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1 Introduction

The axisymmetric analysis of solids with material properties that vary con-

tinuously from point to point in space has recently attracted the attention of

many researchers. To mention a few examples, Chaudhuri and Ray [8] and

Clements and Kusuma [9] had used integral transform techniques to analyze

axisymmetric indentations of anisotropic half-spaces with particular func-

tionally graded elastic moduli; Ochiai, Sladek and Sladek [14] had devised

a boundary element method for the numerical solution of an axisymmetric

elastic problem involving nonhomogeneous bodies; and Theotokoglou and

Stampouloglou [18] had derived exact solutions for axisymmetric deforma-

tions of radially graded cylinders.

During the last few decades, the boundary element methods have been

used to solve a wide range of problems in physical and engineering sciences

− see, for example, Ang and Clements [2] (stress analysis in an anistropic

body), Brebbia and Dominguez [5] (potential problems), Liang and Subrama-

niam [12] (electrostatic analysis in molecular biology), Mammoli and Ingber

[13] (ßuid ßow) and Rizzo [16] (elastostatic analysis in isotropic elasticity).

If the problem under consideration is governed by a homogeneous elliptic

partial dierential equation with constant coecients (or a system of such

equations), a boundary integral equation (or a system of boundary integral

equations) may be derived to obtain a boundary element solution for the

problem. The boundary integral equation, even in its discretized form, is in

eect an exact solution of the governing partial dierential equation. This

explains why the boundary element solution may still be accurate even if

rather crude approximations such as constant boundary elements are used.

Another advantage of the boundary element solution is that only the bound-

ary of the solution has to be discretized into elements. For an axisymmetric

2



problem, the boundary is a curve and can be easily discretized by placing

closely packed points on the curve and joining up two consecutive neighboring

points to form straight line elements.

Among the earliest works on axisymmetric boundary element methods

are Cruse, Snow and Wilson [10] and Wrobel and Brebbia [20]. The bound-

ary integral formulations for axisymmetric deformations and heat conduction

in homogeneous isotropic bodies as given in [10] and [20] respectively are ob-

tained by integrating axially the corresponding three-dimensional boundary

integral equations. The kernels of the axisymmetric boundary integral equa-

tions are expressed in terms of complete elliptic integrals of the Þrst and

second kind. Such a boundary element approach has been extended to solve

axisymmetric elastodynamic and thermoelastic problems involving homoge-

neous isotropic bodies, such as in Dargush and Banerjee [11], Rudolphi [17]

and Wang and Banerjee [19]. In some cases, domain integrals may be present

in the axisymmetric boundary element formulations for elastodynamics and

thermoelasticity. Various approaches, such as the method of particular in-

tegrals (as in Park [15]) and dual-reciprocity method (Agnantiaris, Polyzos

and Beskos [1]), have been used to treat the domain integrals.

In the current work here, a dual-reciprocity boundary element method

is proposed for determining the axisymmetric thermoelastostatic Þelds in a

nonhomogeneous isotropic body. The thermal conductivity, shear modulus

and stress-temperature coecients are functionally graded along the axial

and radial directions of the axisymmetric body, while the Poisson�s ratio is

constant. An integral formulation of the problem under consideration is de-

rived by using the fundamental solution for the partial dierential equations

governing the axisymmetric elastostatic deformation of a homogeneous body.

In addition to the usual boundary integrals over a curve on the axisymmetric
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plane, the formulation contains domain integrals due to continuously vary-

ing material properties and thermal eects. The domain integrals can be

expressed in terms of boundary integrals using the dual-reciprocity method

pioneered by Brebbia and Nardini [6]. For the dual-reciprocity method, in-

terpolating functions that are bounded in the solution domain but that are in

relatively simple elementary forms for easy computation are introduced here.

The dual-reciprocity boundary element approach here is successfully applied

to solve several axisymmetric thermoelastostatic problems for speciÞc vari-

ations of the thermal conductivity, shear modulus and stress-temperature

coecients.

2 Statement of problem

The region Ω in Figure 1 is rotated by an angle of 360◦ about the z axis

to form a three-dimensional solid. The boundary of the solid is the surface

generated by rotating the curve Γ. Note that the coordinate r gives the

distance of a point from the z axis.

Figure 1. A geometrical sketch of the problem.
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The material in the solid is isotropic and nonhomogeneous with its ther-

mal conductivity κ, shear modulus µ and stress-temperature coecient β

functionally graded, that is, κ, µ and β are positive smoothly varying func-

tions of r and z in Ω. The Poisson�s ratio ν of the material is a constant such

that −1 < ν < 1/2.

The thermoelastic Þelds in the solid are independent of time and vary with

only the spatial coordinates r and z. Furthermore, in the cylindrical polar

coordinates r, θ and z, the only non-zero components of the displacement

are ur and uz, and the non-zero stress components are σrr, σrz, σθθ and

σzz. The components of the axisymmetric thermoelastic traction are tr =

σrrnr + σrznz and tz = σrznr + σzznz,where nr and nz are respectively the r

and z components of the unit outward normal vector to Γ.

At each point on Γ, either the temperature or the normal heat ßux which

may be expressed as a linear function of the unknown boundary temperature

and any two of the four components ur, uz, tr and tz are suitably speciÞed.

The problem is to determine the thermoelastostatic Þelds throughout the

solid.

3 Basic equations of thermoelastostatics

The steady state axisymmetric temperature T (r, z) in a homogeneous isotropic

body is governed by

κ∇2
axisT +

∂κ

∂r

∂T

∂r
+

∂κ

∂z

∂T

∂z
= −Q, (1)

where Q is the internal heat generation term and ∇2
axis is the axisymmetric

Laplacian operator deÞned by

∇2
axis

def
=

∂2

∂r2
+
1

r

∂

∂r
+

∂2

∂z2
. (2)
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The static axisymmetric stress components σrr, σrz, σzz and σθθ satisfy

∂σrr
∂r

+
∂σrz
∂z

+
σrr − σθθ

r
= −Fr,

∂σrz
∂r

+
∂σzz
∂z

+
σrz
r

= −Fz, (3)

where Fr and Fz are respectively the r and z components of the body force.

