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1 Introduction

The problem of finding the non-steady temperature distribution in a finite

body which contains a specified amount of heat energy is considered. Math-

ematically, it requires the solution of a parabolic partial differential equation

subject to a non-local condition in the form of a domain integral which gives

the total amount of heat energy in the body. On a certain part of the

boundary of the body, the temperature is expressed in terms of an unknown

temperature control function to be determined. At each and every point on

the remaining part of the boundary, either the temperature or the heat flux

(not both) is given.

Many authors have used the finite-difference method to solve the prob-

lem, usually for a two-dimensional thermally isotropic body occupying a

square region with boundary conditions that involve only the temperature,

e.g. Gumel et al [1], Noye et al [2], Cannon et al [3] and Wang and Lin [4].

Recently, using the Laplace transformation, Ang [5] and Ang and Gumel

[6] applied the boundary element method to solve numerically the problem for

two- and three-dimensional thermally isotropic bodies which have arbitrary

shapes and rather general boundary conditions.

In the present paper, a time-stepping boundary element method is pro-

posed for solving the problem numerically for a two-dimensional thermally

anisotropic body. Instead of using the modified Bessel function as a funda-

mental solution for the boundary element method (as in Ang [5]), a simpler

fundamental solution in the form of a logarithmic function (i.e. one for an

elliptic partial differential equation) is used here.

The choice of a simpler fundamental solution immediately gives rise to

an undesirable feature: the presence of a domain integral (over the region

occupied by the thermally anisotropic body) with an unknown integrand in

the integral formulation of the problem. However, the domain integral can be

easily approximated as a boundary integral by applying the dual-reciprocity

method. It is also possible to re-express the non-local condition in terms

of a boundary integral with an integrand containing the heat flux. Thus,
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in the proposed dual-reciprocity boundary element method, even though a

simpler fundamental solution is used, it is not necessary to discretize the

region occupied by the thermally anisotropic body into small cells. Only the

boundary of the body needs to be approximated using boundary elements.

The method is applied to solve specific test problems.

The dual-reciprocity boundary element method was originally introduced

by Brebbia and Nardini [7] and Partridge and Brebbia [8] for the numerical

solution of dynamic problems in solid mechanics. The method has now been

successfully extended to a wide range of heat diffusion problems in engineer-

ing. For some examples of those problems, refer to Zhu et al [9], Profit et al

[10], Ang [11], Ang et al [12] and other relevant references therein.

2 Statement of the problem

With reference to a Cartesian frame denoted by 0x1x2x3, consider a thermally

anisotropic body with a geometry that does not vary along the x3-axis. On

the 0x1x2 plane, the body occupies the region R bounded by a simple closed

curve C.

The temperature in the body is assumed to be independent of x3. The

thermal behaviour of the body is then governed by the parabolic partial

differential equation

2X
i=1

2X
j=1

λij
∂2T

∂xi∂xj
= ρc

∂T

∂t
, (1)

where λij are the thermal conductivity coefficients satisfying the symmetry

relation λij = λji and the strict inequality λ
2
12−λ11λ22 < 0, T (x1, x2, t) is the

temperature at the point (x1, x2) at time t ≥ 0 and ρ and c are respectively

the density and the specific heat capacity of the body.

In the present article, λij, ρ and c are taken to be constant in R.

The total amount of heat energy in R (per unit length along the x3-axis)
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at any time t ≥ 0 is given by the double integral

ρc

ZZ
R

[T (x1, x2, t)− T0] dx1dx2, (2)

where T0 is a given reference temperature which depends on the scale used

to measure the temperature. For example, if the temperature is in degree

celcius then T0 ' −273.13oC.
A thermal problem of some practical interest is to determine the temper-

ature distribution in R and a temperature control function on a certain part

of C given that the total heat energy in R as given by the double integral in

(2) is specified at all time t ≥ 0. More specifically, the problem requires the

solution of (1) in R subject to the initial-boundary conditions

T (x1, x2, 0) = f(x1, x2) for (x1, x2) ∈ R, (3)

T (x1, x2, t) = k(x1, x2)q(t) for (x1, x2) ∈ C1 and t ≥ 0, (4)

T (x1, x2, t) = g(x1, x2, t) for (x1, x2) ∈ C2 and t ≥ 0, (5)

H(x1, x2, t) = v(x1, x2, t) for (x1, x2) ∈ C3 and t ≥ 0, (6)

and the non-local condition

ρc

ZZ
R

[T (x1, x2, t)− T0]dx1dx2 = E(t) for t ≥ 0, (7)

where f, g, k, v and E are given functions assumed to be suitably prescribed

in such a way that the initial condition (3) is compatible with the boundary

and non-local conditions (4)-(7) at t = 0, q(t) is an unknown (control) func-

tion to be determined, C1, C2 and C3 are non-intersecting curves such that

C1 ∪ C2 ∪ C3 = C and H(x1, x2, t) is the heat flux defined by

H(x1, x2, t) = −
2X
i=1

2X
j=1

λijni(x1, x2)
∂T

∂xj
, (8)
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with [n1(x1, x2), n2(x1, x2)] being the unit normal outward vector to R at the

point (x1, x2) on C.

