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Abstract

Plane elastostatic Green’s functions satisfying relevant conditions

on soft and stiff planar interfaces between two dissimilar anisotropic

half spaces under elastostatic deformations are explicitly derived with

the aid of the Fourier integral transformation technique. The Green’s

functions are applied to obtain special boundary integral equations for

the deformation of a bimaterial with an imperfect planar interface that

is either soft or stiff. The boundary integral equations do not contain

any integral over the imperfect interface. They are used to obtain a

boundary element procedure for determining the displacements and

stresses in the bimaterial. The numerical procedure does not require

the interface to be discretized into elements.

* Author for correspondence (E-mail: MWTANG@ntu.edu.sg).
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1 Introduction

Two dissimilar materials joined by an extremely thin layer of material sand-

wiched in between them may be modeled as a bimaterial with an interface

in the form of a surface. The boundary conditions to impose on the inter-

face, which may influence the overall mechanical behaviors of the bimaterial,

depend on the elastic properties of the thin layer between the two materials

and may be derived using asymptotic analysis as explained in Benveniste and

Miloh [4].

In many research articles, such as Ang and Park [2], Fenner [10], Kattis

and Mavroyannis [15] and Yu et al. [19], the interface is taken to be perfect,

that is, the dissimilar materials are assumed to be bonded in such that a

way that the displacements and the traction stresses are continuous on the

interface. Nevertheless, if the thin layer between the dissimilar materials is

extremely soft or stiff, or if the interface contains micro-cracks or rigid micro-

inclusions, the perfect interface model may not be suitable for analyzing the

deformation of the bimaterial. This explains why the analysis of imperfect

interfaces has attracted the attention of many researchers (see, for example,

Achenbach and Zhu [1], Fan and Wang [9], Hashin [13] and Sudak [17]).

Most studies on imperfect interfaces deal with compliant or soft interfaces

which are modeled as distributions of springs. In the spring model, the

displacements may jump across opposite sides of a soft interface but traction

stresses are continuous on the interface, and the traction stresses on the

interface are linearly related to the displacement jumps. For stiff interfaces

considered in Benveniste and Miloh [4] and Hashin [14], the displacements

are continuous on a stiff interface but the traction stresses may exhibit a

jump across opposite sides of the interface. Relatively few papers on the

analysis of stiff interfaces may be found in the literature.
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In the present paper, plane elastostatic Green’s functions satisfying the

relevant conditions on imperfect soft and stiff planar interfaces between two

dissimilar anisotropic half spaces under elastostatic deformations are explic-

itly derived with the aid of the Fourier integral transformation technique.

The Green’s functions are applied to obtain special boundary integral equa-

tions for the deformation of a bimaterial with an imperfect planar interface

that is either soft or stiff. The boundary integral equations do not contain

any integral over the imperfect interface. They are used to obtain a bound-

ary element procedure for determining the displacements and stresses in the

bimaterial. The numerical procedure does not require the interface to be

discretized into elements.

Earlier works on plane elastostatic Green’s functions for imperfect planar

interfaces in bimaterials may be found in Berger and Tewary [5] and Sudak

and Wang [18]. In [5], the displacement jumps across opposite sides of the

imperfect soft interface are assumed known a priori and the Green’s function

is chosen to have explicitly prescribed displacement jumps. The Green’s

function in [18] satisfies a specific case of the interface conditions in the

spring model for imperfect soft interfaces. A more general form of the soft

interface conditions is considered in the present paper.

It may be worth mentioning here that numerical methods based on bound-

ary integral equations have received considerable attention in the engineering

analysis of multilayered materials and composite materials. Readers inter-

ested in recent development of such boundary element approaches may refer

to Gu et al. [11]-[12].
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2 Imperfect soft and stiff planar interfaces

Referring to a Cartesian coordinate system123 consider two anisotropic

elastic half spaces 2   and 2  0 with an anisotropic elastic layer of

thickness  sandwiched in between them. The elastic layer 0  2  

is denoted by (0) and the elastic half spaces 2   and 2  0 by (1)

and (2) respectively. The elastic moduli of the region () is given by 
()


( = 0 1 2) Refer to Figure 1 for a sketch of the multilayered elastic space

on the 12 plane.

Figure 1. Two anisotropic elastic half spaces 2   and 2  0 with an

anisotropic elastic layer of thickness  sandwiched in between them.

The multilayered elastic space in Figure 1 undergoes a plane elastostatic

deformation such that the elastic displacement and stress fields are functions

of 1 and 2 only. The continuity conditions imposed on the planes 2 = 0
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and 2 =  are given by


(0)
 (1 

−) = 
(1)
 (1 

+)


(0)
2 (1 

−) = 
(1)
2 (1 

+)


(0)
 (1 0

+) = 
(2)
 (1 0

−)

(0)
2 (1 0

+) = 
(2)
2 (1 0

−)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ for −∞  1 ∞ (1)

where 
()
 and 

()
 are respectively the dispapcements and stresses in the

region ()

Figure 2. Two dissimilar elastic half spaces joined along 2 = 0

We are interested in modeling the sandwiched layer (0) as a line interface

on the 1 axis of the 12 plane for the limiting case in which the thickness

 tends to zero. A geometrical sketch of the layered elastic space for the

vanishing layer replaced by the planar interface on the 2 = 0 is shown in

Figure 2.

If the elastic moduli 
(0)
 in the layer 

(0) either vanish or become un-
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bounded as  tends to zero, then the perfect interface conditions


(1)
 (1 0

+) = 
(2)
 (1 0

−)

(1)
2 (1 0

+) = 
(2)
2 (1 0

−)

)
for −∞  1 ∞ (2)

may not necessarily hold for the bimaterial in Figure 2.

The asymptotic analysis in Benveniste and Miloh [4] may be applied to

derive conditions on 2 = 0 (in the limit as  tends to zero) for soft and stiff

interfaces as explained in Subsections 2.1 and 2.2 below. For the asymptotic

analysis, the displacement and the stress fields in (1) and (2) as well as the

partial derivatives of those fields with respect to  are assumed to be (1)

(for small ) on the interface 2 = 0 and the Taylor series is used to write


(0)
 (1 

−)− 
(0)
 (1 0

+) = 


(0)


2

¯̄̄̄
¯
2=0+

+
∞X

=2



!


(0)


2

¯̄̄̄
¯
2=0+



(3)

and


(0)
2 (1 

−)− 
(0)
2 (1 0

+) = 


(0)
2

2

¯̄̄̄
¯
2=0+

+
∞X

=2



!


