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1 Introduction

The boundary element method is one of the earliest mesh reduction numer-

ical techniques for solving boundary value problems. It requires only the

boundary of the solution domain to be discretized into elements. During the

last few decades, the method has been used to solve a wide range of problems

in engineering and physical sciences. Some examples of works on the bound-

ary element method are Ang and Clements [2] (fracture mechanics), Ang et

al [3] (nonhomogeneous media), Brebbia and Dominguez [4] (potential prob-

lems), Brebbia and Nardini [5] (dual-reciprocity boundary element method),

Chen and Hong [9] (dual boundary element formulation), Clements et al [7]

(anisotropic elasticity), Hong and Chen [11] (hypersingular formulation), Ooi

et al [13] (bioheat analysis) and Rizzo [15] (isotropic elasticity).

The Cauchy integral formula in the theory of complex functions may be

applied to derive boundary element procedures for plane problems. Such

a complex variable boundary element approach for solving numerically the

two-dimensional Laplace’s equation was apparently introduced by Hromadka

and Lai [12]. Park and Ang [14] extended the method to an elliptic partial

differential equation with variable coefficients. The treatment of the flux

boundary conditions in [14], however, differed from that in [12]. In Park and

Ang [14] as well as in Chen and Chen [8], the flux boundary conditions were

approximated by discretizing a differentiated form of the Cauchy integral

formula.

Recently, Dobroskok and Linkov [10] devised a complex variable bound-

ary element method for solving numerically a two-dimensional transient dif-

fusion problem. The time derivative of the unknown function in the diffusion

equation was approximated using radial basis functions to reformulate the

problem as one governed by the two-dimensional Laplace’s equation. The

Laplace’s equation was then solved by constructing numerically a suitable

complex function. A similar complex variable boundary element technique
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was given by Ang [1] for the numerical solution of the partial differential

equation governing the two-dimensional steady-state heat conduction in a

nonhomogeneous anisotropic solid.

In this paper, the complex variable boundary element approach is further

developed to solve the problem of axisymmetric steady-state heat conduc-

tion in a nonhomogeneous isotropic solid. Guided by the analysis in [1] and

[10], we use suitable interpolating functions to approximate certain terms

in the governing partial differential equation, in order to reduce the prob-

lem to constructing an appropriate analytic complex function. The complex

variable boundary element procedure presented here should provide a useful

and interesting alternative to the axisymmetric boundary integral method

in Brebbia et al [6] and Yun and Ang [16], which requires the computation

of a rather complicated fundamental solution that is expressed in terms of

complete elliptic integrals of the first and second kind. To assess the validity

and the accuracy of the numerical procedure presented here, it is applied to

solve some specific cases of the axisymmetric heat conduction problem.

2 An axisymmetric heat conduction problem

Consider a thermally isotropic solid occupying the three-dimensional region

R. If T is the steady-state temperature inside the solid, then the conservation

of energy and the classical Fourier’s law of heat conduction require that the

temperature to satisfy the partial differential equation

∇ • (κ∇T ) +Q = 0 in R, (1)

where ∇ is the gradient (nabla) operator, • denotes the dot product, κ is the
thermal conductivity and Q is the internal heat source generation rate.

Referring to a Cartesian coordinate system denoted by Oxyz, we assume

that the geometry of the region R is symmetrical about the z-axis, that is,

the boundary of R can be obtained by rotating a curve on the Oxz plane
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by an angle of 360o about the z-axis. Moreover, if r and θ denote the polar

coodinates defined by x = r cos θ and y = r sin θ, the temperature and the

internal heat source generation rate are assumed to be independent of θ, given

by T (r, z) and Q(r, z) respectively. The thermal conductivity is functionally

graded in the radial and axial directions of the solid of revolution, that is,

κ = g(r, z), (2)

where g is a suitably given function that is positive in R.

Of interest here is the numerical solution of (1) together with (2) subject

to the boundary conditions

T (r, z) = f1(r, z) on Ξ1,

g(r, z)
∂T

∂n
= f2(r, z) + f3(r, z)T (r, z) on Ξ2, (3)

where Ξ1 and Ξ2 are non-intersecting surfaces such that Ξ1 ∪ Ξ2 = Ξ, Ξ is

the (surface) boundary of the region R, ∂T/∂n denotes the outward normal

derivative of T on Ξ and f1(r, z), f2(r, z) and f3(r, z) are suitably given

functions of r and z.