It is clear that (7) gives the total amount of heat energy present in R at

any time t ≥ 0. Condition (4) implies that the temperature is not completely
known on C1 and the control function q(t) must be chosen in such a way that

(7) is satisfied.

3 Integral formulation

The partial differential equation (1) may be used to derive the integral equa-

tion

γ(ξ1, ξ2)T (ξ1, ξ2, t) = ρc

ZZ
R

Φ(x1, x2, ξ1, ξ2)
∂

∂t
[T (x1, x2, t)]dx1dx2

+

Z
C

[T (x1, x2, t)Γ(x1, x2, ξ1, ξ2)

+ Φ(x1, x2, ξ1, ξ2)H(x1, x2, t)]ds(x1, x2), (9)

where γ(ξ1, ξ2) = 0 if (ξ1, ξ2) /∈ R ∪ C, γ(ξ1, ξ2) = 1 if (ξ1, ξ2) ∈ R, 0 <
γ(ξ1, ξ2) < 1 if (ξ1, ξ2) ∈ C [γ(ξ1, ξ2) = 1/2 if (ξ1, ξ2) lies on a smooth part of
C] and

Φ(x1, x2, ξ1, ξ2) =
1

2π
p

λ11λ22 − λ212
Re{ln(x1 − ξ1 + τ [x2 − ξ2])},

Γ(x1, x2, ξ1, ξ2) =
1

2π
p

λ11λ22 − λ212
Re

½
L(x1, x2)

(x1 − ξ1 + τ [x2 − ξ2])

¾
,

L(x1, x2) = (λ11 + τλ12)n1(x1, x2) + (λ21 + τλ22)n2(x1, x2),

τ =
−λ12 + i

p
λ11λ22 − λ212
λ22

(i =
√−1). (10)

To derive (9) from (1), one may use a reciprocal theorem given in Clements

[13] for a particular system of elliptic partial differential equations. Note that

τ is never real since λ212 − λ11λ22 < 0.
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If one differentiates (7) with respect to t and applies (1) together with

the Gauss-Ostrogradskii theorem, one obtains:Z
C

H(x1, x2, t)ds(x1, x2) = −E0(t) for t ≥ 0, (11)

where the prime denotes differentiation with respect to the relevant argument

of the function.

In view of the assumption that the initial condition (3) is compatible with

the non-local (7) at t = 0, E(t) is not discontinuous at t = 0 and E(0) can be

determined by integrating ρc[f(x, y)−T0] over R. Thus, (7) may be replaced
by (11).

In the following section, (9) is used together with (11) to derive a dual-

reciprocity boundary element method for the numerical solution of the prob-

lem described in Section 2.

4 Dual-reciprocity boundary element method

For the dual-reciprocity boundary element method, the curves C1, C2 and

C3 are discretized into N1, N2 and N3 straight line elements respectively. Let

us denote those elements on C1 by C
(1), C(2), · · · , C(N1−1) and C(N1), those

on C2 by C
(N1+1), C(N1+2), · · · , C(N1+N2−1) and C(N1+N2) and those on C3 by

C(N1+N2+1), C(N1+N2+2), · · · , C(N1+N2+N3−1) and C(N1+N2+N3). The starting
and ending points of the boundary element C(m) are given by (a

(m)
1 , a

(m)
2 )

and (b
(m)
1 , b

(m)
2 ) respectively. The total number of boundary elements used is

therefore N = N1 +N2 +N3.

For an accurate approximation, T and H are approximated using discon-

tinuous linear boundary elements. Details on the implementation of such

boundary elements may be found in Paŕis and Cañas [14].

For the discontinuous linear boundary elements, two points (η
(m)
1 , η

(m)
2 )

and (η
(N+m)
1 , η

(N+m)
2 ) on C(m) are chosen as follows:

η
(m)
i = a

(m)
i + r(b

(m)
i − a(m)i )

η
(N+m)
i = b

(m)
i − r(b(m)i − a(m)i )

)
for a given r ∈ (0, 1

2
). (12)
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If the temperature T has values T (m)(t) and T (N+m)(t) at (η
(m)
1 , η

(m)
2 ) and

(η
(N+m)
1 , η

(N+m)
2 ) respectively then one makes the approximation:

T (x1, x2, t) '[1− d(m)(x1, x2)]T (m)(t)
+ d(m)(x1, x2)T

(N+m)(t) for (x1, x2) ∈ C(m), (13)

where

d(m)(x1, x2) =

q
(x1 − a(m)1 )2 + (x2 − a(m)2 )2 − r`(m)

(1− 2r)`(m) . (14)

Similarly, for the heat fluxH, if its values are given byH(m)(t) andH(N+m)(t)

at (η
(m)
1 , η

(m)
2 ) and (η

(N+m)
1 , η

(N+m)
2 ) respectively, then

H(x1, x2, t) ' [1− d(m)(x1, x2)]H(m)(t)

+ d(m)(x1, x2)H
(N+m)(t) for (x1, x2) ∈ C(m). (15)