The constitutive equations for thermoelasticity are

σrr = 2µ(
∂ur
∂r

+
ν

1− 2ν [
∂ur
∂r

+
ur
r
+

∂uz
∂z
])− β(T − T0),

σzz = 2µ(
∂uz
∂z

+
ν

1− 2ν [
∂ur
∂r

+
ur
r
+

∂uz
∂z
])− β(T − T0),

σθθ = 2µ(
ur
r
+

ν

1− 2ν [
∂ur
∂r

+
ur
r
+

∂uz
∂z
])− β(T − T0),

σrz = µ(
∂ur
∂z

+
∂uz
∂r
), (4)

where T0 is a constant reference temperature at which the body does not

experience any thermally induced stress.

Use of (3) and (4) gives

∇2
axisur −

ur
r2
+

1

1− 2ν
∂

∂r
(
∂ur
∂r

+
ur
r
+

∂uz
∂z
)

=
1

µ
{β∂T

∂r
+

∂β

∂r
(T − T0)− Fr −

∂µ

∂z
(
∂ur
∂z

+
∂uz
∂r
)

−2∂µ
∂r
[
∂ur
∂r

+
ν

1− 2ν (
∂ur
∂r

+
ur
r
+

∂uz
∂z
)]},

∇2
axisuz +

1

1− 2ν
∂

∂z
(
∂ur
∂r

+
ur
r
+

∂uz
∂z
)

=
1

µ
{β∂T

∂z
+

∂β

∂z
(T − T0)− Fz −

∂µ

∂r
(
∂ur
∂z

+
∂uz
∂r
)

−2∂µ
∂z
[
∂uz
∂z

+
ν

1− 2ν (
∂ur
∂r

+
ur
r
+

∂uz
∂z
)]}, (5)

The problem stated in Section 2 requires (1) and (5) to be solved in Ω

subject to the boundary conditions speciÞed on Γ.

6



4 Integral equations

4.1 Heat conduction

The governing partial dierential equation (1) may be rewritten as

∇2
axis(

√
κT ) = − Q√

κ
+ T ·∇2(

√
κ). (6)

Following the analysis in Brebbia, Telles and Wrobel [7]), we can recast

(6) into the integral equation

γ(x0)
p
κ(x0)T (x0)

=

Z

Γ

{T (x)[
p
κ(x)G1(x;x0;n(x))−

∂
p
κ(x)

∂n
G0(x;x0)]

−
p
κ(x)G0(x;x0)q(x;n(x))}rds(x)

+

ZZ

Ω

G0(x;x0)[−
Q(x)p
κ(x)

+ T (x) ·∇2(
p
κ(x))]rdrdz

for x0 ∈ Ω ∪ Γ, (7)

where x = (r, z), x0 = (r0, z0), γ(x0) = 1 if x0 lies in the interior of Ω,

γ(x0) = 1/2 if x0 lies on a smooth part of Γ, ds(x) denotes the length of an

inÞnitesimal part of the curve Γ, n(x) = [nr(x), nz(x)] (for x ∈ Γ) is the unit
normal vector to Γ pointing out of Ω, G0(x;x0) and G1(x;x0;n(x)) are as

given in Appendix A and q(x;n(x)) is deÞned by

q(x;n(x)) = nr(x)
∂

∂r
[T (x)] + nz(x)

∂

∂z
[T (x)]. (8)

4.2 Thermoelastostatics

For convenience here, uppercase Latin subscripts (such as J andK) which are

given the values r and z are used to denote axisymmetric components. Fur-

thermore, the Einsteinian convention of summing over a repeated subscript is
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adopted.Thus, for example, uK is used to denote the axisymmetric displace-

ment components ur and uz, and GKJuJ refers to the sums Grrur + Grzuz

and Gzrur +Gzzuz.

The integral equations for (5) is given by (see Bakr [4])

γ(x0)uK(x0) =

Z

Γ

(ΦJK(x;x0)pJ(x;n(x))−ΨJK(x;x0;n(x))uJ(x))rds(x)

+

ZZ

Ω

1

µ(x)
ΦJK(x;x0){−β(x)

∂

∂xJ
[T (x)]

− ∂

∂xJ
[β(x)](T − T0) + FJ(x)

+
∂

∂xJ
[µ(x)]

2ν

(1− 2ν)rur(x)]

+XJN (x)
∂

∂z
[uN(x)] + YJN(x)

∂

∂r
[uN(x)]}rdrdz

for x0 ∈ Ω ∪ Γ, (9)

where xr = r, xz = z, ΦJK(x;x0) and ΨJK(x;x0;n(x)) are as given in the

Appendix B, pJ(x;n(x)) are deÞned by

pr(x;n(x)) = 2(
∂ur
∂r

+
ν

1− 2ν [
∂ur
∂r

+
ur
r
+

∂uz
∂z
])nr(x)

+(
∂ur
∂z

+
∂uz
∂r
)nz(x),

pz(x;n(x)) = (
∂ur
∂z

+
∂uz
∂r
)nr(x)

+2(
∂uz
∂z

+
ν

1− 2ν [
∂ur
∂r

+
ur
r
+

∂uz
∂z
])nz(x), (10)
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and

Xrr(x) =
∂µ(x)

∂z
, Xrz(x) =

2ν

1− 2ν
∂µ(x)

∂r
,

Xzr(x) =
∂µ(x)

∂r
, Xzz(x) =

∂µ(x)

∂z

2(1− ν)

1− 2ν ,

Yrr(x) =
∂µ(x)

∂r

2(1− ν)

1− 2ν , Yrz(x) =
∂µ(x)

∂z
, (11)

Yzr(x) =
2ν

1− 2ν
∂µ(x)

∂z
, Yzz(x) =

∂µ(x)

∂r
.

Note that pJ(x;n(x)) are related to the axisymmetric components tJ(x;n(x))

of the thermoelastic traction by

tJ(x;n(x)) = µ(x)pJ(x;n(x))− β(x)[T (x)− T0]δJLnL(x), (12)

where δJN is the Kronecker-delta deÞned by δrr = δzz = 1 and δrz = δzr = 0

5 Dual-reciprocity method

In this section, we explain how double integrals over Ω of the form in (7)

and (9) can be approximately reduced to line integrals over Γ by using the

dual-reciprocity method.