If we let

T (r, z) =
1p
g(r, z)

w(r, z), (4)

then (1) can be written as

∂2w

∂r2
+

∂2w

∂z2
= − Q(r, z)p

g(r, z)
+B(r, z)w − 1

r

∂w

∂r
, (5)

where

B(r, z) =
1p
g(r, z)

∇2(
p
g(r, z)), (6)
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The function g is assumed to be such that B(r, z) is bounded in the solution

domain R.

If the region R and its surface boundary Ξ are obtained by rotating

respectively the two-dimensional region Ω and the curve C on the rz plane

as sketched in Figure 1, then the boundary value problem defined by (1)

together with (2) and (3) can be reformulated as one that requires solving

(5) subject to

w(r, z) =
p
g(r, z)f1(r, z) on C1,

∂

∂n
[w(r, z)] =

1

g(r, z)
{1
2

∂

∂n
[g(r, z)] + f3(r, z)}w(r, z)

+
1p
g(r, z)

f2(r, z) on C2, (7)

where C1 and C2 denote the curves (on the rz plane) that can be rotated

by an angle of 360o about the z-axis to generate the surfaces Ξ1 and Ξ2

respectively, and

∂

∂n
[w(r, z)] = nr(r, z)

∂

∂r
[w(r, z)] + nz(r, z)

∂

∂z
[w(r, z)],

∂

∂n
[g(r, z)] = nr(r, z)

∂

∂r
[g(r, z)] + nz(r, z)

∂

∂z
[g(r, z)], (8)

with nr(r, z) and nz(r, z) being the components of the outward unit normal

vector on C at the point (r, z) in the r and z direction respectively. Note

that Ξ1 and Ξ2 are the surfaces mentioned in (3) and C1 and C2 are non-

intersecting curves on the Orz plane such that C1 ∪ C2 = C.
In Figure 1, C is sketched as an open curve with its endpoints A0 and

A1 on the z axis. In general, C may possibly be a closed curve, as in, for

example, the case in which the solution domain R is a hollow cylindrical

region.

5



Figure 1. A geometrical sketch of the problem on the rz plane.

3 Interpolating function approximation and

complex variable formulation

To approximate the right hand side of (5) using a meshfree approximation,

we choose P well spaced out collocation points in Ω ∪ C. (The collocation
points may lie on r = 0 if the solution domain R contains Cartesian points

(x, y, z) such that x2 + y2 = 0.) The collocation points in the axisymmetric

coordinates (r, z) are denoted by (ρ(1), ζ(1)), (ρ(2), ζ (2)), · · · , (ρ(P−1), ζ(P−1))
and (ρ(P ), ζ(P )). We make the approximation

− Q(r, z)p
g(r, z)

+B(r, z)w − 1
r

∂w

∂r
'

PX
p=1

α(p)σ
(p)
1 (r, z), (9)

where α(p) is a constant coefficient and the interpolating function σ
(p)
1 (r, z)

centered about (ρ(p), ζ(p)) is taken here to be of the form

σ
(p)
1 (r, z) =

¡
[r − ρ(p)]2 + [z − ζ(p)]2

¢1/2
+
¡
[r + ρ(p)]2 + [z − ζ(p)]2

¢1/2
(10)
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As in Yun and Ang [16], we take into consideration the distance between (r, z)

and the virtual mirror image of the collocation point (ρ(p), ζ(p)) about the z

axis (that is, the point (−ρ(p), ζ(p))) in forming the interpolating function in
(10), so that the function w0 in (14) below is such that ∂w0/∂r behaves as

O(r) for small r. Note that the choice of the interpolating function in (10)

is not unique.

We can let (r, z) in (9) be given by (ρ(m), ζ(m)) for m = 1, 2, · · · , P, to set
up a system of linear algebraic equations in α(p). The system can be inverted

to obtain

α(p) =
PX
m=1

{− Q(m)p
g(m)

+B(m)w(m) − (1
r

∂w

∂r
)

¯̄̄̄
(r,z)=(ρ(m),ζ(m))

}χ(mp), (11)

where w(m) = w(ρ(m), ζ (m)), B(m) = B(ρ(m), ζ(m)), Q(m) = Q(ρ(m), ζ(m)),

g(m) = g(ρ(m), ζ (m)) and χ(mp) are constants defined by

PX
m=1

σ
(p)
1 (ρ

(m), ζ(m))χ(mr) =

½
1 if p = r,
0 if p 6= r. (12)

Note that the value of (1/r)∂w/∂r at (r, z) = (ρ(m), ζ(m)) must be interpreted

in a limiting sense if ρ(m) = 0, that is,

(
1

r

∂w

∂r
)

¯̄̄̄
(r,z)=(ρ(m),ζ(m))

= lim
r→0+

(
1

r

∂w

∂r
)

