
A numerical method based on boundary

integral equations and radial basis functions

for plane anisotropic thermoelastostatic

equations with general variable coefficients

Whye Teong Ang† and Xue Wang‡
† School of Mechanical and Aerospace Engineering,
Nanyang Technological University, Singapore 639798

E-mail: mwtang@ntu.edu.sg
‡ Department of Mechanical Engineering,

National University of Singapore, Singapore 117575

E-mail: mpewax@nus.edu.sg

Abstract

A boundary integral method with radial basis function approx-

imation is proposed for solving numerically an important class of

boundary value problems governed by a system of thermoelastostatic

equations with variable coefficients. The equations describe the ther-

moelastic behaviors of nonhomogeneous anisotropic materials with

properties that vary smoothly from point to point in space. No re-

striction is imposed on the spatial variations of the thermoelastic co-

efficients as long as all the requirements of the laws of physics are

satisfied. To check the validity and accuracy of the proposed numer-

ical method, some specific test problems with known solutions are

solved.

A shorter version of this article has been accepted for publication in the
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a 16 page limit on all its articles. The shortened version at AMM may

be accessed via the link: https://doi.org/10.1007/s10483-020-2592-8
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1 Introduction

The plane themoelastostatic deformation of an anisotropic material is gov-

erned by the elliptic systems of partial differential equations




(




) + = 0 (1)

and



(




) =




( )−  (2)

where Latin subscripts take the values of 1 and 2 the Einsteinian conven-

tion of summing over a repeated subscript is assumed here, 1 and 2 are the

Cartesian coordinates of points in the material,  and  which are functions

of 1 and 2 are the temperature and the  component of the Cartesian dis-

placement,   and  are respectively the heat conduction coefficients,

the elastic moduli and the stress-temperature coefficients of the material, and

 and  are given heat source and body force terms respectively. For more

details on the equations in (1) and (2), one may refer to Clements [11, 12]

and Nowacki [24].

The material properties    and  are constants for homogeneous

materials. For nonhomogeneous materials such as functionally graded mate-

rials, they are given by functions that vary smoothly with 1 and 2 Exper-

imental and theoretical works on thermal and mechanical behaviors of func-

tionally graded materials have been a subject of considerable interest among

many researchers (see, for example, Batra [9], Kapuria, Bhattacharyya and

Kumar [20], Kawasaki and Watanabe [21], Pei, Ocelik and de Hosson [26]

and Vel and Batra [35]), as the materials play an important role in many en-

gineering applications. Partial differential equations of the form (1) and (2)

with variable coefficients are also of interest in geotechnical engineering such
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as in the modeling of the properties of soils that vary with depth (Gibson

[19] and Ter-Martirosyan and Mirnyi [34]).

In general, partial differential equations with variable coefficients are in-

herently difficult to solve. Thus, to simplify thermal and elastic analyses

involving functionally graded materials, many researchers assume that the

heat conduction coefficients  and the elastic moduli  are of the form

 = (1 2) and  = (1 2) (3)

where  and  are constants and (1 2) and (1 2) are grading

functions given by specific elementary functions. For example, the grading

functions are given by exponential functions of 1 and 2 in Kuo and Chen

[22], Petrova and Sadowski [27] and Sladek, Sladek and Chang [32], while

they are taken as quadratic functions in Wang and Qin [36] and Yuan and

Yin [37].

For homogeneous materials, boundary integral methods for the general-

ized heat equation (1) with  = 0 (that is, for steady state heat anisotropic

heat conduction problem with zero heat source) and for the elastic equations

in (2) with  = 0 and  = 0 (anisotropic elastostatic problem without body

force) are well established (see Clements [12]). For functionally graded ma-

terials with thermal conductivity of the form given in (3), a dual-reciprocity

boundary element method for solving the anisotropic heat conduction prob-

lem is presented in Ang, Clements and Vahdati [7]. In Azis and Clements

[8], the elastic moduli of functionally graded materials are taken to be of the

form in (3) with some extra conditions imposed on the constants  and

the grading function (1 2) in order to derive a boundary integral method

for solving the anisotropic elastostatic problem. Recently, a boundary inte-

gral approach with radial basis function approximations is proposed in Ang

[3] for solving the anisotropic elastostatic problem with the elastic moduli
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given by (3) but without the extra conditions on  and (1 2) imposed

in [8]. Radial basis functions are widely used in the development of meshless

methods for approximating partial differential equations in engineering sci-

ence (see, for example, Chu, Wang, Zhong and He [10], Fasshauer [16] and

Sarler and Vertnik [28]).

Boundary element methods for solving partial differential equations of

thermoelasticity for homogeneous materials may be found in, for example,

Ang, Clements and Cooke [5, 6], Dargush and Banerjee [13], Deb [14], Shiah

and Tan [30] and Sladek and Sladek [31]. In Gao [18], plane thermoelastosta-

tic problems involving isotropic functionally graded materials are formulated

in terms of boundary-domain integral equations with the domain integrals

treated by a radial integration method.

In the current paper, we employ a numerical method based on bound-

ary integral equations and radial basis function approximations for solving

boundary value problems governed by the equations of thermoelasticity in

(1) and (2) for nonhomogeneous materials with spatially varying properties.

No restrictive form (such as the one in (3)) is imposed here on the proper-

ties ,  and . The coefficients ,  and  may be individually

given by any smoothly varying functions as long as they satisfy the sym-

metric relations and the positive definiteness conditions required by the laws

of physics. In the approach here, the governing equations (1) and (2) are

reduced to linear algebraic equations by using radial basis functions and the

standard boundary integral equations for anisotropic heat conduction and

elastostatics. No domain integral is involved in the formulation. The numer-

ical procedure does not require the solution domain to be discretized into

elements. Some specific test problems are solved to check the validity and

accuracy of the numerical method presented here.
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2 Boundary value problems

With reference to an 123 Cartesian frame, consider an anisotropic body

with geometry and properties that do not vary along the 3 direction. At

each and every point on the boundary of the body either the temperature or

heat flux and either the displacement or the traction are suitably specified.

The prescribed boundary conditions are independent of time and the spatial

coordinate 3 The problem of interest here is to determine the temperature

and the displacement fields throughout the body.

If the body occupies the regionR on the12 plane, whereR is bounded
by a simple closed curve C then the boundary value problems to solve in R
in order to determine the temperature and displacement are as described

below.