From (13) and (15), (9) approximately becomes

γ(ξ1, ξ2)T (ξ1, ξ2, t)

= ρc

ZZ
R

Φ(x1, x2, ξ1, ξ2)
∂

∂t
[T (x1, x2, t)]dx1dx2

+
NX
m=1

n
T (m)(t)Ω

(m)
1 (ξ1, ξ2) + T

(N+m)(t)Ω
(m)
2 (ξ1, ξ2)

o
+

NX
m=1

n
H(m)(t)Ω

(m)
3 (ξ1, ξ2) +H

(N+m)(t)Ω
(m)
4 (ξ1, ξ2)

o
, (16)

where

Ω
(m)
1 (ξ1, ξ2) =

Z
C(m)

[1− d(m)(x1, x2)]Γ(x1, x2, ξ1, ξ2)ds(x1, x2),

Ω
(m)
2 (ξ1, ξ2) =

Z
C(m)

d(m)(x1, x2)Γ(x1, x2, ξ1, ξ2)ds(x1, x2),
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Ω
(m)
3 (ξ1, ξ2) =

Z
C(m)

[1− d(m)(x1, x2)]Φ(x1, x2, ξ1, ξ2)ds(x1, x2),

Ω
(m)
4 (ξ1, ξ2) =

Z
C(m)

d(m)(x1, x2)Φ(x1, x2, ξ1, ξ2)ds(x1, x2). (17)

The line integrals in (17) can be evaluated exactly. Analytical formulae

for computing these integrals are given in the Appendix.

To deal with the domain integral in (16), P well spaced out points in the

interior of R are selected. These points are denoted by (η
(2N+1)
1 , η

(2N+1)
2 ),

(η
(2N+2)
1 , η

(2N+2)
2 ), · · · , (η(2N+P−1)1 , η

(2N+P−1)
2 ) and (η

(2N+P )
1 , η

(2N+P )
2 ). One

then approximates the expression ρc∂T/∂t in (16) using radial basis functions

as follows:

ρc
∂

∂t
[T (x1, x2, t)] '

2N+PX
j=1

µ(j)(t)σ(j)(x1, x2), (18)

where µ(j)(t) are unknown parameters to be determined and the radial basis

functions σ(j)(x1, x2) are given by

σ(j)(x1, x2) = 1 +
³
[x1 − η

(j)
1 +Re{τ}{x2 − η

(j)
2 }]2 + [Im{τ}{x2 − η

(j)
2 }]2

´
+
³
[x1 − η

(j)
1 +Re{τ}{x2 − η

(j)
2 }]2 + [Im{τ}{x2 − η

(j)
2 }]2

´3/2
for j = 1, 2, · · · , 2N + P. (19)

Note that (η
(1)
1 , η

(1)
2 ), (η

(2)
1 , η

(2)
2 ), · · · , (η(2N−1)1 , η

(2N−1)
2 ) and (η

(2N)
1 , η

(2N)
2 ) are

points on the boundary elements as defined in (12).

The radial basis functions in (19) were used by Ang et al [15] in formulat-

ing a dual-reciprocity boundary element method for the numerical solution

of problems involving nonhomogeneous anisotropic media. For isotropic heat

conduction in homogeneous bodies, the thermal conductivity coefficients are

constants such that λ11 = λ22 and λ12 = λ21 = 0 (hence τ = i) and (19) can

be reduced to give the radial basis functions originally proposed by Zhang

and Zhu [16].
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One can let (x1, x2) in (18) to be given by (η
(k)
1 , η

(k)
2 ) for k = 1, 2, · · · ,

2N +P to set up a system of 2N +P linear algebraic equations that can be

inverted to give

µ(j)(t) = ρc
2N+PX
k=1

χ(kj)
d

dt
[T (k)(t)] for j = 1, 2, · · · , 2N + P, (20)

where T (k)(t) = T (η
(k)
1 , η

(k)
2 , t) for k = 1, 2, · · · , 2N + P, and χ(kj) are con-

stants defined by

2N+PX
k=1

σ(j)(η
(k)
1 , η

(k)
2 )χ

(km) = δ(jm) for j,m = 1, 2, · · · , 2N + P, (21)

δ(jm) =

½
1 if j = m,
0 if j 6= m. (22)

With (18), the double integral in (16) can now be approximated using

ρc

ZZ
R

Φ(x1, x2, ξ1, ξ2)
∂

∂t
[T (x1, x2, t)]dx1dx2

' ρc
2N+PX
k=1

d

dt
[T (k)(t)]

2N+PX
j=1

χ(kj)Ψ(j)(ξ1, ξ2) (23)

where

Ψ(j)(ξ1, ξ2) = γ(ξ1, ξ2)θ
(j)(ξ1, ξ2)−

Z
C

Φ(x1, x2, ξ1, ξ2)β
(j)(x1, x2)ds(x1, x2)

−
Z
C

θ(j)(x1, x2)Γ(x1, x2, ξ1, ξ2)ds(x1, x2)

for j = 1, 2, · · · , 2N + P. (24)
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µ
λ11λ22 − λ212

