line elements denoted

by B(1), B(2), · · · , B(N−1) and B(N) and the interface Γ0 into M elements

I(1), I(2), · · · , I(M−1) and I(M). For a simple approximation, over an element
of Γ1 ∪ Γ2, T and P are taken to be constants. Also, over an element of

the interface, ∆T is approximated as a constant. Specifically, we make the

approximation:

T (x) ' T (k)
P (x;n(x)) ' P (k)

¾
for x ∈ B(k) (k = 1, 2, · · · ,N),

∆T (x) ' ∆T (j) for x ∈ I(j) (j = 1, 2, · · · ,M), (18)

where T (k), P (k) and ∆T (j) are constants.

If we let x0 in (11) be given in turn by each of the midpoints of B
(1), B(2),

· · · , B(N−1) and B(N), the use of (2) and (18) approximately gives
1

2
[d(i)T (i) + (1− d(i))f0(bx(i))]

=
NX
k=1

{[d(k)T (k) + (1− d(k))f0(bx(k))] Z
B(k)

G1(x; bx(i);n(k))rds(x)
−[d(k)(f1(bx(k)) + f2(bx(k))T (k)) + (1− d(k))P (k)]
×
Z
B(k)

G0(x; bx(i))rds(x)}
−

MX
j=1

∆T (j)
Z
I(j)

[G1(x; bx(i);m(j))− (κ2 − κ1)

κ1κ2
λ(x)G0(x; bx(i))]rds(x)

for i = 1, 2, · · · , N. (19)
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where d(k) = 0 if T is specified on the k-th element B(k) as given by the

first line of (2), d(k) = 1 if the boundary condition given by the second line

of (2) is applicable on B(k), n(k) is the unit normal vector to B(k) pointing

away from the solution domain Ω1 ∪ Ω2, m
(j) is the unit normal vector to

I(j) pointing into Ω1 and bx(i) is the midpoint of the element B(i). In (19),
note that the integrals over B(k) are Cauchy principal if bx(i) is the midpoint
of B(k) (that is, if k = i). The Cauchy principal integrals can be accurately

evaluated by using a highly accurate Gaussian quadrature.

Similarly, we can let y in (16) be given in turn by each of the midpoints

of I(1), I(2), · · · , I(M−1) and I(M) to approximately obtain

[(
1

κ1
− (κ2 − κ1)

2κ1κ2
)λ(by(p)) + 2

π`(p)
]∆T (p)

=
MX
j=1
j 6=p

∆T (j)
Z
I(j)

Φ3(x; by(p) ;m(j);m(p))q
a(x; by(p)) + b(r;bρ(p)0 )rds(x)

−
MX
j=1

∆T (j)
Z
I(j)

[Φ2(x; by(p) ;m(j);m(p))

−(κ2 − κ1)

κ1κ2
λ(x)Φ0(x; by(p);m(p))]rds(x)

+
NX
k=1

{[d(k)T (k) + (1− d(k))f0(bx(k))] Z
B(k)

Φ1(x; by(p) ;n(k);m(p))rds(x)

−[d(k)(f1(bx(k)) + f2(bx(k))T (k)) + (1− d(k))P (k)]
×
Z
B(k)

Φ0(x; by(p);m(p))rds(x)}

for p = 1, 2, · · · ,M , (20)

where `(p) and by(p) = (bρ(p)0 ,bζ(p)0 ) are respectively the length and the midpoint
of I(p).
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Note that in deriving (20) the Hadamard finite-part integral in (16) is

evaluated by using the approximation

H
Z
Γ0

∆T (x)q
a(x;y) + b(r; ρ0)

Φ3(x;y ;n
int(x);nint(y))rds(x)

' ∆T (p)H
Z
I(p)

Φ3(x; by(p) ;m(p);m(p))q
a(x; by(p)) + b(r;bρ(p)0 )rds(x)

+
MX
j=1
j 6=p

∆T (j)
Z
I(j)

Φ3(x; by(p) ;m(j);m(p))q
a(x; by(p)) + b(r;bρ(p)0 )rds(x). (21)

From (17), if the expression r/
q
a(x; by(p)) + b(r;bρ(p)0 ) is approximated as a

constant given by its value at the midpoint of I(p), the Hadamard finite-part

integral on the right hand side of (21) is approximately given by −2/(π`(p)).
The integrals over I(j) in (20) which have the functions Φ0 and Φ2 in

their integrands approximate the Cauchy principal integral in (16). Hence

the integrals over I(j) must be interpreted in the Cauchy principal sense ifby(p) is the midpoint of I(j) (that is, if j = p). The integrals over I(j) in (20)
are proper if j 6= p. The integrals over B(k) are also proper.
The equations in (19) and (20) give a system of N +M linear algebraic

equations containing N + M unknowns given by either T (k) or P (k) (not

both) for k = 1, 2, · · · , N and by ∆T (j) for j = 1, 2, · · · , M. If T is

specified over the element B(k) according to the first line of (2) then P (k)

is an unknown. On the other hand, if P is given by the second line of (2)

over B(k) then T (k) is unknown. Once the unknowns are determined, the

temperature at any interior point x0 in the bimaterial can be determined

from (11) with γ(x0) = 1 by computing approximately the line integrals over

Γ0 and Γ1 ∪ Γ2.
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5 High conducting interfaces