At any general point (1 2) in R, the temperature  which is a function
of 1 and 2 only, is required to satisfy the elliptic partial differential equation

(1) where the heat conduction coefficients  (  = 1 2) and the heat source

term  are smoothly varying functions of 1 and 2

Since either the temperature or the heat flux is specified at each and every

point on C, the thermal boundary conditions may be written as
 (1 2) = Ω(1 2) for (1 2) on C1
z(1 2) = Ψ(1 2) for (1 2) on C2 (4)

where C1 and C2 are non-intersecting curves such that C1 ∪ C2 = C Ω(1 2)
and Ψ(1 2) are suitably prescribed functions on C1 and C2 respectively and
z is the thermal heat flux function on C defined by

z = 



 (5)

where (1 2) is the  component of the unit outer normal vector to R at

the point (1 2) on C
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To determine the temperature  in the solid, the boundary value problem

to solve is defined by (1) and (4).

If the displacement and the stress, which are also functions of 1 and

2 only, are denoted by  and  respectively then (Clements [11, 12] and

Nowacki [24])

(1 2) = 



−  (1 2) (6)

where the elastic moduli  and the stress-temperature coefficients  are

smoothly varying functions of 1 and 2

Substituting (6) into the equilibrium equations  = −, where
the body force terms  are smoothly varying functions of 1 and 2 we

obtain the elliptic system of partial differential equations in (2).

Either the displacement or the traction is suitably specified at each and

every point C This may be written as
(1 2) = (1 2) for (1 2) on C3
(1 2) = (1 2) for (1 2) on C4 (7)

where C3 and C4 are non-intersecting curves such that C3∪C4 = C (1 2)

and (1 2) are suitably prescribed functions on C3 and C4 respectively
and  is the  component of the traction as defined by

 =  (8)

The boundary value problem to solve in order to determine the displace-

ments  is governed by (2) and (7). Note that the temperature  (1 2) is

known in (2) after (1) is solved subject to (4).
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3 Overview of solution approach

We rewrite the elliptic partial differential equation (1) and (2) respectively

as



(
(0)





+ 

(1)





) = − (9)

and



(
(0)





+ 

(1)





−  ) = − (10)

where 
(0)
 and 

(0)
 are constants which may be obtained by averaging re-

spectively  and  over R and 
(1)
 =  − 

(0)
 and 

(1)
 =  − 

(0)


are, in general, functions that vary smoothly with 1 and 2 in R.
By letting

 (1 2) =  (1 2) + (1 2) (11)

we replace the partial differential equation in (9) by




(
(0)





+ 

(1)





) = − (12)

and


(0)


2


= 0 (13)

Similarly, letting

(1 2) = (1 2) + (1 2) (14)

we replace the elliptic system of partial differential equations in (10) by




(
(0)





+ 

(1)





−  ) = − (15)

and


(0)


2


= 0 (16)
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The solution approach for the boundary values problems in Section 2

follows that in Ang [3, 4]. As pointed out in Section 1, the variations of

the anisotropic elastic moduli in [3] for elastostatic deformations follow the

restrictive form in (3) (guided by only a single grading function). In the

current paper, the material properties ,  and  may be individually

given by any smoothly varying functions.

We employ a meshless technique based on radial basis functions to ap-

proximate (12) and (15) as linear algebraic equations. The partial differential

equations in (13) and (16) are recast in terms of the standard boundary inte-

gral equations given in Clements [12]. The boundary integral equations are

discretized together with the boundary conditions into linear algbraic equa-

tions. The values of the temperature  and the displacements  at chosen

collocation points in R ∪ C appear as unknowns to be determined from the

resulting system of linear algebraic equations.

4 Radial basis function approximations

For the meshless technique for approximating (12) and (15), we choose 

well spaced out collocation points in R ∪ C The chosen points are denoted
by (

(1)
1  

(1)
2 ) (

(2)
1  

(2)
2 ) · · ·  ((−1)1  

(−2)
2 ) and (

( )
1  

( )
2 ) where 

()
 is the

 coordinate of the -th collocation point.

We may approximate a smoothly varying function (1 2) in R ∪ C by

(1 2) '
X
=1

()()(1 2) (17)

where () are constant coefficients and ()(1 2) is a radial basis function

centered about (
()
1  

()
2 ).

If we collocate (17) at (1 2) = (
()
1  

()
2 ) for  = 1 2 · · ·   and invert
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the resulting linear equations for the constants () we obtain

() '
X

=1

()() (18)

where () = (
()
1  

()
2 ) and () are constants defined by

X
=1

()()(()1  
()
2 ) =

½
1 if  = 

0 if  6= 
(19)

Substituting (18) into (17) yields

(1 2) '
X
=1

X
=1

()()()(1 2) (20)

If the radial basis function ()(1 2) is required to be partially differ-

entiable once with respect to 1 or 2 we may use the radial basis function

proposed in Zhang and Zhu [38], that is,

()(1 2) = 1+(1−()1 )2+(2−()2 )2+((1−()1 )2+(2−()2 )2)32 (21)

Alternatively, we may consider taking ()(1 2) to be the well known mul-

tiquadric radial basis function given by (see Ferreira [17] and Sarra [29])

()(1 2) =

q
1 + ((1 − 

()
1 )

2 + (2 − 
()
2 )

2) (22)

where  is a given positive real number. One may refer to Menandro [23] for

a more recent account on radial basis function approximation.

4.1 Meshless approximation of (12)

From (20), we make the approximations

 (1 2) '
X
=1

X
=1

() ()()(1 2)

 (1 2) '
X
=1

X
=1

() ()()(1 2) (23)
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where  () =  (
()
1  

()
2 ) and  () =  (

()
1  

()
2 )

It follows that


(0)





( (1 2)) + 

(1)
 (1 2)




( (1 2))

'
X

=1

(
()
 (1 2)

() + 
()
 (1 2)

()) (24)

where


()
 (1 2) = 

(0)


X
=1

()



(()(1 2))


()
 (1 2) = 

(1)
 (1 2)

X
=1

()



(()(1 2)) (25)

Furthermore, if we approximate the left hand side of (24) by


(0)





( (1 2)) + 

(1)
 (1 2)




( (1 2)

'
X
=1


()
 ()(1 2) (26)

and collocate (24) at (1 2) = (
()
1  

()
2 ) for  = 1 2 · · ·   we obtain

X
=1


()
 ()(

()
1  

()
2 ) =

X
=1

(
()
  ()+

()
  ()) for  = 1 2 · · ·   (27)

where 
()
 = 

()
 (

()
1  

()
2 ) and 

()
 = 

()
 (

()
1  

()
2 )

The equations in (27) may be inverted to obtain


()
 =

X
=1

(
()
  () + 

()
  ()) (28)

where


()
 =

X
=1


()
 ()


