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Abstract

A microscopically damaged interface between two elastic half-spaces

under anti-plane deformations is modeled using randomly distributed in-

terfacial micro-cracks. The micro-crack length is a continuous random

variable following a given probability distribution. The micromechanical-

statistical model of the interface, formulated and solved in terms of hyper-

singular integral equations, is used to estimate the effective stiffness of the

interface. The number of micro-cracks per period length of the interface

required to homogenize the effective interface stiffness is examined. Also

investigated are the effects of the micro-crack length and the crack-tip gap

between two neighboring micro-cracks on the effective stiffness.
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1 Introduction

Micro-roughness of surfaces (Hamidi et al. [10]) or thermally induced residual

stresses during manufacturing processes (Nix [17]) may give rise to microscopic

voids and defects in the interface between two solids which are otherwise per-

fectly bonded. As illustrated in Figure 1, for macro-scale analyses, a microscop-

ically damaged interface between two solids may be modeled as a continuous

distribution of springs characterized by stiffness parameters.

Figure 1. Micro-level and macro-level models of the damaged interface.

One of the earlier works dealing with imperfect spring-like interfaces is Jones

and Whittier [12]. In [12], the interaction of elastic waves with flexibly bonded

interfaces is studied. Since then, many boundary value problems involving

spring-like models of imperfect interfaces have been solved (see, for example,

Ang [4], Fan and Wang [9], Margetan et al. [15] and Zhong and Meguid [21]).

Nevertheless, the micromechanical analysis of microscopically damaged inter-

faces, which includes estimating the effective properties of interfaces, has been
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investigated by relatively fewer researchers.

Micromechanical models based on continuum mechanics, such as the Voigt

approximation, the Reuss approximation, the self-consistent scheme and the

three-phase model, for estimating the effective material properties of micro-

scopically heterogenous solids may be found in the research literature (Aboudi

[1], Christensen [6] and Li and Wang [14]). Those models do not attempt to

capture all the minute details of the microstructures in the heterogeneous solids.

For a more realistic micro-mechanical analysis but one still based on continuum

mechanics, the microstructures may be modeled as, for example, randomly gen-

erated holes or inclusions in the solids (see Elvin [7], Roberts and Garboczi [18]

and Torquato [19]). Such an approach has been extended by Wang et al. [20]

to the micromechanical analysis of a microscopically damaged interface between

two elastic half-spaces under antiplane deformations.

In Wang et al. [20], the microscopically damaged plane interface is modeled

using periodically distributed interfacial micro-cracks. A period length of the

damaged interface contains an arbitrary number of randomly positioned micro-

cracks. The length of a micro-crack is taken to be a continuous random variable

following a given probability distribution. The procedure for estimating the

effective stiffness of the interface, which requires solving numerically hypersin-

gular integral equations for the micro-cracks, is described in detail in Wang et

al. [20]. The hypersingular integral formulation is advantageous in the micro-

mechanical analysis of the interface (Ang [3]) as the jump in the displacement

across opposite faces of each of the micro-cracks appears directly as an unknown

function in the integral equations. Thus, no post-processing of the numerical

solution of the integral equations is therefore required to compute the interfacial

displacement jump.

Nevertheless, only very limited statistical results for the effective stiffness

of the interface are obtained and presented in Wang et al. [20] using micro-
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cracks with normally distributed lengths. In reality, the length of a micro-

crack may not vary according to a normal distribution. In the present paper,

a more realistic statistical variation of the micro-crack length, based on the

chi-squared (2) distribution, is used to generate randomly the length of each

micro-crack. The number of micro-cracks per period length of the interface

required to homogenize the effective stiffness is examined. Also investigated

are the effects of the micro-crack length and the crack-tip gap between two

neighboring micro-cracks on the effective stiffness.

2 Micromechanical model

With reference to a Cartesian coordinate frame denoted by 123 consider

two dissimilar homogeneous anisotropic elastic half-spaces occupying the regions

2  0 and 2  0 The plane interface 2 = 0 joining the half-spaces is

microscopically damaged containing microscopic voids and defects.

