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Abstract

Two different types of imperfect interfaces between dissimilar elas-
tic materials under antiplane deformations are studied using microme-
chanics concepts. Interfaces containing interfacial micro-cracks and
those that are microscopically wavy (sinusoidal) are modeled as spring-
like and membrane-like respectively at the macroscopic level. The
strain energy in the microscopic configuration is equated to that in
the macroscopic configuration in order to estimate the effective prop-
erties of the imperfect interfaces. The boundary value problems for
computing the strain energy at the microscopic level are formulated
and solved by using boundary integral equations.
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1 Introduction

Since the 1970s, the continuum mechanics approach based on the works of

Gurtin and Murdoch [1]-[2] has been widely used for analyzing interfaces

between solids. In such an approach, the interface is modeled as an elastic

membrane with residual strain and with elastic constants that are different

from the bulk materials. Another approach which uses asymptotic analysis on

equations of elasticity in a very thin elastic layer between two elastic materials

to derive different types of interface conditions is given in Benveniste and

Miloh [3]. The conditions derived in [3] for a stiffened interface may be

shown to be consistent with the membrane interfacial conditions in [1]-[2]

and [4].

Micromechanical models may be developed to provide a link between

interfacial micro-structures and the macro-scale (continuum) effective prop-

erties of interfaces (see, for example, Fan and Sze [5]). They (the models)

may also be used to validate physically the existence of the different types of

interfaces derived in [1]-[4].

Two different types of imperfect interfaces between dissimilar elastic ma-

terials under antiplane deformations are studied in the current paper. Specifi-

cally, of interest here is the estimation of the effective property of a microscop-

ically damaged and a microscopically curved interface. The microscopically

damaged interface between two dissimilar materials is modeled as containing

a periodic array of interfacial micro-cracks, as in Wang et al [6]-[7]. The

micro-cracked interface is modeled as spring-like at the macroscopic level.

The microscopically curved interface has a wavy (sinusoidal) profile, as in

Fan and Xiao [8]. The microscopically wavy interface is modeled as flat and

membrane-like at the macroscopic level.

As shown in [5], [6] and [7], the effective property of the micro-cracked

interface may be estimated by averaging the displacement jump across the

micro-cracks and the normal stress on the interface. Such an averaging pro-

cedure leads to indeterminacy, however, when it is applied to estimate the

effective property of the microscopically wavy interface.
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An alternative approach based on energy consideration is proposed here

for estimating effective properties of the interfaces. The strain energy in the

microscopic configuration is equated to that in the macroscopic configuration

in order to estimate the effective properties of the imperfect interfaces. The

boundary value problems for computing the strain energy at the microscopic

level are formulated and solved by using boundary integral equations.

The effective property of the interface damaged by the periodically dis-

tributed interfacial micro-cracks as obtained via the energy approach is nu-

merically found to agree closely with that computed by using the averaging

procedure in [5], [6] and [7]. For the microscopically wavy interface, we use

the energy approach to investigate the effects of the wavy interface ampli-

tude and the shear moduli of the materials on the effective property of the

interface.

2 Macroscopic boundary conditions for the

spring-like and membrane-like interfaces

With reference to a Cartesian coordinate system Ox1x2x3, consider two

dissimilar isotropic elastic materials occupying the half-spaces x2 > 0 and

x2 < 0. The bimaterial is assumed to undergo an antiplane deformation such

that the only non-zero component of the displacement is in the x3 direction

and given by the function w(x1, x2). The only non-zero components of the

stress are given by

σk3 = σ3k =





µ(1) ∂w

∂xk
for x2 > 0

µ(2) ∂w

∂xk
for x2 < 0

(k = 1, 2), (1)

where µ(1) and µ(2) are the constant shear moduli of the materials in the

half-spaces.