¯̄̄̄
z=ζ(m)

if ρ(m) = 0. (13)

Guided by the analysis in Ang [1] and Dobroskok and Linkov [10], for the

solution of (5), we write

w(r, z) = w0(r, z) + w1(r, z) (14)

and choose w0(r, z) to satisfy

∂2w0
∂r2

+
∂2w0
∂z2

= − Q(r, z)p
g(r, z)

+B(r, z)w − 1
r

∂w

∂r
, (15)
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so that w1(r, z) is to be obtained by solving

∂2w1
∂r2

+
∂2w1
∂z2

= 0. (16)

From (9), (10) and (11), an approximate solution of (15) may be given

by

w0(r, z) '
PX
m=1

D(m)(r, z){− Q(m)p
g(m)

+B(m)w(m)

− (1
r

∂w

∂r
)

¯̄̄̄
(r,z)=(ρ(m),ζ(m))

}, (17)

where

D(m)(r, z) =
PX
p=1

χ(mp)τ (p)(r, z), (18)

and

τ (p)(r, z) =
1

9
([r − ρ(p)]2 + [z − ζ(p)]2)3/2

+
1

9
([r + ρ(p)]2 + [z − ζ(p)]2)3/2. (19)

To work out a suitable formula for approximating ∂w/∂r at (r, z) =

(ρ(m), ζ(m)), take

w(r, z) '
PX
p=1

β(p)σ
(p)
2 (r, z), (20)

where

σ
(p)
2 (r, z) =

¡
[r − ρ(p)]2 + [z − ζ(p)]2

¢5/2
+
¡
[r + ρ(p)]2 + [z − ζ(p)]2

¢5/2
(21)
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If we let (r, z) in (20) be given by (ρ(m), ζ(m)) for m = 1, 2, · · · , P to set
up a system of linear algebraic equations in β(p), the system can be inverted

to obtain

β(p) =
PX
m=1

η(mp)w(m), (22)

where

PX
m=1

σ
(p)
2 (ρ

(m), ζ(m))η(mr) =

½
1 if p = r,
0 if p 6= r. (23)

From (20) and (22), we obtain the approximation

1

r

∂w

∂r
'

PX
n=1

L(n)(r, z)w(n), (24)

where

L(n)(r, z) =
PX
p=1

η(np)
1

r

∂

∂r
(σ(p)2 (r, z)) for r > 0. (25)

Because of the choice of σ
(p)
2 (r, z) in (21), the function L

(n)(r, z) is bounded

in the entire region r > 0 and it tends to a finite value as r→ 0+. The com-

plex variable boundary element method presented in Section 4 below requires

the evaluation of L(n)(r, z) at r = 0, if the solution domain R contains points

(x, y, z) such that x2 + y2 = 0. We define L(n)(0, z) as the limit of L(n)(r, z)

as r→ 0+. More specifically,

L(n)(r, 0) =

PX
p=1

10η(np){3[ρ(p)]2([ρ(p)]2 + [z − ζ (p)]2)1/2

+ ([ρ(p)]2 + [z − ζ(p)]2)3/2}. (26)

Also, note that the choice of σ
(p)
2 (r, z) in (21) ensures that w(r, z) as ap-

proximated in (20) is sufficiently smooth to give a good approximation of
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(1/r)∂w/∂r at or near r = 0. For w(r, z) given by particular functions,

numerical experiments indicate that the approximation of (1/r)∂w/∂r in

(24) near r = 0 is quite poor in accuracy if we replace σ
(p)
2 (r, z) in (21)

by less smooth interpolating functions such as
¡
[r − ρ(p)]2 + [z − ζ(p)]2

¢3/2
+¡

[r + ρ(p)]2 + [z − ζ(p)]2
¢3/2

.

With (24), we find that (17) can be rewritten as

w0(r, z) '
PX
m=1

D(m)(r, z){− Q(m)p
g(m)

+B(m)w(m)

−
PX
n=1

L(n)(ρ(m), ζ(m))w(n)}. (27)

The general solution of (16) is given by

w1(r, z) = Re{F (z + ir)}, (28)

where i =
√−1 and F (z+ir) is an arbitrary complex function that is analytic

in the region Ω on the rz plane.