The bimaterial undergoes an antiplane elastostatic deformation such that

the only non-zero component of the displacement field is along 3 direction.

The elastic displacement 3(1 2) and stress 3(1 2) along the microscopic

portion 0  1   of the damaged interface may be homogenized by the

averaging procedure

3(1 0
±) =

1

2

Z 1+

1−
3(1 0

±)1

3(1 0
±) =

1

2

Z 1+

1−
3(1 0

±)1 (1)

where 1 denotes the midpoint of the microscopic portion of the interface.

In terms of the homogenized field variables 3 and 3 the macro-level spring

model for the interface (see, for example, Hashin [11]) is defined by

(3(1 0
+)− 3(1 0

−)) = 32(1 0
+) = 32(1 0

−) (2)
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where  is the effective stiffness of the interface. Note that 3(1 0+)−3(1 0−)
gives the homogenized displacement jump across the damaged interface.

The conditions in (2) are also given in Benveniste and Miloh [5]. In Ben-

veniste and Miloh [5], they are derived using an asymptotic analysis on the elas-

tic fields in an infinitesimally thin layer of an extremely soft material bonded

between the elastic half-spaces.

To estimate the effective stiffness  in the macro-model defined by (2), Wang

et al. [20] simulated the microscopically damaged interface in Figure 1 by

proposing a micromechanical model in which the microscopic voids and defects

of the interface are replaced by periodically distributed interfacial micro-cracks.

More specifically, the part of the interface defined by 0  1   2 = 0

contains  interfacial micro-cracks with the tips of the -th crack given by

(() 0) and (() 0), where

0  (1)  (1)  (2)  (2)  · · ·  ()  ()  

The micro-cracks on the remaining part of the interface lie in the regions where

() +   1  () +  for  = 1 2 · · ·   and  = ±1 ±2 · · · . The
elastic half-spaces are perfectly bonded on the uncracked parts of the interface.

The periodically distributed micro-cracks are traction-free under the action of

the antiplane constant shear load given by 3 = 
(int)
3 at infinity, where 

(int)
3

is the antiplane shear stress in the bimaterial for the corresponding case where

there is no micro-crack on the interface. For the studies here, 
(int)
3 is chosen

such that 
(int)
32 = 0 on all the micro-cracks, where 0 is a positive constant.

A sketch of the micromechanical model is given in Figure 2.
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Figure 2. A sketch of the micromechanical model in Wang et al. [20].

As derived in Wang et al. [20], the hypersingular integral equations for the

micromechanics model of the microscopically damaged interface are given by

X
=1

=

Z ()

()

∆3(1)[
1

(1 − 1)
2
+

1

(+ 1 − 1)
2

+
1

(+ 1 − 1)2
+
1

2
∗(

+ 1 − 1


) +
1

2
∗(

+ 1 − 1


)]1

= −(
(1) + (2))

(1)(2)
0 for 

()  1  () ( = 1 2 · · · ).

(3)

where =
R
denotes that the integral is to be interpreted in the Hadamard finite-

part sense, ∆3(1) = 3(1 0+) − 3(1 0−) denotes the displacement jump

across the opposite faces of the micro-cracks, ∗() = 1() − 12 1() is
the trigamma function, () =

q

()
44 

()
55 − (()45 )2 and ()44  ()45 and ()55 are

the elastic moduli of the anisotropic materials in the half-spaces ( = 1 for the
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material in 2  0 and  = 2 for the material in 2  0).

A numerical method for solving (3) for the displacement jump ∆3(1) over

each of the micro-cracks is described in Wang et al. [20]. The collocation

technique of Kaya and Erdogan [13] may also be used to solve (3) numerically.