λ22

¶
θ(j)(x1, x2)

=
1

4

³
[x1 − η

(j)
1 +Re{τ}{x2 − η

(j)
2 }]2 + [Im{τ}{x2 − η

(j)
2 }]2

´
+
1

16

³
[x1 − η

(j)
1 +Re{τ}{x2 − η

(j)
2 }]2 + [Im{τ}{x2 − η

(j)
2 }]2

´2
+
1

25

³
[x1 − η

(j)
1 +Re{τ}{x2 − η

(j)
2 }]2 + [Im{τ}{x2 − η

(j)
2 }]2

´5/2
. (25)

β(j)(x1, x2) = −
2X
i=1

2X
k=1

λikni(x1, x2)
∂θ(j)

∂xk
. (26)

The function Ψ(j)(ξ1, ξ2) in (24) can be computed approximately using

Ψ(j)(ξ1, ξ2) ' γ(ξ1, ξ2)θ
(j)(ξ1, ξ2)

−
NX
m=1

{β(j)(η(m)1 , η
(m)
2 )Ω

(m)
3 (ξ1, ξ2)

− β(j)(η
(N+m)
1 , η

(N+m)
2 )Ω

(m)
4 (ξ1, ξ2)

− θ(j)(η
(m)
1 , η

(m)
2 )Ω

(m)
1 (ξ1, ξ2)

− θ(j)(η
(N+m)
1 , η

(N+m)
2 )Ω

(m)
2 (ξ1, ξ2)}. (27)

If one makes the approximation (for k = 1, 2, · · · , 2N + P )

T (k)(t) ' 1

2
[T (k)(t+

1

2
∆t) + T (k)(t− 1

2
∆t)],

d

dt
[T (k)(t)] ' T (k)(t+ 1

2
∆t)− T (k)(t− 1

2
∆t)

∆t
, (28)

then letting (ξ1, ξ2) in (16) and (23) be given by (η
(n)
1 , η

(n)
2 ) for n = 1, 2, · · · ,
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2N + P, one finds that

1

2
γ(η

(n)
1 , η

(n)
2 )[T

(n)(t+
1

2
∆t) + T (n)(t− 1

2
∆t)]

=
ρc

∆t

2N+PX
k=1

[T (k)(t+
1

2
∆t)− T (k)(t− 1

2
∆t)]

2N+PX
j=1

χ(kj)Ψ(j)(η
(n)
1 , η

(n)
2 )

+
1

2

NX
m=1

½
[T (m)(t+

1

2
∆t) + T (m)(t− 1

2
∆t)]Ω

(m)
1 (η

(n)
1 , η

(n)
2 )

+[T (N+m)(t+
1

2
∆t) + T (N+m)(t− 1

2
∆t)]Ω

(m)
2 (η

(n)
1 , η

(n)
2 )

¾
+

NX
m=1

n
H(m)(t)Ω

(m)
3 (η

(n)
1 , η

(n)
2 ) +H

(N+m)(t)Ω
(m)
4 (η

(n)
1 , η

(n)
2 )
o

for n = 1, 2, · · · , 2N + P. (29)

Conditions (4), (5) and (6) provide partial information for the tempera-

ture and heat flux on the boundary elements. According to (6), the heat flux

is known on C(N1+N2+1), C(N1+N2+2), · · · , C(N1+N2+N3−1) and C(N1+N2+N3).
Thus, for m = N1 +N2 + 1, N1 +N2 + 2, · · · , N1 +N2 +N3, H(m)(t) and

H(N+m)(t) are known but not T (m)(t) and T (N+m)(t). From (5), T (m)(t) and

T (N+m)(t) but not H(m)(t) and H(N+m)(t) are known for m = N1+1, N1+2,

· · · , N1 +N2. The functions H(m)(t) and H(N+m)(t) are also not known for

m = 1, 2, · · · , N1. From (4), one can write T (m)(t) = k(η
(m)
1 , η

(m)
2 )q(t) and

T (N+m)(t) = k(η
(N+m)
1 , η

(N+m)
2 )q(t), where k(x1, x2) is a given function and

q(t) is the unknown control function to be determined, for m = 1, 2, · · · ,
N1. Lastly, the temperature is not known at all points in the interior of the

region R. Thus, T (k)(t) is not known for k = 2N + 1, 2N + 2, · · · , 2N + P.
[Note that N = N1 +N2 +N3.]