Let y(1), y(2), · · · , y(M−1) and y(M) be M selected points which are well

spaced out in Ω ∪ Γ. None of the selected points lies on the z axis.
If f(x) is a function that can be approximated using

f(x) '
MX

n=1

α(n)φ(x;y(n)) for x ∈ Ω, (13)

where α(n) are constant coecients to be determined and φ(x;y) is a local

interpolating function which can be written in the form

φ(x;y) = ∇2
axisχ(x;y), (14)
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then

ZZ

Ω

G0(x;x0)f(x)rdrdz '
MX

n=1

α(n)W (n)(x0), (15)

where

W (n)(x0) = γ(x0)χ(x0;y
(n)) +

Z

Γ

[G0(x;x0)
∂

∂n
[χ(x;y(n))]

−G1(x;x0;n(x))χ(x;y(n))]rds(x),

∂

∂n
[χ(x;y)] = nr(x)

∂

∂r
[χ(x;y)] + nz(x)

∂

∂z
[χ(x;y)]. (16)

We may let x = y(k) (k = 1, 2, · · · , M) in (13) to obtain

MX

n=1

α(n)φ(y(k);y(n)) = f(y(k)) for k = 1, 2, · · · ,M, (17)

which may be solved as a system of M linear algebraic equations to Þnd the

unknown coecients α(n).

In Yun and Ang [21], the local interpolating function φ(x;y) is con-

structed from (14) by letting

χ(x;y) =
1

9
{[σ(x;y)]3 + [σ(x;−ρ, ζ)]3}, (18)

where y = (ρ, ζ) and σ(x;y) =
p
(r − ρ)2 + (z − ζ)2 (x = (r, z)).

The function φ(x;y) corresponding to χ(x;y) in (18) is then given by

φ(x;y) = [
4

3
− ρ

3r
]σ(x;y) + [

4

3
+

ρ

3r
]σ(x;−ρ, ζ). (19)

As given by (19), φ(x;y) is bounded at all points (r, z) in the region r > 0.

Formula (15) together with (16), (17), (18) and (19) can be used to reduce

the double integral over Ω in (7) to line integrals over Γ.
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The idea outlined above will be extended to the more complicated double

integral in (9).

We use local interpolating functions φIJ(x;y) that can be expressed in

the form

φrJ(x;y) = ∇2
axisχrJ(x;y)−

χrJ(x;y)

r2

+
1

1− 2ν
∂

∂r
(
∂

∂r
[χrJ(x;y)] +

χrJ(x;y)

r
+

∂

∂z
[χzJ(x;y)]),

φzJ(x;y) = ∇2
axisχzJ(x;y)

+
1

1− 2ν
∂

∂z
(
∂

∂r
[χrJ(x;y)] +

χrJ(x;y)

r
+

∂

∂z
[χzJ(x;y)]).

(20)

If the functions fJ(x) can be approximated as

fJ(x) '
MX

n=1

φJN(x;y
(n))α

(n)
N for x ∈ Ω, (21)

where α
(n)
N are constant coecients, then

ZZ

Ω

ΦJK(x;x0)fJ(x)rdrdz '
MX

n=1

α
(n)
N W

(n)
KN(x0), (22)

where

W
(n)
KN(x0) = −γ(x0)χKN(x0;y(n))

+

Z

Γ

(ΦJK(x;x0)τJN(x;y
(n);n(x))

−ΨJK(x;x0;n(x))χJN(x;y(n)))rds(x), (23)
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and

τ rN (x;y;n(x)) = 2nr(x){
∂

∂r
[χrN (x;y)] +

ν

1− 2ν (
∂

∂r
[χrN (x;y)]

+
χrN(x;y)

r
+

∂

∂z
[χzN(x;y)])}

+nz(x){
∂

∂z
[χrN (x;y)] +

∂

∂r
[χzN(x;y)]},

τ zN(x;y;n(x)) = nr(x){
∂

∂z
[χrN (x;y)] +

∂

∂r
[χzN(x;y)]}

+2nz(x){
∂

∂z
[χzN(x;y)] +

ν

1− 2ν (
∂

∂r
[χrN(x;y)]

+
χrN (x;y)

r
+

∂

∂z
[χzN(x;y)])}. (24)

To construct functions φIJ(x;y) that are bounded at all points (r, z) for

r > 0, we take

χrr(x;y) = χ(x;y)− 2
9
[σ(0, z;y)]3,

χzr(x;y) = χrz(x;y) = 0,

χzz(x;y) = χ(x;y), (25)

where χ(x;y) is as deÞned by (21).

The functions φIJ(x;y) and τ IJ(x;y;n(x)) constructed using (20), (24)

and (25) are given in Appendix C. With χKN (x;y) as given in (25), φIJ(x;y)

can be shown to be bounded at all points (r, z) in the region r > 0. In Ag-

nantiaris, Polyzos and Beskos [1], bounded interpolating functions are con-

structed by integrating axially the corresponding interpolating functions for

the three-dimensional dual-reciprocity boundary element method. Explicit

expressions for the interpolating functions constructed from the axial integra-

tion are, however, very complicated compared to those given in Appendix C.

In [1], it appears that the integrals from the axial integration are computed

numerically.
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We collocate (21) by taking x = y(k) (k = 1, 2, · · · , M) to obtain

MX

n=1

φJN(y
(k);y(n))α

(n)
N = fJ(y

(k)) for k = 1, 2, · · · ,M. (26)

The coecients α
(n)
N can then be obtained in terms of fJ(y

(k)) by inverting

(26).

6 Boundary element solution

The integral equations in (7) and (9) are used here to solve the problem in

Section 2.

The curve Γ is discretized into N straight line elements denoted by Γ(1),

Γ(2), · · · , Γ(N−1) and Γ(N). Over Γ(k), the functions T, q, uJ and pJ are ap-
proximated as constants T (k), q(k), u

(k)
J and p

(k)
J respectively. For collocation

points, take y(1), y(2), · · · , y(N−1) and y(N) to be the midpoints of Γ(1), Γ(2),
· · · , Γ(N−1) and Γ(N) respectively, and y(N+1), y(N+2), · · · , y(N+L−1) and
y(N+L) to be L selected points that are well spaced out in the interior of the

region Ω. None of the collocation points lies on the z axis.