For the antiplane deformation, three different types of conditions may be

derived for the interface x2 = 0 between the elastic materials in the half-
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spaces x2 > 0 and x2 < 0, as in Benveniste and Miloh [3]. They are:

σ32(x1, 0
+) = σ32(x1, 0

−)
K∆w(x1) = σ32(x1, 0)

}
softened or spring-like interface, (2)

w(x1, 0
+) = w(x1, 0

−)
σ32(x1, 0

+) = σ32(x1, 0
−))

}
ideal or perfectly bonded interface,

(3)

w(x1, 0
+) = w(x1, 0

−)

∆σ32(x1) = −µs
d2

dx21
(w(x1, 0))



 stiffened or membrane-like interface,

(4)

where ∆w(x1) = w(x1, 0
+)−w(x1, 0

−), ∆σ32(x1) = σ32(x1, 0
+)−σ32(x1, 0−),

K is the interface spring constant of the softened interface, and the constant

µs, as we shall see, may be interpreted as the interface membrane shear

modulus defined in the theory of surface elasticity of Gurtin et al [1]-[2] and

[4].

In Benveniste and Miloh [3], the interface conditions above are derived

by performing asymptotic analysis on the equations of elasticity in a thin

elastic layer −δ < x2 < δ between two elastic half-spaces x2 > δ and x2 <

−δ, for small δ. The conditions in (2) and (4) are obtained by taking the

shear modulus in the layer to be proportional in magnitude to δ and 1/δ

respectively and by letting δ tend to zero. As we show below, the conditions

in (4) for the stiffened interface may also be derived from the equations of

surface elasticity.

The surface elasticity equations on the flat interface x2 = 0 under a

general deformation are given by (see equation (4) in Gurtin and Murdoch

[2])

∆σi2(x1) +
∂Σiβ

∂xβ
= 0 (5)
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and

Σαβ = σ0δαβ + (µs − σ0)(
∂uα
∂xβ

+
∂uβ
∂xα

) + (λs + σ0)
∂uγ
∂xγ

δαβ + σ0
∂uα
∂xβ

,

Σ2β = σ0
∂u2
∂xβ

, (6)

where Greek subscripts have values 1 and 3 only while Latin subscripts have

values 1, 2 and 3 in the equations above, ∆σi2(x1) denotes the jump in σi2

across opposite sides of the interface, Σiβ is the surface stress tensor, δαβ is

the Kronecker-delta, (u1, u2, u3) is the displacement on the interface, σ0 is

the surface tension and λs and µs are the surface Lame constants. Note that

the Einstenian convention of summing over repeated indices applies for both

Greek and Latin subscripts in (5) and (6).

For antiplane deformation, u1 = u2 = 0 and u3 is a function of x1 only.

Thus, we may reduce (5) and (6) respectively to

∆σ32(x1) +
dΣ31

dx1
= 0, (7)

and

Σ31 = µs
du3
dx1

. (8)

The condition for the normal stress jump across a stiffened interface in (4)

(as given in [3]) is recovered if (8) is substituted into (7) and if the interface

displacement u3 matches the antiplane bulk displacement w (that is, u3(x1) =

w(x1, 0
+) = w(x1, 0

−)).

Interfaces damaged by interfacial micro-cracks and those that are mi-

croscopically curved may be modeled as spring-like and membrane-like in-

terfaces respectively at the macroscopic level. The effects of the interfacial

micro-cracks and the interfacial curvature at the microscopical level are re-

spectively captured in the coefficients K and µs in (2) and (4). We refer to

K and µs as the effective properties of the micro-cracked and the microscop-

ically curved interfaces respectively.
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3 A microscopically damaged interface

3.1 Microscopic and macroscopic models

At the microscopic level, the bimaterial interface at x2 = 0 is modeled as

having a periodic array of evenly spaced out equal length micro-cracks in the

regions −a + nL < x1 < a + nL, x2 = 0, for n = 0, ±1, ±2, · · · , where a

and L are positive constants such that 2a < L. The parts of the interface

outside the interfacial micro-cracks are perfectly bonded. The interface is

characterized by the half length a of the micro-crack and the micro-crack

density ρ = 2a/L. At the macroscopic level, the micro-cracked interface is

modeled as a spring-like interface which satisfies the interfacial conditions in

(2), as the micro-cracks give rise to a displacement jump across the interface.

A sketch of the micro-cracked and the spring-like interfaces is given in Figure

1.
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Figure 1. The micro-cracked and the spring-like interfaces.