(0)
2

2

¯̄̄̄
¯
2=0+



(4)

2.1 Soft interface conditions

The soft interface conditions are obtained if the elastic moduli 
(0)
 in the

layer (0) decreases to zero as  tends to zero in accordance with


(0)
 = 

(soft)

  (5)

where 
(soft)

 are constants independent of .

From the equilibrium equations


(0)



= 0 in (0) (6)
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and the generalized Hooke’s law


(0)
 = 

(0)



(0)



 (7)

we may write




(0)
2

2

¯̄̄̄
¯
2=0+

= − [(0)11

2
(0)


21
+ 

(0)
12

2
(0)


12
]

¯̄̄̄
¯
2=0+

 (8)

Note that the Einstenian convention of summing over a repeated index is

assumed here for lowercase Latin subscripts which take the values 1 and 2

From 
(0)
 (1 0

+) = 
(2)
 (1 0

−) (in the third line of (1)), (8) may be

rewritten as




(0)
2

2

¯̄̄̄
¯
2=0+

= −(0)11

2
(2)


21

¯̄̄̄
¯
2=0−

− 
(0)
12

2
(0)


12

¯̄̄̄
¯
2=0+

 (9)

Using 
(0)
2 (1 0

+) = 
(2)
2 (1 0

−) (in the fourth line of (1)) and (7), we

find that


(0)
22


(0)


2

¯̄̄̄
¯
2=0+

= −(0)21


(2)


1

¯̄̄̄
¯
2=0−

+ 
(2)
2 (1 0

−) (10)

and hence


(0)
22

2
(0)


12

¯̄̄̄
¯
2=0+

= −(0)21

2
(2)


21

¯̄̄̄
¯
2=0−

+


(2)
2

1

¯̄̄̄
¯
2=0−

 (11)

Since (2) and 
(2)
2 are assumed to be (1) (for small ) and 

(0)
 is given

by (5), the right hand side of (11) is (1) and (9) implies that the first order

partial derivative of 
(0)
2 with respect to 2 at 2 = 0

+ is (1) It follows that

(4) reduces to


(1)
2 (1 0

+) = 
(2)
2 (1 0

−) (12)

as  tends to zero.
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Similarly, from (5) and (10), as  approaches zero, (3) reduces to

[
(1)
 (1 0

+)− 
(2)
 (1 0

−)] = 
(2)
2 (1 0

−) (13)

where  = 
(soft)

22 

To summarize, the soft interface conditions are given by (12) and (13).

The conditions may also be used to describe an interface that is damaged by

a distribution of micro-cracks or micro-voids.

2.2 Stiff interface conditions

For the stiff interface conditions, the elastic moduli 
(0)
 of the vanishing layer

(0) are taken to be given by


(0)
 =

1



(stiff )

  (14)

where 
(stiff)

 are constants independent of 

Since (2) and 
(2)
2 are assumed to be (1) (for small ) and 

(0)
 is given

by (14), the right hand side of (10) is (−1) and hence the first order partial

derivative of 
(0)
 with respect to 2 at 2 = 0+ is (1) It follows that (3)

reduces to


(2)
 (1 0

−) = 
(1)
 (1 0

+) (15)

as  tends to zero.

Similarly, (4) together with (1), (8) and (11) gives


(1)
2 (1 0

+)− 
(2)
2 (1 0

−) = −
2

(1)


21

¯̄̄̄
¯
2=0+

 (16)

where

 = −(stiff)11 + 
(stiff)
12 

(stiff)
21  (17)

with  defined by


(stiff)
22 =  (18)
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Note that  is the Kronecker-delta.

To summarize, the stiff interface conditions are given by (15) and (16).

The conditions may also be used to model an interface containing a distrib-

ution of rigid micro-inclusions.

3 Green’s functions for planar interfaces

In this section, we derive plane elastostatic Green’s functions for imperfect

soft and stiff planar interfaces between the anisotropic elastic half spaces in

Figure 2. The Green’s function for a perfect interface, which is given in

Berger and Tewary [6], is also presented here.

The task of deriving the Green’s functions for the interfaces requires solv-

ing the systems of partial differential equations


()


2


[Φ(1 2; 1 2)] = (1 − 1 2 − 2)

for (1 2) ∈ () ( = 1 2) (19)

where (1 2) is the Dirac delta function and Φ(1 2; 1 2) are the

displacement fundamental solutions to be modified to satisfy the relevant

far-field and interface conditions.

For the far-field conditions, the stresses (1 2; 1 2) defined by

(1 2; 1 2) = 
()





[Φ(1 2; 1 2)]

for (1 2) ∈ () ( = 1 2) (20)

are required to tend to zero as 21 + 22 →∞

The Green’s functions Φ(1 2; 1 2) are given in (22), (27) and (35)

for perfect, soft and stiff interfaces respectively.

9



3.1 Perfect interface

If the interface between the anisotropic elastic half spaces in Figure 2 is

perfect, the interface conditions for the Green’s function are given by

Φ(1 0
+; 1 2) = Φ(1 0

−; 1 2)
2(1 0

+; 1 2) = 2(1 0
−; 1 2)

¾
for −∞  1 ∞ (21)

The solution of (19) satisfying (20) and (21), which is given in Berger and

Tewary [6], may be written as

Φ
(perfect)

 (1 2; 1 2)

=
1

2
Re{

2X
=1

((2)(2)
(1)
 [

(1)
 ln(1 − 1 +  (1) (2 − 2))

+
2X

=1


(1)
 ln(1 − 1 +  (1) 2 − 

(1)
 2)]

(1)


+(−2)(2)
2X

=1


(2)


(2)


(1)
 ln(1 − 1 +  (2) 2 − 

(1)
 2)

+(2)(−2)
2X

=1


(1)


(1)


(2)
 ln(1 − 1 +  (1) 2 − 

(2)
 2)

+(−2)(−2)(2) [
(2)
 ln(1 − 1 +  (2) (2 − 2))

+

2X
=1


(2)
 ln(1 − 1 +  (2) 2 − 

(2)
 2)]

(2)
)} (22)

where the overhead bar denotes the complex conjugate of a complex number,

() is the unit-step Heaviside function, the constants 
()
 are implicitly

given by


(2)
 (

(1)


(1)
 +

2X
=1


(1)


(1)

) = 
(2)



(2)
 (

(1)
2

(1)
 +

2X
=1


(1)

2
(1)

) = 
(2)
 (23)
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and the constants 
()
 by


(1)
 (

(2)


(2)
 +

2X
=1


(2)


(2)

) = 
(1)



(1)
 (

(2)
2

(2)
 +

2X
=1


(2)

2
(2)

) = 
(1)
 (24)

where 
()
 , 

()
  

()
 , 

()
 

()
 and 

()
 are respectively the constants ,

 ,   and  in Clements [7] computed using  = 
()
.