With the above and the dual-reciprocity formula in (15), (7) can now be

used to obtain

γ(y(m))
q
κ(y(m))T (m)

=
NX

k=1

T (k)
Z

Γ(k)

[
p
κ(x)G1(x;y

(m);n(x))− ∂κ(x)

∂n
G0(x;y

(m))]rds(x)

−
NX

k=1

q(k)
Z

Γ(k)

p
κ(x)G0(x;y

(m))rds(x) +
N+LX

n=1

α(n)W (n)(y(m))

for m = 1, 2, · · · , N + L, (27)
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and

N+LX

n=1

α(n)φ(y(k);y(n)) = −
Q(y(k))q
κ(y(k))

+ T (k) · ∇2(
p
κ(x))

¯̄
¯
x=y(k)

for k = 1, 2, · · · , N + L, (28)

where y(m) = (ρ(m), ζ(m)).

We can treat (27) and (28) as a system of 2(N + L) linear algebraic

equations. The 2(N +L) unknowns in the system are α(n) for n = 1, 2, · · · ,
N + L, T (p) for p = N + 1, N + 2, · · · , N + L, and either T (k) or q(k) for

k = 1, 2, · · · , N (depending on the boundary conditions of the problem).

Similarly, (9) gives

γ(y(m))u
(m)
K =

N+LX

n=1

α
(n)
N W

(n)
KN(y

(m)) +
NX

k=1

p
(k)
J

Z

Γ(k)

ΦJK(x;y
(m))rds(x)

−
NX

k=1

u
(k)
J

Z

Γ(k)

ΨJK(x;y
(m);n(x))rds(x)

for m = 1, 2, · · · , N + L, (29)

and

N+LX

n=1

φJN(y
(k);y(n))α

(n)
N

=
1

µ(y(k))
{−β(y(k)) ∂

∂xJ
[T (x)]

¯̄
¯̄
x=y(k)

− ∂

∂xJ
[β(x)]

¯̄
¯̄
x=y(k)

(T (k) − T0)

+FJ(y
(k)) +

∂

∂xJ
[µ(x)]

¯̄
¯̄
x=y(k)

2ν

(1− 2ν)r(k)u
(k)
r

+XJN(y
(k))

∂

∂z
[uN(x)]

¯̄
¯̄
x=y(k)

+ YJN(y
(k))

∂

∂r
[uN(x)]

¯̄
¯̄
x=y(k)

}

for k = 1, 2, · · · , N + L. (30)
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Unlike (28), the right hand side of (30) contains values of the Þrst order

partial derivatives of the unknown functions. To approximate those values,

let

T (x) '
N+LX

m=1

t(m)χ(x;y(m)),

ur(x) '
N+LX

m=1

v(m)r χ(x;y(m)),

uz(x) '
N+LX

m=1

v(m)z χ(x;y(m)), (31)

where χ(x;y) is as deÞned in (18) and χ(x;y) by

χ(x;y) =
1

9
{[σ(x;y)]3 − [σ(x;−ρ, ζ)]3}. (32)

If we collocate (31) by letting x = y(k) for k = 1, 2, · · · , N + L and invert
the resulting equations to determine the constant coecients t(m) and v

(m)
N ,

we obtain

∂

∂xJ
[T (x)] =

N+LX

p=1

T (p)ϕ
(p)
J (x),

∂

∂xJ
[ur(x)] =

N+LX

p=1

u(p)r ϕ
(p)
J (x),

∂

∂xJ
[uz(x)] =

N+LX

p=1

u(p)z ϕ(p)J (x), (33)

where

ϕ
(p)
J (x) =

N+LX

m=1

ω(mp)
∂

∂xJ
[χ(x;y(m)],

ϕ
(p)
J (x) =

N+LX

m=1

ω(mp)
∂

∂xJ
[χ(x;y(m)],
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N+LX

m=1

χ(x(k);y(m))ω(mp) =

½
1 if k = p,
0 if k 6= p,

N+LX

m=1

χ(x(k);y(m))ω(mp) =

½
1 if k = p,
0 if k 6= p. (34)

It follows that (30) becomes

MX

n=1

φJN(y
(k);y(n))α

(n)
N

=
1

µ(y(k))
{−β(y(k))

N+LX

p=1

T (p)ϕ
(p)
J (y

(k))− ∂

∂xJ
[β(x)]

¯̄
¯̄
x=y(k)

(T (k) − T0)

+FJ(y
(k)) +

∂

∂xJ
[µ(x)]

¯̄
¯̄
x=y(k)

2ν

(1− 2ν)ru
(k)
r

+
N+LX

p=1

[XJr(y
(k))u(p)r ϕ(p)z (y

(k)) +XJz(y
(k))u(p)z ϕ(p)z (y

(k))]

+
N+LX

p=1

[YJr(y
(k))u(p)r ϕ(p)r (y

(k)) + YJz(y
(k))u(p)z ϕ(p)r (y

(k))]}

for k = 1, 2, · · · , N + L. (35)

In (18) and (32), ur(x) and the Þrst order partial derivatives of T (x)

and uz(x) with respect to r behave as O(r) for small r. Such behaviors are

expected of the temperature T (x) and the displacement components ur(x)

and uz(x) if the solution domain contains points (r, z) where r can be zero.

With T (p) determined from (27) and (28), we may now solve (29) and (35)

as a system of 4(N + L) linear algebraic equations in 4(N + L) unknowns.

The unknowns are α
(n)
J (n = 1, 2, · · · , N + L), two unknowns from the four

boundary components u
(k)
r , u

(k)
z , p

(k)
r and p

(k)
z (k = 1, 2, · · · , N) and the

unknown displacement components u
(i)
K (i = N + 1, N + 2, · · · , N + L) at

interior collocation points.
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7 SpeciÞc problems

In this section, the boundary element method outlined in Section 6 is applied

to solve some speciÞc problems.