It is clear then that if T (k)(t − 1
2
∆t) and q(t − 1

2
∆t) are assumed to be

known then the system (29) constitutes a system of 2N +P linear algebraic

equations with 2N + P + 1 unknowns given by H(m)(t) and H(N+m)(t) for

m = 1, 2, · · · , N1 + N2, T (k)(t + 1
2
∆t) for k = N1 + N2 + 1, N1 + N2 + 2,

· · · , 2N, 2N +1, · · · , 2N +P and q(t+ 1
2
∆t). To complete the formulation,
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another equation is needed. This comes from (11) which can be discretized

to give

NX
m=1

`(m)
©
H(m)(t) +H(N+m)(t)

ª
= −2E0(t). (30)

Thus, using the initial condition (3), one can solve the system given by

(29) and (30) for the unknowns at consecutive time levels t = 1
2
(2n − 1)∆t

for n = 1, 2, · · · .
Once T (k)(t) are determined numerically for k = 1, 2, · · · , 2N + P, the

temperature at any point in the solution domain can be computed approxi-

mately using

T (x1, x2, t) '
2N+PX
k=1

T (k)(t)
2N+PX
j=1

χ(kj)σ(j)(x1, x2). (31)

5 Specific problems

Problem 1. For a specific problem, let us take the case where the body

lies in the region R given by

R = {(x1, x2) : x21 + x22 < 1, x1 > 0, x2 > 0}. (32)

The thermal behaviour of the body is governed by the partial differential

equation

5

9

∂2T

∂x21
+
2

9

∂2T

∂x1∂x2
+
2

9

∂2T

∂x22
=

∂T

∂t
, (33)

in which λ11 = 5/9, λ12 = λ21 = 1/9, λ22 = 2/9 and ρc = 1.

The initial temperature is given by

T (x1, x2, 0) = cos (x1 + x2) + sin(
3

2
x2) exp(x1 − 1

2
x2). (34)
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and the conditions on the boundary of R are given by

T (0, x2, t) = cos (x2) exp(−t) + sin(3
2
x2) exp(−1

2
x2)

for 0 < x2 < 1 and t > 0, (35)

T (x1, 0, t) = cos (x1) q(t) for 0 < x1 < 1 and t > 0, (36)

H(x1, x2, t) = (
5

9
x1 +

1

9
x2)[− sin(x1 + x2) exp(−t)

+ sin(
3

2
x2) exp(x1 − 1

2
x2)]

+ (
1

9
x1 +

2

9
x2)[− sin(x1 + x2) exp(−t)

+
3

2
cos(

3

2
x2) exp(x1 − 1

2
x2)

− 1
2
sin(

3

2
x2) exp(x1 − 1

2
x2)]

on x21 + x
2
2 = 1, x1 > 0, x2 > 0. (37)

The non-local condition is given by:ZZ
R

T (x1, x2, t)dx1dx2 = α exp(−t) + β for t ≥ 0, (38)

where

α =

Z π/2

0

Z 1

0

cos(r (cos θ + sin θ))rdrdθ ' 0. 493 014 650 9,

β =

Z π/2

0

Z 1

0

sin(
3

2
r sin θ) exp(r(cos θ − 1

2
sin θ))rdrdθ ' 0. 499 472 639.

(39)

It is easy to check that the exact solution for the problem defined by

(33)-(38) is given by

T (x1, x2, t) = cos (x1 + x2) exp(−t) + sin(3
2
x2) exp(x1 − 1

2
x2)

with q(t) = exp(−t). (40)
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A comparison of (35)-(37) with (4)-(7) shows that

C1 = {(x1, x2) : 0 < x1 < 1, x2 = 0},
C2 = {(x1, x2) : 0 < x2 < 1, x1 = 0},
C3 = {(x1, x2) : x21 + x22 = 1, x1 > 0, x2 > 0},

for the test problem under consideration.

To execute the numerical procedure described in Section 4, C1 ∪ C2 are
discretized into 2M boundary elements, each of equal length `1 = 1/M

units, and the curve C3 into M boundary elements, each of length `2 =p
2− 2 cos(π/[2M ]) units. Thus, a total of 3M boundary elements are em-

ployed on the boundary of the solution domain.

The collocation points on the boundary are chosen using (12) with r =

1/4. For m = 1, 2, · · · , J and n = 1, 2, · · · , J, the point (y(m), y(n)), where
y(m) = (2m − 1)/(2J), is chosen to be an interior collocation point for the
dual-reciprocity boundary element method, if [y(m)]2 + [y(n)]2 < (1− `2)2.
To obtain some numerical results, the integers J andM are chosen in such

a way that 2J = M and the size of the time-step is taken to be ∆t = 2`1.

Two different sets of numerical results are obtained. Details such as the size

of the time-step and the number of boundary elements used for obtaining

the two sets of numerical results are as follows:

set A : M = 10, J = 5, `1 = 0.10, `2 = 0.1569, ∆t = 0.20,

set B : M = 20, J = 10, `1 = 0.05, `2 = 0.0785, ∆t = 0.10.

There are 13 and 67 interior collocation points in sets A and B respectively.

Table 1 gives the two sets of numerical values of the temperature control

function q at selected time t. Similarly, at time t = 1.0, the numerical values

of the temperature T at selected points in the interior of the solution domain,

as obtained by using (31), are shown in Table 2. In general, the numerical

values are in reasonably good agreement with the exact solution in (40). It

is also obvious that set B delivers significantly more accurate results than set

A in both Tables 1 and 2.
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Table 1. Numerical and exact values of the temperature control func-

tion q at selected time t (Problem 1).