5.1 Integral equations

From (7) and (8) and the zero temperature jump across the interface in (4),

we obtain

γ(x0)T (x0) =

Z
Γ1∪Γ2

[T (x)G1(x;x0;n(x))−G0(x;x0)P (x;n(x))]rds(x)

+

Z
Γ0

G0(x;x0)[Q1(x)−Q2(x)]rds(x). (22)

From (22), we may write

nintr (y)
∂

∂r0
[T (x0)] + n

int
z (y)

∂

∂z0
[T (x0)]

=

Z
Γ1∪Γ2

[T (x)Φ1(x;x0;n(x);n
int(y))

−Φ0(x;x0;nint(y))P (x;n(x))]rds(x)
+

Z
Γ0

Φ0(x;x0;n
int(y))[Q1(x)−Q2(x)]rds(x)

for x0 in the interior of Ω1 or Ω2, (23)

where y is a point on the interface Γ0.

If we let x0 tends to the point y on Γ0 (from within the region Ω1), we

obtain

1

2
[Q1(y) +Q2(y)]

=

Z
Γ1∪Γ2

[T (x)Φ1(x;y;n(x);n
int(y))

−Φ0(x;y;nint(y))P (x;n(x))]rds(x)
+C

Z
Γ0

Φ0(x;y;n
int(y))[Q1(x)−Q2(x)]rds(x)

for y ∈ Γ0 (smooth part). (24)
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5.2 Boundary element procedure

The exterior boundary Γ1 ∪ Γ2 and the interface Γ0 are discretized into el-

ements as described in Section 4.2. In addition to approximating T (x) and

P (x;n(x)) as constants T (k) and P (k) respectively, as in (18), we make the

approximation

Qi(x) ' Q(m)i for x ∈ I(m) (m = 1, 2, · · · ,M), (25)

where Q
(m)
i are constants.

From (22), we obtain

γ(x0)T (x0) =
NX
k=1

{T (k)
Z
B(k)

G1(x;x0;n
(k))rds(x)

−P (k)
Z
B(k)

G0(x;x0)rds(x)}

+
MX
m=1

(Q(m)1 −Q(m)2 )

Z
I(m)

G0(x;x0)rds(x). (26)

Collocating (26) at the midpoint of each boundary element and using the

boundary conditions in (2) give

1

2
[d(i)T (i) + (1− d(i))f0(bx(i))]

=
NX
k=1

{[d(k)T (k) + (1− d(k))f0(bx(k))] Z
B(k)

G1(x; bx(i);n(k))rds(x)
−[d(k)(f1(bx(k)) + f2(bx(k))T (k)) + (1− d(k))P (k)]
×
Z
B(k)

G0(x; bx(i))rds(x)}
+

MX
m=1

(Q
(m)
1 −Q(m)2 )

Z
I(m)

G0(x; bx(i))rds(x)
for i = 1, 2, · · · , N. (27)
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Similarly, from (24), we obtain

1

2
[Q

(i)
1 +Q

(i)
2 ]

=
NX
k=1

{[d(k)T (k) + (1− d(k))f0(bx(k))] Z
B(k)

Φ1(x; by(i);n(k);m(i))rds(x)

−[d(k)(f1(bx(k)) + f2(bx(k))T (k)) + (1− d(k))P (k)]
×
Z
B(k)

Φ0(x; by(i);m(i))rds(x)}

+
MX
m=1

(Q
(m)
1 −Q(m)2 )

Z
I(m)

Φ0(x; by(i);m(i))rds(x)

for i = 1, 2, · · · ,M. (28)

To deal with the interfacial condition over I(i), as given in the second line

of (4), we work out a formula for S(T (x)) at x ∈ I(i) as follows.
From (26), we find that

t(i)r
∂

∂r0
(T (x0)) + t

(i)
z

∂

∂z0
(T (x0))

=
NX
k=1

{T (k)
Z
B(k)

Φ1(x;x0;n
(k); t(i))rds(x)

−P (k)
Z
B(k)

Φ0(x;x0; t
(i))rds(x)}

+
MX
m=1

(Q
(m)
1 −Q(m)2 )

Z
I(m)

Φ0(x;x0; t
(i))rds(x)

for x0 in the interior of Ω1 or Ω2, (29)

where t(i) = [t
(i)
r , t

(i)
z ] is a unit tangential vector to the i-th interface element

I(i).
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It follows that

S(T (x))|x=x0 =
NX
k=1

{T (k)
Z
B(k)

Λ1(x;x0;n
(k); t(i))rds(x)

−P (k)
Z
B(k)

Λ0(x;x0; t
(i))rds(x)}

+
MX
m=1

(Q
(m)
1 −Q(m)2 )

Z
I(m)

Λ0(x;x0; t
(i))rds(x)

for x0 in the interior of Ω1 or Ω2, (30)

where

Λ0(x;x0; t
(i)) = t(i)r

∂

∂r0
[Φ0(x;x0; t

(i))] + t(i)z
∂

∂z0
[Φ0(x;x0; t

(i))],

Λ1(x;x0;n
(k); t(i)) = t(i)r

∂

∂r0
[Φ1(x;x0;n

(k); t(i))]

+t(i)z
∂

∂z0
[Φ1(x;x0;n

(k); t(i))]. (31)

Explicit expressions for the partial derivatives of Φ0 and Φ1 which are quite

complicated are banished to the Appendix.

