
An Incremental Model for Developing
Educational Critiquing Systems: Experiences

with the Java Critiquer

LIN QIU
State University of New York - Oswego, USA

lqiu@oswego.edu

CHRISTOPHER RIESBECK
Northwestern University, USA
c-riesbeck@northwestern.edu

Individualized feedback is an important factor in fostering
learning. However, it is often not seen in schools because pro-
viding it places considerable additional workload on teachers.
One way to solve this problem is to employ critiquing systems.
These systems, however, require significant development effort
before they can be put into use. In this article, we describe an
incremental authoring model that facilitates the development of
educational critiquing systems by integrating manual critiquing
with critique authoring. As a result of the integration, the devel-
opment of critiquing systems becomes an evolutionary process.
The model explores a vision for developing educational cri-
tiquing systems with much less upfront development effort. We
describe a system that we built, the Java Critiquer, as an exem-
plar of our model. Evaluation results from performance testing
and real-life usage of the system have shown that the system
successfully provides a tool for accumulating critiques and at
the same time helping teachers critique student code.

Introduction
A significant amount of research has shown that learning is a process

where the learner actively constructs understanding rather than passively
receives knowledge (e.g., Bransford, Goldman, & Vye, 1991; Brown, 1988;
Chi, de Leeuw, Chiu, & LaVancher, 1994). Feedback has been recognized as
an important element in fostering this process (Bransford, Brown, & Cock-

Jl. of Interactive Learning Research (2008) 19(1), 119-145

mailto:lqiu@oswego.edu
mailto:riesbeck@northwestern.edu

ing, 1999). Collins, Brown, and Newman (1989) proposed to have students
learn in an apprenticeship setting where students constantly receive individ-
ualized feedback on their work. Such feedback includes alerts to problemat-
ic situations, relevant information to the task, directions for improvement,
and prompts for reflection. It helps students perform their learning tasks and
make sure they reach expected learning goals.

The apprenticeship teaching approach is rarely seen in traditional school
settings. This is because reviewing student work and personalizing feedback
is labor-intensive and time consuming. Repeatedly addressing the same mis-
takes can also be tedious. With a large number of students in class, teachers
cannot afford the amount of time and effort required in providing one-to-one
attention to each student.

One way to avoid the problem is to use critiquing systems to provide
feedback. Critiquing systems are a type of software that analyzes the work
of its users and provides suggestions for improvement. They can report
design flaws, point out incompleteness, suggest alternatives, or offer heuris-
tic advice. Critiquing systems have been developed in domains such as med-
ical therapy planning and computer aided design. Extending this line of
work into educational settings makes it possible to dramatically improve
individualized feedback and attention in school.

While critiquing systems have been proved effective in providing feed-
back, authoring remains a big problem. Many critiquing systems assume the
critiquing knowledge in the systems are fully implemented before the sys-
tems are put into use. This involves significant upfront development effort
and difficulty. It makes it hard for critiquing systems to be easily developed
and widely used by teachers.

To address the above problems, this article describes an incremental model
for authoring educational critiquing systems. It integrates manual critiquing
with critique authoring so that the upfront development effort can be amor-
tized over use time. The model was applied in developing a critiquing system
in the computer programming domain called the Java Critiquer. In the follow-
ing, we start by an introduction of critiquing systems, followed by a discus-
sion of challenges in the development of critiquing systems. Then, we describe
the incremental authoring model and explain how the model addresses the
challenges. Next, we describe the interface of the Java Critiquer and its sys-
tem architecture to illustrate how the model can be implemented. We present
some preliminary evaluation results of the system from performance testing
and real-life usage. At the end, we discuss related work in the area of software
development methodologies and educational critiquing systems.

The Critiquing Approach
Critiquing systems were first developed in medical domains. They help

physicians evaluate their treatment plans by providing information regard-

120 Qiu and Riesbeck

ing potential problems and improvements. A critiquing system takes a prob-
lem and a proposed solution as inputs, and produces critiques of the pro-
posed solution. This approach is different from the approach used in tradi-
tional expert systems where the system takes a description of a problem and
generates a solution. The difference is important because medical problems
can have multiple solutions. Physicians have subjective preferences and do
not like to follow the solutions given by the system (Teach & Shortliffe,
1981). The traditional expert system approach gives user the impression that
the system “tells” the user the right thing to do, whereas the critiquing
approach provides non-confrontational support by assuming the user is
capable to make design decisions. It lets the user determine whether the
advice given is applicable. In addition to the medical domains, critiquing
systems have been developed in other domains such as software engineer-
ing, desktop publishing, and kitchen design (Robbins, 1998).