()
 =

X
=1


()
 () (29)
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From (26), the partial differential equation in (12) may be approximately

written as
X
=1


()





(()(1 2)) = −(1 2) (30)

If we substitute (28) into (30) and collocate the equation at (1 2) =

(
()
1  

()
2 ) for  = 1 2 · · ·   we obtain

X
=1

(() () + () ()) = −(()1  
()
2 ) for  = 1 2 · · ·   (31)

where

() =
X
=1


()





(()(1 2))

¯̄̄̄
(12)=(

()
1 

()
2 )



() =
X
=1


()





(()(1 2))

¯̄̄̄
(12)=(

()
1 

()
2 )

 (32)

The linear algebraic equations in (31) with unknowns  () and  ()

( = 1 2 · · ·   ) may be regarded as a radial basis function approximation
of the partial differential equation (12) in R ∪ C

4.2 Meshless approximation of (15)

If we make the approximations

(1 2) '
X
=1

X
=1

()
()
 ()(1 2)

(1 2) '
X
=1

X
=1

()
()
 ()(1 2) (33)

and


(0)





((1 2)) + 

(1)
(1 2)




((1 2))−  (1 2)

'
X
=1


()
 

()(1 2) (34)
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where 
()
 = (

()
1  

()
2 ), 

()
 = (

()
1  

()
2 ) and 

()
 are constant coef-

ficients, we may substitute (33) into the left hand side of (34) and collocate

the resulting equations at (1 2) = (
()
1  

()
2 ) for  = 1 2 · · ·   to obtain

X
=1


()
 

()(()1  
()
2 ) =

X
=1

(() 
()
 +()

 
()
 )−(()1  

()
2 )

() (35)

with 
()
 and 

()
 given by


()
 = 

(0)


X
=1

()



(()(1 2))

¯̄̄̄
(12)=(

()
1 

()
2 )




()
 = 

(1)
(

()
1  

()
2 )

X
=1

()



(()(1 2))

¯̄̄̄
(12)=(

()
1 

()
2 )

(36)

We may invert (35) to obtain


()
 =

X
=1

(
()
 

()
 + 

()
 

()
 )−

X
=1

()(
()
1  

()
2 ) () (37)

where


()
 =

X
=1

()
()
 


()
 =

X
=1

()
()
  (38)

From (34) and (37), we find that (15) may be collocated at (1 2) =

(
()
1  

()
2 ) for  = 1 2 · · ·   to give

X
=1

(
()
 

()
 +

()
 

()
 ) =

X
=1


()
  ()− () for  = 1 2 · · ·   (39)
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where 
()
 = (

()
1  

()
2 ) and


()
 =

X
=1


()





(()(1 2))

¯̄̄̄
(12)=(

()
1 

()
2 )




()
 =

X
=1


()





(()(1 2))

¯̄̄̄
(12)=(

()
1 

()
2 )




()
 = (

()
1  

()
2 )

X
=1

()



(()(1 2))

¯̄̄̄
(12)=(

()
1 

()
2 )

(40)

The linear algebraic equations in (39) with unknowns 
()
 , 

()
 and  ()

( = 1 2 · · ·   ) may be regarded as a radial basis function approximation
of the partial differential equation (15) in R ∪ C

5 Boundary integral approximations

Boundary integral equations which can be discretized to obtain linear alge-

braic equations for approximating the solutions of the homogeneous elliptic

partial differential equations in (13) and (16) are given in Clements [12].

5.1 Approximation of the boundary integral solution

of (13)

The boundary integral solution of (13) is given by

(1 2) (1 2)

=

Z
C

(Γ(1 2 1 2) (1 2)

− Φ(1 2 1 2)
(0)
 (1 2)




( (1 2)))(1 2) (41)

where (1 2) is such that (1 2) = 1 if (1 2) lies in the interior of the

solution domain R bounded by the curve C and (1 2) = 12 if (1 2) lies
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on a smooth part of the curve C and

Φ(1 2 1 2) =
1

2

q

(0)
11 

(0)
22 − ((0)12 )2

Re{ln(1 − 1 +  [2 − 2])}

Γ(1 2 1 2) =
1

2

q

(0)
11 

(0)
22 − ((0)12 )2

Re

½
(1 2)

(1 − 1 +  [2 − 2])

¾


(1 2) = (
(0)
11 + 

(0)
12 )1(1 2) + (

(0)
21 + 

(0)
22 )2(1 2)

 =
−(0)12 + 

q

(0)
11 

(0)
22 − ((0)12 )2


(0)
22

( =
√−1) (42)

where Re denotes the real part of a complex number.

From (11), we rewrite (41) as

(1 2)( (1 2)−  (1 2))

=

Z
C

(Γ(1 2 1 2)( (1 2)−  (1 2))

−Φ(1 2 1 2)((1 2)− (1 2)))(1 2) (43)

where

(1 2) = 
(0)
 (1 2)




( (1 2))

(1 2) = 
(0)
 (1 2)




( (1 2)) (44)

To approximate (43) as linear algebraic equations, we discretize the bound-

ary C into  straight line elements denoted by (1) (2) · · ·  (−1) and
(). The midpoint of () is denoted by (

()
1  

()
2 ) We take the first 

collocation points for the radial basis function approximations in Section 4

to be the midpoints of the  straight line elements. The remaining colloca-

tion points are in the interior of the solution domain of the boundary value

problem under consideration. If the number of interior collocation points is

 then the integer  in Section 4 is given by  +
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We make the approximations

 ' (1) ∪ (2) ∪ · · · ∪ (−1) ∪ () (45)

and
 (1 2) '  ()

 (1 2) '  ()

(1 2) ' ()

(1 2) '  ()

⎫⎪⎪⎬⎪⎪⎭ for (1 2) ∈ () (46)

where () = (
()
1  

()
2 ) and  () = (

()
1  

()
2 ) for  = 1 2 · · · 

Note that  () and  () are respectively the values of  (1 2) and  (1 2)

at the -th collocation point as defined in Section 4.

Substituting (45) and (46) into (43) and collocating the resulting equation

at (1 2) = (
()
1  

()
2 ) for  = 1 2 · · · + we obtain the linear algebraic

equations

(
()
1  

()
2 )(

() −  ())

=
X

=1

( () −  ())

Z
()

Γ(1 2 
()
1  

()
2 )(1 2)

−
X

=1

(() −  ())

Z
()

Φ(1 2 
()
1  

()
2 )(1 2)

for  = 1 2 · · ·  + (47)

Note that (
()
1  

()
2 ) = 12 for  = 1 2 · · ·  and (

()
1  

()
2 ) = 1 for

 =+1+2 · · · + The integrals over() can be readily evaluated

by using a numerical integration formula (see Clements [12]). Alternatively,

analytical formulae may also be derived for the integrals as in Ang [1].