The boundary condition in (7) can be rewritten as

w(r, z) = p1(r, z) for (r, z) ∈ C1,
PX
m=1

E(m)(r, z)w(m) + p3(r, z) Re{F (z + ir)}

+Re{[nz(r, z) + inr(r, z)]F 0(z + ir)}
= p2(r, z) for (r, z) ∈ C2, (29)

where the prime denotes differentiation with respect to the relevant argument
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and

p1(r, z) =
p
g(r, z)f1(r, z),

p2(r, z) =
f2(r, z)p
g(r, z)

+
PX
m=1

{G(m)(r, z) +D(m)(r, z)p3(r, z)} Q
(m)p
g(m)

,

p3(r, z) = − 1

g(r, z)
{1
2

∂

∂n
[g(r, z)] + f3(r, z)},

E(m)(r, z) = B(m)[G(m)(r, z) +D(m)(r, z)p3(r, z)]

−
PX
n=1

[G(n)(r, z) +D(n)(r, z)p3(r, z)]L
(m)(ρ(n), ζ (n))

G(m)(r, z) = nr(r, z)
∂

∂r
[D(m)(r, z)] + nz(r, z)

∂

∂z
[D(m)(r, z)]. (30)

If we can construct F (z+ ir) that is analytic in Ω and find the constants

w(1), w(2), · · · , w(P−1) and w(P ) such that (29) is satisfied, then we have
approximately solved the boundary value problem stated in Section 2. The

required solution of the boundary value problem is then approximately given

by

T (r, z) ' 1p
g(r, z)

(
PX
m=1

D(m)(r, z){− Q(m)p
g(m)

+B(m)w(m)

−
PX
n=1

L(n)(ρ(m), ζ(m))w(n)}+Re{F (z + ir)}). (31)

4 Complex variable boundary element proce-

dure

According to the Cauchy integral formula, for (ρ, ζ) ∈ Ω, we can write

2πiF (ζ + iρ) =

I
(z,r)∈S

F (z + ir) d(z + ir)

(z − ζ + i[r − ρ])
, (32)

2πiF 0(ζ + iρ) =
I

(z,r)∈S

F (z + ir) d(z + ir)

(z − ζ + i[r − ρ])2
, (33)
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where S the curve enclosing the region Ω is assigned the anticlockwise direc-

tion.

For the region Ω as sketched in Figure 1 (where the curve C is not a

closed curve), the curve S in (32) and (33) comprises C and Γ, where Γ is

the portion of the z axis from the point A0 to A1. As ∂T/∂r is expected to

be 0 on Γ, we may impose the additional condition:

PX
m=1

E(m)(r, z)w(m) + p3(r, z) Re{F (z + ir)}

+Re{[nz(r, z) + inr(r, z)]F 0(z + ir)}
= p4(r, z) for (r, z) on Γ, (34)

where

p4(r, z) =
PX
m=1

{G(m)(r, z) +D(m)(r, z)p3(r, z)} Q
(m)p
g(m)

. (35)

Note that nz(r, z) = 0 and nr(r, z) = −1 for (r, z) ∈ Γ. Also, the definition of

function f3(r, z) in p3(r, z) is extended to include f3(r, z) = 0 for (r, z) ∈ Γ.

If C is a closed curve then S = C and (34) is not applicable.

We shall now apply (32) and (33) to devise a procedure for constructing

numerically F (z + ir) and finding w(1), w(2), · · · , w(P−1) and w(P ) to satisfy
the boundary conditions on S. The boundary conditions are given by (29)

and 34) (if the latter is applicable).

Put M closely packed points (r(1), z(1)), (r(2), z(2)), · · · , (r(M−1), z(M−1))
and (r(M), z(M)) on the curve S following the anticlockwise direction. Form =

1, 2, · · · ,M, define S(m) to be the straight line segment from (r(m), z(m)) to

(r(m+1), z(m+1)) (with (r(M+1), r(M+1)) = (r(1), z(1))). The first M collocation

points in (9) and (10) are chosen to be midpoints of S(1), S(2), · · · , S(M−1)
and S(M), that is,

(ρ(m), ζ(m)) =
1

2
(r(m) + r(m+1), z(m) + z(m+1)) for m = 1, 2, · · · ,M. (36)
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Another N collocation points given by (ρ(M+1), ζ (M+1)), (ρ(M+2), ζ(M+2)), · · · ,
(ρ(M+N−1), ζ(M+N−1)) and (ρ(M+N), ζ(M+N)) are chosen to lie in the interior

of Ω. (Thus, the total number of collocation points is given by P =M +N.)