From (20), the stresses 
(perfect)

 (1 2; 1 2) which correspond to the

displacements Φ
(perfect)

 (1 2; 1 2) in (22) are given by


(perfect)

 (1 2; 1 2)

=
1

2
Re{

2X
=1

((2)(2)
(1)
[


(1)


(1 − 1 + 
(1)
 (2 − 2))

+
2X

=1


(1)


(1 − 1 + 
(1)
 2 − 

(1)
 2)

](1)

+(−2)(2)
2X

=1


(2)


(2)


(1)


(1 − 1 + 
(2)
 2 − 

(1)
 2)

+(2)(−2)
2X

=1


(1)


(1)


(2)


(1 − 1 + 
(1)
 2 − 

(2)
 2)

+(−2)(−2)(2)[

(2)


(1 − 1 + 
(2)
 (2 − 2))

+
2X

=1


(2)


(1 − 1 + 
(2)
 2 − 

(2)
 2)

](2))} (25)
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3.2 Soft interface

If the interface is soft, the interface conditions for the Green’s function are

given by

2(1 0
+; 1 2) = 2(1 0

−; 1 2)
2(1 0

±; 1 2) = [Φ(1 0
+; 1 2)− Φ(1 0

−; 1 2)]

¾
for −∞  1 ∞

(26)

To derive Φ = Φ
(soft)

 satisfying (19), (20) and (26), we take

Φ
(soft)

 (1 2; 1 2) = Φ
(perfect)

 (1 2; 1 2)

+Re{
2X

=1

Z ∞

0

[(2)
(1)


(1)
(; 1 2)

× exp((1 +  (1) 2))

+(−2)(2)
(2)
(; 1 2)

× exp(−(1 +  (2) 2))]} (27)

and hence


(soft)

 (1 2; 1 2) = 
(perfect)

 (1 2; 1 2)

+Re{
2X

=1

Z ∞

0

[(2)
(1)


(1)
(; 1 2)

× exp((1 +  (1) 2))

−(−2)(2)
(2)
(; 1 2)

× exp(−(1 +  (2) 2))]} (28)

where 
(1)
(; 1 2) and 

(2)
(; 1 2) are functions to be determined.

The conditions in the first line of (26) are satisfied if

(1)
(; 1 2) =  (1)

 Ψ(; 1 2)

(2)
(; 1 2) =  (2)

 Ψ(; 1 2) (29)
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where Ψ(; 1 2) are to be determined as explained below.

The conditions in the second line of (26) are rewritten as

[Φ
(soft)
 (1 0

+; 1 2)−Φ(soft) (1 0
−; 1 2)]

= (2)
(soft)

2 (1 0
−; 1 2) +(−2)(soft)2 (1 0

+; 1 2)

for −∞  1 ∞ (30)

If we apply the Fourier exponential transformation on both sides of (30)

and use (22), (25), (27), (28) and (29) together withZ ∞

−∞

exp(−)
(− − )

= ()2 exp(−(− )) (31)

where   and  are real numbers, we obtain

[

2X
=1

(
(1)


(1)
 −

(2)


(2)

 )− ]Ψ(; 1 2)

= −1
2
(2)

2X
=1


(2)

2

2X
=1


(2)

 exp(−(1 + 
(1)
 2))

(1)


−1
2
(−2)

2X
=1


(1)
2

2X
=1


(1)
 exp(−(1 + 

(2)
 2))

(2)
 (32)

Note that (31) is extracted from Erdélyi et al. [8].

For a fixed value of  the functions Ψ(; 1 2) may be obtained by

inverting (32) as a system of linear algebraic equations. Once Ψ(; 1 2)

are determined, the integrals in (27) and (28) may be easily evaluated by

using a numerical integration procedure.

Note that the Green’s function for the imperfect soft interface in a less

general form, that is, for the special case where 12 = 21 = 0, is given in

Sudak and Wang [18].
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3.3 Stiff interface

If the interface is stiff, the interface conditions for the Green’s function are

given by

Φ(1 0
+; 1 2) = Φ(1 0

−; 1 2)

−
2Φ

21

¯̄̄̄
2=0±

= 2(1 0
+; 1 2)− 2(1 0

−; 1 2)

⎫⎬⎭
for −∞  1 ∞

(33)

To derive Φ = Φ
(stiff )

 satisfying (19), (20) and (33), we take

Φ
(stiff )

 (1 2; 1 2) = Φ
(perfect)

 (1 2; 1 2)

+Re{
2X

=1

Z ∞

0

[(2)
(1)


(1)
(; 1 2)

× exp((1 +  (1) 2))

+(−2)(2)
(2)
(; 1 2)

× exp(−(1 +  (2) 2))]} (34)

and hence


(stiff )

 (1 2; 1 2) = 
(perfect)

 (1 2; 1 2)

+Re{
2X

=1

Z ∞

0

[(2)
(1)


(1)
(; 1 2)

× exp((1 +  (1) 2))

−(−2)(2)
(2)
(; 1 2)

× exp(−(1 +  (2) 2))]} (35)

where 
(1)
(; 1 2) and 

(2)
(; 1 2) are functions to be determined.
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The conditions in the first line of (33) are satisfied if 
(1)
(; 1 2) and


(2)
(; 1 2) are given by

 (1)
(; 1 2) =  (1)

 Υ(; 1 2)

 (2)
(; 1 2) =  (2)

 Υ(; 1 2) (36)

where Υ(; 1 2) are to be determined as explained below.