Once ∆3(1) is known over each micro-crack, the effective stiffness  of the

interface may be estimated using

 = 0[
X
=1

Z ()

()

∆3(1)1]
−1 (4)

The mathematics of the micromechanical model used here may be verified

numerically as in Wang et al. [20] by comparing the effective stiffness of a

damaged interface containing evenly distributed micro-cracks of equal length

with the corresponding effective stiffness predicted by the three-phase model.

In [20], the two models were shown to be in good agreement with each other.

For a wide range of values for the crack density on the interface, the percentage

difference between the effective stiffness given by the two models is less than

2.5%.

From (4), the effective stiffness of the interface containing  micro-crack

per period length may be rewritten as

 =
b(1) + b(2) + · · ·+ b()


 (5)

where

b() = 0

Z ()

()
∆3(1)1

[
X
=1

Z ()

()

∆3(1)1]2

 for  = 1 2 · · ·  (6)

For the micromechanical analysis of the macroscopically damaged interface,

the length of each micro-crack within a period length of the interface is randomly

generated using the probability density function of a chosen statistical distribu-

tion. For example, a MATLAB pseudorandom number generator, based on the
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chi-square distribution, may be used to generate the lengths of the micro-cracks.

More details on this are given in Section 3.

The damage ratio denoted by  is defined as follows:

 =
1



X
=1

(() − ()). (7)

Note that  gives the fraction of the interface damaged by the interfacial micro-

cracks.

3 Statistical simulation

To construct randomly an interface having a given damage ratio  the lengths

of  micro-cracks are generated randomly using a statistical distribution. The

micro-cracks are then positioned randomly over a period length . If the average

half crack-length of the randomly generated micro-cracks is given by

 =
1

2

X
=1

(() − ()), (8)

then (7) gives rise to the relation  = 2 Note that both sides of the

relation denotes the total length of the damaged regions over a period length

of the interface Thus for a fixed damage ratio , the period length  may be

calculated easily once the  micro-cracks are randomly generated.

In Wang et al. [20], the lengths of the micro-cracks are generated randomly

using a normal distribution. A more realistic simulation of the statistical dis-

tribution of the micro-crack length, based on the chi-squared (2) distribution,

is used here. The probability density function of the 2 distribution of degree

of freedom  is given by

() =

⎧⎨⎩ −1+2−2

22Γ(2)
for  ≥ 0

0 for   0
(9)

where Γ denotes the gamma function (Abramowitz and Stegun [2]). Distribu-
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tions of the lengths of the micro-cracks generated by using the 2 distribution

of degree of freedom 5 10 and 25 (denoted by 2(5) 2(10) and 2(25) re-

spectively) are shown visually in Figure 3. If the 2 distribution is of a lower

degree of freedom, the distribution of the micro-cracks is more skewed having a

greater number of shorter micro-cracks. As the degree of freedom increases, the

distribution of the lengths of the micro-cracks becomes less skewed and appears

to more normal like.

Figure 3. Distributions of the lengths of micro-cracks generated using 2(5)

2(10) and 2(25) The crack length is in terms of  (a unit length).
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To form a random sample of  interfaces for statistical analysis,  sets

of  micro-cracks are randomly generated and positioned on the interface as

described above. For each interface in the sample, the hypersingular integral

equations in (3) are solved and the non-dimensionalized interface effective stiff-

ness ((1)+(2))(2(1)(2)) ( is the average half-length of the micro-cracks)

is calculated using (4). If the values of the non-dimensionalized effective stiff-

ness from the  interfaces are denoted by 1 2 · · ·  −1 and   the sample
mean of the non-dimensionalized effective stiffness is given by

 =
1



X
=1

 (10)

and the standard deviation of the  values of the non-dimensionalized effective

stiffness from the sample mean  is

 =

vuut 1

 − 1
X
=1

( − )2 (11)

The coefficient of variation (CV) defined by

CV =



× 100% (12)

is perhaps more useful for analyzing the fluctuation of the statistical data.

4 Number of micro-cracks for homogenizing the

interface

To investigate the number of micro-cracks required to homogenize the effective

stiffness of the interface in Figure 2,  interfaces are randomly generated as

described in Section 3.