Given the shear moduli µ(1) and µ(2) and the parameters a and ρ which

characterize the micro-model of the interface, we are interested in estimating
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the effective property K of the micro-cracked interface.

3.2 Estimation of effective property

To estimate the effective property K, let the antiplane stress throughout the

whole bimaterial with the periodic array of interfacial micro-cracks be given

by

σ3k(x1, x2) = S0δk2 + σ
(cr)
3k (x1, x2), (9)

where S0 is the uniform load on the bimaterial and σ
(cr)
3k are the antiplane

stresses induced by the presence of the interfacial micro-cracks, that is,

σ
(cr)
3k (x1, x2) = 0 in the bimaterial if the interface does not contain any micro-

cracks. Henceforth, all Latin subscripts are assume to run from 1 to 2 only.

The stresses σ
(cr)
3k at any interior point (ξ1, ξ2) are given by the boundary

integral equation

σ
(cr)
3k (ξ1, ξ2) =

µ(1)µ(2)

π(µ(1) + µ(2))

∫ a

−a
∆w(cr)(x1)(δ2k − iδ1k)

× Re{ 1

(x1 − ξ1 − iξ2)2
+ Θ(x1, ξ1 + iξ2)}dx1, (10)

where ∆w(cr)(x1) is the antiplane displacement jump across the micro-cracks

and Θ(x1, z)is defined by

Θ(x1, z) =
1

L2
Ψ1(

L+ x1 − z
2

) +
1

L2
Ψ1(

L+ z − x1
2

), (11)

with Ψ1(z) being the trigamma function. Note that z is in general a complex

variable. The integration in (10) is over only the micro-crack in the region

−a < x1 < a, x2 = 0.

The micro-cracks are traction free, that is, σ
(cr)
32 = −S0 on the micro-

cracks. Together with (10), this gives rise to the hypersingular integral equa-

tion

=

∫ a

−a

∆w(cr)(x1)

(x1 − ξ1)2
dx1 +

∫ a

−a
∆w(cr)(x1)Θ(x1, ξ1)dx1 = −π(

1

µ(1)
+

1

µ(2)
)S0

for − a < ξ1 < a, (12)
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where =
∫

denotes that the integral is to be interpreted in the Hadamard

finite-part sense. Details on the derivations of (10) and (12) are given in

Wang et al [6].

The hypersingular integral equation in (12) may be solved for ∆w(cr)(x1)

by using approximate techniques in Ang [9] and Kaya and Erdogan [10]. Once

the hypersingular integral equation in (12) is solved for the displacement

jump ∆w(cr)(x1), the effective property K may be readily computed from

K

L

∫ a

−a
∆w(cr)(x1)dx1 = S0. (13)

The formula in (13) is obtained from (2) by using the average values of

the displacement jump and the traction over a period length of the micro-

cracked interface. Such an averaging procedure is used in Wang et al [6]-[7]

for computing K.

An alternative approach based on strain energy consideration is proposed

here for estimating the effective property K. To obtain a formula for K, the

total strain energy of the bimaterial in the microscopic (periodic interfacial

crack) model (as calculated by using the stress field in (9)) is equated to the

corresponding strain energy in the bimaterial with the macroscopic (spring-

like) model of the interface.

From (9), the total strain energy in the representative region −L/2 <

x1 < L/2, −∞ < x2 < ∞, 0 < x3 < B, of the bimaterial with the micro-

cracked interface is given by

U (micro) =
1

2
lim
H→∞

∫ B

0

∫ H

−H

∫ L/2

−L/2
2σ3kε3kdx1dx2dx3

=
B

2
lim
H→∞

∫ H

−H

∫ L/2

−L/2

1

µ
σ3kσ3kdx1dx2

=
B

2
S2
0L(

1

µ(1)
+

1

µ(2)
) lim
H→∞

H

+
B

2

∫ ∞

−∞

∫ L/2

−L/2

1

µ
(2S0σ

(cr)
32 + σ

(cr)
3k σ

(cr)
3k )dx1dx2. (14)