As explained in Section 6 below, the linear algebraic equations in (47)

containing the unknowns  ()  (), () and  () ( = 1 2 · · ·   + 

and  = 1 2 · · ·  ) can be used together with the boundary conditions
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in (4) and the linear algebraic equations in (31) to solve approximately the

first boundary value problem in Section 2.

5.2 Approximation of the boundary integral solution

of (16)

The boundary integral equations for (16) are given by

(1 2)(1 2) =

Z
C

((1 2)Γ(1 2; 1 2)

− (1 2)Φ(1 2; 1 2))(1 2) (48)

where the functions (1 2) are defined by

(1 2) = 
(0)
(1 2)




 (49)

and Φ(1 2; 1 2) and Γ(1 2; 1 2) are given by

Φ(1 2; 1 2) =
1

2
Re{

2X
=1

 ln([1 − 1] + [2 − 2])}

Γ(1 2; 1 2) =
1

2
Re{

2X
=1

(1 2)

[1 − 1] + [2 − 2]
} (50)

with     and  being complex constants related to 
(0)
.

As detailed in Ang [2] and Clements [12], 1 and  2 are distinct complex

numbers having positive imaginary parts and satisfying the quartic equation

in  given by

det(
(0)
11 + (

(0)
12 + 

(0)
21) + 

(0)
22

2) = 0 (51)

 are non-trivial solutions of the homogeneous systems

(
(0)
11 + (

(0)
12 + 

(0)
21)  + 

(0)
22

2
) = 0 (52)

16



 is defined by

 = (
(0)
1 + 

(0)
2) (53)

and  and  by

2X
=1

 =  and

2X
=1

Im{2} =  (54)

where  is the Kronecker-delta.

From (14), the boundary integral equations in (48) can be rewritten as

(1 2)((1 2)− (1 2))

=

Z
C

(((1 2)− (1 2))Γ(1 2; 1 2)

− ((1 2)− (1 2))Φ(1 2; 1 2))(1 2) (55)

where

(1 2) = 
(0)
(1 2)






(1 2) = 
(0)
(1 2)




 (56)

Proceeding as in the previous subsection, we discretize (48) and collocate

the resulting equations at (1 2) = (
()
1  

()
2 ) for  = 1 2 · · ·  +  to

obtain

(
()
1  

()
2 )(

()
 − 

()
 )

=

X
=1

(() − () )

Z
()

Γ(1 2 
()
1  

()
2 )(1 2)

−
X

=1

(() − () )

Z
()

Φ(1 2 
()
1  

()
2 )(1 2)

for  = 1 2 · · ·  + (57)
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where (
()
1  

()
2 ) ' 

()
 and (

()
1  

()
2 ) ' 

()
 ( = 1 2 · · · )

As outlined in Section 6, the linear algebraic equations in (57) containing

the unknowns 
()
  

()
 , 

()
 and 

()
 ( = 1 2 · · ·   + and  = 1 2

· · ·  ) can be used together with the boundary conditions in (7) and the
linear algebraic equations in (39) to solve approximately the second boundary

value problem in Section 2.

6 Numerical procedures

Numerical procedures based on boundary integral equations and radial basis

function approximations given above are outlined here for solving numerically

the boundary value problems in Section 2.

6.1 Thermal problem

From the boundary conditions in (4), we obtain

 () = Ω(
()
1  

()
2 ) if  is specified on () (58)

or

() +
+X
=1

 () () = Ψ(
()
1  

()
2 )

if z is specified on () (59)

with the constant coefficients  () defined by

 () = 
(1)
 (

()
1  

()
2 )

()


+X
=1

()



(()(1 2))

¯̄̄̄
(12)=(

()
1 

()
2 )



(60)

where 
()
 is the  component of the unit vector that is normal to 

() and

that points out of the solution domain. Note that (59) is derived using (23)

and (44).
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Another  linear algebraic equations may be derived by using (23) and

(44). They are given by

 () −
+X
=1

() () = 0 for  = 1 2 · · ·  (61)

where

() = 
(0)
 

()


+X
=1

()



(()(1 2))

¯̄̄̄
(12)=(

()
1 

()
2 )

 (62)

For the approximate solution of the first boundary value problem in Sec-

tion 2, we solve 4 + 2 linear algebraic equations given by (31) (with

 =  + ), (47), (58), (59) and (61) for 4 + 2 unknowns  ()  (),

() and  () ( = 1 2 · · ·   + and  = 1 2 · · ·  )

6.2 Thermoelastostatic problem

From (7), we obtain


()
 = (

()
1  

()
2 ) if  is specified on () (63)

and


()
 +

+X
=1


()
 () = (

()
1  

()
2 )

()
  () +(

()
1  

()
2 )

if  is specified on () (64)

with the constant coefficients  () defined by


()
 = 

(1)
(

()
1  

()
2 )

()


+X
=1

()



(()(1 2))

¯̄̄̄
(12)=(

()
1 

()
2 )



(65)

Note that (64) is derived using (23) and (44).
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Also, from (23) and (44), we obtain


()
 −

+X
=1


()
 () = 0 for  = 1 2 · · ·  (66)

where


()
 = 

(0)


()


+X
=1

()



(()(1 2))

¯̄̄̄
(12)=(

()
1 

()
2 )

 (67)

Assume that we have found the value of  () for  = 1 2 · · · + For

the second boundary value problem in Section 2, we solve 8 + 4 linear

algebraic equations given by (39) (with  =  + ) (57), (65) and (66)

for 8 + 4 unknowns 
()
  

()
 , 

()
 and 

()
 ( = 1 2 · · ·   + and

 = 1 2 · · ·  )

7 Specific problems

The numerical procedures outlined in Section 6 are applied here to solve some

specific problems. The radial basis function in (21) is chosen to carry out

the numerical calculations in all the specific problems below.

The choice of radial basis functions to use is an interesting question.

Other radial basis functions such as the one in (22) and many others in

Chu, Wang, Zhong and He [10], Fasshauer [16], Sarler and Vertnik [28] and

references therein may also be used. However, radial basis functions like (22)

contain a free parameter . We find that the choice of the free parameter

affects the accuracy of the numerical values for some of the problems below

in a significant way. The dependence of the accuracy on the free parameter

is also reported in Dehghan, Abbaszadeh and Mohebbi [15]. The optimal

value of the free parameter to use for obtaining accurate numerical solutions

may depend on factors such as the specific problems solved, distribution of
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collocation points and computational precision (Ooi, Ooi and Ang [25]). We

choose to use (21) as it is easy to use and it consistently delivers numerical

solutions of reasonably good accuracy in all the problems below.