Problem 1. For a particular test problem, take the solution domain as

0 < r < 1, 0 < z < 1. The thermal conductivity κ, the stress-temperature

coecient β, the shear modulus µ, the Poisson�s ratio ν and the reference

temperature T0 are taken to be given by κ = (r2 + z + 1)2, β = z2 + 1,

µ = r2 + 1, ν = 0.3 and T0 = 0 respectively. The internal heat generation Q

and body force terms Fr and Fz are given by

Q(r, z) = (r2 + z + 1)(12z2 + 6r2z − 6z − 36r2 − 12),

Fr(r, z) = −2r3 − 4rz2 − 38r,

Fz(r, z) = −5z4 − 8r2z − 3z2 − 10z + 16r2 + 8.

The boundary conditions are taken to be given by

T (r, 0) = 3r2

ur(r, 0) = 3r
uz(r, 0) = −2r2



 for 0 < r < 1,

∂T

∂z

¯̄
¯̄
z=1

= −3

ur(r, 1) = 4r
uz(r, 1) = 4− 2r2




for 0 < r < 1,

T (1, z) = 3− z3
ur(1, z) = 3 + z2

uz(1, z) = 4z − 2



 for 0 < z < 1.

To obtain some numerical results, the boundary is discretized into N

equal length elements and L evenly distributed collocation points are chosen
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inside the domain. The numerical results are obtained with three dierent

sets of N and L: (N,L) = (30, 9) (Set A), (N,L) = (90, 121) (Set B) and

(N,L) = (270, 361) (Set C).

Table 1. A comparison of the numerical and exact values of T at selected

interior points.

(r, z) Set A Set B Set C Exact
(0.25, 0.25) 0.193720 0.173006 0.172138 0.171875
(0.50, 0.25) 0.745310 0.735069 0.734542 0.734375
(0.75, 0.25) 1.672804 1.671976 1.671919 1.671875
(0.25, 0.50) 0.090651 0.064348 0.062965 0.062500
(0.50, 0.50) 0.640126 0.626256 0.625321 0.625000
(0.75, 0.50) 1.565350 1.562901 1.562625 1.562500
(0.25, 0.75) −0.195026 −0.231369 −0.233598 −0.234375
(0.50, 0.75) 0.354515 0.330494 0.328720 0.328125
(0.75, 0.75) 1.278146 1.267007 1.265953 1.265625

Table 2. A comparison of the numerical and exact values of ur at selected

interior points.

(r, z) Set A Set B Set C Exact
(0.25, 0.25) 0.766878 0.765905 0.765715 0.765625
(0.50, 0.25) 1.533480 1.531916 1.531472 1.53125
(0.75, 0.25) 2.300714 2.298296 2.297356 2.296875
(0.25, 0.50) 0.815198 0.813377 0.812794 0.812500
(0.50, 0.50) 1.629552 1.626573 1.625527 1.625000
(0.75, 0.50) 2.443177 2.439522 2.438174 2.437500
(0.25, 0.75) 0.893627 0.891704 0.891000 0.890625
(0.50, 0.75) 1.786779 1.783241 1.781937 1.781250
(0.75, 0.75) 2.678461 2.674354 2.672723 2.671875
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Numerical values of T , ur and uz at selected interior points are compared

with the exact solution of the problem in Tables 1, 2 and 3 respectively. The

exact solution is given by

T (r, z) = 3r2 − z3, ur(r, z) = 3r + rz2, uz(r, z) = 4z − 2r2.

From the tables, it is obvious that the accuracy of the numerical values

improves when more boundary elements and interior collocation points are

employed in the boundary element calculation.

Table 3. A comparison of the numerical and exact values of uz at selected

interior points.

(r, z) Set A Set B Set C Exact
(0.25, 0.25) 0.871572 0.874477 0.874852 0.875000
(0.50, 0.25) 0.496347 0.499169 0.499743 0.500000
(0.75, 0.25) −0.129133 −0.126418 −0.125473 −0.125000
(0.25, 0.50) 1.876029 1.876178 1.875435 1.875000
(0.50, 0.50) 1.500802 1.500796 1.500297 1.500000
(0.75, 0.50) 0.874228 0.874962 0.875001 0.875000
(0.25, 0.75) 2.880382 2.877597 2.875904 2.875000
(0.50, 0.75) 2.505703 2.502466 2.500857 2.500000
(0.75, 0.75) 1.878916 1.876782 1.875625 1.875000
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Figure 2. A graphical comparison of the numerical and exact traction

component tr on the boundary 0 < r < 1, z = 1.

In the particular problem under consideration here, the tractions are not

known a priori on the boundary. In Figures 2 and 3, the numerically com-

puted traction components tr and tz on the boundary z = 1 are plotted

against r (for 0 < r < 1) and compared with the values of tr and tz cal-

culated from the exact solution of the problem. The numerical values of tr

and tz from Set A (that is, from the boundary element computation using

(N,L) = (30, 9)) are rather inaccurate at boundary points very close to the

sharp corner point (r, z) = (1, 1). As shown in the plots for Sets B and C,

the numerical values of tr and tz at boundary points near (r, z) = (1, 1),

however, converge to the exact values when more elements and interior col-

location points are used in the numerical calculation.
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Figure 3. A graphical comparison of the numerical and exact traction

component tz on the boundary 0 < r < 1, z = 1.

Problem 2. Consider a hollow cylindrical solid whose thermoelastic prop-

erties are radially graded. More speciÞcally, the solid occupies the region

r1 < r < r2, 0 < z < z1, and thermal conductivity κ, the stress-temperature

coecient β, the shear modulus µ, the Poisson�s ratio ν are chosen as κ = κ0r,

β = β0r, µ = µ0r and ν = 1/10 respectively. The reference temperature is

taken to be given by T0 = 0 and the internal heat generation and body force

terms by Q(r) = 0, Fr(r) = 0 and Fz(r) = 0.

The boundary conditions are given by

T (r1, z) = T1
T (r2, z) = T2
tr(r1, z) = 0
tr(r2, z) = 0
tz(r1, z) = 0
tz(r2, z) = 0





for 0 < z < z1
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and

∂T

∂z

¯̄
¯̄
z=0

= 0

∂T

∂z

¯̄
¯̄
z=1

= 0

tr(r, z1) = 0
tr(r, z2) = 0
uz(r, z1) = 0
uz(r, z2) = 0





for r1 < r < r2,

where T1 and T2 are given constants.

