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Abstract. A hypersingular boundary integral formulation is derived for a
steady-state two-dimensional heat conduction problem involving a bimate-
rial with a microscopically imperfect interface. To describe the interfacial
condition, a macroscopic model which allows for a temperature jump which
is proportional in magnitude to the thermal heat flux at the interface is
used. For a specific problem, the integral equations in the formulation are
solved numerically to determine the temperature field in the bimaterial.

Introduction
Composites which are made up of two or more dissimilar materials play
an important role in modern technology. In many studies, the dissimilar
materials are assumed to be perfectly joined or bonded to one another along
their common boundaries (see e.g. Ang [1], Berger and Karageorghis [2],
Clements [3] and Lee and Kim [4]).

However, a perfect bond does not exist in reality, as microscopic im-
perfections are bound to be present along the interfaces of the materials.
Thus, in recent years, there is a growing interest among researchers in the
investigation of microscopically imperfect interfaces in layered and compos-
ite materials (see e.g. Benveniste and Miloh [5], Fan and Sze [6], Benveniste
[7], Torquato and Rintoul [8] and other references therein). In heat conduc-
tion problems, a macroscopic model for studying such an imperfect interface
allows for a temperature jump which is proportional in magnitude to the
thermal heat flux at the interface.



In the present paper, the two-dimensional problem of determining the
steady-state temperature distribution in a thermally isotropic bimaterial
with a homogeneously imperfect planar interface is considered. On the
exterior boundary of the bimaterial, either the temperature or the heat
flux (not both) is known at each and every point on the exterior boundary
of the bimaterial.

Figure 1. A sketch of the geometry of the problem.

The temperature is expressed in terms of a boundary integral over the
exterior boundary of the bimaterial and the imperfect planar interface.
With the use of a suitable Green’s function for the corresponding perfect
interface, the only unknown function that appears in the integral over the
imperfect interface is the temperature jump. The boundary integral ex-
pression for the temperature can be suitably differentiated to obtain the
heat flux for formulating the condition on the imperfect interface. This
gives rise to hypersingular boundary integral equations for the problem un-
der consideration. The proposed approach is similar to that of Chen and
Hong [9] for solving a heat conduction problem with a degenerate bound-



ary. For a specific problem, the equations are solved numerically in order
to determine the temperature field in the bimaterial.

The Problem
Referring to an 0x1x2x3 Cartesian co-ordinate system, consider a body com-
prising two homogeneous materials with possibly different thermal properties.
The geometry of the body is independent of the x3 co-ordinate. On the
0x1x2 plane, the interface separating the two materials is the straight line
segment Γ which lies on part of the x1-axis between the points (a, 0) and
(b, 0) (where a and b are given real numbers such that a < b), while the
exterior boundary of the body is the simple closed curve C. The curve C
consists of two parts: C+ which lies above the x1-axis, and C

− below the
axis. A sketch of the geometry is given in Figure 1. The regions enclosed
by C+ ∪ Γ and C− ∪ Γ are denoted by R+ and R− respectively.

If the steady-state temperature field in the body is independent of x3
and given by T (x1, x2), then together with the classical Fourier’s law of heat
conduction the energy equation gives rise to the two-dimensional Laplace’s
equation

∂2T

∂xk∂xk
= 0 in R±. (1)

Note that the Einsteinian convention of summing over a repeated index is
adopted for latin subscripts running from 1 to 2.

The bond between the materials in R+ and R− at the interface Γ is
microscopically damaged. The microscopic damage is assumed to be uni-
formly distributed over the interface. A macroscopic model for the heat
conduction across the imperfect interface is given by

k+
∂T

∂x2

¯̄̄̄
x2=0+

= k−
∂T

∂x2

¯̄̄̄
x2=0−

= λ∆T (x1) for x1 ∈ [a, b], (2)

where k+ and k− are the (constant) thermal conductivities of the materials
in R+ and R− respectively, λ is a given positive coefficient, and ∆T (x1) =
T (x1, 0

+)− T (x1, 0−) is the temperature jump across the interface. If the
microscopic damage is uniformly distributed over the interface then λ is a
constant.

At each and every point on the exterior boundary C = C+∪C−, either
the temperature T or its normal flux −k(x1, x2)np∂T/∂xp (but not both)
is specified. (Note that k(x1, x2) denotes the thermal conductivity at the



point (x1, x2) in the bimaterial and [n1(x1, x2), n2(x1, x2)] is the unit normal
vector to C at (x1, x2) which points out of the region R enclosed by C.)
The problem is to determine the temperature in the body by solving (1)
subject to the boundary condition on C and the interface condition as given
by (2).