Note that µ is given by µ(1) for x2 > 0 and by µ(2) for x2 < 0.
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The corresponding total strain energy in the bimaterial with the spring-

like interface governed by (2) is given by

U (macro) =
B

2
lim
H→∞

∫ H

−H

∫ L/2

−L/2

1

µ
S2
0dx1dx2 +

B

2

∫ L/2

−L/2
S0∆w(x1)dx1

=
B

2
S2
0L(

1

µ(1)
+

1

µ(2)
) lim
H→∞

H +
BLS2

0

2K
. (15)

Setting U (micro) = U (macro) yields the formula

K = L

(∫ ∞

−∞

∫ L/2

−L/2

1

µ
(2
σ
(cr)
32

S0

+
σ
(cr)
3k σ

(cr)
3k

S2
0

)dx1dx2

)−1
. (16)

Once the hypersingular integral equation in (12) is solved for the dis-

placement jump ∆w(cr)(x1), the stresses σ
(cr)
3k may be computing at any point

in the interior of the bimaterial by using the integral formula in (10). The

double integral in (12) may be evaluated numerically by replacing the inte-

gration domain −L/2 < x1 < L/2, −∞ < x2 < ∞,with −L/2 < x1 < L/2,

−H < x2 < H, where H is a sufficiently large positive real number, and by

partitioning the truncated region of integration into many small rectangular

cells.

3.3 Results

The non-dimensionalized effective property a(µ(1) + µ(2))K/(2µ(1)µ(2)) is a

function of only the micro-crack density ρ.

Table 1. A comparison of the numerical values of a(µ(1)+µ(2))K/(2µ(1)µ(2))

obtained by the strain energy approach and the averaging procedure.
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Micro-crack
density ρ

Strain energy
approach

Finite element
model in [5]

0.05 12.72 13.37
0.10 6.364 6.494
0.20 3.138 3.175
0.30 2.045 2.048
0.40 1.484 1.473
0.50 1.134 1.111
0.60 0.8877 0.8571
0.70 0.6969 0.6542
0.80 0.5356 0.4819
0.90 0.3815 0.3125
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Figure 2. Plots of a(µ(1) + µ(2))K/(2µ(1)µ(2)) against ρ.
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In Table 1, for selected values of ρ, the numerical values of a(µ(1) +

µ(2))K/(2µ(1)µ(2)) obtained by the strain energy approach are compared with

those calculated by a finite element method in [5]. The finite element pro-

cedure in [5], which is based on a three phase model of the micro-cracked

interface, is computationally intensive, requiring as many as ten thousand

elements. The two sets of numerical values in Table 1 are quite close to each

other. They agree to at least two significant figures for ρ that is less than

0.60. For ρ closer to 1, the difference between the two sets of numerical values

is more pronounced probably because of a larger error in the finite element

calculation.

Plots of a(µ(1) + µ(2))K/(2µ(1)µ(2)) against ρ, obtained using the strain

energy approach and the averaging procedure in Wang et al [6]-[7], are com-

pared in Figure 2. The two plots are almost indistinguishable, showing

excellent agreement. The percentage difference in the numerical values of

a(µ(1) + µ(2))K/(2µ(1)µ(2)) in the two plots is less than 1%.

Figure 2 shows that a(µ(1) + µ(2))K/(2µ(1)µ(2)) tends to infinity as the

micro-crack density ρ approaches zero. Thus, the effective property K tends

to infinity, that is, the interface becomes perfect with zero interfacial dis-

placement jump, as a approaches zero (for a fixed L) or as L approaches

infinity (for a fixed a), as expected.

The comparisons in Table 1 and Figure 2 validate both the strain en-

ergy approach here and the averaging procedure for computing the effective

property K.

The averaging procedure in [6]-[7] is much less computationally intensive

than the strain energy approach here. However, it cannot be extended to

estimate the effective property of the microscopically wavy interface.
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4 A microscopically curved interface

4.1 Microscopic and macroscopic models

At the microscopic level, the microscopically curved interface is modeled as

having a sinusoidal profile given by x2 = A0 sin(2πx1/h), −∞ < x1 < ∞,
where A0 and h are positive constants. The shear modulus of the material in

the region x2 > A0 sin(2πx1/h), −∞ < x1 <∞, is given by µ(1),and that in

the region x2 < A0 sin(2πx1/h), −∞ < x1 <∞, by µ(2). The two half-space

regions are perfectly bonded. Since the traction σ3knk, where nk is the xk

component of a unit normal vector to the surface x2 = A0 sin(2πx1/h), is

continuous across the sinusoidal interface, a jump in the stress component

σ32 exists across the interface. Hence, at the macroscopic level, the sinusoidal

interface may be modeled as a plane (flat) membrane-like interface satisfying

the interfacial conditions in (4) with a jump in σ32. A sketch of the wavy and

the membrane-like interfaces is given in Figure 3.