To present some results here, the 2(5) distribution is used to generate the
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lengths of micro-cracks on an interface. Table 1 gives the statistical results for

the non-dimensionalized effective stiffness ((1)+(2))(2(1)(2)) in a sample

of 50 interfaces ( = 50) for selected values of the damage ratio  For each value

of  it is obvious that the sample mean of the non-dimensionalized stiffness does

not change very much as  (the number of micro-cracks per period length) is

increased from 40 to 60 Furthermore, the standard deviation (SD) decreases

with increasing This observation is also demonstrated in Figure 4 where the

variations of the 50 data for the non-dimensionalized stiffness of interfaces with

different damage ratios are shown graphically for different numbers of micro-

cracks.

From the results, it appears that around 40 micro-cracks per period length

are sufficient to homogenize the effective stiffness of the interface. Further in-

vestigations show that the number of micro-cracks required for homogenizing

the interface may be lower if a 2 distribution of a higher degree of freedom,

such as 10 and 25 is used to generate the lengths of the micro-cracks.

Table 1. Statistical results for the non-dimensionalized effective stiffness of the

interfaces.

 = 02  10 20 30 40 60

Mean 2.39 2.27 2.07 2.01 2.00

SD 0.10 0.07 0.07 0.06 0.05

 = 04  10 20 30 40 60

Mean 1.11 1.05 0.96 0.92 0.93

SD 0.05 0.03 0.04 0.03 0.02

 = 06  10 20 30 40 60

Mean 0.66 0.63 0.58 0.57 0.56

SD 0.03 0.02 0.03 0.02 0.02

 = 08  10 20 30 40 60

Mean 0.39 0.38 0.36 0.35 0.35

SD 0.02 0.02 0.01 0.01 0.01
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Figure 4. Scatter plots of the effective stiffness of the interfaces with different

damage ratios in samples for different number of micro-cracks. (a)  = 02; (b)

 = 05; (c)  = 08
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For a sample of interfaces with sample size  = 1000, the distributions of

the 1000 values of the non-dimensionalized effective stiffness of the interfaces

with  = 02 are given in Figures 5 and 6 for  = 10 and  = 40 respectively.

The lengths of the micro-cracks on each interface are generated using the 2(5)

distribution. The distribution of the values of the non-dimensionalized effective

stiffness for  = 10 (a low number of micro-cracks) appears to be skewed to

the right. Nevertheless, for = 40, the distribution of the non-dimensionalized

stiffness appears to be normal. Similar trends in the distributions are observed

when samples of interfaces with other values of the damage ratio  are used in

the statistical simulations. It appears that 40 micro-cracks over a period length

of the interface may be sufficient to homogenize the effective stiffness of the

interface.

The statistical simulations above indicate that ((1)+(2))ave(2
(1)(2))

(the average of the non-dimensionalized effective stiffness of all the interfaces in

the sample) does not vary much when  (the number of micro-cracks used to

simulate an interface) exceed a certain value. Furthermore, the data for the non-

dimensionalized effective stiffness ((1)+(2))(2(1)(2)) of the interfaces in

the simulation sample appears to be normally distributed for a large value of

 This observation appears to be a direct consequence of the central limit

theorem in statistics (Mendenhall et al. [16]), as the formula in (5) for the

effective stiffness seems to suggest.
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Figure 5. Distribution of data for the non-dimensionalized effective stiffness

of interfaces constructed using 10 micro-cracks per period length.
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Figure 6. Distribution of data for the non-dimensionalized effective stiffness

of interfaces constructed using 40 micro-cracks per period length.

5 Parametric studies on the effective stiffness

The effects of the micro-crack length and the crack-tip gap between two neigh-

boring micro-cracks on the effective stiffness of the interface are examined in

the subsections below.