Following Park and Ang [14], we make the approximation S ' S(1) ∪
S(2) ∪ · · · ∪ S(M) and discretize the Cauchy integral formula in (32) as

2πiF (Z) =
MX
k=1

(u(k) + iv(k))
£
λ(Z(k), Z(k+1), Z) + iθ(Z(k), Z(k+1), Z)

¤
for Z ∈ Ω, (37)

where Z = z + ir, Z(m) = z(m) + ir(m), u(k) and v(k) are real constants given

by u(k) + iv(k) = F (ζ(k) + iρ(k)) and λ and θ are real parameters defined by

λ(a, b, c) = ln |b− c|− ln |a− c|

θ(a, b, c) =

 Θ(a, b, c) if Θ(a, b, c) ∈ (−π, π]
Θ(a, b, c) + 2π if Θ(a, b, c) ∈ [−2π,−π]
Θ(a, b, c)− 2π if Θ(a, b, c) ∈ (π, 2π]

Θ(a, b, c) = Arg(b− c)−Arg(a− c). (38)

Note that Arg(z) denotes the principal argument of the complex number z. If

the solution domain Ω is convex in shape, θ(a, b, c) can be calculated directly

from

θ(a, b, c) = cos−1(
|b− c|2 + |a− c|2 − |b− a|2

2 |b− c| |a− c| ). (39)

If we let Z → bZ(k) = ζ(k) + iρ(k) (for each of the collocation points), the

imaginary part of (37) gives

u(k) =
1

2π

MX
m=1

{u(m)θ(Z(m), Z(m+1), bZ(k)) + v(m)λ(Z(m), Z(m+1), bZ(k))}
for k = 1, 2, · · · ,M +N. (40)

From (14), (27) and (28), we find that

u(k) =
M+NX
p=1

c(kp)w(p) + h(k), (41)
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where

c(kp) = −D(p)(ρ(k), ζ(k))B(p) +
M+NX
n=1

D(n)(ρ(k), ζ(k))L(p)(ρ(n), ζ(n))

+

½
1 if k = p
0 if k 6= p ,

h(k) =
M+NX
m=1

D(m)(ρ(k), ζ(k))
Q(m)p
g(m)

. (42)

Hence, (40) can be written as

M+NX
p=1

d(kp)w(p) + e(k) =
1

2π

MX
m=1

v(m)λ(Z(m), Z(m+1), bZ(k))
for k = 1, 2, · · · ,M +N, (43)

where

e(k) = h(k) − 1

2π

MX
m=1

h(m)θ(Z(m), Z(m+1), bZ(k)),
d(kp) = c(kp) − 1

2π

MX
m=1

c(mp)θ(Z(m), Z(m+1), bZ(k)). (44)

The first boundary condition in (29) can be written as

w(k) = p1(ρ
(k), ζ(k)) if T is specified on S(k). (45)

The formula in (33) can be used to derive

πiF 0( bZ(k)) = MX
m=1

(u(m) + iv(m))

× [q(Z(m), Z(m+1), bZ(k)) + ir(Z(m), Z(m+1), bZ(k))]
for k = 1, 2, · · · ,M, (46)

where q and r are real parameters defined by

q(a, b, c) + ir(a, b, c) = − 1

b− c +
1

a− c. (47)
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For further details, one may refer to Park and Ang [14].

With (46), the boundary condition on the second line of (29) and the one

in (34) can be written as

M+NX
p=1

T (kp)w(p) −
MX
m=1

Y (km)v(m) = X(k) if
∂T

∂n
is specified on S(k), (48)

where T (kp) are given by

T (kp) = E(p)(ρ(k), ζ(k)) + p3(ρ
(k), ζ(k))c(kp) +

MX
m=1

c(mp)R(km), (49)

the coefficients X(k) are defined by

X(k) = −p3(ρ(k), ζ(k))h(k) −
MX
m=1

h(m)R(km)

+

½
p2(ρ

(k), ζ(k)) if S(k) does not lie on r = 0
p4(ρ

(k), ζ(k)) if S(k) lies on r = 0
, (50)

the real parameters R(km) and Y (km) are defined by

R(km) + iY (km) =
1

π
(r(Z(m), Z(m+1), bZ(k))− iq(Z(m), Z(m+1), bZ(k)))

× [n(k)z + in(k)r ], (51)

and [n
(k)
r , n

(k)
z ] is the outward unit normal vector to C(k).

Equations (45) and (48) require the functions p1, p2 and p3 to be evaluated

at the midpoint (ρ(k), ζ(k)) of the boundary element S(k). According to (30),

p1, p2 and p3 are expressed in terms of f1, f2 and f3 given by the boundary

conditions in (7). Now, depending on the geometry of C, the midpoint

(ρ(k), ζ(k)) may or may not lie on the actual physical boundary C. If (ρ(k), ζ(k))

does not lie on C, then the value of fi (i = 1, 2, 3) needed in the calculation

of pi at (ρ
(k), ζ(k)) may be taken to be given by the average value of fi at the

endpoints of S(k), as the endpoints of every boundary element are chosen to

lie on C.
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We may solve (43) for k = 1, 2, 3, · · · , M +N, together with (45), (48)

and v(M) = 0, as a system of 2M + N linear algebraic equations for the

constants w(p) (p = 1, 2, · · · ,M +N) and v(m) (m = 1, 2, · · · ,M − 1). Note
that v(M) is set to zero to ensure that the imaginary part of the complex

function F (z + ir) is uniquely determined by the linear algebraic equations.