The conditions in the second line of (33) are rewritten as

2(1 0
+; 1 2)− 2(1 0

−; 1 2)

= −(2) 
2Φ

21

¯̄̄̄
2=0−

−(−2) 
2Φ

21

¯̄̄̄
2=0+

for −∞  1 ∞ (37)

If we apply the Fourier exponential transformation on both sides of (37)

and use (22), (25), (34), (35) and (36) together with (31) andZ ∞

−∞

exp(−)
(− − )2

= −()2 exp(−(− )) (38)

where   and  are real numbers, we obtain

[
2X

=1

(
(1)
2

(1)
 − 

(2)

2
(2)

 )− ]Υ(; 1 2)

= −1
2
(2)

2X
=1


(2)



2X
=1


(2)

 exp(−(1 + 
(1)
 2))

(1)


−1
2
(−2)

2X
=1


(1)


2X
=1


(1)
 exp(−(1 + 

(2)
 2))

(2)
 (39)

Note that (38) may be obtained by partially differentiating both sides of (31)

with respect to either  or 

For a fixed value of  the functions Υ(; 1 2) may be obtained by

inverting (39) as a system of linear algebraic equations. Once Υ(; 1 2)

are determined, the integrals in (34) and (35) may be easily evaluated by

using a numerical integration procedure.
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4 A plane elastostatic problem

With reference to a Cartesian coordinate system123 consider an elastic

body with a geometry that does not change along the 3 axis. The body is

made up of two dissimilar anisotropic materials occupying the regions Ω(1)

and Ω(2) The interface between Ω(1) and Ω(2), denoted by I lies on part of
the 2 = 0 plane. A geometrical sketch of the bimaterial on the 12 plane

is given in Figure 3. As shown in Figure 3, (1) ∪ (2) forms the exterior

boundary of the bimaterial and the regions Ω(1) and Ω(2) are bounded by

I ∪(1) and I ∪(2) respectively. The elastic moduli of the material in Ω()

are denoted by 
()


Figure 3. A sketch of the bimaterial.

Either the displacements  or the tractions  are suitably prescribed at

each point on the exterior boundary (1) ∪(2) of the bimaterial. The inter-

face I is imperfect such that either the soft or the stiff interface conditions
hold. The problem of interest is to determine the displacement and the stress
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fields throughout the bimaterial Ω(1) ∪ Ω(2)

5 Boundary integral equations

If the interface I is given by   1   2 = 0 then the boundary integral

equations for elastostatic deformations of the materials in Ω(1) and Ω(2), in

the absence of body forces, are given by

(1)(1 2)(1 2) =

Z
(1)

[(1 2)Γ(1 2; 1 2)

−(1 2)Φ(1 2; 1 2)](1 2)

+

Z 



[−(1 0+)2(1 0+; 1 2)
+2(1 0

+)Φ(1 0
+; 1 2)]1 (40)

and

(2)(1 2)(1 2) =

Z
(2)

[(1 2)Γ(1 2; 1 2)

−(1 2)Φ(1 2; 1 2)](1 2)

+

Z 



[(1 0
−)2(1 0−; 1 2)

−2(1 0−)Φ(1 0
−; 1 2)]1 (41)

where Φ are any displacements satisfying the partial differential equations

in (19), Γ are the tractions defined by

Γ(1 2; 1 2) = (1 2; 1 2)(1 2) (42)

 are defined in (20), (1 2) are components of the unit outward nor-

mal vector to (1) ∪ (2) at the point (1 2) and ()(1 2) ( = 1 2) is
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defined by

()(1 2) =

⎧⎨⎩
1 if (1 2) lies in the interior of Ω

()

12 if (1 2) lies on a smooth part of I ∪ ()

0 if (1 2) lies outside I ∪ () ∪ Ω()
(43)

Details on the derivation of the boundary integral equations in (40) and

(41) may be found in Clements [7].

As we shall see below, the integration over the imperfect interface I in
(40) and (41) may be eliminated, if Φ are chosen to be given by Φ

(soft)

 and

Φ
(stiff)

 for soft and stiff interfaces respectively.

5.1 Soft interface

For the case where the interface is assumed to be soft, we take

Φ(1 2; 1 2) = Φ
(soft)

 (1 2; 1 2) (44)

where Φ
(soft)

 are as given in Subsection 3.2.

If we add (40) and (41) and apply (12), (13) and (26), we obtain the

boundary integral equations

(1 2)(1 2) =

Z
(1)∪(2)

[(1 2)Γ
(soft)

 (1 2; 1 2)

−(1 2)Φ(soft) (1 2; 1 2)](1 2)

for (1 2) ∈ Ω(1) ∪ Ω(2) ∪ (1) ∪ (2) (45)

where Γ
(soft)

 are given by

Γ
(soft)

 (1 2; 1 2) = 
(soft)

 (1 2; 1 2)(1 2) (46)

and (1 2) by

(1 2) =

⎧⎨⎩ 1 if (1 2) lies in the interior of Ω
(1) ∪ Ω(1)

12 if (1 2) lies on a smooth part of 
(1) ∪ (2)

0 if (1 2) lies outside the bimaterial.
(47)
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Note that the boundary integral equations in (45) do not contain any

integral over the imperfect soft interface I If (45) is used to derive a boundary
element procedure for solving the plane elastostatic problem stated in Section

4, only the exterior boundary(1)∪(2) of the bimaterial has to be discretized

into elements.

With the use of the generalized Hooke’s law, the boundary integral equa-

tions in (45) may be partially differentiated with respect to  to obtain the

stress formula

(1 2) = 
()


Z
(1)∪(2)

{(1 2) 


[Γ
(soft)

 (1 2; 1 2)]

−(1 2) 


[Φ
(soft)

 (1 2; 1 2)]}(1 2)
for (1 2) ∈ Ω() ( = 1 2) (48)

5.2 Stiff interface

For the case where the interface is assumed to be stiff, we take

Φ(1 2; 1 2) = Φ
(stiff)

 (1 2; 1 2) (49)

where Φ
(stiff )

 are as given in Subsection 3.3.

If we add (40) and (41) and apply (15), (16) and (33), we obtain the

boundary integral equations

(1 2)(1 2) =

Z
(1)∪(2)

[(1 2)Γ
(stiff)

 (1 2; 1 2)

−(1 2)Φ(stiff ) (1 2; 1 2)](1 2)

+

Z 



[(1 0)
2

21
(Φ(stiff) (1 0; 1 2))

−Φ(stiff) (1 2; 1 2)
2

21
((1 0))]1(1 2)

for (1 2) ∈ Ω(1) ∪ Ω(2) ∪ (1) ∪ (2) (50)
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where Γ
(stiff)

 are given by

Γ
(stiff)

 (1 2; 1 2) = 
(stiff )

 (1 2; 1 2)(1 2) (51)

Performing integration by parts on the integral over the imperfect stiff

interface, we find that (50) reduces to

(1 2)(1 2) =

Z
(1)∪(2)

[(1 2)Γ
(stiff )

 (1 2; 1 2)

−(1 2)Φ(stiff) (1 2; 1 2)](1 2)

+{−( 0) Φ
(stiff )