Given the shear moduli µ(1) and µ(2) and the parameters A0 and h which

characterize the micro-model of the interface, we are interested in estimating

the effective property µs of the microscopically wavy interface.
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Figure 3. The wavy and the membrane-like interfaces.
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4.2 Estimation of effective property

To estimate the effective property µs of the sinusoidal interface, the antiplane

strains in the bimaterial are taken to be given by

ε3k(x1, x2) = Γ0δk1 + ε
(in)
3k (x1, x2), (17)

where the strains ε
(in)
3k (x1, x2) are such that ε

(in)
3k (x1, x2) = 0 if A0 = 0 and Γ0

is a given constant.

Consider a representative strip of the bimaterial with the sinusoidal in-

terface over a period interval. The strip occupies the region 0 < x1 < h,

−∞ < x2 < ∞. Denote the upper half of the strip x2 > A0 sin(2πx1/h),

0 < x1 < h, by R(1), the lower half x2 < A0 sin(2πx1/h), 0 < x1 < h, by R(2),

and the interface x2 = A0 sin(2πx1/h), 0 < x1 < h, by C.

Let w(r) be the displacement field which gives rise to the strains ε
(in)
3k (x1, x2)

in R(r), that is,

ε
(in)
3k (x1, x2) =

1

2

∂w(r)

∂xk
for (x1, x2) ∈ R(r) (r = 1, 2). (18)

The displacement w(r) satisfies the two-dimensional Laplace’s equation in

R(r) and is such that the strains ε
(r)
3k vanish as |x2| tends to infinity, and

∂w(1)

∂x1

∣∣∣∣
x1=0

= 0 and
∂w(1)

∂x1

∣∣∣∣
x1=h

= 0 for 0 < x2 <∞,

∂w(2)

∂x1

∣∣∣∣
x1=0

= 0 and
∂w(2)

∂x1

∣∣∣∣
x1=h

= 0 for −∞ < x2 < 0. (19)

From (17) and (19), the loads on the edges of the representative strip are

given by

σ31(0, x2) = 2µ(1)Γ0 and σ31(h, x2) = 2µ(1)Γ0 for 0 < x2 <∞,
σ31(0, x2) = 2µ(2)Γ0 and σ31(h, x2) = 2µ(2)Γ0 for −∞ < x2 < 0. (20)

The continuity conditions for the perfectly bonded sinusoidal interface

give

w(1) = w(2) and µ(1)p(1)−µ(2)p(2) = 2Γ0n1(µ
(2)−µ(1)) for (x1, x2) ∈ C, (21)
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where p(r) = nk ∂w
(r)/∂xk and nk(x1, x2) is the xk component of the unit

normal vector at the point (x1, x2) on the interface C, pointing away from

the region R(1).

We derive the boundary integral equations

λ(1)(ξ1, ξ2)w
(1)(ξ1, ξ2) =

∫

C

(w(1)(x1, x2)Λ
(1)(x1, x2; ξ1, ξ2)

− p(1)(x1, x2)Φ(1)(x1, x2; ξ1, ξ2))ds(x1, x2)

for (x1, x2) ∈ R(1) ∪ C, (22)

and

λ(2)(ξ1, ξ2)w
(2)(ξ1, ξ2) =

∫

C

(−w(2)(x1, x2)Λ
(2)(x1, x2; ξ1, ξ2)

+ p(2)(x1, x2)Φ
(2)(x1, x2; ξ1, ξ2))ds(x1, x2)

for (x1, x2) ∈ R(2) ∪ C, (23)

where λ(r)(ξ1, ξ2) has the value 1/2 if (ξ1, ξ2) lies on a smooth part of C,

and the value 1 if (ξ1, ξ2) lies in the interior of the region R(r), p(r)(x1, x2) =

nk(x1, x2)∂w
(r)/∂xk, Λ(r) = nk(x1, x2)∂Φ(r)/∂xk and Φ(r) is defined by

Φ(r)(x1, x2; ξ1, ξ2)