If we let x0 in (30) be given by by(i) (midpoint of I(i)), the integral over
I(m) is proper if i 6= m. For i = m, the limit of the integral as x0 approaches
as by(m) can be written as the sum of a Hadamard finite-part integral and a

Cauchy principal integral, that is,Z
I(m)

Λ0(x;x0; t
(m))rds(x) = H

Z
I(m)

Φ3(x; by(m); t(m); t(m))q
a(x; by(m)) + b(r;bρ(m)0 )

rds(x)

+C
Z
I(m)

Φ4(x; by(m); t(m); t(m))rds(x), (32)

where

Φ4(x; by(m); t(m); t(m))
= Λ0(x; by(m); t(m))− Φ3(x; by(m); t(m); t(m))q

a(x; by(m)) + b(r;bρ(m)0 )
. (33)
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The Hadamard finite-part integral above which contains the function Φ3 in

its integrand has also appeared in the boundary element formulation for the

low conducting interface. As explained below (21), it is approximately given

by −2/(π`(m)).
Thus, the interfacial condition in the second line of (4) becomes

κ1Q
(i)
1 − κ2Q

(i)
2

= −α(by(i)) NX
k=1

{[d(k)T (k) + (1− d(k))f0(bx(k))]
×
Z
B(k)

Λ1(x; by(i);n(k); t(i))rds(x)
−[d(k)(f1(bx(k)) + f2(bx(k))T (k)) + (1− d(k))P (k)]
×
Z
B(k)

Λ0(x; by(i); t(i))rds(x)}− α(by(i)) MX
m=1

(Q
(m)
1 −Q(m)2 )L(im)

for i = 1, 2, · · · ,M, (34)

where

L(im) =

Z
I(m)

Λ0(x; by(i); t(i))rds(x) for i 6= m,
L(mm) ' 2

π`(m)
+ C

Z
I(m)

Φ4(x; by(m); t(m); t(m)))rds(x). (35)

Equations (27), (28) and (34) can be solved as a system of N+2M linear

algebraic equations for N+2M unknowns given by either T (k) or P (k) (k = 1,

2, · · · , N) and Q(m)i (i = 1, 2 and m = 1, 2, · · · , M).

6 Specific problems

Problem 1. To test the boundary element procedure for low conducting

interfaces, take

Ω1 = {(r, z) : rint < r < router, 0 < z < h},
Ω2 = {(r, z) : rinner < r < rint, 0 < z < h},
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where rint, rinner and router are constants such that 0 < rinner < rint < router
and h is a given positive constant. Note that the weak conducting interface

Γ0 between Ω1 and Ω2 lies in the region r = rint, 0 < z < h. Refer to Figure

2.

Figure 2. A geometrical sketch of Problem 1 on the rz plane.

The boundary conditions on the exterior boundary of Ω1 ∪ Ω2 are given

by

T (rinner, z) = Tc for 0 < z < h,

P (router, z; 1, 0) = − c
κ1
(T (router, z)− Ta) for 0 < z < h,

P (r, 0; 0,−1) = P (r, h; 0, 1) = 0 for rinner < r < router,

where c, Tc and Ta are given constants. Note that Ta is the outside ambient

temperature surrounding the body.

It is assumed that (3) is applicable with λ(r, z) = λ0 (a constant), that

is, the low conducting interface Γ0 is homogeneous.

The exact solution of this specific problem is

T (r, z) = σi + τ i ln(r) for (r, z) ∈ Ωi (i = 1, 2),

18



where

σ1 = Ta − τ 1[
κ1

crouter
+ ln(router)], σ2 = Tc − τ2 ln(rinner),

τ 1 =
κ2
κ1

τ 2, τ2 =
λ0
χ
(Ta − Tc),

χ =
k2
rint
− λ0[ln(rinner)− κ2

κ1
(ln(router) +

κ1
crouter

)− (1− κ2
κ1
) ln(rint)].

For the purpose of testing the boundary element procedure in Section 4,

take h = 1, router = 3/2, rint = 1, rinner = 1/2, κ1 = 1/2, κ2 = 3/4, λ0 = 10,

c = 1, Ta = 1 and Tc = 5. The exterior boundary of Ω1∪Ω2 and the interface
Γ0 are approximated as straight lines with 2N0 sides (so that N = 8N0 and

M = 2N0).

Equations (19) and (20) are solved using N0 = 5, 10, 20 and 30 and the

numerical values of T at various selected points in Ω1 ∪ Ω2 as computed by

using (11) with γ(x0) = 1 are compared with the exact values in Table 1.

The numerical values are in good agreement with the exact ones and they

converge to the exact solution when N0 is increased from 5 to 30 (that is,

when the calculation is refined by reducing the sizes of the boundary elements

used).

Table 1. A comparison of the numerical values of T with the exact

solution at various selected points.