1

¯̄̄̄
¯
(12)=(0)

+( 0)
Φ

(stiff )


1

¯̄̄̄
¯
(12)=(0)

+Φ
(stiff)

 ( 0; 1 2)


1

¯̄̄̄
(12)=(0)

−Φ(stiff) ( 0; 1 2)


1

¯̄̄̄
(12)=(0)

}

for (1 2) ∈ Ω(1) ∪ Ω(2) ∪ (1) ∪ (2) (52)

Note that the boundary integral equations in (52) do not contain any

integral over the stiff interface. A boundary element procedure based on

(52) for solving the plane elastostatic problem in Section 4 does not require

the imperfect stiff interface to be discretized into elements. Nevertheless, the

values of  and 1 at the interface tips ( 0) and ( 0), which appear

on the right hand side of (52), must be properly treated in the boundary

element procedure.
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From (52), we obtain

(1 2) = 
()


Z
(1)∪(2)

{(1 2) 


[Γ
(stiff)

 (1 2; 1 2)]

−(1 2) 


[Φ
(stiff)

 (1 2; 1 2)]}(1 2)

+
()
{−( 0) 

2Φ
(stiff )


1

¯̄̄̄
¯
(12)=(0)

+( 0)
2Φ

(stiff )


1

¯̄̄̄
¯
(12)=(0)

+
Φ

(stiff)





¯̄̄̄
¯
(12)=(0)



1

¯̄̄̄
(12)=(0)

− Φ
(stiff)





¯̄̄̄
¯
(12)=(0)



1

¯̄̄̄
(12)=(0)

}

for (1 2) ∈ Ω() ( = 1 2) (53)

6 Boundary element procedures

Boundary element procedures based on (45) or (52) are proposed here for

the numerical solution of the plane elastostatic problem in Section 4 for soft

and stiff interfaces.

The exterior boundary (1) ∪ (2) of the bimaterial in Figure 3 is dis-

cretized into  straight line elements denoted by (1), (2), ... , (−1) and

(), that is, (1) ∪ (2) is approximated as

(1) ∪ (2) ' (1) ∪(2) ∪  ∪(−1) ∪() (54)

Each element is assumed to lie completely in the region given by either 2  0

or 2  0 The two endpoints of the elements 
() are denoted by (

()
1  

()
2 )

and (
()
1  

()
2 ).
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On () we define the points (
()
1  

()
2 ) and (

(+)
1  

(+)
2 ) by

(
()
1  

()
2 ) = (

()
1  

()
2 ) + [(

()
1  

()
2 )− (()1  

()
2 )]

(
(+)
1  

(+)
2 ) = (

()
1  

()
2 ) + (1− )[(

()
1  

()
2 )− (()1  

()
2 )]

(55)

where  is a selected positive number such that 0    12. For the

numerical calculations in Section 7, we take  = 14

For the displacements  and the tractions  on the elements, we make

the discontinuous linear approximations

 ' [()(1 2)− (1− )()]b() − [()(1 2)− ()]b(+)

(2 − 1)()

 ' [()(1 2)− (1− )()]b() − [()(1 2)− ()]b(+)

(2 − 1)()

⎫⎪⎪⎪⎬⎪⎪⎪⎭
for (1 2) ∈ () (56)

where b() and b() are the values of  and  at the point (
()
1  

()
2 ) ( = 1

2 · · ·  2) () is the length of () and

()(1 2) =

q
(1 − 

()
1 )

2 + (2 − 
()
2 )

2 (57)

If the displacements  are specified on () then b() and b(+) are

known values and b() and b(+) are unknown values to be determined.

Likewise, if the tractions  are prescribed on () then b() and b(+) are

known values and b() and b(+) are unknown values to be determined.
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6.1 Soft interface

From (54) and (56), the boundary integral equations in (45) for the soft

interface may be approximated as

(
()
1  

()
2 )b() =

X
=1

1

(2 − 1)()

×{b() [−(1− )()
()
2(

()
1  

()
2 ) +

()
4(

()
1  

()
2 )]

+b(+) [()
()
2(

()
1  

()
2 )−

()
4(

()
1  

()
2 )]

−b() [−(1− )()
()
1(

()
1  

()
2 ) +

()
3(

()
1  

()
2 )]

−b(+) [()
()
1(

()
1  

()
2 )−

()
3(

()
1  

()
2 )]}

for  = 1 2  2 (58)

where


()
1(1 2) =

Z
()

Φ
(soft)

 (1 2; 1 2)(1 2),


()
2(1 2) =

Z
()

Γ
(soft)
 (1 2; 1 2)(1 2)


()
3(1 2) =

Z
()

()(1 2)Φ
(soft)
 (1 2; 1 2)(1 2),


()
4(1 2) =

Z
()

()(1 2)Γ
(soft)
 (1 2; 1 2)(1 2) (59)

The integrals in (59) may be evaluated numerically. We may solve (58)

as a system of linear algebraic equations for the unknowns values of the

displacements or tractions on the boundary elements. Once the values of the

displacements and tractions are known on all the elements, the displacements

and the stresses at any point (1 2) in the interior of the bimaterial may be
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calculated using

(1 2) =
X
=1

1

(2 − 1)()

×{b() [−(1− )()
()
2(1 2) +

()
4(1 2)]

+b(+) [()
()
2(1 2)−

()
4(1 2)]

−b() [−(1− )()
()
1(1 2) +

()
3(1 2)]

−b(+) [()
()
1(1 2)−

()
3(1 2)]} (60)

and

(1 2)

=
X
=1


()


(2 − 1)()

×{b() [−(1− )()



[

()
2(1 2)] +




[

()
4(1 2)]]

+b(+) [()



[

()
2(1 2)]−




[

()
4(1 2)]]

−b() [−(1− )()



[

()
1(1 2)] +




[

()
3(1 2)]]

−b(+) [()



[

()
1(1 2)]−




[

()
3(1 2)]]}

for (1 2) ∈ Ω() ( = 1 2) (61)
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6.2 Stiff interface

If we proceed as before, the boundary integral equations in (52) for the stiff

interface may be approximated as

(
()
1  

()
2 )b() =

X
=1

1

(2 − 1)()

×{b() [−(1− )()
()
2(

()
1  

()
2 ) +

()
4(

()
1  

()
2 )]

+b(+) [()
()
2(

()
1  

()
2 )−

()
4(

()
1  

()
2 )]

−b() [−(1− )()
()
1(

()
1  

()
2 ) +

()
3(

()
1  

()
2 )]