It is assumed that T is specified on some part of C so that the temperature

(hence the real part of F (z + ir)) is unique. The over-determined system of

linear algebraic equations may be solved by using the method of least squares.

Once the constants w(p) are found, u(k) can be computed from (41) and the

required complex function F (Z) is given by (37). Note that the value of the

solution T at the collocation point (ρ(k), ζ(k)) is given w(k)/
p
g(ρ(k), ζ(k)). The

value of T at any other point in the solution domain can be approximately

calculated from (31) and (37).

5 Specific problems

To assess its validity and accuracy, the complex variable boundary element

procedure in Section 4 are applied to solve some specific problems.

Problem 1. Here the governing partial differential equation given by (1)

and (2) with

g(r, z) = (r2 + 1)2,

Q(r, z) =
π2

16
(r2 + 1)2 cos(

π

4
z)− 12r4 − 16r2 − 4,

is to be solved in the domain as 0 < r < 1, 0 < z < 1, subject to

∂T

∂n

¯̄̄̄
z=0

= 0 for 0 < r < 1,

∂T

∂n

¯̄̄̄
z=1

= −π
√
2

8
for 0 < r < 1,

T (1, z) = 1 + cos(
π

4
z) for 0 < z < 1.
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As the solution domain contains points on r = 0, the complex variable bound-

ary element procedure requires the additional condition

∂T

∂n

¯̄̄̄
r=0

= 0 for 0 < z < 1.

In order to obtain some numerical results, the open boundary C and the

line segment r = 0, 0 < z < 1, are discretized into M equal length elements

and N well spaced out collocation points are chosen inside the domain. In

Table 1, three sets of numerical values of T are obtained by and compared

with the exact solution

T (r, z) = r2 + cos(
π

4
z)

at 9 selected interior collocation points. Sets A, B and C are calculated using

(M,N) = (20, 9), (M,N) = (40, 49) and (M,N) = (80, 361) respectively.

The average absolute errors of the numerical values of T at the selected

points are given in the last row of Table 1. It is obvious that there is a

significant improvement in the accuracy of the numerical values of T as M

and N increases. The convergence rate is as may be expected since only

constant elements are employed in the calculation here.

Table 1. Numerical and exact values of T at selected interior points.

(r, z) Set A Set B Set C Exact
(0.25, 0.25) 1.11764 1.05853 1.05241 1.04329
(0.25, 0.50) 1.25478 1.25205 1.24301 1.23079
(0.25, 0.75) 1.55035 1.57106 1.55906 1.54329
(0.50, 0.25) 1.01564 1.00502 0.99734 0.98638
(0.50, 0.50) 1.20628 1.19799 1.18763 1.17388
(0.50, 0.75) 1.52317 1.51689 1.50359 1.48638
(0.75, 0.25) 0.91183 0.90878 0.90275 0.89397
(0.75, 0.50) 1.11442 1.10213 1.09327 1.08147
(0.75, 0.75) 1.43680 1.42092 1.40921 1.39397

Average absolute error 0.03306 0.02100 0.01191 -
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Problem 2. The governing partial differential equation is given by (1) and

(2) with

g(r, z) = z + 1,

Q(r, z) = −4z − 6.

It is to be solved in a concave solution domain, specifically the one sketched in

Figure 2. Note that the curved part of the boundary of the solution domain

is defined by (r − 2)2 + (z − 2)2 = 1, 1 < r < 2, 1 < z < 2.

Figure 2. Solution domain for Problem 2.
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The boundary condtitions of the problem are

∂T

∂n

¯̄̄̄
z=2

= 2 for 0 < r < 1,

∂T (r, z)

∂n
= 2r(r − 2) + 2(z − 2)
for (r − 2)2 + (z − 2)2 = 1, 1 < r < 2, 1 < z < 2,

T (2, z) = 4 + 2z for 0 < z < 1,

T (r, 0) = r2 for 0 < r < 2.