Time t Set A Set B Exact
0.2 0.8260 0.8181 0.8187
0.4 0.6684 0.6697 0.6703
0.6 0.5552 0.5482 0.5488
0.8 0.4487 0.4488 0.4493
1.0 0.3743 0.3675 0.3679
1.2 0.3021 0.3009 0.3012
1.4 0.2535 0.2465 0.2466
1.6 0.2047 0.2019 0.2019
1.8 0.1731 0.1654 0.1653
2.0 0.1400 0.1355 0.1353

Table 2. Numerical and exact values of the temperature T at selected

interior points and at t = 1.0 (Problem 1).

(x1, x2) Set A Set B Exact
(0.125, 0.125) 0.5526 0.5546 0.5549
(0.125, 0.375) 0.8219 0.8235 0.8238
(0.125, 0.625) 0.9359 0.9372 0.9374
(0.125, 0.875) 0.9036 0.9055 0.9061
(0.375, 0.125) 0.5785 0.5778 0.5776
(0.375, 0.375) 0.9132 0.9125 0.9125
(0.375, 0.625) 1.0578 1.0567 1.0568
(0.375, 0.875) 1.0224 1.0239 1.0243
(0.625, 0.125) 0.5957 0.5966 0.5963
(0.625, 0.375) 1.0297 1.0249 1.0248
(0.625, 0.625) 1.2225 1.2180 1.2178
(0.875, 0.125) 0.6290 0.6201 0.6188
(0.875, 0.375) 1.1854 1.1780 1.1766

Problem 2. For another specific problem, the heat diffusion is taken to

occur within a square region given by 0 < x1 < 1, 0 < x2 < 1, with the

governing equation given by
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∂2T

∂x21
+

∂2T

∂x22
=

∂T

∂t
, (41)

that is, we take λ11 = λ22 = 1, λ12 = 0 and ρc = 1 in (1).

As for the initial-boundary and non-local conditions, we are required to

solve (41) within the square region 0 < x1 < 1, 0 < x2 < 1, subject to

T (x1, x2, 0) = cos(
π

3
[x2 − 1]) + cos(πx2) for 0 < x1 < 1, 0 < x2 < 1,

T (x1, 0, t) = q(t)
H(x1, 1, t) = 0

¾
for 0 < x1 < 1, t ≥ 0,

H(0, x2, t) = 0
H(1, x2, t) = 0

¾
for 0 < x2 < 1, t ≥ 0,ZZ

R

T (x1, x2, t)dx1dx2 =
3
√
3

2π
exp(−π2t

9
) for t ≥ 0. (42)

It may be verified that the solution of (41) satisfying (42) is given by

T (x1, x2, t) = cos(
π

3
[x2 − 1]) exp(−π2t

9
) + cos(πx2) exp(−π2t)

with q(t) =
1

2
exp(−π2t

9
) + exp(−π2t). (43)

To apply the dual-reciprocity boundary element method to recover the

unknown control function q(t), each side of the square is discretized into M

equal length elements, each of equal length ` = 1/M. The total number of

boundary elements is 4M. As in the first example, the collocation points on

the sides of the square are chosen using (12) with r = 1/4. The time-step is

given by ∆t = `. Taking M to be an even integer, we choose M2/4 interior

collocation points to be given by ([2m+1]`, [2n+1]`] for m, n = 0, 1, 2, · · · ,
M/2− 1. The numerical values of q(t) obtained using M = 10 and M = 20

are compared with the exact ones at selected time t in Table 3.
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Table 3. Numerical and exact values of the temperature control func-

tion q at selected time t (Problem 2).

Time t M = 10 M = 20 Exact
0.1 0.7877 0.8132 0.8208
0.2 0.5170 0.5349 0.5404
0.3 0.3994 0.4086 0.4116
0.4 0.3362 0.3403 0.3417
0.5 0.2940 0.2956 0.2961
0.6 0.2609 0.2614 0.2616
0.7 0.2332 0.2330 0.2331
0.8 0.2085 0.2084 0.2083
0.9 0.1869 0.1866 0.1865
1.0 0.1674 0.1671 0.1670

From Table 3, it is clear that we have succeeded in recovering the control

function q(t) with reasonably good accuracy. The numerical values obtained

improve significantly when M is increased from 10 to 20.

6 Conclusion

A time-stepping dual-reciprocity boundary element method is proposed for

solving numerically a parabolic partial differential that governs the anisotropic

diffusion of heat in a two-dimensional body containing a specified amount of

heat energy. The method reduces the problem under consideration into a

system of linear algebraic equations to be solved at consecutive time levels.

The coefficients of the unknowns in the system of linear algebraic equa-

tions are independent of time. Consequently, for the solution of the linear

algebraic equations, the square matrix containing the coefficients of the un-

knowns needs to be evaluated and processed only once, provided that the

size of the time-step used is always the same. For example, if the LU de-

composition technique together with backward substitutions is used to solve

the linear algebraic equations, then the square matrix has to be decomposed

only once.
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To check its validity, the proposed method is applied to solve some specific

problems with known exact solutions. The numerical results obtained are in

good agreement with the exact solutions. Convergence in the numerical

values is observed when the calculation is refined by increasing the number

of boundary elements and collocation points and by reducing the size of the

time-step.
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[14] F. Paŕis and J. Cañas, Boundary Element Method : Fundamentals and

Applications, Oxford University Press, Oxford, 1997.