5.1 Effect of the micro-crack length distribution on the

effective stiffness

A sample of  interfaces with a given damage ratio  is formed. To generate

each interface, the lengths of  micro-cracks are randomly generated using the

2() distribution where  is a fixed positive integer. The micro-cracks are

then positioned in such a way that the normalized crack-tip gap length (2)
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between any two adjacent micro-cracks is the same given by



2
=
1− 




where  is the crack-tip gap length before normalization and  is the average

half length of the  micro-cracks. For fixed  the normalized crack-tip gap

length (2) remains the same for all interfaces within the sample, but the set

of lengths of the micro-cracks are different from one interface to another.

The means of ((1) + (2))(2(1)(2)) calculated using a sample of 50

interfaces ( = 50) and 40 micro-cracks per period length of an interface ( =

40) are shown in Table 2 for selected values of the damage ratio  and for cases

where the lengths of the micro-cracks are generated using 2 distributions with

degrees of freedom 5 10 and 25 For comparison purpose, the corresponding

values of the non-dimensionalized effective stiffness calculated using the three-

phase model in Wang et al. [20] are also given in Table 2. The three-phase

model is a highly simplified version of the micro-cracked interface in Figure 2.

More details on the three-phase model may be found in the Appendix.

Table 2. The mean, standard deviation (SD) and coefficient of variation

(CV(%)) of the non-dimensionalized effective stiffness for selected values of the

damage ratio  and for distributions of micro-crack length generated using the

2(5) 2(10) and 2(25) distributions.
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 2(5) 2(10) 2(25) Three-phase

Mean SD CV(%) Mean SD CV(%) Mean SD CV(%) model

0.1 4.255 0.114 2.672 5.381 0.047 0.874 5.998 0.012 0.194 6.335

0.2 2.096 0.056 2.673 2.654 0.023 0.870 2.961 0.006 0.196 3.120

0.3 1.366 0.036 2.650 1.731 0.016 0.905 1.931 0.004 0.206 2.029

0.4 0.991 0.027 2.703 1.257 0.012 0.959 1.402 0.003 0.229 1.467

0.5 0.760 0.022 2.927 0.963 0.009 0.962 1.072 0.002 0.199 1.118

0.6 0.597 0.016 2.708 0.755 0.007 0.941 0.840 0.002 0.260 0.873

0.7 0.473 0.014 2.968 0.596 0.006 1.041 0.661 0.002 0.288 0.686

0.8 0.369 0.010 2.771 0.462 0.005 1.060 0.511 0.001 0.267 0.532

0.9 0.273 0.008 3.043 0.335 0.003 0.984 0.366 0.001 0.280 0.388

From Table 2, for a fixed  the mean is closer to the non-dimensionalized

effective stiffness calculated using the three-phase model as the degree of freedom

of the 2 distribution used becomes larger, that is, as the distribution of the

micro-crack length becomes more normal like. This is as expected, as the three-

phase model assumes that the micro-cracks are of equal length and are evenly

distributed on the interface. Also, for a 2 distribution of a lower degree of

freedom, the mean of the non-dimensionalized stiffness appears to be smaller,

while the standard deviation is larger. Perhaps this observation on the mean

may be explained by taking into consideration that most of the micro-cracks

tend to be short and the ratio of the length of the longest micro-crack to that

of the shortest micro-crack is relatively large if the 2 distribution used is of a

lower degree of freedom. For example, the ratio is likely around 1000 for the

2(5) distribution, but it is likely around 3 for the 2(25) distribution.
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Figure 7. Plots of non-dimensionalized effective stiffness against the damage

ratio , for distributions of micro-crack length generated using the 2(5)

2(10) and 2(25) distributions. Also included are the corresponding values

predicted by the three-phase model.

The non-dimensionalized mean effective stiffness in Table 2 is plotted against

the damage ratio  in Figure 7 for the 2 distributions of degrees of freedom

5 10 and 25 as well as for the three-phase model. The effect of the degree of

freedom of the 2 distribution on the non-dimensionalized effective stiffness as

discussed above is clearly shown in Figure 7.