=
1

4π
ln((f (r)(x1, x2)− f (r)(ξ1, ξ2))

2 + (g(r)(x1, x2)− g(r)(ξ1, ξ2))2)

+
1

4π
ln((f (r)(x1, x2)− f (r)(ξ1, ξ2))

2 + (g(r)(x1, x2) + g(r)(ξ1, ξ2))
2),

(24)

with the conformal mapping functions f (r)(x1, x2) and g(r)(x1, x2) given by

f (1)(x1, x2) = exp(−πx2
h

) cos(
πx1
h

),

g(1)(x1, x2) = exp(−πx2
h

) sin(
πx1
h

),

f (2)(x1, x2) = exp(
πx2
h

) cos(
πx1
h

),

g(2)(x1, x2) = − exp(
πx2
h

) sin(
πx1
h

). (25)
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Note that Φ(1) and Φ(2) are special Green’s functions satisfying the con-

ditions ∂Φ(1)/∂x1 = 0 and ∂Φ(2)/∂x1 = 0 on the horizontal edges x1 = 0 and

x1 = h of the representative strip. With such special Green’s functions, the

boundary conditions in (19) are exactly satisfied by (22) and (23) and the

path of integration in the boundary integral equations in (22) and (23) is over

only the interface C between R(1) and R(2). No integration over the infinitely

long edges of the representative strip is required. Details on how the spe-

cial Green’s functions may be derived by conformal mappings and how the

boundary integral equations may be discretized together with the continuity

conditions in (21) to solve approximately for the unknown functions w(r) and

p(r) on C are given in Ang [11].

Once w(r) and p(r) are known on C, the displacement w(r) may be com-

puted at any interior point (ξ1, ξ2) in R(r) by using (22) and (23) with

λ(p)(ξ1, ξ2) = 1. The central difference formula for the first order deriva-

tive of a function may then be used to approximate the strains ε
(in)
31 and ε

(in)
32

at (ξ1, ξ2). More specifically, for (ξ1, ξ2) in the interior of R(r), we make the

approximations

2ε
(in)
31 (ξ1, ξ2) '

w(r)(ξ1 + δ, ξ2)− w(r)(ξ1 − δ, ξ2)
2δ

,

2ε
(in)
32 (ξ1, ξ2) '

w(r)(ξ1, ξ2 + δ)− w(r)(ξ1, ξ2 − δ)
2δ

, (26)

where δ is a given sufficiently small number.

The average values of both d2u/dx2 and the jump in the stress σ32 over

a period length of the interface C can be shown to be zero. Consequently,

the averaging procedure cannot be used to determine µs in (4) as it leads to

indeterminacy. Hence, the strain energy approach is used here to compute

µs.

From (17), the strain energy in the representative region 0 < x1 < h,

−∞ < x2 < ∞, 0 < x3 < B of the bimaterial with the microscopically
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sinusoidal interface C is given by

U (micro) = lim
H→∞

∫ B

0

∫ H

−H

∫ h

0

σ3kε3kdx1dx2dx3

= 2BΓ2
0h(µ(1) + µ(2)) lim

H→∞
H

+ 2B

∫ ∞

−∞

∫ h

0

µ(2Γ0ε
(in)
31 + ε

(in)
3k ε

(in)
3k )dx1dx2. (27)

The corresponding total strain energy in the bimaterial with the flat

membrane-like interface governed by (4) is given by

U (macro) = 2B lim
H→∞

∫ H

−H

∫ h

0

µΓ2
0dx1dx2 +

B

2

∫ h

0

Γ0(Σ31 + Σ13)dx1. (28)

Use of (8) in (28) gives

U (macro) = 2BΓ2
0h(µ(1) + µ(2)) lim

H→∞
H + 2B(µs −

1

2
σ0)Γ

2
0h. (29)

Taking U (micro) = U (macro), we obtain

µs −
1

2
σ0 =

1

h

∫ ∞

−∞

∫ h

0

µ(2
ε
(in)
31

Γ0

+
ε
(in)
3k ε

(in)
3k

Γ2
0

)dx1dx2. (30)

The double integral in (30) may be evaluated numerically by replacing

the integration domain 0 < x1 < h, −∞ < x2 < ∞, with 0 < x1 < h,

−H < x2 < H, where H is a sufficiently large positive real number, and by

partitioning the truncated region of integration into many small cells. The

strains ε
(in)
3k are computed using the approximations in (26).