Problem 1. Take all the non-zero coefficients of the partial differential

equations in (1) and (2) to be given by

11 = 1 + 1 12 = 21 =
1

2
2 22 = 2− 2  =

1

2


1111 = 1 + 1 + 2 2222 =
3

2
+ 1 + 2 1122 = 2211 =

1

2
+ 1

1212 = 2121 = 1221 = 2112 =
1

4
+
1

2
2

11 = 1 + 1 12 = 21 = 1 + 2 22 = 1 + 2

1(1 2) =
3

2
2 +

1

3
 2(1 2) =

1

2
1 +

7

3
2 +

9

4


the solution domain to be the square region 0  1  1 0  2  1, and the

boundary conditions as

 (1 0) = 1 +
1

3
1

 (1 1) = 2 +
1

3
1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ for 0  1  1

z(0 2) = −1
3
− 1
2
2

z(1 2) =
2

3
+
1

2
2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ for 0  2  1

(1 0) =
1

2
1

2
1 + 21

(1 1) = −1(1
3
21 +

7

3
1 +

1

2
)

+ 2(
2
1 +

1

3
1 − 11

4
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
for 0  1  1
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(0 2) = 12 +
1

4
2

2
2

(1 2) = −1(1
4
2 +

2

3
)

− 2(
2
2 +

4

3
2 +

5

6
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
for 0  2  1

For the numerical solution of the boundary value problem above, each side

of the square solution domain is discretized into 0 equal length elements

and the interior collocation points are chosen to be well spaced out points

given by ((0 + 1) (0 + 1)) for   = 1 2 · · ·  0. Thus,  = 40

and  = 2
0  We take 

(0)
 and 

(0)
 to be the average values of  and 

respectively at all the interior collocation points, that is,


(0)
 =

1

2
0

0X
=1

0X
=1

(


0 + 1




0 + 1
)


(0)
 =

1

2
0

0X
=1

0X
=1

(


0 + 1




0 + 1
)

In Table 1, we compare the numerical values of the temperature  ob-

tained using (00) = (10 9) and (0 0) = (20 19) with the analytic

solution

 (1 2) = 1 +
1

3
1 + 2

at selected interior collocation points. From the average absolute error (AAE)

of each set of the numerical values, it is obvious that there is a significant

improvement in accuracy of the numerical results when the calculation is

refined by increasing the boundary elements and interior collocation points.
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Table 1. Numerical and analytic values of the temperature.

(1 2)
0 = 10
0 = 9

0 = 20
0 = 19

Analytic

(020 020) 12657 12664 12667
(020 040) 14670 14667 14667
(020 060) 16688 16671 16667
(020 080) 18698 18673 18667
(040 020) 13335 13333 13333
(040 040) 15342 15335 15333
(040 060) 17349 17337 17333
(040 080) 19349 19337 19333
(060 020) 14002 13999 14000
(060 040) 16010 16002 16000
(060 060) 18021 18004 18000
(060 080) 20021 20005 20000
(080 020) 14659 14664 14667
(080 040) 16672 16667 16667
(080 060) 18694 18672 18667
(080 080) 20718 20678 20667
AAE 16× 10−3 34× 10−4 −

In Table 2, the numerical values of the displacement  obtained using

(00) = (10 9) and (0 0) = (20 19) are compared with the analytic

solution

(1 2) = (
1

2
21 + 2)1 + (1 +

1

4
22)2

at selected interior collocation points. The absolute error of the numerical

displacement at each point is calculated using the formula

“absolute error” =

q
(
(numerical)
1 − 

(analytic)
1 )2 + (

(numerical)
2 − 

(analytic)
2 )2
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Table 2. Numerical and analytic values of the displacement.

(1 2)
0 = 10
0 = 9

0 = 20
0 = 19

Analytic

(020 020)
02207
02128

02202
02111

02200
02100

1
2

(020 040)
04217
02460

04205
02418

04200
02400

1
2

(020 060)
06237
02980

06210
02922

06200
02900

1
2

(020 080)
08264
03698

08217
03626

08200
03600

1
2

(040 020)
02791
04098

02797
04104

02800
04100

1
2

(040 040)
04802
04426

04800
04411

04800
04400

1
2

(040 060)
06836
04950

06809
04916

06800
04900

1
2

(040 080)
08899
05664

08825
05619

08800
05600

1
2

(060 020)
03780
06077

03795
06099

03800
06100

1
2

(060 040)
05789
06383

05797
06402

05800
06400

1
2

(060 060)
07831
06891

07808
06904

07800
06900

1
2

(060 080)
09929
07603

09831
07607

09800
07600

1
2

(080 020)
05181
08061

05194
08097

05200
08100

1
2

(080 040)
07194
08329

07197
08392

07200
08400

1
2

(080 060)
09232
08803

09208
08885

09200
08900

1
2

(080 080)
11337
09491

11233
09583

11200
09600

1
2

AAE 69× 10−3 17× 10−3 −
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For each set of the numerical values of the displacement at the selected

interior points in Table 2, we compute the average absolute error (AAE).

The AAE of the numerical values for (00) = (20 19) is more than four

times smaller than that of the numerical values for (0 0) = (10 9)

As constant elements are used to discretize the boundary integral equa-

tions, the error in the numerical calculations is expected to be () where

 is a typical length of a boundary element (Ang [1]). To demonstrate this

numerically, we take 0 = 0 − 1, calculate the absolute error of the nu-
merical displacement at the point (12 12) for selected values of  = 10

(0 = 5 10 20 and 30) and find the line of best fit through the point plots

of − log10(absolute error) against − log10() in Figure 1.

Figure 1. Line of best fit through the point plots of − log10(absolute error)
against − log10()
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The slope of the line of best fit in Figure 1 is approximately 1 40 This

seems to suggest that the absolute error of the numerical displacement at

(12 12) is (14) which is slightly better than the expected ().