−b(+) [()
()
1(

()
1  

()
2 )−

()
3(

()
1  

()
2 )]}

+{−( 0) 

1
(Φ(stiff ) (1 2; 

()
1  

()
2 ))

¯̄̄̄
(12)=(0)

+( 0)


1
(Φ(stiff ) (1 2; 

()
1  

()
2 ))

¯̄̄̄
(12)=(0)

+Φ
(stiff)

 ( 0; 
()
1  

()
2 )



1
[(1 2)]

¯̄̄̄
(12)=(0)

−Φ(stiff) ( 0; 
()
1  

()
2 )



1
[(1 2)]

¯̄̄̄
(12)=(0)

}

for  = 1 2  2 (62)

where


()
1(1 2) =

Z
()

Φ
(stiff)

 (1 2; 1 2)(1 2),


()
2(1 2) =

Z
()

Γ
(stiff)
 (1 2; 1 2)(1 2)


()
3(1 2) =

Z
()

()(1 2)Φ
(stiff)
 (1 2; 1 2)(1 2),


()
4(1 2) =

Z
()

()(1 2)Γ
(stiff )
 (1 2; 1 2)(1 2) (63)
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In (62), the unknowns on the boundary elements are as in (58). As

values of  and 1 at the interface tips ( 0) and ( 0) are possibly

unknown, more equations are needed to complement (62). The additional

equations may be set up as explained below.

We assume that the interface tip ( 0) is an endpoint of the first element

(1) and the other interface tip ( 0) is an endpoint of the last element ()

Furthermore, (1) and () are assumed to lie in the regions 2  0 and

2  0 respectively.

From the first line of (56), we obtain approximately the following formulae

for the displacements at the interface tips ( 0) and ( 0):

( 0) =
[(1)( 0)− (1− )(1)]b(1) − [(1)( 0)− (1)]b(+1)

(2 − 1)(1) 

( 0) =
[()( 0)− (1− )()]b() − [()( 0)− ()]b(2)

(2 − 1)() 

(64)

For (1 2) ∈ () ( = 1 and  = ), if we differentiate the approxima-

tion of  in (56) with respect to the distance along 
() we obtain

−(1)2


1

¯̄̄̄
(12)=(0)

+ 
(1)
1



2

¯̄̄̄
(12)=(0+)

=
(b(1) − b(+1) )

(2 − 1)(1) 

−()2



1

¯̄̄̄
(12)=(0)

+ 
()
1



2

¯̄̄̄
(12)=(0−)

=
(b() − b(2) )

(2 − 1)() 

(65)

where [
()
1  

()
2 ] is the unit outward normal vector to 

()

Note that



1

¯̄̄̄
(12)=(0+)

=


1

¯̄̄̄
(12)=(0−)





1

¯̄̄̄
(12)=(0+)

=


1

¯̄̄̄
(12)=(0−)

 (66)
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since (1 0
+) = (1 0

−) for points (1 0) on the imperfect stiff interface.

From the generalized Hooke’s law and the second line of (56), we approx-

imately obtain


(1)
1

(1)




1

¯̄̄̄
(12)=(0)

+ 
(1)
2

(1)
1



2

¯̄̄̄
(12)=(0+)

=
[(1)( 0)− (1− )(1)]b(1) − [(1)( 0)− (1)]b(+1)

(2 − 1)(1) 


(2)
1

()




1

¯̄̄̄
(12)=(0)

+ 
(2)
2

()
1



2

¯̄̄̄
(12)=(0−)

=
[()( 0)− (1− )()]b() − [()( 0)− ()]b(2)

(2 − 1)()  (67)

We may solve (62) together with (64), (65) and (67) for unknown values of

 or  on the boundary elements and unknown values of  and  at

the interface tips ( 0) and ( 0) Once the unknown values are determined,

the displacements and stresses at any point (1 2) in the interior of the

bimaterial may be calculated using

(1 2) =
X
=1

1

(2 − 1)(){b() [−(1− )()
()
2(1 2) +

()
4(1 2)]

+b(+) [()
()
2(1 2)−

()
4(1 2)]

−b() [−(1− )()
()
1(1 2) +

()
3(1 2)]

−b(+) [()
()
1(1 2)−

()
3(1 2)]}

+{−( 0) 

1
(Φ(stiff) (1 2; 1 2))

¯̄̄̄
(12)=(0)

+( 0)


1
(Φ(stiff) (1 2; 1 2))

¯̄̄̄
(12)=(0)

+Φ(stiff) ( 0; 1 2)


1
[(1 2)]

¯̄̄̄
(12)=(0)

−Φ(stiff ) ( 0; 1 2)


1
[(1 2)]

¯̄̄̄
(12)=(0)

} (68)
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and

(1 2)

=
X
=1


()


(2 − 1)()

×{b() [−(1− )()



[

()
2(1 2)] +




[

()
4(1 2)]]

+b(+) [()



[

()
2(1 2)]−




[

()
4(1 2)]]

−b() [−(1− )()



[

()
1(1 2)] +




[

()
3(1 2)]]

−b(+) [()



[

()
1(1 2)]−




[

()
3(1 2)]]}

+
()
{−( 0) 

2Φ
(stiff)


1

¯̄̄̄
¯
(12)=(0)

+( 0)
2Φ

(stiff )


1

¯̄̄̄
¯
(12)=(0)

+
Φ

(stiff)





¯̄̄̄
¯
(12)=(0)



1
[(1 2)]

¯̄̄̄
(12)=(0)

− Φ
(stiff )





¯̄̄̄
¯
(12)=(0)



1
[(1 2)]

¯̄̄̄
(12)=(0)

}

for (1 2) ∈ Ω() ( = 1 2) (69)

7 Numerical results for particular cases

Consider the rectangular bilayered slab in Figure 4. The vertices of the

rectangular slab are ( ) (−) (−−) and (− ) where  and

 are given positive real numbers. The regions Ω(1) and Ω(2) are occupied

by particular transversely isotropic materials. Specifically, the only non-zero
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elastic moduli 
()
 in Ω() are given by


()
1111 = () 

()
2222 = ()


()
1212 = 

()
2112 = 

()
1221 = 

()
2121 = ()


()
1122 = 

()
2211 =  () (70)

where ()  () () and () are independent elastic coefficients.

Figure 4. A rectangular bilayered slab.

The boundary conditions on the exterior boundary of the rectangular slab

are given by

(1−) = 0
2(1 ) = (1)

¾
for −   1  

1(± 2) = 0 for −   2   (71)

where (1) are suitably prescribed tractions.