The temperature and the other thermoelastic Þelds vary with r only. The

problem may be solved analytically. The exact solution is given by

T (r, z) = T1 + (T2 − T1)
(r1 − r)r2
(r1 − r2)r

,

ur(r, z) = C2r
− 1
2
(1−

√
5−14ν+9ν2
−1+ν ) + C1r

−1
2
(1+

√
5−14ν+9ν2
−1+ν )

+
rβ0(ν − 1

2
)

µ0
(
r2(T2 − T1)
r1 − r2

− T1),

uz(r, z) = 0,

where C1 and C2 are constants determining by using the boundary conditions

σrr(r1, z) = 0 and σrr(r2, z) = 0.

The boundary element solution in Section 6 will be checked here against

the exact solution above for the particular case in which r1 = 1, r2 = 2,

z1 = 1, T1 = 1, T2 = 2, κ0 = 1, β0 = 1 and µ0 = 1. For this particular case,

the constants C1 and C2 are given by C1 = −0.758832 and C2 = 0.256974.
The boundary Γ consists of four straight lines. For the boundary element

solution, each straight line is discretized intoN0 elements, so the total number

of element is N = 4N0. The interior collocation points are chosen at point

(1+ i/(L0+1), j/(L0+1)) for i, j = 1, 2, · · · , L0, therefore, the total number

22



of interior collocation points is given by L = L20. To obtain some numerical

results, N0 = 40 and L0 = 15 are used.

Table 4. A comparison of the numerical and exact values of T, ur and uz

at selected interior points.

(r, z) Numerical (T, ur, uz) Exact (T, ur, uz)
(1.25, 0.25) (1.39990, 0.82146, 0.00009) (1.40000, 0.81992, 0)
(1.50, 0.25) (1.66664, 0.98261, 0.00006) (1.66667, 0.98108, 0)
(1.75, 0.25) (1.85717, 1.16617, 0.00004) (1.85714, 1.16460, 0)
(1.25, 0.50) (1.39995, 0.82148, 0.00000) (1.40000, 0.81992, 0)
(1.50, 0.50) (1.66664, 0.98262, 0.00000) (1.66667, 0.98108, 0)
(1.75, 0.50) (1.85715, 1.16618, 0.00000) (1.85714, 1.16460, 0)
(1.25, 0.75) (1.39990, 0.82146,−0.00009) (1.40000, 0.81992, 0)
(1.50, 0.75) (1.66664, 0.98261,−0.00006) (1.66667, 0.98108, 0)
(1.75, 0.75) (1.85717, 1.16617,−0.00004) (1.85714, 1.16460, 0)

In Table 4, the numerical values of the temperature T and the displace-

ment components ur and uz are obtained and compared with the values

computed from the exact solution. There is a good agreement between the

numerical and exact values.

Figure 4 shows plots of the numerical and the exact temperature against

r for 1 < r < 2 at z = 0.50. (Note that the temperature is independent of

z.) The two plots for the numerical and the exact temperature are visually

almost indistinguishable.
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Figure 4. Plots of the numerical and the exact temperature against r for

0 < r < 1 at z = 0.50.

The interior thermoelastic stresses σrr, σrz,σzz and σθθ can be computed

numerically using (4) and (33). For the particular problem here, σrz vanishes

throughout the solution domain since the displacement components ur and

uz are functions of r alone. Plots of the numerically computed and the exact

σrr,σzz and σθθ against r for 1 < r < 2 at z = 0.50 are given in Figure 5.

The numerical and the exact values of the thermoelastic stresses are in good

agreement with each other.
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Figure 5. Plots of the numerical and the exact thermoelastic stresses

against r for 0 < r < 1 at z = 0.50.

Problem 3. Consider a solid cylinder which occupies the region 0 < r <

H, 0 < z < H, where H is a positive constant. The thermal conductiv-

ity, shear modulus and stress-temperature coecient of the cylinder vary

exponentially along the z axis as given respectively by κ = κ0 exp(−hz),
µ = µ0 exp(−hz) and β = β0 exp(−hz), where κ0, µ0, β0 and h are positive
constants.

There is no heat generation and body forces in the cylinder, that is,

Q = 0 and Fr = Fz = 0. A uniform heat ßux q0 enters the solid through the

part of the boundary where 0 < r < H/2, z = 0. The end of the cylinder

at z = H is maintained at uniform temperature T0 (that is, the constant

reference temperature at which the body does not experience any thermally

induced stress) and is attached to a rigid wall (so that ur = uz = 0 on

0 < r < H, z = h). The parts of the boundary given by H/2 < r < H, z = 0

and 0 < z < H, r = H are thermally insulated. Apart from the Þxed end at

z = H, the boundary of the cylinder is free of traction.
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For this problem, if β0 = 0, the cylinder is undeformed, that is, the de-

formation of the cylinder is purely due to thermal eects. Taking ν = 0.3,

hH = 0.50 and (q0H)/(κ0T0) = 0.30, we examine the eects of varying

β0T0/µ0 on the displacements and stresses on dierent parts of the bound-

ary of the cylinder. For the dual-reciprocity boundary element method, the

boundary of the cylinder is discretized into 270 equal length element and 361

well distributed interior collocation points are chosen.

The displacement components ur and uz are not known a priori at the

end of the cylinder at z = 0. In Figures 6 and 7, ur/H and uz/H at z = 0

are plotted against r/H (0 < r/H < 1) for selected values of β0T0/µ0. From

the Þgures, it is obvious that increasing β0T0/µ0 has the eect of increasing

the magnitudes of ur/H and uz/H. The eect of β0T0/µ0 on ur appears to

be more pronounced at larger distance from the center (0, 0) of the cylinder

while the eect on uz seems to be greater nearer to (0, 0).

Figure 6. Plots of ur/H at z = 0 against r/H for selected values of β0T0/µ0.
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Figure 7. Plots of uz/H at z = 0 against r/H for selected values of β0T0/µ0.

Figure 8. Plots of ur/H at r = 1 against z/H for selected values of β0T0/µ0.
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Figure 9. Plots of uz/H at r = 1 against z/H for selected values of β0T0/µ0.