For the purpose of obtaining some numerical results, the curved part of

the boundary is discretized into 2N0 elements, each of the straight parts

given by r = 0, 0 < z < 2 and z = 0, 0 < r < 2 into 2N0 elements, and

each of the remaining parts given by r = 2, 0 < z < 1 and z = 2, 0 < r < 1

into N0 elements. Thus, the total number of elements is given by M = 8N0.

The interior collocation points are chosen to be evenly distributed inside the

solution domain.

The normal derivative of the temperature (that is, the heat flux) is spec-

ified on the curve part of the boundary. We compare the numerically com-

puted temperature on the semi-circle with the exact temperature given by

T (r, z) = r2 + 2z.

Figure 3 gives plots of the numerical and exact temperature against the angle

θ = arctan(r/z) for (r − 2)2 + (z − 2)2 = 1, 1 < r < 2, 1 < z < 2. The two
plots obtained by using 192 boundary elements (N0 = 24) and 419 interior

collocation points are in good agreement with each other.
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Figure 3. Plots of numerical and exact temperature on the curved part of

the boundary.

The normal heat fux g∂T/∂n on r = 2, 0 < z < 1 is not known a

priori (from the boundary conditions of the problem). It can be calculated

directly from the complex variable boundary element solution. In Figure 4,

the numerically calculated normal heat flux on r = 2, 0 < z < 1 is plotted

against z and compared with the one computed from the exact solution.

The numerical and the exact values of the flux show good agreement with

each other, except at points near the sharp corners (2, 0) and (2, 1) where

there is a loss in the accuracy of the numerical calculation. Nevertheless, at

any fixed point near a sharp corner point, further calculations show that the

accuracy of the numerical flux can be improved significantly by employing

more elements near the corner.
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Figure 4. Plots of numerical and exact flux on r = 2, 0 < z < 1.

Problem 3. Take the solution domain to be 1 < r < 2, 1 < z < 2 (a hollow

cylinder) and the function g and Q in (1) and (2) to be given by

g(r, z) = r + z,

Q(r, z) = −1
r
− 1.

The governing partial differential equation is to be solved in the solution

domain subject to the boundary conditions

∂T

∂n

¯̄̄̄
r=1

= −1 for 1 < z < 2,
∂T

∂n

¯̄̄̄
r=2

=
1

2
for 1 < z < 2,

T (r, 1) = 1 + ln r for 1 < r < 2,

T (r, 2) = 2 + ln r for 1 < r < 2.

To obtain some numerical results, each side of the square solution domain

in the rz plane is discretized into M0 equal length elements. The interior
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collocation points are chosen as (1 + j/M0, 1 + k/M0) for j = 1, 2, · · · ,
M0 − 1 and k = 1, 2, · · · , M0− 1, so the total interior collocation points are
N = (M0− 1)2. In Table 2, numerical values of T at selected interior points,
which are obtained using M0 = 4, 12 and 24, are compared with the exact

solution

T (r, z) = z + ln r.

There is an obvious reduction in the average absolute error of the numerical

values at the selected interior points when the calculation is refined using

larger M0. The average absolute error for M0 = 4 is two and the half times

larger than that for M0 = 12, and the average absolute error for M0 = 12 is

twice as large as that for M0 = 24.

Table 2. Numerical and exact values of T at selected interior points.

(r, z) M0 = 4 M0 = 12 M0 = 24 Exact
(1.25, 1.25) 1.43249 1.46465 1.46904 1.47314
(1.25, 1.50) 1.63930 1.64889 1.65221 1.65547
(1.25, 1.75) 1.79015 1.80422 1.80694 1.80962
(1.50, 1.25) 1.71717 1.72041 1.72183 1.72314
(1.50, 1.50) 1.90420 1.90527 1.90535 1.90547
(1.50, 1.75) 2.05984 2.06070 2.06013 2.059616
(1.75, 1.25) 1.98831 1.97740 1.97520 1.973144
(1.75, 1.50) 2.16944 2.16182 2.15856 2.15547
(1.75, 1.75) 2.34167 2.31680 2.31312 2.30962

Average absolute error 1.61× 10−2 0.61× 10−2 0.31× 10−2 -

Problem 4. Consider a solid cylinder that occupies the region 0 < r < L,

0 < z < L, where L is a positive constant. The thermal conductivity κ of

the solid varies in the z direction as κ = κ0(1 + αz)2, where κ0 and α are

positive constants.
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It is assumed that there is no internal heat generation in the cylindrical

solid, that is, Q = 0. A portion of the cylindrical surface at z = 0 is subject

to heating with uniform flux q0, while the cylindrical surface at z = 1 has

heat removed by the convection process. The remaining cylindical surface is

thermally insulated. More precisely, the boundary conditions are given by

κ
∂T

∂n
= hamb(Tamb − T ) for 0 < r < L, z = L,

κ
∂T

∂n
= 0 for 0 < z < L, r = L,

κ
∂T

∂n
= 0 for L/2 < r < L, z = 0,

κ
∂T

∂n
= q0 for 0 < r < L/2, z = 0,

where hamb and Tamb are the ambient heat convection coefficient and ambient

temperature respectively.