The interface between the materials in Ω(1) and Ω(2) is imperfect, satisfy-

ing either the soft or stiff interface conditions.
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Problem 1. For the mere purpose of checking the validity of the boundary

element procedures, that is, for a test problem, we take  = 05  = 8

(1) = exp(− |1|), (1) = 5 (1) = 4  (1) = 1 (1) = 1 (2) = 1

(2) = 1  (2) = 12 and (2) = 15

The exterior boundary of the bimaterial is discretized into 132 bound-

ary elements and the boundary element method together with the rele-

vant Green’s function is used to compute the displacements (1 025)

(−8  1  8) and (05 2) (−05  2  05) for soft and stiff interfaces.

For the parameters in the interface conditions, we take 11 = 2 12 = 21 = 0

and 22 = 5 for the soft interface and 11 = 110 and 12 = 21 = 22 = 0

for the stiff interface.

As the width 2 of the rectangular slab is relatively large compared to the

height 2 that is,  = 16 we compare the computed displacements with

the corresponding explicit solutions for an infinitely long slab where →∞

The explicit solutions are derived analytically in the Appendix − they are
expressed in terms of Fourier integrals which may be evaluated numerically.

For the soft interface, Figures 5 and 6 compare graphically the values of

the displacements (1 025) (for −8  1  8) computed using the Green’s

function boundary element method and those calculated using the explicit

analytical solution in the Appendix. On the whole, the two sets of value agree

well. Observing more closely, we find that the displacements computed using

the boundary element method actually deviate slightly from the analytical

solution at both ends of the slab in Figure 4. This is to be expected since

the analytical solution is derived using for an infinitely long slab instead of

the finite width slab in Figure 4.
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Figure 5. Plots of 1(1 025) against 1 for −8  1  8

Figure 6. Plots of 2(1 025) against 1 for −8  1  8
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Figure 7. Plots of 1(05 2) against 2 for −05  2  05

Plots of the displacements (05 2) along the direction perpendicular

to the interface  are given in Figures 7 and 8 for −05  2  05. Again, the

values computed using the boundary element method match well the values

calculated using the analytical solution. Figures 7 and 8 show clearly the

displacement jumps 4 across the soft interface I.
For the stiff interface, we have also observed a good agreement between

the boundary element and the analytical solutions for the displacements

(1 025) (−8  1  8) in Figures 9 and 10. The slight differences

between the solutions at points closer to 1 = ±8 are as explained above for
the soft interface. Figures 11 and 12 show the displacements along (05 2)

for −05  2  05 for both numerical and analytical model. As expected,

we observe continuity of displacements  across the stiff interface I.
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Figure 8. Plots of 2(05 2) against 2 for −05  2  05

Figure 9. Plots of 1(1 025) against 1 for −8  1  8
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Figure 10. Plots of 2(1 025) against 1 for −8  1  8

Figure 11. Plots of 1(05 2) against 2 for −05  2  05
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Figure 12. Plots of 2(05 2) against 2 for −05  2  05

Table 1. Boundary element and analytical values of the stresses in the

bimaterial with the soft interface.

Point Boundary Element Method Analytical

(1 2) 11 12 22 11 12 22
(−060−025) 00675 01094 05656 00679 01093 05667
(−100 020) 00613 0057 03957 00616 00576 03966
(400−040) 00115 −00078 00187 00115 −00076 00187
(200−020) 00968 −00218 01417 00971 −00218 01420
(250−040) 00514 −00259 00843 00515 −00259 00844

At selected points in the interior of the bimaterial, the stresses  com-

puted using (61) (for the soft interface) and (69) (for the stiff interface) are
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compared in respectively Tables 1 and 2 with the values from the analyti-

cal solutions in the Appendix. It is obvious that there is a good agreement

between the boundary element and the analytical values of the stresses.

Table 2. Boundary element and analytical values of the stresses in the

bimaterial with the stiff interface.

Point Boundary Element Method Analytical

(1 2) 11 12 22 11 12 22
(−060−025) 00656 00930 05648 00676 00929 05657
(−100 020) 00547 00500 03933 00539 00469 03926
(400−040) 00110 −00077 00193 00115 −00080 00189
(200−020) 00936 −00196 01391 00934 −00193 01393
(250−040) 00496 −00245 00830 00500 −00244 00830

Problem 2. Consider now the case where Ω(1) and Ω(2) are occupied by

isotropic materials. The Young’s modulus and the Poisson ratio of the

isotropic material in Ω() ( = 1 2) are denoted by () and () respectively.

The boundary element analysis here may be recovered for isotropic materials

by taking the constants ()  () () and () in (70) to be approximately

given by

() = () =
()(1− ())

(1 + ())(1− 2()) 

 () =
()()(1− )

(1 + ())(1− 2())  
() =

()

2(1 + ())


where  is a positive real number with a very small magnitude.

The boundary conditions are as given in (71) with

(1) =

½
2 for |1|  

0 for   |1|  
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where  is a given positive real constant and  is a given positive real number

such that   

For the purpose of our calculation here, we take  = 2,  = 1,

 = 10−6 (1) = (2) = 030 and (1)(2) = 2 (the material in Ω(2) is

“softer” than that in Ω(1)). The exterior boundary 1∪2 of the rectangular
slab is discretized into 60 elements.

For the case where the interface is soft, we take 1122 = 02, 12
(1) =

21
(1) = 0 and examine the effects of altering the parameter 11

(1)

on the deformation of the rectangular slab. Plots of the non-dimensionalized

displacements 
(1) along 2 = 05 for −2  1  2 are given in

Figures 13 and 14 for selected values of 11
(1). The solid line plots in both

figures give the non-dimensionalized displacements 
(1) for the case in

which the interface is perfectly bonded, that is, for the limiting case where

11
(1) →∞ In Figures 13 and 14, 1

(1) approaches the solid line as

the non-dimensionalized parameter 11
(1) increases. Hence, a lower value

of 11
(1) indicates a weaker interface. This may also be seen in the plots

of the displacement 2
(1) along 1 = 0 for −1  2  1 in Figure

15, where we observe a larger deformation for a smaller value of 11
(1).