Problem 2. All the non-zero coefficients of the partial differential equa-

tions in (1) and (2) are given by

11 = −1  22 = −2  = −2−21− 1
2
2 − 3

4
−1−

3
2
2 + −2 

1111 =
9

5
1  2222 =

8

5
1  1122 = 2211 =

3

5
1

1212 = 2121 = 1221 = 2112 =
2

5
1 

11 = 1+
1
2
2  22 = 

1
2
2 12 = 21 =

1

2

1
2
1+

1
2
2 

1(1 2) = 2
1+

1
2
2 +

1

2

1
2
1+

1
2
2(1 +

1

2
2)− 2

5
(1 + 2)

2(1 2) = (1 +
1

2
2)

1
2
2 − 1

4
−

1
2
1 +

1

4
2

1
2
1+

1
2
2 +

3

5
2 +

8

5


The boundary value problem here is to solve (1) and (2) in the solution

domain 0  1  1 0  2  1 subject to the boundary conditions

z(1 0) =
1

2
−1 − 1

 (1 1) = −1−
1
2 + 1

⎫⎪⎬⎪⎭ for 0  1  1

 (0 2) = −
1
2
2 + 2

 (1 2) = −1−
1
2
2 + 2

⎫⎬⎭ for 0  2  1

(1 0) = 1
−1 + 2

−1

(1 1) =
3

2
1

−1 +
1

2
2

−1

⎫⎪⎬⎪⎭ for 0  1  1
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(0 2) = 1(1 + 2
1
2
2 +

9

5
(1 +

1

2
22) +

3

5
2)

+ 2(−2
5
2 +

2

5
(1− 1

2
22)

+
1

2
(1 + 2

1
2
2))

(1 2) = 1(−1− 2
1+ 1

2
2 − 9

5
(1 +

1

2
22)−

3

5
2)

+ 2(
2

5
2 − 2

5
(1− 1

2
22)

−1
2

1
2
+ 1
2
2(−1−

1
2
2 + 2))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

for 0  2  1

For the numerical solution of the boundary value problem here, we dis-

cretize the boundary into 40 equal length elements, choose 2
0 interior

collocation points, and compute 
(0)
 and 

(0)
, as described in Problem 1

above. Once the numerical values of the temperature and displacements at

all the collocation points (that is,  () and 
()
 for  = 1 2 · · ·   +)

are obtained, we use the approximations in (23) and (33) to compute approx-

imately the stresses  (as defined in (6)) at chosen points in the interior of

the solution domain.
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Table 3. Numerical and analytic values of the stresses.

(1 2) Numerical Analytic

(025 025)
−33644
−20772
−08862

−33699
−20808
−08893

11
22
12

(025 050)
−41549
−29137
−09521

−41494
−28958
−09550

11
22
12

(025 075)
−51594
−38374
−10440

−51574
−38388
−10470

11
22
12

(050 025)
−34554
−19014
−08572

−34733
−19086
−08588

11
22
12

(050 050)
−43779
−27375
−09484

−43835
−27235
−09516

11
22
12

(050 075)
−55407
−36595
−10748

−55554
−36665
−10775

11
22
12

(075 025)
−36051
−17696
−08346

−36060
−17744
−08372

11
22
12

(075 050)
−46992
−26114
−09564

−46841
−25894
−09607

11
22
12

(075 075)
−60667
−35271
−11206

−60664
−35324
−11250

11
22
12

At selected points, Table 3 compares the numerical values of the stresses

obtained using 0 = 40 and 0 = 20 with the values calculated from the
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analytic solution given by

 (1 2) = −1−
1
2
2 + 2

(1 2) = 1
−1(1 +

1

2
22) + 2

−1(1− 1
2
22)

The numerical results in the table shows that the stresses can be computed

numerically as described above.

Problem 3. Consider an isotropic material occupying the quarter annular

region 1  21 + 22  4, 1  0 2  0 as sketched in Figure 2. The heat

conduction coefficients and the stress-temperature coefficients of the isotropic

material are taken to be given by

 =
p
21 + 22

and  =
p
21 + 22



and all the non-zero elastic moduli by

1111 = 2222 =
6

5(21 + 22)
12

 1122 = 2211 =
2

5(21 + 22)
12



1212 = 2121 = 1221 = 2112 =
2

5(21 + 22)
12



Note that the above elastic moduli correspond to those for an isotropic ma-

terial with Young’s modulus  = 1(21 + 22)
12 and Poisson ratio  = 14
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Figure 2. A sketch of the solution domain for Problem 3.

The problem of interest here is to solve (1) and (2) in the quarter annular

region, with the isotropic material properties given above and with the heat

source  = −6 and body force  given by

1 = 21 +
1

10(21 + 22)
2
((421 − 422

−2212(21 + 22)
12) cos(



2
(21 + 22)

12)

+(2(321 + 22)(
2
1 + 22)

12 + 812) sin(


2
(21 + 22)

12))
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2 = 22 − 1

10(21 + 22)
2
((421 − 422

−2212(21 + 22)
12) sin(



2
(21 + 22)

12)

+(2(322 + 21)(
2
1 + 22)

12 − 812) cos(
2
(21 + 22)

12))

subject to the boundary conditions

z( 0) = 0

z(0 ) = 0

⎫⎬⎭ for 1    2

 (1 2) = 1 on 21 + 22 = 1

 (1 2) = 8 on 21 + 22 = 4

⎫⎬⎭ for 1  0 2  0

( 0) = −
1 sin(



2
)

5
+ 2(

2 −
 cos(



2
)

5
)

(0 ) = 1(
2 −

 sin(


2
)

5
)−

2 cos(


2
)

5

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
for 1    2

(1 2) = 1 on 21 + 22 = 1

(1 2) = 2 on 21 + 22 = 4

⎫⎬⎭ for 1  0 2  0

The elastic moduli for isotropic materials give rise to a degenerate case

where the constants  and  in (50) are not well defined. Nevertheless,

the functions Φ and Γ in (50) (hence the numerical procedure presented

here) can be recovered for isotropic materials in a limiting sense by replacing

1122 = 2211 = 2(5(
2
1 + 22)

12) with 1122 = 2211 = 2(1− )(5(21 + 22)
12)

and letting  tend to zero. For practical purposes,  may be chosen to be

a small number (say,  = 10−10) to carry out the numerical calculations.