Point N0 = 5 N0 = 10 N0 = 20 N0 = 30 Exact
(0.600,0.100) 4.616703 4.613403 4.612124 4.611786 4.611326
(0.750,0.500) 4.139119 4.137097 4.136263 4.136022 4.135628
(0.900,0.900) 3.754166 3.750142 3.748390 3.747864 3.746954
(1.250,0.750) 2.652760 2.650462 2.649568 2.649317 2.648913
(1.100,0.100) 3.061885 3.059512 3.058493 3.058192 3.057687
(1.490,0.100) 2.094195 2.089170 2.087941 2.087660 2.087292

As expected, for a given N0, the numerical value of the temperature jump

∆T is found to have approximately the same value on all the elements of the

interface Γ0. Moreover, the percentage errors in the numerical values of ∆T

are around 0.92%, 0.45%, 0.22% and 0.15% for N0 given by 5, 10, 20 and 30

respectively.
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Problem 2. Problem 1 deals with one-dimensional heat conduction across

a homogeneous interface. For a more general test problem involving the low

conducting interface conditions (3) with coefficient λ which varies in space,

take

Ω1 = {(r, z) : 0 ≤ r < 1, 0 < z < 1},
Ω2 = {(r, z) : 0 ≤ r < 1, 1 < z < 2}.

together with λ = 1/(1 + r2), κ1 = 1/4, κ2 = 1 and the boundary conditions

P (r, 0; 0,−1) = 0
T (r, 2) = −4

¾
for 0 < r < 1,

P (1, z; 1, 0) =

½
2 for 0 < z < 1,
0 for 1 < z < 2.

Note that the interface between Ω1 and Ω2 is given by 0 ≤ r < 1, z = 1.

Refer to Figure 3.

Figure 3. A geometrical sketch of Problem 2 on the rz plane.

It may be easily verified that the exact solution for the test problem here

is given by

T (r, z) =

½
r2 − 2z2 for (r, z) ∈ Ω1,
−2− z for (r, z) ∈ Ω2.
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Figure 4. Plots of the numerical and exact temperature jump ∆T (r, 1) for

0.05 ≤ r ≤ 0.95.

For the problem here, each of Γ1 and Γ2 comprises two straight line seg-

ments of unit length on the rz plane. The interface Γ0 is a vertical line

segment of unit length. To obtain some numerical results, each of the unit

length line segments is discretized into N0 equal length boundary elements

(so that N = 4N0 andM = N0). Three sets of numerical values are obtained

for ∆T (r, 1) across the interface Γ0 by solving the equations (19) and (20)

using N0 = 50, 150 and 450. Figure 4 compares the numerical ∆T (r, 1) with

the values obtained from the exact solution for 0.05 ≤ r ≤ 0.95. On the

whole, there is a good agreement between the numerical and exact temper-

ature jump, except for points which are very close to r = 0. Nevertheless,

as clearly shown in Figure 4, the errors for the temperature jump for r close

to zero are significantly reduced when the number of boundary and interface

elements is increased.

As the temperature is not known a priori on the boundary r = 1(0 < z <

2), the numerical values of the boundary temperature T (1, z) are compared

graphically with the exact temperature in Figure 5. The numerical and exact

temperature agree well with each other. Note the gap in the graph is due to
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the temperature jump across the interface Γ0 at z = 1.

Figure 5. Plots of the numerical and exact boundary temperature T (1, z)

for 0 < z < 2.

Problem 3. Consider now a homogeneous cylindrical representative vol-

ume element containing a centrally located cylindrical carbon nanotube as in

Ang, Singh and Tanaka [3]. The regions Ω1 and Ω2 are as sketched in Figure

6. As the carbon nanotube is centrally located in the composite, the lengths

`1, `2 and `3 are such that `1 + `2 = `3. Here Ω1 is taken to be occupied by

elastomer S160 with thermal conductivity κ1 = 0.56 Wm−1K−1 and Ω2 is

occupied by the carbon nanotube whose thermal conductivity κ2 is taken to

be given by 6000 Wm−1K−1.
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Figure 6. A geometrical sketch of Problem 3 on the rz plane.

The boundary conditions on the exterior of Ω1 are given by

T (r, 0) = 200 K
T (r, `3) = 100 K

¾
for 0 < r < r2,

P (r2, z; 1, 0) = 0 for 0 < z < `3.

Of interest here is to examine the effect of the interfacial parameter λ

(assumed to be a constant) on the equivalent (effective) thermal conductivity

κe of the carbon nanotube based composite along the z direction. In Ang,

Singh and Tanaka [3], the equivalent thermal conductivity κe is calculated

for the limiting case λ→∞ (that is, the case in which the interface between

the elastomer and the carbon nanotube is perfectly conducting) by modeling

the carbon nanotube as a thermal superconductor.

The equivalent thermal conductivity κe is given by

κe = − qave`3
T (r, `3)− T (r, 0) ,

where qave is the average heat flux across 0 ≤ r < r2, z = `3. The average
heat flux can be calculated approximately from the numerical solution in

Section 4 by using

qave ' −2κ1
r22

JX
k=1

P (k){r(k)`(k) + 1
2
(`(k))2},
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if the side z = `3 for 0 ≤ r ≤ r2 (on the rz plane) is discretized into J

elements denoted by C(1), C(2), · · · , C(J−1) and C(J).