Comparative critiquing and analytic critiquing are two common approach-
es used in critiquing (Robbins, 1998). Comparative critiquing compares
users’ work with presumably better solutions in the system and points out the
differences. The comparison can focus on the differences in the results pro-
duced by two solutions or the differences in the solutions themselves. For
example, CodeLab (Turingscraft, 2005) is a system that compares the output
of users’ programming code to the standard output in the system and provides
feedback on errors in the code. In contrast, ONCOCIN (Langlotz & Short-
liffe, 1983) is a system that compares a doctor’s plans for treatment of cancer
patients with the plan generated by the system. Its critiques explains the sys-
tem’s solution in each difference. Similarly, TraumaTIQ (Gertner, 1995) is
system that critiques plans for treatment of medical trauma cases. It analyses
the doctor’s plan to infer its goals and generates a plan for the same goal. It
then compares the generated plan with the doctor’s plan and uses concise nat-
ural language critiques to indicate critical differences.

ONCOCIN and TraumaTIQ use system generated solutions for compari-
son. Other systems have used predefined solutions for comparison. For
example, Archie (Pearce, Goel, Kolodner, Zimring, Sentosa, & Billington,
1992) is a system that helps architects evaluate building designs. It uses
case-based critiquing which retrieves lessons of past relevant cases and uses
them as critiques to point out potential problems in the current design.

Different from comparative critiquing, analytic critiquing uses rules to gen-
erate critiques. When certain features in user’ work trigger critiquing rules, cri-
tiques associated with the rules are generated. For example, JANUS (Fischer &
McCall, 1989) is a critiquing system embedded in a kitchen design environ-
ment. It has rules about building codes, safety standards, and functional prefer-
ences. When users’ design violates a constraint or design principle defined in a
rule, the system displays a critique explaining the problem. eMMaC (Nakako-
ji, Reeves, Aoki, Suzuki, & Mizushima, 1995) is another system that uses rules

An Incremental Model for Developing Educational Critiquing Systems 121

122 Qiu and Riesbeck

about color perception and color theory to critique problems in users’ multime-
dia authoring regarding the use of color combinations and balance.

Analytic critiquing does not need complex domain knowledge to generate
a solution. This allows it to be applied in domains where knowledge is not
completely available or hard to implement. Compared to analytical critiquing,
comparative critiquing using system generated solutions is only feasible in
well-understood domains. It requires extensive domain knowledge and estab-
lished problem-solving strategies including reasoning, planning, and goal rep-
resentations to generate solutions. Comparative critiquing using predefined
solutions can only handle problems for which solutions are already available.
It requires experts to supply exemplary solutions for all of its problems.

While analytical critiquing is applicable in a broad range of domains, it
is not easy to author. Experts need to write rules for all the problems in all
situations. In contrast, comparative critiquing allows authors to write down
problems and answers and the system takes care of comparison and feed-
back generation. The authoring is relatively intuitive and straightforward for
experts than generating rules.

The analytical critiquing approach is chosen for our critiquing system
described below despite its authoring disadvantages. This is because our cri-
tiquing system is in the computer programming domain. Complete knowl-
edge for automatic generation of solutions is not available. Although case-
based critiquing can be used to provide predefined cases as critiques, help-
ing authors create indexing rules and similarity metrics for case retrieval
however remains a problem. Using analytical critiquing allows us to start
with relatively low-effort rule authoring and we believe it and can overcome
the disadvantages well enough to be practical and useful in the short term.

There are two critiquing strategies used in critiquing systems, active and
passive (Fischer, Nakakoji, Ostwald, Stahl, & Sumner, 1993). Active cri-
tiquing continuously monitors user activities and notifies the user as soon as
a critique is generated. Passive critiquing requires the user to explicitly
invoke the critiquing process. Critiquing does not occur until the user choos-
es to. Passive critiquing is than active critiquing less intrusive because it lets
the user to control when to critique. It is, however, often found to be not acti-
vated early enough to prevent users from continuing with potential problems.