5.2 Effect of the micro-crack tip gap distribution on the

effective stiffness

A sample of  interfaces with a fixed damage ratio  is generated by plac-

ing  equal length micro-cracks over a period length  of the interface. The

18



micro-crack tip gap  between any two consecutive neighboring micro-cracks is

generated randomly using the 2() distribution. The mean of , denoted by 

is related to micro-crack half length  by

2


=



1− 


Table 3. The mean, standard deviation (SD) and coefficient of variation

(CV(%)) of the non-dimensionalized effective stiffness for selected values of the

damage ratio  and for distributions of micro-crack tip gap generated using the

2(5) 2(10) and 2(25) distributions.

 2(5) 2(10) 2(25) Three-phase

Mean SD CV(%) Mean SD CV(%) Mean SD CV(%) model

0.1 6.209 0.015 0.236 6.327 0.001 0.021 6.336 0.0004 0.007 6.335

0.2 3.009 0.013 0.419 3.110 0.001 0.046 3.124 0.001 0.022 3.120

0.3 1.933 0.010 0.515 2.019 0.002 0.106 2.034 0.001 0.036 2.029

0.4 1.382 0.008 0.558 1.459 0.002 0.156 1.475 0.001 0.059 1.467

0.5 1.045 0.005 0.478 1.111 0.002 0.163 1.125 0.001 0.062 1.118

0.6 0.813 0.004 0.435 0.867 0.002 0.181 0.880 0.001 0.097 0.873

0.7 0.637 0.005 0.713 0.679 0.001 0.211 0.690 0.001 0.119 0.686

0.8 0.490 0.003 0.634 0.522 0.001 0.248 0.531 0.001 0.113 0.532

0.9 0.353 0.002 0.562 0.373 0.001 0.217 0.379 0.001 0.132 0.388

The means of ((1)+ (2))(2(1)(2)) calculated using  = 50 and  =

40 are shown in Table 3 for selected values of the damage ratio  and for micro-

crack tip gaps generated using 2 distributions with degrees of freedom 5 10

and 25 The corresponding values of the non-dimensionalized effective stiffness

calculated using the three-phase model in Wang et al. [20] are also given in

Table 3. It is obvious that the mean in Table 3 for a fixed value of  is smaller if

2 distribution used is of a lower degree of freedom. This may be explained by

taking into consideration that the 2 distribution of a lower degree of freedom

generates micro-crack tip gaps that skew towards having shorter lengths, giving
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rise to ∆3 of a higher magnitude on most of the micro-cracks. Nevertheless,

the graphs of the non-dimensionalized effective stiffness against the damage

ratio  do not show much difference in Figure 8 for the 2(5) 2(10) and

2(25) distributions compared to the graphs in Figure 7. It seems that varying

the distribution of the micro-crack tip gaps does not affect the mean effective

stiffness as much as varying the distribution of the lengths of the micro-cracks.

Figure 8. Plots of non-dimensionalised mean effective stiffness against the

damage ratio  for distributions of micro-crack tip gap generated using the

2(5) 2(10) and 2(25) distributions. Also included are the corresponding

values predicted by the three-phase model.

It is also seen that the standard deviation of non-dimensionalized effective

stiffness listed in Table 2 is obviously larger than the corresponding standard

deviation in Table 3. Similarly, the CVs of ((1)+(2))(2(1)(2)) in Table 2
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are larger than the corresponding ones in Table 3. This seems to suggest that the

variation of the micro-crack lengths has a greater influence on the scattering of

the non-dimensionalized effective stiffness than the variation of the micro-crack

tip gaps. This observation is consistent with our understanding that lengths of

the micro-cracks directly affect the displacement jumps over the micro-cracks,

while the gap between micro-cracks does not affect the displacement jump as

significantly as crack-lengths. Note that the effective stiffness of the interface is

calculated by averaging the displacement jumps.