Figure 7. Plots of κe/κ1 against log10(λr2/κ1) for a few selected values of

`c/r2. Horizontal dashed lines give values of κe/κ1 as calculated in Ang,

Singh and Tanaka [3] for the case in which the interface between the

elastomer and the carbon nanotube is ideal.

The radii r1 and r2 and the lengths `1, `2 and `3 are taken to be such

that r1/r2 = 1/2 and (`1 + `2)/r2 = `3/r2 = 10. To calculate the non-

dimensionalized equivalent thermal conductivity κe/κ1, as many as 3600 el-

ements are employed on the exterior boundary and interface of the carbon

nanotube composite. Figure 7 gives plots of κe/κ1 against log10(λr2/κ1) for

some selected values of the non-dimensionalized length `c/r2 of the carbon

nanotube. The non-dimensionalized equivalent thermal conductivity κe/κ1 is

found to be less than 1 for λr2/κ1 which is very close to zero. This is expected,

because if the interface between the elastomer and the carbon nanotube is

highly damaged, the carbon nanotube behaves as a thermal insulator which

obstructs the flow of heat. From Figure 7, it is obvious that κe/κ1 tends to a
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lower value as λr2/κ1 approaches 0 (from above) for larger `c/r2 (that is, for

a longer carbon nanotube). As λr2/κ1 increases in magnitude, the carbon

nanotube serves to enhance the flow of heat through the composite. Thus,

κe/κ1 is greater than 1 for larger λr2/κ1. In Figure 7, the values of κe/κ1
calculated in [3] for the case in which the interface between the elastomer

and the carbon nanotube is perfectly conducting are shown using horizontal

dashed lines. For a given `c/r2, it appears that κe/κ1 becomes closer but

is less than the value given by dashed line, as λr2/κ1 increases. As may be

expected, for a larger value of `c/r2, the difference between the lower and the

upper bounds of κe/κ1 is bigger.

Problem 4.

To check the boundary element procedure for the high conducting interfacial

conditions (4), consider the regions Ω1 and Ω2 as sketched in Figure 8. Note

that Ω1 and Ω2 are defined by the curves r
2 + z2 = 9/4, r2 + z2 = 1 and

r2 + z2 = 1/4 and the lines r = 0 and r = (
√
3/3)z on the rz plane.

For a particular problem, take κ1 = 3/4 and κ2 = 1/2. The interface Γ0
between the two regions is high conducting with

α =
r2 − 2z2
4(2r2 − z2) .

The boundary conditions on the exterior boundary of Ω1 ∪ Ω2 are given by

P (r, z;
2

3
r,
2

3
z) =

4

3
(r2 − 2z2) for r2 + z2 = 9

4
, 0 < r <

√
3

3
z,

T (r, z) = 2r2 − 9
4
for r2 + z2 =

1

4
, 0 < r <

√
3

3
z,

T (r, z) = −2
3
z2 for r =

√
3

3
z,
1

4
< r2 + z2 < 1,

T (r, z) = −2
3
z2 for r =

√
3

3
z, 1 < r2 + z2 <

9

4
.
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Figure 8. A geometrical sketch of Problem 4 on the rz plane.

For the purpose of obtaining some numerical results, the the interface Γ0
is discretized into 2N0 elements and the exterior boundary into 5N0 elements

(hence N = 5N0 and M = 2N0). Equations (27), (28) and (34) are then

solved as a system of 9N0 linear algebraic equations with N0 = 5, 10, 20

and 40. The largest elements for N0 = 5, 10, 20 and 40 have magnitudes of

0.10, 0.05, 0.025 and 0.0125 units respectively. The numerically computed

temperature at various selected points in Ω1 ∪ Ω2 are then compared with

the exact solution given by

T (r, z) = r2 − z2 for (r, z) ∈ Ω1 ∪ Ω2.

Table 2. Numerical and exact values of T at selected interior points.
Point N0 = 5 N0 = 10 N0 = 20 N0 = 40 Exact

(0.10, 0.60) −0.709956 −0.709985 −0.709982 −0.709995 −0.71000
(0.20, 0.70) −0.940185 −0.940049 −0.939990 −0.939999 −0.94000
(0.45, 0.80) −1.098310 −1.080885 −1.076857 −1.077520 −1.07750
(0.50, 0.90) −1.382515 −1.368887 −1.370157 −1.370010 −1.37000
(0.20, 1.10) −2.378008 −2.379544 −2.379830 −2.380000 −2.38000
(0.10, 1.40) −3.904657 −3.908711 −3.909656 −3.909920 −3.91000
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As shown in Table 2, the numerical values for T are reasonably accurate

and they converge to the exact solution when the calculation is refined by in-

creasing the number of elements used. All percentage errors of the numerical

values for N0 = 40 are less than 0.01%.

Problem 5.

Consider now a thermal management system comprising a computer chip and

a heat sink modeled by two homogeneous cylindrical solids. In addition, the

cylindrical solids are joined together by a thin layer of carbon nanotubes

or nanocylinders of high thermal conductivity. Such an interface may be

modeled as high conducting. The regions Ω1 and Ω2 as sketched in Figure

9 are respectively the heat sink and the computer chip. The line z = z1,

0 < r < r1, denoted by Γ0, is the high conducting interface.