Hypersingular boundary integral formulation
For ξ2 6= 0, guided by the analysis in Clements [10], one may derive a
boundary integral solution for (1) in the form

γ(ξ1, ξ2)T (ξ1, ξ2) =

I
C

k(x1, x2)[T (x1, x2)np(x1, x2)
∂

∂xp
Φ(x1, x2, ξ1, ξ2)

−Φ(x1, x2, ξ1, ξ2)np(x1, x2) ∂

∂xp
T (x1, x2)]ds(x1, x2)

− k+
bZ
a

∆T (x1)
∂

∂x2
Φ(x1, x2, ξ1, ξ2)

¯̄̄̄
x2=0+

dx1, (3)

where γ(ξ1, ξ2) = 1 if (ξ1, ξ2) lies inside R
+ or R−, 0 < γ(ξ1, ξ2) < 1 if

(ξ1, ξ2) lies on C
+ or C− [γ(ξ1, ξ2) = 1/2 if (ξ1, ξ2) lies on a smooth part of

C+ or C−] and

Φ(x1, x2, ξ1, ξ2) =
1

2π
[
1

k+
H(x2) +

1

k−
H(−x2)] Re{ln(z − c)}

+Ψ(x1, x2, ξ1, ξ2), (4)

with z = x1+ix2, c = ξ1+iξ2, i =
√−1, H(x) being the Heaviside unit-step

function and Ψ(x1, x2, ξ1, ξ2) being given by

Ψ(x1, x2, ξ1, ξ2) = − µ
k+
H(x2)Re{H(−ξ2) ln(z − c) +H(ξ2) ln(z − c)}

+
µ

k−
H(−x2)Re{H(−ξ2) ln(z − c) +H(ξ2) ln(z − c)}.

(5)

where µ = (k− − k+)/[2π(k− + k+)] and the bar denotes the complex
conjugate of a complex number.

Note that Φ(x1, x2, ξ1, ξ2) as given by (4) together with (5) is the Green’s
function for the perfect interface, i.e. it satisfies the conditions

Φ(x1, 0
+, ξ1, ξ2)− Φ(x1, 0−, ξ1, ξ2) = 0 for −∞ < x1 <∞, (6)
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¯̄̄̄
x2=0−

for −∞ < x1 <∞. (7)

Differentiating (3) partially with respect to ξ2 and then letting (ξ1, ξ2)
approach a point on the imperfect interface, we find that the interfacial
condition (2) may be re-written as
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C
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H
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(ξ1 − x1)2dx1 = λ∆T (ξ1) for a < ξ1 < b, (8)

where H denotes the integral over the interval [a, b] is to be interpreted in
the Hadamard finite-part sense, i.e.

H
Z b

a

∆T (x)dx

(ξ − x)2
def
= lim

σ→0+
[

Z b

a

(ξ − x)2∆T (x)dx
[(ξ − x)2 + σ2]2

− π

2σ
∆T (ξ)] for a < ξ < b.

(9)

A simple numerical procedure
For (3) to give an explicit expression for the required temperature field,
the unknown quantities on C ∪ Γ, i.e. T and knp∂T/∂xp on C and ∆T
on Γ, must be determined. A simple numerical procedure for finding these
unknowns from (3) and (8) is as follows.

The boundary C is discretized into M straight line elements denoted
by C(1), C(2), · · · , C(M−1) and C(M). Over the element C(m), T and
knp∂T/∂xp are approximated as constants, i.e.

T (x1, x2) ' T (m) and k(x1, x2)np(x1, x2) ∂T
∂xp

' H(m) for (x1, x2) ∈ C(m),
(10)

where T (m) and H(m) are constants.
From the condition given on the exterior boundary C, either T or

knp∂T/∂xp is known on a boundary element. Thus, there are M unknown
constants in (10) to be determined.



The interval [a, b] representing the interface Γ is divided into L subinter-
vals denoted by [x(0), x(1)], [x(1), x(2)], · · · , [x(L−2), x(L−1)] and [x(L−1), x(L)],
with x(0) = a and x(L) = b. The interfacial temperature jump ∆T is ap-
proximated using

∆T (x1) ' J(`) for x1 ∈ [x(`−1), x(`)], (11)

where J (`) are unknown constants to be determined.
With (10) and (11), if we let (ξ1, ξ2) in (3) be given by the midpoints of

C(r) for r = 1, 2, · · · ,M, and if we take ξ1 in (8) to be given by (x(j−1) +
x(j))/2 for j = 1, 2, · · · , L, we obtain a system of M + L linear algebraic
equations in M + L unknowns. Once these unknowns are determined,
(3) can be used to compute T approximately at any interior point in the
bimaterial.