A weaker interface is less able to distribute out the stress in Ω(1) to Ω(2)

across the interface. As may be expected, Figure 15 shows that a smaller

value of 11
(1) gives a bigger jump in the displacement 2

(1) across

the interface I. Note that the displacement 2(1) in Figure 15 does not

show any jump across the ideal interface.
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Figure 13. Plots of 1
(1) on 2 = 05, −2  1  2 for selected

values of 11
(1)

Figure 14. Plots of 2
(1) on 2 = 05, −2  1  2 for selected

values of 11
(1)
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Figure 15. Plots of 2
(1) along 1 = 0, −1  2  1 for selected

values of 11
(1)

Figure 16. Plots of 1
(1) on 2 = 05, −2  1  2 for selected

values of 11
(1)
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Figure 17. Plots of 2
(1) on 2 = 05, −2  1  2 for selected

values of 11
(1)

Figure 18. Plots of 2
(1) along 1 = 0, −1  2  1 for selected

values of 11
(1)
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For the case where the interface is stiff, we take  to be such that only

11 is not zero. Figures 16, 17 and 18 show plots of the non-dimensionalized

displacements 
(1) for selected values of 11

(1). As before, the

solid line plots give the non-dimensionalized displacements 
(1) for

the special case where the interface is ideal.

We observe that the effect of the stiff interface on the displacement field

is opposite to that of the soft interface. The presence of the stiff interface

appears to reduce the magnitudes of the displacements. In Figure 16, the dis-

placement 1
(1) approaches the solid line as 11

(1) decreases, that

is, as the stiffness of the interface decreases. Figures 17 and 18 also show that

the stiff interface is able to resist deformation. Moreover, in Figure 18, the

gradient of the non-dimensionalized displacement 2
(1) appears to de-

crease as non-dimensionalized stiff interface parameter 11
(1) increases,

that is, the overall strength of the bimaterial apparently increases with in-

creasing 11
(1). As expected, the displacement 2

(1) is continuous

across the stiff interface.

8 Summary

Green’s functions are derived for imperfect soft and stiff planar interfaces

between two dissimilar anisotropic elastic half spaces and applied to obtain

boundary element procedures for determining the elastic fields in bimate-

rials of finite extent. As the derived Green’s functions satisfy the relevant

interface conditions, the boundary element formulations do not require the

interfaces to be discretized into elements, giving rise to smaller systems of

linear algebraic equations.

To access the validity and accuracy of the proposed boundary element
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methods for the bimaterials with soft and stiff interfaces, specific test prob-

lems involving a relatively long rectangular bilayered slabs are solved numer-

ically. The boundary element solutions obtained compare favorably with the

analytical solutions for the corresponding case of an infinitely long bilayered

slab. The boundary element procedures are also applied to study the effects

of interface parameters on the displacement fields in bilayered slabs with soft

and stiff interfaces. The bilayered slabs are shown to be weakened by soft

interfaces and strengthened by stiff interfaces.

Appendix

The displacements and stresses in the rectangular bilayered slab in Figure

4, which satisfy the exterior boundary conditions (71) and the imperfect

interface conditions, are given here explicitly in terms of Fourier integrals for

the special case where  →∞ that is, for an infinitely long bilayered slab.

Guided by the analysis in Clements [7], we take the displacements to be

in the form

(1 2)

= (2)Re{
2X

=1


(1)


Z ∞

0

[ (1)
 () exp((1 +  (1) 2))

+ (1)
 () exp(−(1 +  (1) 2))]}

+(−2) Re{
2X

=1


(2)


Z ∞

0

[ (2)
 () exp((1 +  (2) 2))

+ (2)
 () exp(−(1 +  (2) 2))]} (A1)

where 
()
 () and 

()
 () ( = 1 2) are functions yet to be determined.
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The stresses corresponding to the displacements in (A1) are given by

(1 2)

= (2)Re{
2X

=1


(1)


Z ∞

0

[ (1)
 () exp((1 +  (1) 2))

− (1)
 () exp(−(1 +  (1) 2))]}

+(−2) Re{
2X

=1


(2)


Z ∞

0

[ (2)
 () exp((1 +  (2) 2))

− (2)
 () exp(−(1 +  (2) 2))]} (A2)

If the integrals in (A2) exist, the stresses  decay to zero as |1| tends
to infinity (Sneddon [16]).

From (A1), we find that the conditions on the lower edge 2 = − of the
infinitely long slab, that is,

(1−) = 0 for −∞  1 ∞ (A3)

are satisfied if 
(2)
 () and 

(2)
 () are such that

2X
=1

[
(2)


(2)
 () exp(− (2) ) +

(2)


(2)

 () exp(− (2) )] = 0 (A4)

The conditions on the upper edge 2 =  of the infinitely long slab are

given by

2(1 ) = (1) for −∞  1 ∞ (A5)

If we apply the Fourier exponential transformation on both sides of (A5),

that is, if we rewrite (A5) asZ ∞

−∞
2(1 ) exp(−1)1 =

Z ∞

−∞
(1) exp(−1)1 (A6)
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and use (A2), we obtain



2X
=1

[
(1)
2

(1)
 () exp( (1) ) + 

(1)

2
(1)

 () exp(
(1)
 )]

=

Z ∞

−∞
(1) exp(−1)1 (A7)

A.1 Soft interface

The conditions in (12) are satisfied if

2X
=1

[
(1)
2

(1)
 () + 

(1)

2
(1)

 ()] =
2X

=1

[
(2)
2

(2)
 () + 

(2)

2
(2)

 ()] (A8)

The conditions in (13) give

{
2X

=1

[
(1)


(1)
 ()− 

(2)


(2)
 () +

(1)


(1)

 ()−
(2)


(2)

 ()]}

= 

2X
=1

[
(1)
2

(1)
 () + 

(1)

2
(1)

 ()] (A9)

Thus, if the interface I is soft, the functions  (1)
 , 

(1)
 (), 

(2)
 (), and


(2)
 () are obtained by solving (A4), (A7), (A8) and (A9).

A.2 Stiff interface

The conditions in (15) hold if

2X
=1

[
(1)


(1)
 () +

(1)


(1)

 ()] =
2X

=1

[
(2)


(2)
 () +

(2)


(2)

 ()] (A10)

The conditions in (16) are satisfied if

{
2X

=1

[
(1)
2

(1)
 () + 

(1)

2
(1)

 ()− 
(2)
2

(2)
 ()− 

(2)

2
(2)

 ()]}

= 

2X
=1

[
(1)


(1)
 () +

(1)


(1)

 ()] (A11)
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Thus, if the interface I is stiff, the functions  (1)
 , 

(1)
 (), 

(2)
 (), and


(2)
 () are obtained by solving (A4), (A7), (A10) and (A11).
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