4.3 Results

The non-dimensionalized effective property (2µs − σ0)/(h(µ(1) + µ(2))) is a

function of only A0/h and µ(1)/µ(2). Furthermore, it has the same value for

µ(1)/µ(2) = c and µ(1)/µ(2) = 1/c, where c is a positive constant. In examining

the effect of µ(1)/µ(2) on (2µs − σ0)/(h(µ(1) + µ(2))), one needs to consider

only the range given by either 0 ≤ µ(1)/µ(2) ≤ 1 or µ(1)/µ(2) ≥ 1.
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Figure 4. Plots of (2µs − σ0)/(h(µ(1) + µ(2))) against A0/h.
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Plots of (2µs− σ0)/(h(µ(1) +µ(2))) against A0/h are given in Figure 4 for

selected values of µ(1)/µ(2) greater than 1. For a given µ(1)/µ(2), it appears

that (2µs − σ0)/(h(µ(1) + µ(2))) increases monotonically with A0/h, in an

almost linear manner for large A0/h. Also, for A0/h = 0 as well as for

µ(1)/µ(2) = 1, non-dimensionalized effective property (2µs − σ0)/(h(µ(1) +

µ(2))) is found to be zero, that is, the interface is perfect. This is as expected,

as there is no jump in σ32 across the interface at the microscopic level if

A0/h = 0 or µ(1)/µ(2) = 1. Thus, the interface tends to a perfect one, as A0

approaches zero (for a fixed h) or as h becomes increasingly large (for a fixed

A0).
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Figure 5. Plots of (2µs − σ0)/(h(µ(1) + µ(2))) against log10(µ
(1)/µ(2)).
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From Figure 4, for a fixed A0/h, it appears that (2µs − σ0)/(h(µ(1) +

µ(2))) is an increasing function of µ(1)/µ(2) for µ(1)/µ(2) ≥ 1. To investigate

this further, plots of (2µs − σ0)/(h(µ(1) + µ(2))) against log10(µ
(1)/µ(2)) with

µ(1)/µ(2) ≥ 1 are given in Figure 5 for selected values of A0/h. From the plots,

it is observed that (2µs−σ0)/(h(µ(1) +µ(2))) increases slowly with increasing

µ(1)/µ(2). For a given value of A0/h, it appears that (2µs−σ0)/(h(µ(1)+µ(2)))

approaches a particular value as µ(1)/µ(2) tends to infinity. The case of an

elastic half space with a traction free microscopically wavy boundary may be

recovered by letting µ(1)/µ(2) tend to infinity for a fixed value of µ(1), that is,

by letting µ(2) tend to zero. At the macroscopic level, the traction free wavy

boundary is a flat membrane characterized by µs with a finite value.

5 Summary

An interface damaged by a periodic array of interfacial micro-cracks and one

that has a microscopically sinusoidal profile are modeled as a spring-like and

a membrane-like interface respectively at the macroscopic level.

The effective property of the spring-like interface may be computed by

using the averaging procedure in Wang et al [6]-[7]. Nevertheless, the av-

eraging approach cannot be extended to calculate the effective property of

the membrane-like interface, as it leads to indeterminacy. An energy ap-

proach which equates the strain energy in the microscopic model to that in

the macroscopic model is used here to estimate the effective property of the

spring-like interface as well as that of the membrane-like interface. The two

approaches show good agreement in the computation of the effective property

of the spring-like interface.

How the effective property of the microscopically wavy interface may

be affected by the wavy interface amplitude and the shear moduli of the

materials separated by the interface is investigated. The results obtained are

intuitively acceptable from a physical point of view.
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