To compute the non-dimensionalized temperature κ0(T −Tamb)/(q0L) us-
ing the complex variable boundary element method (CVBEM) here, the exte-

rior boundary of the cylindrical solid on the axisymmetric coordinate plane

is discretized into 3N0, and (N0 − 1)2 well distributed interior collocation
points are chosen. As the solution domain contains points on the z axis, the

CVBEM procedure requires the line segment 0 < z < L, r = 0, to be dis-

cretized into elements. It (the line segment) is divided up into N0 elements.

For comparison, numerical values of κ0(T −Tamb)/(q0L) are also obtained by
using the axisymmetric boundary element method (A-BEM) with discontin-

uous linear elements as described in Yun and Ang [16].
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Table 3. Numerical values of κ0(T − Tamb)/(q0L).

N0 = 8 N0 = 16 N0 = 20
(r/L, z/L) CVBEM A-BEM CVBEM A-BEM CVBEM A-BEM
(0.25, 0.25) 0.25290 0.24883 0.25087 0.24880 0.25044 0.24880
(0.25, 0.50) 0.19919 0.19993 0.20007 0.19993 0.20009 0.19993
(0.25, 0.75) 0.15342 0.15686 0.15572 0.15688 0.15601 0.15688
(0.50, 0.25) 0.14558 0.14515 0.14555 0.14515 0.14549 0.14515
(0.50, 0.50) 0.12652 0.12776 0.12748 0.12776 0.12758 0.12776
(0.50, 0.75) 0.10942 0.11190 0.11105 0.11191 0.11127 0.11191
(0.75, 0.25) 0.07174 0.07260 0.07236 0.07260 0.07244 0.07260
(0.75, 0.50) 0.06535 0.06674 0.06631 0.06674 0.06643 0.06674
(0.75, 0.75) 0.05919 0.06129 0.06054 0.06129 0.06074 0.06129

For αL = 1/10, the numerical values of κ0(T − Tamb)/(q0L) at selected
interior points, obtained using the CVBEM and the A-BEM with N0 = 8,

16 and 20, are given in Table 3. It is obvious that the CVBEM and A-

BEM solutions approach each other as N0 increases. Note that only constant

elements are used in the CVBEM. Thus, as expected, the convergence rate

of the CVBEM solution is slower than that of the linear element A-BEM.

On the plane 0 < r/L < 1, z/L = 0, where the surface heating occurs,

the temperature is not known a priori. We plot the non-dimensionalized

temperature κ0(T − Tamb)/(q0L) against r/L on the surface 0 < r/L < 1,

z/L = 0, for selected values of the non-dimensionalized parameter αL in

Figure 5. The plots in Figure 5 are obtained using the CVBEM and the

A-BEM with N0 = 16. The numerical values of the surface temperature

calculated using the CVBEM are in close agreement with those obtained

using the A-BEM. The temperature is lower if αL has a larger value. This

is to be expected, as the solid conducts heat away better from where the

surface heating occurs if the thermal conductivity κ = κ0(1 + αz)2 is larger.
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Figure 5. Plots of κ0(T − Tamb)/(q0L) against r/L on the surface
0 < r/L < 1, z/L = 0.

6 Summary

The problem of axisymmetric steady-state heat conduction problem in a non-

homogeneous isotropic solid is considered here. The problem is reformulated

approximately as one governed by the two-dimensional Laplace’s equation to

be solved by constructing a suitable analytic complex function. The Cauchy

integral formula and its differentiated form are used to reduce the numerical

construction of the analytic function to solving a system of linear algebraic

equations. The numerical procedure does not require the solution domain to

be divided into small elements. Only the boundary is discretised into straight

line elements.

To assess its validity and accuracy, the proposed complex variable bound-

ary element procedure is applied to solve some specific cases of the axisym-

metric heat conduction problem. In all the cases, the numerical solutions
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obtained agree favourably with known solutions and convergence in the nu-

merical values obtained is observed when the number of boundary elements

and interior collocation points is increased. This suggests that the complex

variable boundary element formulation presented here is correctly derived

and it can be used as an accurate and reliable tool for the analysis of the

axisymmetric heat conduction problem.
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