Plots of ur and uz on the traction free surface r = 1 against z/H (0 <

z/H < 1) are given in Figures 8 and 9 for selected values of β0T0/µ0. As

before, the magnitudes of ur/H and uz/H increase with increasing β0T0/µ0.

The displacement component ur decreases in magnitude as z/H increases

and the component uz changes in sign near z/H = 0.40. As expected, both

components ur and uz are extremely small near the Þxed end of the cylinder

at z = H.
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Figure 10. Plots of σrr/µ0 on z/H = 0 against r/H for selected values of

β0T0/µ0.

For selected values of β0T0/µ0,the radial stress σrr/µ0 and the hoop stress

σθθ/µ0 on z/H = 0 are plotted against r/H (0 < r/H < 1) in Figures 10

and 11 respectively, and the longitudinal stress σzz/µ0 and the hoop stress

σzz/µ0 on r/H = 1 are plotted against z/H (0 < z/H < 1) in Figures 12

and 13 respectively. Increasing β0T0/µ0 appears to increase the magnitudes

of the stresses. At the end z/H = 0 of the cylinder, the radial stress σrr/µ0

has larger magnitude at points nearer to the center where heating occurs.

The magnitude of the longitudinal stress σzz/µ0 on the clylindrical surface

r/H = 1 as z/H gets closer to 1, that is, the magnitude of the stress is larger

at points nearer to the Þxed end of the cylinder.
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Figure 11. Plots of σθθ/µ0 on z/H = 0 against r/H for selected values of

β0T0/µ0.

Figure 12. Plots of σzz/µ0 on r/H = 1 against z/H for selected values of

β0T0/µ0.
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Figure 13. Plots of σθθ/µ0 on r/H = 1 against z/H for selected values of

β0T0/µ0.

8 Summary and conclusion

We have implemented a dual-reciprocity boundary element procedure for

calculating axisymmetric thermoelastostatic Þelds in nonhomogeneous solids

with material properties that vary continuously from point to point in space.

New interpolating functions that are bounded but in relatively simple ele-

mentary forms are used in the dual-reciprocity method for treating domain

integrals which appear in the integral formulation of the thermoelastic prob-

lem under consideration.

Numerical results for speciÞc test problems with known analytical closed-

form solutions indicate that the temperature, displacement and stress Þelds

can be accurately computed by the proposed dual-reciprocity boundary ele-

ment approach.
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Appendix A

The functions G0(x;x0) and G1(x;x0;n(x)) in (7) are given by

G0(x;x0) = −
K(m(x;x0))

π
p
a(x;x0) + b(r; r0)

,

G1(x;x0;n(x)) = −
1

π
p
a(x;x0) + b(r; r0)

× {nr(x)
2r

[
r20 − r2 + (z0 − z)2
a(x;x0)− b(r; r0)

E(m(x;x0))

−K(m(x;x0))]

+ nz(x)
z0 − z

a(x;x0)− b(r; r0)
E(m(x;x0))},

where K(m) and E(m) being the complete elliptic integrals of the Þrst and

second kind respectively and

m(x;x0) =
2b(r; r0)

a(x;x0) + b(r; r0)
,

a(x;x0) = r
2
0 + r

2 + (z0 − z)2, b(r; r0) = 2rr0.

Appendix B

The functions ΦIJ(x;x0) and ΨIJ(x;x0;n(x)) in (9) are given by

Φrr(x;x0) =
1

8π(1− ν)r0C(x;x0)
{((3− 4ν)(r20 + r2)

+4(1− ν)(z0 − z)2)K(m(x;x0))
+(−[C(x;x0)]2(3− 4ν)

−(z0 − z)
2

D(x;x0)
A(x;x0))E(m(x;x0))},

Φrz(x;x0) =
(z0 − z)

8π(1− ν)C(x;x0)
{−K(m(x;x0))

+
B(x;x0)

D(x;x0)
E(m(x;x0))},
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Φzr(x;x0) =
r(z0 − z)

8π(1− ν)r0C(x;x0)
{K(m(x;x0))

−A(x;x0)− 2r
2
0

D(x;x0)
E(m(x;x0))},

Φzz(x;x0) =
r

4π(1− ν)C(x;x0)
{(3− 4ν)K(m(x;x0))

+
(z0 − z)2
D(x;x0)

E(m(x;x0))},

Ψrr(x;x0;n(x)) = − r

2π(1− ν)
(Λ1(x;x0)nr(x) + Λ2(x;x0)nz(x)),

Ψrz(x;x0;n(x)) = − r

2π(1− ν)
(Λ3(x;x0)nr(x) + Λ4(x;x0)nz(x)),

Ψzr(x;x0;n(x)) = − r

2π(1− ν)
(Λ5(x;x0)nr(x) + Λ6(x;x0)nz(x)),

Ψzz(x;x0;n(x)) = − r

2π(1− ν)
(Λ7(x;x0)nr(x) + Λ8(x;x0)nz(x)),

where K(m) and E(m) being the complete elliptic integrals of the Þrst and

second kind respectively and

Λ1(x;x0) =
1

2r0r2C(x;x0)
{(1− 2ν)(A(x;x0) +H(x;x0))

− 1

[C(x;x0)]
2D(x;x0)

(−2(z0 − z)6 + (−5r20 − 4r2)(z0 − z)4

+(5r20r
2 − 4r40 − r4)(z0 − z)2 + (r2 − r20)3)}K(m(x;x0))

+
1

2r0r2C(x;x0)D(x;x0)
{−(1− 2ν)(2A(x;x0)B(x;x0)

+3r2(A(x;x0)− 2r20))

+
1

[C(x;x0)]
2D(x;x0)

(−2(z0 − z)8 + (−6r2 − 7r20)(z0 − z)6

+(−9r40 + 2r20r2 − 5r4)(z0 − z)4

+(−5r60 + 10r40r2 − 5r20r4)(z0 − z)2

+(−r80 + 2r60r2 − 2r20r4 + r8))}E(m(x;x0)),
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Λ2(x;x0) = Λ5(x;x0) =
z0 − z

2r0rC(x;x0)
{(1− 2ν)

+
1

[C(x;x0)]
2D(x;x0)