Further details on this may be found in Ang [2].
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Table 4. Numerical and analytic values of  and  on 1  1  2 2 = 0

(1 2) Numerical Analytic

(105 0)
11596
09941
00750

11576
09969
00785



1
2

(115 0)
15229
09692
02298

15208
09724
02334



1
2

(125 0)
19557
09210
03797

19531
09239
03827



1
2

(135 0)
24632
08498
05189

24604
08526
05225



1
2

(145 0)
30521
07579
06465

30486
07604
06494



1
2

(155 0)
37274
06469
07569

37239
06494
07604



1
2

(165 0)
44961
05203
08497

44921
05225
08526



1
2

(175 0)
53633
03805
09202

53594
03827
09239



1
2

(185 0)
63356
02321
09692

63316
02334
09724



1
2

(195 0)
74188
00788
09932

74149
00785
09969



1
2
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The temperature  and the displacement  are not known a priori on

the side 1  1  2 2 = 0 of the boundary. Their values at the boundary

collocation points on the side appear directly as unknowns in the linear al-

gebraic equations in the numerical formulation here. In Table 4, the values

of  and  at selected points on the side, which are obtained numerically

using 195 boundary elements (of average length of around 003 units) and

400 well spaced out interior collocation points, are compared with the values

from the analytic solution given by

 (1 2) = (21 + 22)
32

(1 2) = 1 sin(


2
(21 + 22)

12)− 2 cos(


2
(21 + 22)

12)

As in the first two problems, the two sets of values agree closely with each

other.

Problem 4. Consider an isotropic block occupying the region 0  1  

0  2   The heat conduction coefficients and the stress-temperature

coefficients of the block are linearly graded along the 2 direction as given

by

 = 0(1 + 2) and  = 0(1 + 2)

where  0 and 0 are given positive constants. The Poisson’s ratio is as-

sumed to be constant and the Young’s modulus  is also linearly graded

along the 2 direction as given by

 = 0(1 + 2)

where 0 is a given positive constant.

The horizontal side of the square block at 2 = 0 (the bottom side) is
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thermally insulated and perfectly attached to a rigid wall so that

z(1 0) = 0

(1 0) = 0

⎫⎬⎭ for 0  1  

The top side of the block at 2 =  has a constant temperature 0 and is

acted upon by a uniform tensile load 0 that is,

 (1 ) = 0

(1 0) = 20

⎫⎬⎭ for 0  1  

The two vertical sides of the block at 1 = 0 and 1 =  have a constant

temperature 1 and are traction free, that is,

 (0 2) = 1

 ( 2) = 1

(0 2) = 0

( 2) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
for 0  2  

We discretize the boundary into 40 equal length elements, choose 
2
0

interior collocation points, and compute 
(0)
 and 

(0)
, as described in Prob-

lems 1 and 2 above. For 10 = 23  = 1 and 000 = 1 we compute

the non-dimensionalized temperature 0 and displacement 0(0) by

using 0 = 40 and 0 = 30 (160 boundary elements and 900 interior collo-

cation points) and we compare the numerical values with the finite element

method For the finite element solution, the linearly graded block is mod-

eled as consisting of ten horizontal layers, with each layer occupied by a

homogeneous material. Specifically, the -th layer is given by 0  1  

(− 1)10  2  10 and the properties of the homogeneous material

in the -th layer are given by  = 14 and   and  given respectively
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by 0(1+ 2) 0(1+ 2) and 0(1+ 2) evaluated at the midpoint of

the layer. The finite element model is solved using the Abaqus commercial

software with 1600 elements.

In Figure 3, the non-dimensionalized temperature 0 calculated using

the present method based on the boundary element method and radial basis

function approximation (BEM-RBF) is compared with the values from the

finite element (FEM) model at selected points on the line 1 = 12 The

numerical values of  (2 2)0 computed by the BEM-RBF are graphi-

cally indistinguishable from those of the FEM model.

Figure 3. A graphical comparison of the numerical values of 0 at

selected points on 1 = 12
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Figure 4. A graphical comparison of the numerical values of

02(2 2)(0) at selected points on 1 = 12

In Figure 4, we compare the non-dimensionalized displacement02(0)

calculated by the BEM-RBF and FEM. (By symmetry, one can see that

1 = 0 on 1 = 12 Numerical calculations from both BEM-RBF and

FEM give extremely small 01(0) such as 10
−7 on 1 = 12) The

two sets of numerical values for 02(2 2)(0) in Figure 4 are quite

close to each other. Nevertheless, unlike the comparison for 1 in Figure

3, they show a noticeable difference which is more pronounced near 2 = 1.
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The numerical calculation of the displacement field requires the estimation

of the temperature gradient from the numerical values of the temperature.

Consequently, the error in the numerical displacement (in both BEM-RBF

and FEM or any numerical method in general) may become larger than that

in the numerical temperature. This explains why there is a greater difference

in the two sets of numerical values for the displacement (in Figure 4) than

those for the temperature (in Figure 3). The difference can be reduced by

refining both BEM-RBF and FEM numerical calculations and increasing the

number of layers in the FEM model. We have also checked that the numeri-

cal values from the BEM-RBF calculation are reasonably close to those from

the FEM model at other interior points.

8 Summary

Amethod based on boundary integral equations and radial basis function ap-

proximations is proposed for the numerical solution of boundary value prob-

lems governed by a system of two-dimensional thermoelastostatic equations

with variable coefficients. The equations describe the thermoelastic behav-

iors of nonhomogeneous anisotropic materials that have properties that vary

from point to point in space. The heat conduction coefficients, the elastic

moduli and the stress-temperature coefficients of the materials are given by

any functions that vary smoothly in space, that is, no restriction is placed

on the variation of the thermoelastic properties as long as all requirements

by the laws of physics are satisfied.

The proposed numerical procedure is easy to implement in the computer.

Several specific problems that have closed form analytic solutions are solved

using the numerical method. The numerical solutions obtained agree closely

with the analytic solutions and show convergence when the numerical calcu-
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lation is refined. The numerical procedure is also applied to solve a specific

problem that does not have a known closed form analytic solution and the re-

sults obtained are compared with the numerical solution from a finite element

model.

Acknowledgments

The authors are grateful to Dr. Athanasius Louis Commillus of the Institute

of High Performance Computing, A*STAR, Singapore for his expert assis-

tance in finite element analysis. They would also like to thank Professors

M. Dehghan and M. Abbaszadeh of Amirkabir University of Technology in

Iran for discussions on some aspects of the work here, and the anonymous

reviewers for their constructive criticisms and the opportunity to revise and

improve on the submitted manuscript.

References

[1] W. T. Ang, A Beginner’s Course in Boundary Element Methods, Uni-

versal Publishers, Boca Raton, 2007.

[2] W. T. Ang, Hypersingular Integral Equations in Fracture Analysis,

Woodhead Publishing, Cambridge, 2013.

[3] W. T. Ang, A boundary element approach for solving plane elastostatic

equations of anisotropic functionally graded materials, Numerical Meth-

ods for Partial Differential Equations 35 (2019) 1396-1411.

[4] W. T. Ang, A boundary element and radial basis function approxima-

tion method for a second order elliptic partial differential equation with

general variable coefficients, Engineering Reports 1 (2019) e12057.