Our critiquing system is for educational purposes. It uses passive cri-
tiquing because there is no need to prevent students from making mistakes.
In fact, effective learning occurs when students make mistakes and correct
them by themselves (Schank, Fano, Bell, & Jona, 1993). Students learn and
realize the utility of knowledge through such a process. Passive critiquing
provides such an opportunity for learning and allows students to concentrate
on their programming tasks without intrusion.

In the following, we discuss the difficulties in the development of cri-
tiquing systems.

Development Difficulties
Many critiquing systems developed so far are built using a model that we

call the upfront development model (see Figure 1). In such a model, devel-
opers work with domain experts to find out all the common problems in the
domain and implement all the critiques addressing these problems at design
stages. Authoring tools help developers or experts enter critiquing knowl-
edge into the systems. Then, the systems are put into use. They are expect-
ed to provide fully automatic critiquing and handle all situations by them-
selves. They are built as static in the sense that the knowledge and critiques
in the systems are not expected to change after deployment. There are a
number of challenges in using this upfront development model.

First, to build fully autonomous systems that perform accurate and com-
prehensive critiquing, developers have to make sure the systems have com-
plete coverage of all possible mistakes and their corresponding critiques.
This requires significant upfront design, implementation, and piloting of the
systems before they can be put into use. Such requirement inevitably
increases the complexity and difficulty of development.

Second, it is difficult for experts to anticipate all the mistakes that stu-
dents commonly make. Experts might be able to identify mistakes in student
work, but it is much harder for them to recall or predict all the mistakes. Sig-
nificant expertise in the problem domain as well as experience working with
students are required to know all the mistakes and appropriate critiques for
them. Furthermore, totally depending on experts to anticipate all possible
mistakes may cause unnecessary effort to be spend on cases that rarely hap-
pen or commonly occurring critical cases fail to be collected.

An Incremental Model for Developing Educational Critiquing Systems 123

Figure 1. The upfront development model of critiquing systems

Third, there is a disadvantage of using computers to provide critiquing. It
was reported by Reeves and Nass (1996) that computer programs can easi-
ly lose credibility if inappropriate feedback is noticed by users. When users
have low trust of the computer program, they pay little attention to even the
critiques that are appropriate. Thus, it is extremely important to produce
feedback with high accuracy. This significantly increases the difficulty of
building systems with coaching capability. For example, intelligent tutoring
systems, which provide learners individualized coaching, are estimated to
require two hundred hours of development for one hour of instruction
(Woolf & Cunningham, 1987).

Fourth, in order to support purely computer-based critiquing, the vocab-
ulary of operations and situations in the system has to be specified in
advance so that rules can be written. Once deployed, there is no easy way to
adjust existing content or incorporate new knowledge into the system. This
makes it difficult for critiquing systems to be adapted by teachers for use in
different contexts. Teachers need to be able to change the scope or focus of
the critiquing based on student performance or learning goals.

Finally, in the upfront development model, the benefit of using the sys-
tem can only be obtained at a much later stage after the system is put into
use. The risk of investing considerable effort with benefits remaining uncer-
tain make instructors hesitant to put in their time and effort. This hinders the
development and use of critiquing systems in a large scale.

To avoid the above difficulties, we developed an incremental authoring
model that includes a teacher in the feedback loop to complement automatic cri-
tiquing and perform critique authoring. We describe this model in the following.

Incremental Authoring Model
In our observations, critiquing develops through several stages in real-

world educational settings. First, a teacher sees a mistake in a student’s solu-
tion and writes a specific critique. After repeatedly critiquing the same mis-
take in different forms and contexts, the teacher improves his or her under-
standing of the nature of the mistake and learns how to generate a better
response to the mistake. Gradually, the teacher forms a general pattern for
quickly recognizing the mistake in different forms. With practice, the
teacher optimizes the pattern and becomes able to quickly recognize and cri-
tique the mistake using the pattern. Finally, a critique becomes reliable
enough so that the teacher shares it with other teachers, or gives it to students
for self-assessment. Figure 2 shows the above lifecycle of critiquing devel-
opment. Not all stages occur for all critiques, and different critiques will be
at different points in the lifecycle at any given time.