6 Summary and conclusions

Prior to the micromechanical-statistical simulations in Wang et al. [20], the

three-phase model was the only micromechanical model estimating the effective

stiffness (see Fan and Sze [8]). The only parameter used in the three-phase

model is the damage ratio (crack density)  In estimating the effective stiffness,

the statistical simulations in [20] takes into consideration more microscopic de-

tails, such as statistical variations of the lengths of the interfacial micro-cracks.

Nevertheless, in [20], the micro-crack lengths are assumed to vary according to

a normal distribution. This may not depict accurately the realistic situation

where the statistical distribution of the micro-crack lengths tends to be skewed

towards shorter micro-cracks.

In the present paper, microscopically damaged interfaces between two anisotropic

elastic half-spaces under antiplane loads are modeled as interfaces containing pe-

riodically distributed micro-cracks. The micro-cracked interfaces are simulated

statistically to calculate the interface effective stiffness. For more realistic sim-

ulations, the 2 distribution is used to generate randomly the lengths of the

micro-cracks.

Statistical simulations conducted suggest that around 40 or more micro-
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cracks per period length of the interface are required to homogenize the interface

effective stiffness. If interfaces are statistically simulated using a sufficient num-

ber of micro-cracks, the data of the appropriately non-dimensionalized effective

stiffness can be fitted into a normal distribution.

The crack length distribution is to be provided by experimental observa-

tion. For a highly skewed crack-length distribution such as 2(5) the effective

stiffness by statistical simulation may be 30% lower than that predicted by the

three-phase model in Wang et al. [20]. If the micro-crack length is generated

using a less skewed 2 distribution such as 2(25) the mean effective stiffness is

found to agree with that given by the three-phase model to within 6% for a wide

range of the damage ratio  of the interface. Furthermore, the distribution of

the micro-crack length appears to have a stronger influence on mean and stan-

dard deviation of the effective stiffness than the distribution of the micro-crack

tip gaps. The non-dimensionalized effective stiffness in a sample of interfaces

generated using micro-cracks of varying lengths and equal length micro-crack

tip gaps deviates more from the mean value than the non-dimensionalized ef-

fective stiffness in a corresponding sample of interfaces generated using equal

length micro-cracks with varying micro-crack tip gaps.
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Appendix

A highly simplified version of the micro-cracked interface in Figure 2 is the

three-phase model given in Wang et al. [20]. The interface is still periodic in the

three-phase model, but a period length of the interface, denoted by 0  1  

2 = 0 is divided into three distinct types of regions described as follows:

(a) a single representative micro-crack (1)  1  (1) 2 = 0

(b) perfectly bonded parts defined by 0  1  (1) and (1)  1  (2) on

2 = 0 and

(c) an effective region (2)  1  (2) 2 = 0 where the constants (1)

(2), (1) and (2) are such that 0  (1)  (1)  (2)  (2) = 

(1) = (2) − (1) and (2) is much smaller than 

A sketch of the three-phase model is given in Figure 9.

Figure 9. A sketch of the three-phase model.
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For the three phase model here, the damage ratio  which corresponds to

(7) is defined by

 =
(1) − (1)

(2)


As derived in Wang et al. [20], the hypersingular integral equations for three

phase model are given by

2X
=1

=

Z ()

()
∆3(1)[

1

(1 − 1)
2
+

1

((2) + 1 − 1)
2

+
1

((2) + 1 − 1)2
+

1

[(2)]2
∗(

(2) + 1 − 1
(2)

)

+
1

[(2)]2
∗(

(2) + 1 − 1
(2)

)]1

= −(
(1) + (2))

(1)(2)

½
0 for (1)  1  (1)

0 − ∆3(1) for (2)  1  (2)

(A1)

where ∆3 denotes the jump of 3 across opposite faces of the micro-cracks and

the effective regions, 0 is a positive constant relating to the internal antiplane

constant shear load acting on the micro-cracks and  is the effective stiffness to

be determined.

As the effective stiffness  is a macroscopic quantity that is not known a

priori, an iterative procedure may be used to solve the hypersingular integral

equations in (A1) together with



(2)

(1)Z
(1)

∆3(1)1 = 0 (A2)

26