((z0 − z)2(3A(x;x0)− 2(z0 − z)2)

+2(r20 − r2)2)}K(m(x;x0))

+
z0 − z

2r0rC(x;x0)D(x;x0)
{−(1− 2ν)A(x;x0)

− 1

[C(x;x0)]
2D(x;x0)

((z0 − z)4(4A(x;x0)− 3(z0 − z)2)

+(r20 − r2)2(2A(x;x0) + 3(z0 − z)2))}E(m(x;x0)),

Λ3(x;x0) = − z0 − z
2r2[C(x;x0)]

3D(x;x0)
(2r2(r2 − r20 + 2(z0 − z)2)

+A(x;x0)B(x;x0))K(m(x;x0))

+
z0 − z

C(x;x0)D(x;x0)
{(1− 2ν)− 1

2r2[C(x;x0)]
2D(x;x0)

×(−[H(x;x0)]3 + r2(z0 − z)2(2r20 + r2 − 5(z0 − z)2)
+r2(7r40 − 11r20r2 + 5r4))}E(m(x;x0)),

Λ4(x;x0) = Λ7(x;x0) =
1

2rC(x;x0)
{(1− 2ν)

+
(z0 − z)2

[C(x;x0)]
2D(x;x0)

B(x;x0)}K(m(x;x0))

+
1

2rC(x;x0)D(x;x0)
{−(1− 2ν)B(x;x0)

+
(z0 − z)2

[C(x;x0)]
2D(x;x0)

(−A(x;x0)B(x;x0)

+6r2(A(x;x0)− 2r20))}E(m(x;x0)),
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Λ6(x;x0) =
1

2r0C(x;x0)
{(1− 2ν)

− (z0 − z)2
[C(x;x0)]

2D(x;x0)
(A(x;x0)− 2r20)}K(m(x;x0))

+
1

2r0C(x;x0)D(x;x0)
{−(1− 2ν)(A(x;x0)− 2r20)

+
(z0 − z)2

[C(x;x0)]
2D(x;x0)

(A(x;x0)(A(x;x0)− 2r20)

−6r20B(x;x0))}E(m(x;x0)),

Λ8(x;x0) =
(z0 − z)3

[C(x;x0)]
3D(x;x0)

K(m(x;x0)) +
(z0 − z)

C(x;x0)D(x;x0)

×{−(1− 2ν)− 4(z0 − z)2
[C(x;x0)]

2D(x;x0)
A(x;x0)}E(m(x;x0)),

A(x;x0) = r20 + r
2 + (z0 − z)2, B(x;x0) = r20 − r2 + (z0 − z)2,

C(x;x0) =
p
(r0 + r)2 + (z0 − z)2, D(x;x0) = (r0 − r)2 + (z0 − z)2,

H(x;x0) = r20 + (z0 − z)2.

Appendix C

The functions φIJ(x;y) and τ IJ(x;y;n(x)) constructed using (20), (24)

and (25) are given by

φrr(x;y) = −{(4
3
− ρ

3r
)σ(x;y) + (

4

3
+

ρ

3r
)σ(x;−ρ, ζ)

−2
3
(z − z0)2[σ(0, z;y)]−1 −

2

3
σ(0, z;y)

− 1

9r2
[[σ(x;y)]3 + [σ(x;−ρ, ζ)]3 − 2[σ(0, z;y)]3]

+
1

1− 2ν [(
2

3
− ρ

3r
)σ(x;y) + (

2

3
+

ρ

3r
)σ(x;−ρ, ζ)

+
1

3
(r − ρ)2[σ(x;y)]−1 +

1

3
(r + ρ)2[σ(x;−ρ, ζ)]−1

− 1

9r2
[[σ(x;y)]3 + [σ(x;−ρ, ζ)]3 − 2[σ(0, z;y)]3]},
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φzr(x;y) = − (z − ζ)

3(1− 2ν){(r − ρ)[σ(x;y)]−1 + (r + ρ)[σ(x;−ρ, ζ)]−1

+
1

r
[σ(x;y) + σ(x;−ρ, ζ)− 2σ(0, z;y)]},

φrz(x;y) = −
(z − ζ)

3(1− 2ν){(r − ρ)[σ(x;y)]−1 + (r + ρ)[σ(x;−ρ, ζ)]−1},

φzz(x;y) = −{(4
3
− ρ

3r
)σ(x;y) + (

4

3
+

ρ

3r
)σ(x;−ρ, ζ)

+
1

3(1− 2ν) [(z − ζ)2[σ(x;y)]−1 + (z − ζ)2[σ(x;−ρ, ζ)]−1

+σ(x;y) + σ(x;−ρ, ζ)]},

τ rr(x;y;n(x)) = 2nr(x){
1− ν

3(1− 2ν) [(r − ρ)σ(x;y) + (r + ρ)σ(x;−ρ, ζ)]

+
ν

9(1− 2ν)r [[σ(x;y)]
3 + [σ(x;−ρ, ζ)]3 − 2[σ(0, z;y)]3]}

+nz(x){
(z − ζ)

3
[σ(x;y) + σ(x;−ρ, ζ)− 2σ(0, z;y)]},

τ zr(x;y;n(x)) = nr(x){
(z − ζ)

3
[σ(x;y) + σ(x;−ρ, ζ)− 2σ(0, z;y)]}

+2nz(x){
ν

3(1− 2ν) [(r − ρ)σ(x;y) + (r + ρ)σ(x;−ρ, ζ)]

+
ν

9(1− 2ν)r [[σ(x;y)]
3 + [σ(x;−ρ, ζ)]3 − 2[σ(0, z;y)]3]},

τ rz(x;y;n(x)) =
2nr(x)ν(z − ζ)

3(1− 2ν) [σ(x;y) + σ(x;−ρ, ζ)]

+
nz(x)

3
[(r − ρ)σ(x;y) + (r + ρ)σ(x;−ρ, ζ)],

τ zz(x;y;n(x)) =
nr(x)

3
[(r − ρ)σ(x;y) + (r + ρ)σ(x;−ρ, ζ)]

+
2nz(x)(1− ν)(z − ζ)

3(1− 2ν) [σ(x;y) + σ(x;−ρ, ζ)].
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