Figure 9. A geometrical sketch of Problem 5 on the rz plane.

Except for the sides z = 0, 0 < r < r1 (where a constant heat flux q0 flows

into the system) and z = z2, 0 < r < r2 (where there is a uniform convective

cooling), the exterior boundary of the bimaterial thermal system is thermally
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insulated. More specifically, the boundary conditions on the sides that are

not thermally insulated are as follows:

−κ2P (r, 0; 0,−1) = q0 for 0 < r < r1,

−κ1P (r, z2; 0, 1) = h[T (r, z2)− Ta] for 0 < r < r2,
where h is the heat convection coefficient, q0 is the magnitude of the specified

heat flux and Ta is the ambient temperature of the system.

Figure 10. Plots of κ2(T − Ta)/(q0z1) against z/z1 for a few selected values
of α/(κ2z1) (for perfectly conducting and high conducting interfaces).

We are interested in analyzing the effect of the interfacial parameter α

(assumed to be constant) on the thermal performance of the heat dissipa-

tion system. The radii r1 and r2 and the lengths z1 and z2 are chosen to
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be such that r2/r1 = 5 and (z2 − z1)/z1 = 5. To obtain some numerical

results, a total of 2880 elements are employed on the exterior boundary of

Ω1 ∪ Ω2 and the interface Γ0. For hz1/κ2 = 2.5 × 10−3 and κ1/κ2 = 2.20,

the non-dimensionalized temperature κ2(T − Ta)/(q0z1) along the z-axis are
plotted against z/z1 for selected values of the non-dimensionalized parameter

α/(κ2z1).

In Figure 10, the dashed line gives the plot of the non-dimensionalized

temperature profile for the case in which the interface between the chip and

heat sink is perfectly bonded (that is, for the case α/(κ2z1) = 0). As antic-

ipated, at a given point on the z axis, the non-dimensionalized temperature

in both the computer chip and heat sink decreases as α/(κ2z1) increases.

Hence, high conducting interfaces enhance the heat dissipation performance

of the system.

Figure 11. Plots of κ2(T − Ta)/(q0z1) against z/z1 for a few selected values
of λz1/κ2 (for low conducting interfaces).
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Still with r2/r1 = 5, (z2 − z1)/z1 = 5, hz1/κ2 = 2.5 × 10−3 and κ1/κ2 =

2.20, we plot κ2(T−Ta)/(q0z1) against z1/z for the case in which the interface
between the chip and the sink is a low conducting one. The plots for selected

values of the non-dimensionalized parameter λz1/κ2 are given in Figure 11.

As the low conducting interface tends to obstruct rather than enhance heat

flow from the chip into the sink, the temperature profiles in the chip in

Figure 11 are higher compared to those in Figure 10. As expected, for a

lower value of λz1/κ2, there is a bigger temperature jump across the interface

at z/z1 = 1.The differences between the temperature distributions for the

different values of λz1/κ2 are much smaller in the sink compared to those in

the chip.

The effects of the three types of interfaces-low conducting, perfectly con-

ducting and high conducting ones-on the thermal performance of the heat

disspipation system in Figure 9 are clearly shown by the temperature profiles

in Figures 10 and 11.

7 Conclusion and summary

Boundary integral formulations for axisymmetric heat conduction across low

conducting and high conducting interfaces between two dissimilar materials

are derived. A simple boundary element procedure based on these formula-

tions is proposed for solving numerically the axisymmetric heat conduction

problem. To assess the validity and accuracy of the numerical procedure, it

is used to solve some specific test problems which have analytical (exact) so-

lutions. The numerical solutions obtained suggest that the boundary integral

formulations are correctly derived and the proposed numerical procedure can

be used as an accurate and reliable tool for analyzing heat flow across the

non-ideal interfaces.

The boundary element procedure is also applied to solve some problems

of practical interest. One of the problems requires the computation of the

equivalent thermal conductivity of a homogeneous cylindrical representative

volume element containing a centrally located cylindrical carbon nanotube.

The interface between the constituent parts of the carbon nanotube based

composite is assumed to be microscopically damaged and is modeled as low

conducting. In another problem, the thermal performance of a heat dissipa-
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tion system comprising a computer chip and a heat sink is simulated. The

effects of both low and high conducting interfaces (between the chip and the

sink) on the temperature distribution in the thermal system are examined.

The numerical results obtained for the equivalent thermal conductivity of the

carbon nanotube composite and the temperature profiles in the computer

chip and the heat sink appear to be intuitively and qualitatively acceptable.