[15] W. T. Ang, D. L. Clements and N. Vahdati, A dual-reciprocity bound-

ary element method for a class of elliptic boundary value problems for

19



nonhomogeneous anisotropic media, Engineering Analysis with Bound-

ary Elements 27: 49-55 (2003).

[16] Y. Zhang and S. Zhu, On the choice of interpolation functions used

in the dual-reciprocity boundary-element method. Engineering Analysis

with Boundary Elements 13: 387-396 1994.

Appendix

To implement the dual-reciprocity boundary element method for the heat

diffusion problem under consideration, one has to compute the line integrals

I
(m)
1 (ξ1, ξ2) =

Z
C(m)

Φ(x1, x2, ξ1, ξ2)ds(x1, x2)

I
(m)
2 (ξ1, ξ2) =

Z
C(m)

d(m)(x1, x2)Φ(x1, x2, ξ1, ξ2)ds(x1, x2)

I
(m)
3 (ξ1, ξ2) =

Z
C(m)

Γ(x1, x2, ξ1, ξ2)ds(x1, x2)

I
(m)
4 (ξ1, ξ2) =

Z
C(m)

d(m)(x1, x2)Γ(x1, x2, ξ1, ξ2)ds(x1, x2). (A1)

If the boundary element C(m) is described by the parametric equations

x1 = a
(m)
1 − t`(m)n(m)2

x2 = a
(m)
2 + t`(m)n

(m)
1

)
from t = 0 to t = 1,

where [n
(m)
1 , n

(m)
2 ] = [b

(m)
2 −a(m)2 , a

(m)
1 −b(m)1 ]/`(m), then the line integral given

by I
(m)
1 (ξ1, ξ2) becomes

I
(m)
1 (ξ1, ξ2) =

`(m)

4π
p

λ11λ22 − λ212

1Z
0

ln[A(m)t2 +B(m)(ξ1, ξ2)t+D
(m)(ξ1, ξ2)]dt,
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where

A(m) = [`(m)]2[(Re{τ}n(m)1 − n(m)2 )2 + (Im{τ}n(m)1 )2]

B(m)(ξ1, ξ2) = {[Re{τ}n(m)1 − n(m)2 ](a
(m)
1 − ξ1 +Re{τ}(a(m)2 − ξ2))

+ (Im{τ})2(a(m)2 − ξ2)n
(m)
1 }(2`(m))

D(m)(ξ1, ξ2) = [a
(m)
1 − ξ1 +Re{τ}(a(m)2 − ξ2)]

2 + (Im{τ})2(a(m)2 − ξ2)
2.

It can be shown that Q(m)(ξ1, ξ2) = 4A
(m)D(m)(ξ1, ξ2)− [B(m)(ξ1, ξ2)]2 ≥

0. In the evaluation of I
(m)
1 (ξ1, ξ2), one has to consider two separate cases,

namely Q(m)(ξ1, ξ2) = 0 and Q(m)(ξ1, ξ2) > 0. The case Q(m)(ξ1, ξ2) = 0

occurs when (ξ1, ξ2) is collinear with (a
(m)
1 , a

(m)
2 ) and (b

(m)
1 , b

(m)
2 ) (the extreme

points of the boundary element C(m)).

It follows that I
(m)
1 (ξ1, ξ2) is given by

I
(m)
1 (ξ1, ξ2) =

`(m)

4π
p

λ11λ22 − λ212

× [ln(A(m)) + F (m)(ξ1, ξ2, 1)− F (m)(ξ1, ξ2, 0)] (A2)

where

F (m)(ξ1, ξ2, t) = (t+
B(m)(ξ1, ξ2)

2A(m)
) ln(t2 +

B(m)(ξ1, ξ2)

A(m)
t+

D(m)(ξ1, ξ2)

A(m)
)− 2t

+
1

A(m)

q
Q(m)(ξ1, ξ2) arctan

Ã
2A(m)t+B(m)(ξ1, ξ2)p

Q(m)(ξ1, ξ2)

!
if Q(m)(ξ1, ξ2) > 0 (A3)

or

F (m)(ξ1, ξ2, t) = 2

µ
t+

B(m)(ξ1, ξ2)

2A(m)

¶
ln

¯̄̄̄
t+

B(m)(ξ1, ξ2)

2A(m)

¯̄̄̄
− 2t

if Q(m)(ξ1, ξ2) = 0. (A4)
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In a similar manner, the second line integral in (A1) is evaluated as

I
(m)
2 (ξ1, ξ2) = − r

(1− 2r)I
(m)
1 (ξ1, ξ2)

+
`(m)

4(1− 2r)πpλ11λ22 − λ212

× [1
2
ln(A(m)) +G(m)(ξ1, ξ2, 1)−G(m)(ξ1, ξ2, 0)] (A5)

where

G(m)(ξ1, ξ2, t) =
1

4
[2t2 − (B

(m)(ξ1, ξ2)