A specific example
To test the proposed numerical procedure, let us take R+ to be the region
0 < x1 < 1, 0 < x2 < 1/2, with k+ = 1/5, and R− to be 0 < x1 < 1,
−1/2 < x2 < 0, with k− = 1/2. On the interface between R+ and R−, i.e
0 < x1 < 1, x2 = 0, we impose the condition (2) with λ = 1.

A solution of (1) which satisfies the interface condition (2) with k+ =
1/5, k− = 1/2 and λ = 1 is given by

T (x1, x2) = {H(x2)[2 cos(x2) + 5 sin(x2)]
+H(−x2)[cos(x2) + 2 sin(x2)]} exp(−x1) (12)

To devise a test problem, let us use (12) to generate boundary values
of the temperature T on the sides x2 = ±1/2, 0 < x1 < 1, and boundary
values of the normal derivative of T on x1 = 0, −1/2 < x2 < 1/2 and
also on x1 = 1, −1/2 < x2 < 1/2. The proposed numerical procedure
is then applied to solve (1) subject to the boundary data thus generated
and the interface condition (2). If it really works, we should be able to
recover the solution (12) and the corresponding interfacial temperature
jump ∆T (x1) = exp(−x1) approximately.

For the practical implementation of the numerical procedure, each of the
4 sides of the bimaterial is divided into N equal length boundary elements
(so that M = 4N) and the interface [0, 1] into L equal subintervals. To
avoid ambiguity, we require a boundary element to be in either R+ or R−

but not partly in both the regions. One of the endpoints of the element



is allowed to be on Γ, however. Thus, N must be chosen to be an even
integer.

Table 1. A comparison of the numerical and exact values of T with
the exact ones at various points in the interior of the bimaterial.

(x1, x2) (M,L) = (40, 5) (M,L) = (120, 15) Exact

(0.8000, 0.3000) 1.5254 1.5229 1.5225

(0.7000,−0.2000) 0.2883 0.2892 0.2894

(0.1000, 0.4000) 3.4261 3.4283 3.4286

(0.3000,−0.1000) 0.5897 0.5895 0.5892

(0.5000, 0.4950) 2.2966 2.5074 2.5081

(0.7500, 0.0050) 1.0132 0.9713 0.9565

Table 2. A comparison of the numerical and exact values of the
interfacial temperature jump ∆T at various points on the interface.

(x1, x2) (M,L) = (40, 5) (M,L) = (120, 15) Exact

(0.1000, 0) 0.8918 0.9006 0.9048

(0.3000, 0) 0.7376 0.7400 0.7408

(0.5000, 0) 0.6060 0.6064 0.6065

(0.7000, 0) 0.4980 0.4970 0.4966

(0.9000, 0) 0.4130 0.4085 0.4066

In Table 1, we compare the numerical values of the temperature T at
selected points in the interior of the bimaterial, as computed using (3) with
(M,L) = (40, 5) and (M,L) = (120, 15), with the exact solution (12). The
two sets of numerical values show good agreement with the exact solu-
tion, except at points that are very close to the exterior boundary or the
interface, e.g. (0.5000, 0.4950) and (0.7500, 0.0050), where there is a rela-
tively higher percentage of error. The adverse effect of the boundary on
the accuracy of the numerical values at points that are at a distance much
smaller than the lengths of nearby elements is a well known phenomenon
in boundary element research. One way of improving the numerical values
at those points is to refine the discretization of the nearby boundary. This
is clearly shown in Table 1 by the fact that the numerical values of the
temperature at (0.5000, 0.4950) and (0.7500, 0.0050) improve significantly



in accuracy when we treble the number of subintervals on the interface and
also the boundary elements. The percentage errors of T at (0.5000, 0.4950)
and (0.7500, 0.0050) are reduced further to about 0.0002% and 0.15% re-
spectively when we use (M,L) = (240, 30) in our computation.

In Table 2, the numerical values of the interfacial temperature jump
∆T, as obtained using (M,L) = (40, 5) and (M,L) = (120, 15), are com-
pared with the exact values at selected points on the interface. There is a
definite improvement in the numerical values when the discretization of the
imperfect interface and the exterior boundary of the bimaterial is refined.

Conclusion
A hypersingular boundary integral formulation is derived for the plane
steady-state heat conduction in a bimaterial with a microscopically im-
perfect interface. It is used to devise a boundary element method for
computing approximately the temperature distribution in the bimaterial.
The numerical result obtained for a specific test problem indicates that
the method is capable of delivering accurate approximate solution for the
problem under consideration.
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