Heat conduction is shown to be impeded across a low conducting interface

and enhanced across a high conducting interface.
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Appendix

More explicitly, the function Λ0(x;x0; t
(i)) in (31) is given by

Λ0(x;x0; t
(i))

=
1

π
p
a(x;x0) + b(r; r0)(a(x;x0)− b(r; r0))2

×{t(i)r Y1(x;x0; t(i)) + t(i)z Y2(x;x0; t(i))}, (A1)

where

Y1(x;x0; t
(i))

= (r + r0)(1−m(x;x0))[
t
(i)
r

2r0
[
¡
a(x;x0)− 2r20

¢
E(m(x;x0))

−(a(x;x0)− b(r; r0))K(m(x;x0))] + t(i)z (z − z0)E(m(x;x0))]

− t
(i)
r

2r20
[(a(x;x0)− b(r; r0))2K(m(x;x0))−

¡
a(x;x0)− 2r20

¢
×(a(x;x0)− b(r; r0))E(m(x;x0))− r0

¡
a(x;x0)− 2r20

¢
× (1−m(x;x0)) [(r + r0)E(m(x;x0)) + (r − r0)K(m(x;x0))]
+2r0E(m(x;x0))[r(a(x;x0)− b(r; r0))− 2r0 (z − z0)2]]
−t(i)z (z − z0)[

1

2r0
(1−m(x;x0))

¡
a(x;x0)− 2r20

¢
× (E(m(x;x0))−K(m(x;x0))) + 2(r − r0)E(m(x;x0))], (A2)
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and

Y2(x;x0; t
(i))

= −{(z − z0) (1−m(x;x0)) [
t
(i)
r

2r0
[
¡
a(x;x0)− 2r20

¢
E(m(x;x0))

−(a(x;x0)− b(r; r0))K(m(x;x0))] + t(i)z (z − z0)E(m(x;x0))]
+t(i)r (z − z0)[2(r − r0)E(m(x;x0))− (1−m(x;x0))
×[(r + r0)E(m(x;x0)) + (r − r0)K(m(x;x0))]]
+t(i)z [(z − z0)2 [(2−m(x;x0))E(m(x;x0))
− (1−m(x;x0))K(m(x;x0))]− (r − r0)2E(m(x;x0))]}. (A3)

The partial derivatives defining the function Λ1(x;x0;n
(k); t(i)) are explic-

itly given by

∂

∂r0
[Φ1(x;x0;n

(k); t(i))]

=
1

π
p
a(x;x0) + b(r; r0)(a(x;x0)− b(r; r0))2

×{4(r − r0)(a(x;x0) + b(r; r0))− (r + r0)(a(x;x0)− b(r; r0))
(a(x;x0) + b(r; r0))(a(x;x0)− b(r; r0))

×[t(i)r Θ(x;x0;n
(k)) + t(i)z Ψ(x;x0;n

(k))]

+[t(i)r Y3(x;x0;n
(k)) + t(i)z Y4(x;x0;n

(k))]} (A4)

and

∂

∂z0
[Φ1(x;x0;n

(k); t(i))]

=
1

π
p
a(x;x0) + b(r; r0)(a(x;x0)− b(r; r0))2

×{ (z − z0)[5(a(x;x0) + b(r; r0))− 4rr0]
(a(x;x0) + b(r; r0))(a(x;x0)− b(r; r0))

×[t(i)r Θ(x;x0;n
(k)) + t(i)z Ψ(x;x0;n

(k))]

+[t(i)r Y5(x;x0;n
(k)) + t(i)z Y6(x;x0;n

(k))]} (A5)
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where

Y3(x;x0;n
(k)) = [(1−m(x;x0))−

m(x;x0)(r + r0) (a(x;x0)− 2r20)
r0(a(x;x0) + b(r; r0))

]

×{n
(k)
r

2r
[
¡
a(x;x0)− 2r2

¢
E(m(x;x0))− (a(x;x0)− b(r; r0))K(m(x;x0))]

−n(k)z (z − z0)E(m(x;x0))}+ (r + r0) (1−m(x;x0))

×{n
(k)
r

r
[r0E(m(x;x0)) + (r − r0)K(m(x;x0))]

+
(a(x;x0)− 2r20)

2r0(a(x;x0) + b(r; r0))

× ¡n(k)r [(r − r0)K(m(x;x0))− (r + r0)E(m(x;x0))]
−n(k)z (z − z0)(E(m(x;x0))−K(m(x;x0)))

¢}
−n(k)r {−

(1−m(x;x0)) a(x;x0)
2r20

[(r − r0)K(m(x;x0))
−(r + r0)E(m(x;x0))] + 2(r + r0)E(m(x;x0))

+
(a(x;x0)− 2r20)2

4r20(a(x;x0) + b(r; r0))

×[[(3m(x;x0)− 1)(r + r0) + (r − r0)]E(m(x;x0))
+2(r0 −m(x;x0)r)K(m(x;x0))]−

(a(x;x0)− 2r20)
r0(a(x;x0) + b(r; r0))

×[(r − r0)2E(m(x;x0)) + (z − z0)2K(m(x;x0))]}
+n(k)z (z − z0){

(E(m(x;x0))−K(m(x;x0))) (a(x;x0)− 2r20) (r − r0)
r0(a(x;x0) + b(r; r0))

−2E(m(x;x0)) +
(a(x;x0)− 2r20)2

4r20(a(x;x0) + b(r; r0))

×[m(x;x0)(2K(m(x;x0))− 3E(m(x;x0)))]
−(1−m(x;x0)) a(x;x0)

2r20
(E(m(x;x0))−K(m(x;x0)))}, (A6)
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Y4(x;x0;n
(k))