A(m)
)2 +

2D(m)(ξ1, ξ2)

A(m)
]

× ln
µ
t2 +

B(m)(ξ1, ξ2)

A(m)
t+

D(m)(ξ1, ξ2)

A(m)

¶
+
t

2

µ
B(m)(ξ1, ξ2)

A(m)
− t
¶

− B
(m)(ξ1, ξ2)

2[A(m)]2

q
Q(m)(ξ1, ξ2) arctan

Ã
2A(m)t+B(m)(ξ1, ξ2)p

Q(m)(ξ1, ξ2)

!
if Q(m)(ξ1, ξ2) > 0 (A6)

or

G(m)(ξ1, ξ2, t) = [t
2 −

µ
B(m)(ξ1, ξ2)

2A(m)

¶2
] ln

¯̄̄̄
t+

B(m)(ξ1, ξ2)

2A(m)

¯̄̄̄
− t
2
(t− B

(m)(ξ1, ξ2)

A(m)
)

if Q(m)(ξ1, ξ2) = 0. (A7)

To evaluate the remaining two line integrals in (A1), Γ(x1, x2, ξ1, ξ2) is

written as

Γ(x1, x2, ξ1, ξ2) =
W (m)(ξ1, ξ2)

2π
p

λ11λ22 − λ212
· 1

|x1 − ξ1 + τ(x2 − ξ2)|2
for (x1, x2) ∈ C(m)
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where

W (m)(ξ1, ξ2) = n
(m)
1 [λ11 +Re{τ}λ12][a(m)1 − ξ1 +Re{τ}(a(m)2 − ξ2)]

+ [Im{τ}]2(a(m)2 − ξ2)[λ12n
(m)
1 + λ22n

(m)
2 ].

It can be shown that if Q(m)(ξ1, ξ2) = 0 then W
(m)(ξ1, ξ2) = 0. Thus,

I
(m)
3 (ξ1, ξ2) = 0

I
(m)
4 (ξ1, ξ2) = 0

)
if Q(m)(ξ1, ξ2) = 0.

In general, the analytical formulae for I
(m)
3 (ξ1, ξ2) and I

(m)
4 (ξ1, ξ2) are

given by

I
(m)
3 (ξ1, ξ2) =

`(m)

2π
p

λ11λ22 − λ212

× [V (m) (ξ1, ξ2, 1)− V (m) (ξ1, ξ2, 0)] (A8)

and

I
(m)
4 (ξ1, ξ2) = − r

(1− 2r)I
(m)
3 (ξ1, ξ2)

+
`(m)

2A(m)π(1− 2r)pλ11λ22 − λ212

× [S(m) (ξ1, ξ2, 1)− S(m) (ξ1, ξ2, 0)] (A9)

where

V (m)(ξ1, ξ2, t) =
2W (m)(ξ1, ξ2)p
Q(m)(ξ1, ξ2)

arctan

Ã
2A(m)t+B(m)(ξ1, ξ2)p

Q(m)(ξ1, ξ2)

!
if Q(m)(ξ1, ξ2) > 0 (A10)

or

V (m)(ξ1, ξ2, t) = 0 if Q
(m)(ξ1, ξ2) = 0 (A11)
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and

S(m)(ξ1, ξ2, t) =
W (m)(ξ1, ξ2)

2
ln

µ
t2 +

B(m)(ξ1, ξ2)

A(m)
t+

D(m)(ξ1, ξ2)

A(m)

¶
− W

(m)(ξ1, ξ2)B
(m)(ξ1, ξ2)p

Q(m)(ξ1, ξ2)

× arctan
Ã
2A(m)t+B(m)(ξ1, ξ2)p

Q(m)(ξ1, ξ2)

!
if Q(m)(ξ1, ξ2) > 0 (A12)

or

S(m)(ξ1, ξ2, t) = 0 if Q
(m)(ξ1, ξ2) = 0. (A13)

Formulae (A2), (A5), (A8) and (A9) are valid for any (ξ1, ξ2), even if

(ξ1, ξ2) lies on C
(m). (Note that Q(m)(ξ1, ξ2) = 0 if (ξ1, ξ2) is on C

(m).) How-

ever, for (ξ1, ξ2) = (a
(m)
1 , a

(m)
2 ) or (ξ1, ξ2) = (b

(m)
1 , b

(m)
2 ), a slight modification

is, strictly speaking, required in the formulae (A2) and (A5). For (ξ1, ξ2) =

(a
(m)
1 , a

(m)
2 ), the terms F (m)(ξ1, ξ2, 0) and G

(m)(ξ1, ξ2, 0) [in (A2) and (A5)]

are respectively replaced by the limits of F (m)(ξ1, ξ2, t) and G
(m)(ξ1, ξ2, t) as

t→ 0+, while for (ξ1, ξ2) = (b
(m)
1 , b

(m)
2 ), F (m)(ξ1, ξ2, 1) and G

(m)(ξ1, ξ2, 1) are

superceded respectively by the limits of F (m)(ξ1, ξ2, t) and G
(m)(ξ1, ξ2, t) as

t→ 1−.
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