To support this critiquing development process, we developed a model
that allows a teacher to incrementally author critiques in a critiquing system
during on-going use (see Figure 3). In our model, the system starts with an

124 Qiu and Riesbeck

environment for critiquing but no critiques in it. When the teacher finds a
mistake in students’ work, the teacher critiques the mistake and can save the
critique into the system for future reuse. For example, if the teacher sees the
problematic Java code “if (found == true) return length;” the teacher can
write “the form ‘if (found == true) return length;’ misses the power of
boolean values. Just write ‘if (found) return length;’” and save a critique for
future use. By making it easy for the teacher to save during critiquing, the
system gradually collects a database of critiques. Later, when the teacher sees
a similar mistake, the teacher can retrieve a previously saved critique, modi-
fy it if necessary, and apply it to the new mistake. For example, if the teacher
later sees “if (isBook == true) count++” the teacher can retrieve the critique
that we mentioned above, generalize it to “a form such as ‘test == true’ miss-
es the power of boolean values. Just use ‘test’,” and apply it to the new mis-
take. By allowing the teacher to use and refine existing critiques in the sys-
tem, the system gradually improves the quality of its critiques. When a mis-
take appears frequently, the teacher can create a pattern for the system to
automatically critique the mistake using pattern matching. For example, the
teacher can create a pattern “== true” for the mistake “test == true” shown
above. Using patterns, the teacher adds automatic critiquing to the system.
The teacher can review critiques automatically applied by the system by
modifying or removing inappropriate ones, and manually inserting addition-
al ones for mistakes not recognized by the system. More importantly, the
teacher can correct the patterns that result in false or missing matches. For
example, when the teacher finds the pattern “== true” doesn’t match the code
“y==true” because there’s no space after the ‘==,’ the teacher can change the
pattern to “==\s*true” to match any code with zero or more spaces after “==.”
By allowing teachers to test and correct patterns in the system, the system
improves the accuracy of its automatic critiquing. When critiques and pat-
terns are considered accurate after being tested on a fair amount of student
work, the teacher can make them public by either publishing them as guide-

An Incremental Model for Developing Educational Critiquing Systems 125

Stage Activity

Realize Identify a specific instance of a mistake and critique it.

Familiarize Critique the same mistake in different forms and contexts repeatedly

Generalize Gradually realize the nature of the mistake and generate a general and pedagogically
sound critique or a set of related critiques.

Optimize Learn patterns for recognizing the mistake in various forms and contexts and critiquing it
promptly.

Publicize Distribute the pattern and critique to students for self-assessment or share them with public.

Figure 2. The critiquing development process

lines for common problems, or delivering them in a system where students
can use for self critiquing. Figure 4 shows the steps in the critiquing system
development model corresponding to the steps in human critiquing develop-

126 Qiu and Riesbeck

Figure 3. The incremental development model of critiquing systems

Figure 4. The incremental development model of critiquing systems
supporting the natural critiquing development process

ment.
In our model, the development of a critiquing system becomes an incre-

mental process in which situations for critiquing and corresponding critiques
are realized, implemented into the system, assessed through practical use,
and refined based on experience. The key point is that authoring is integrat-
ed with usage, so that usage guides improvement in the accuracy and scope
of automatic critiquing. The critiquing system plays two roles simultane-
ously. On one hand, it helps the teacher critique student work. One the other
hand, it serves as a vehicle for collecting critiques. The instructor in this
model also plays two roles. The instructor is a user who employs the cri-
tiquing system to help critiquing. The instructor is also a developer who
improves the system according to real needs.

The incremental development model avoids the upfront development
effort of critiquing systems by amortizing it into use time. Authoring is done
in the context of using the system to critique student work. There is no need
to implement all possible critiquing situations up-front. Issues not anticipat-
ed at design stages can be explored during real use. The system is kept from
totally depending on predefined knowledge. Furthermore, because a teacher
is in the feedback loop to ensure the quality of critiquing, the system can be
put into use at a much earlier stage. Instead of being built as intelligent at
design time, the system migrates into an intelligent system through real use.

The incremental authoring model presents a motivated development
approach that is driven by real needs.

• The teacher adds a critique into the system to save the effort of typing
a common critique over and over again.

• The teacher creates patterns for critiques to reduce the need to find and
apply very common critiques.

• The teacher refines patterns on critiques that frequently false match and
have to be deleted.

During the critiquing process, therefore, the teacher is motivated to grad-
ually improve the intelligence in the system in order to reduce workload.
Furthermore, the teacher only needs to work on those parts of the system that
are working poorly. There is no wasted effort building or fixing critiques or
patterns that are little used or functioning adequately. Finally, critiques and
patterns are authored with concrete examples available to guide the teacher.