38



[5] W. T. Ang, D. L. Clements and T. Cooke, A boundary element method

for generalized plane thermoelastic deformations of anisotropic elastic

media, Mathematics and Mechanics of Solids 4 (1999) 307-320.

[6] W. T. Ang, D. L. Clements and T. Cooke, A complex variable boundary

element method for a class of boundary value problems in anisotropic

thermoelasticity, International Journal of Computer Mathematics 70

(1999) 571-586.

[7] W. T. Ang, D. L. Clements and N. Vahdati, A dual-reciprocity bound-

ary element method for a class of elliptic boundary value problems for

nonhomogeneous anisotropic media, Engineering Analysis with Bound-

ary Elements 27 (2003) 49-55.

[8] M. I. Azis and D. L. Clements, A boundary element method for

anisotropic inhomogeneous elasticity, International Journal of Solids

and Structures 38 (2001) 5747-5764.

[9] R. C. Batra, Torsion of a functionally graded cylinder, AIAA Journal

44 (2006) 1363-1365.

[10] F. Chu, L. Wang, Z. Zhong and J. He, Hermite radial basis collocation

method for vibration of functionally graded plates with in-plane material

inhomogeneity, Computers & Structures 142 (2014) 79-89.

[11] D. L. Clements, Thermal stress in an anisotropic elastic half-space,

SIAM Journal of Applied Mathematics 24 (1973) 332-337.

[12] D. L. Clements, Boundary Value Problems Governed by Second Order

Elliptic Systems, Pitman, London, 1981.

39



[13] G. F. Dargush and P. K. Banerjee, Development of a boundary ele-

ment method for time dependent planar thermoelasticity, International

Journal of Solids Structures, 1989, 25, 999-1021.

[14] A. Deb, Boundary element analysis of anisotropic bodies under thermo-

mechanical body force loadings, Computers and Structures, 1996, 58,

715-25.

[15] M. Dehghan, M. Abbaszadeh and A. Mohebbi, The numerical solu-

tion of nonlinear high dimensional generalized Benjamin-Bona-Mahony-

Burgers equation via the meshless method of radial basis functions,

Computers & Mathematics with Applications 68 (2014) 212-237.

[16] G. E. Fasshauer, Solving differential equations with radial basis func-

tions: multilevel methods and smoothing, Advances in Computational

Mathematics 11 (1999) 139-159.

[17] A. J. M. Ferreira, A formulation of the multiquadric radial basis func-

tion method for the analysis of laminated composite plates, Composite

Structures 59 (2003) 385-392.

[18] X. W. Gao, Boundary element analysis in thermoelasticity with and

without internal cells, International Journal for Numerical Methods in

Engineering 57 (2003) 975-990.

[19] R. E. Gibson, The analytical method in soil mechanics, Géotechnique

24 (1974) 115-140.

[20] S. Kapuria, M. Bhattacharyya and A. N. Kumar, Bending and free

vibration response of layered functionally graded beams: a theoertical

model and its experimental validation, Composite Structures 82 (2008)

390-402.

40



[21] A. Kawasaki and R. Watanabe, Thermal fracture behavior of

metal/ceramic functionally graded materials, Engineering Fracture Me-

chanics 69 (2002) 1713-1728.

[22] H. Y. Kuo and T. Chen, Steady and transient Green’s functions for

anisotropic conduction in an exponentially graded solid, International

Journal of Solids and Structures 42 (2005) 1111-1128.

[23] F. C. M. Menandro, Two new classes of compactly supported radial basis

functions for approximation of discrete and continuous data, Engineering

Reports 1 (2019) e12028.

[24] W. Nowacki, Thermoelasticity, Addison-Wesley, Reading, 1972.

[25] E. H. Ooi, E. T. Ooi and W. T. Ang, Numerical investigation of the

meshless radial basis integral equation method for solving 2D anisotropic

potential problems, Engineering Analysis with Boundary Elements 53

(2015) 27-39.

[26] Y. T. Pei, V. Ocelik and J. T. M. de Hosson, SiCp/Ti6Al4V functionally

graded materials produced by laser melt injection, Acta Materialia 50

(2002) 2035-2051.

[27] V. Petrova and T. Sadowski, Theoretical modeling and analysis of ther-

mal fracture of semi-infinite functionally graded materials with edge

cracks, Meccanica 49 (2014) 2603-2615.

[28] B.Sarler and R.Vertnik, Meshfree explicit local radial basis function col-

location method for diffusion problems, Computers and Mathematics

with Applications 51 (2006) 1269-1282.

41



[29] S. A. Sarra, Integrated multiquadric radial basis function approxima-

tion methods, Computers and Mathematics with Applications 51 (2006)

1283-1296.

[30] Y. C. Shiah and C. L. Tan, Exact boundary integral transformation of

the thermoelastic domain integral in BEM for general 2D anisotropic

elasticity, Computational Mechanics 23 (1999) 87-96.

[31] V. Sladek and J. Sladek, Boundary integral equation in thermoelasticity.

Part III: uncoupled thermoelasticity, Applied Mathematical Modelling 8

(1984) 413-18.

[32] J. Sladek, V. Sladek and Ch. Zhang, Stress analysis in anisotropic func-

tionally graded materials by the MLPG method, Engineering Analysis

with Boundary Elements 29 (2005) 597-609.

[33] M. Tanaka, T. Matsumoto and Y. Suda, A dual-reciprocity boundary

element method applied to the steady-state heat conduction problem

of functionally gradient materials, Proceedings of the 2nd International

Conference on Boundary Element Techniques, Rutgers University, USA,

2001.

[34] Z. G. Ter-Martirosyan and A. Yu. Mirnyi, Effect of nonhomogeneity

of soils on their mechanical properties, Soil Mechanics and Foundation

Engineering 50 (2014) 223—231.

[35] S. S. Vel and and R, C. Batra, Exact Solutions for thermoelastic defor-

mations of functionally graded thick rectangular plates, AIAA Journal

40 (2002) 1421-1433.

42



[36] H. Wang and Q. H. Qin, Boundary integral based graded element for

elastic analysis of 2D functionally graded plates, European Journal of

Mechanics -A/Solids 33 (2012) 12-23.

[37] Z. F. Yuan and H. M. Yin, Elastic Green’s functions for a specific graded

material with a quadratic variation of elasticity, Journal of Applied Me-

chanics 78 (2011) 021021.

[38] Y. Zhang and S. Zhu, On the choice of interpolation functions used in

dual-reciprocity boundary-element method, Engineering Analysis with

Boundary Elements 13 (1994) 387-396.

43