= −(z − z0){(1−m(x;x0))
n
(k)
r

r
×[r0E(m(x;x0)) + (r − r0)K(m(x;x0))]
+

(a(x;x0)− 2r20)
2r0(a(x;x0) + b(r; r0))

×{(1−m(x;x0)) [n(k)r ((r − r0)K(m(x;x0))
−(r + r0)E(m(x;x0)))
−n(k)z (z − z0)(E(m(x;x0))−K(m(x;x0)))]

−2m(x;x0)[
n
(k)
r

2r
[
¡
a(x;x0)− 2r2

¢
E(m(x;x0))

−(a(x;x0)− b(r; r0))K(m(x;x0))]
−n(k)z (z − z0)E(m(x;x0))]}}
−n(k)r (z − z0){

(a(x;x0)− 2r20)
2r0(a(x;x0) + b(r; r0))

×[E(m(x;x0))(3m(x;x0)(r + r0)− 2r)
+K(m(x;x0))(2r (1−m(x;x0)))]
− (1−m(x;x0)) (E(m(x;x0))
+K(m(x;x0))) + 2E(m(x;x0))}
+n(k)z {

(a(x;x0)− 2r20)
2r0(a(x;x0) + b(r; r0))

×[(z − z0)2[(1− 3m(x;x0))E(m(x;x0))
+(2m(x;x0)− 1)K(m(x;x0))]− (r − r0)2(E(m(x;x0))
−K(m(x;x0)))] + 2(r − r0)E(m(x;x0))}, (A7)
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Y5(x;x0;n
(k))

= [−2m(x;x0)(r + r0)
(z − z0)

a(x;x0) + b(r; r0)
]

×{n
(k)
r

2r
[
¡
a(x;x0)− 2r2

¢
E(m(x;x0))

−(a(x;x0)− b(r; r0))K(m(x;x0))]
−n(k)z (z − z0)E(m(x;x0))}
+(r + r0) (1−m(x;x0))

×{n
(k)
r

r
(z − z0)(K(m(x;x0))− E(m(x;x0)))

+
1

a(x;x0) + b(r; r0)

×[n(k)r (z − z0)[(r − r0)K(m(x;x0))− (r + r0)E(m(x;x0))]
+n(k)z [(r + r0)

2E(m(x;x0)) + (z − z0)2K(m(x;x0))]]}

− n
(k)
r (z − z0)

a(x;x0) + b(r; r0)
{(− 1

r0
)[(a(x;x0)− b(r; r0))

+m(x;x0)
¡
a(x;x0)− 2r20

¢
]

×[(r − r0)K(m(x;x0))− (r + r0)E(m(x;x0))]
+
(a(x;x0)− 2r20)

2r0
[(r − r0)E(m(x;x0))− (1−m(x;x0))

×((r + r0)E(m(x;x0))− 2r0K(m(x;x0)))]− (E(m(x;x0))
−K(m(x;x0)))((r − r0)2 + (z − z0)2)
−2E(m(x;x0))(a(x;x0) + b(r; r0))}

+
n
(k)
z

2r0
{−4r0(r − r0)E(m(x;x0))

− (1−m(x;x0))
¡
a(x;x0)− 2r20

¢
×(E(m(x;x0))−K(m(x;x0)))
+

(z − z0)2
a(x;x0) + b(r; r0)

×[(4r0(r − r0)− 2(a(x;x0)− b(r; r0)))(E(m(x;x0))−K(m(x;x0)))
+m(x;x0)

¡
a(x;x0)− 2r20

¢
×(2K(m(x;x0))− 3E(m(x;x0)))]}, (A8)
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and

Y6(x;x0;n
(k))

= [(1−m(x;x0)) +
2m(x;x0)(z − z0)2
a(x;x0) + b(r; r0)

]

×{n
(k)
r

2r
[
¡
a(x;x0)− 2r2

¢
E(m(x;x0))

−(a(x;x0)− b(r; r0))K(m(x;x0))]− n(k)z (z − z0)E(m(x;x0))}

−(z − z0) (1−m(x;x0)) {
n
(k)
r

r
(z − z0)(K(m(x;x0))−E(m(x;x0)))

+
1

a(x;x0) + b(r; r0)

¡
n(k)r (z − z0)[(r − r0)K(m(x;x0))

−(r + r0)E(m(x;x0))]
+n(k)z [(r + r0)

2E(m(x;x0)) + (z − z0)2K(m(x;x0))]
¢}

−n(k)r {2E(m(x;x0))(r − r0)− (1−m(x;x0)) [(r − r0)K(m(x;x0))
−(r + r0)E(m(x;x0))]
+

(z − z0)2
a(x;x0) + b(r; r0)

[(3m(x;x0)(r + r0)− 2r)E(m(x;x0))
+(2r (1−m(x;x0)))K(m(x;x0))]}
+n(k)z (z − z0){

(z − z0)2
a(x;x0) + b(r; r0)

[(2− 3m(x;x0))E(m(x;x0))
−2 (1−m(x;x0))K(m(x;x0))] + (3m(x;x0)− 5)E(m(x;x0))
+3 (1−m(x;x0))K(m(x;x0))}. (A9)
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