In the following, we describe the Java Critiquer, a system in the comput-
er programming domain that we built and have been using, as an exemplar
of our model.

The Java Critiquer
Novice programmers often consider the only important thing about a pro-

gram is having the program run and generate the right results. They ignore

An Incremental Model for Developing Educational Critiquing Systems 127

the importance of writing clean, maintainable and efficient code. This mis-
conception often leads to inefficient and unreadable code as well as bad
habits in software development. One cause of this misconception is that
many programming exercises simply require programmers write working
code but do not emphasize readability and maintainability. In addition, even
when good programming principles are demonstrated, students do not nec-
essarily know when and how to apply them.

One way to solve the above problems is to critique student code and ask
students to correct their code according to the critiques. This way, students
learn the use of good principles in the context of writing their own code. A
similar practice of code critiquing has been seen in a process called code
review where code is first generated and then examined by programmers or
tools using a set of coding standards or requirements to ensure the quality of
the code (Freedman & Weinberg, 1982). A critiquing system called the Java
Critiquer was developed to help teachers detect and critique bad program-
ming choices often seen in introductory programming courses. It teaches
students how to write code that is cognitively efficient (i.e., more readable
and concise) and machine efficient (i.e., smaller and faster) (Fischer, 1987).
For example, Figure 5 shows some critiques generated by the Java Critiquer
on student code.

Interface Overview
The Java Critiquer has a web-based user interface (see Figure 6). It has

two panels, the Critiquer panel on the left and the Critique Selector panel on
the right. To start critiquing, a teacher pastes student Java source code into

128 Qiu and Riesbeck

Java code Critique

if ((x > 10) == true) The form if ((x > 10) == true)… misses the power of Boolean values.
return length; Just write if (x > 10)...

if (x > 0) { You never need to write an if to return true in one case and false in the other.
return true; Just write return x >0; instead.

}else{
return false;

}

x = x + 1; Best practice: Instead of var = var + 1; use ++var;

return (x + y); Those parentheses are not necessary. Just write return x + y;

public int x; No public member variables! That's a cardinal rule of Java coding. Use public
member functions instead.

private float x; Use double, not float. Double represents numbers more accurately, and is the
default floating point type in Java. Floats are used only rarely.

Figure 5. A piece of problematic Java code with a corresponding critique

the large text box in the Critiquer panel. The system performs automatic cri-
tiquing using pattern matching (details will be discussed later) and inserts
critiques associated with matched patterns right below the problematic code.
The teacher then verifies the generated critiques to ensure the quality of
automatic critiquing. The teacher can click on a critique and edit the critique
text, or remove it entirely. Since common mistakes appear frequently in
novice’s code, handling these mistakes by automatic critiquing can signifi-
cantly reduce the teacher’s workload. It also helps the teacher reduce the
chance of missing mistakes. When automatically generated critiques require
editing, it is still easier than reading the code to search for the mistakes and
writing the critiques from scratch.

After reviewing the automatically generated critiques, the teacher per-
forms manual critiquing. The teacher can select a line of code by clicking on
the line or use the search function provided in the Critiquer panel by enter-
ing a phrase. The teacher can insert a critique by typing in a new one or
selecting an existing one in the system. Searching and editing tools in the
Critique Selector panel help the teacher find, use, and edit existing critiques.
The teacher can select a critique by name from a list or type in a phase that
the critique contains in the find box. These inexpensive search and select
utilities help the teacher apply critiques that are hard to automate. For exam-
ple, the system would need natural language semantic analysis in order to

An Incremental Model for Developing Educational Critiquing Systems 129

Figure 6. The interface of the Java Critiquer

automate critiques such as “Use more descriptive variable names.” The sys-
tem would need data flow analysis in order to correctly apply critiques such
as “You repeat the same lookup over and over. Do it once and save in a vari-
able.” Having critiques that are difficult to automate applied manually helps
the system avoid functions with high complexity.

Newly created critiques can be added into the system for reuse. This
saves the effort of typing them again. It also helps to build a collection of
critiques that can be shared with other teachers or reviewed for common
mistakes. A critique can be incorporated into automatic critiquing by creat-
ing a pattern for it. Currently, two types of patterns are supported, general
regular expressions, and JavaML (Badros, 2000) patterns.

Regular expression patterns are applied directly to the Java source, and
useful for short text segments. They provide a powerful way of writing pat-
terns, and such patterns can be applied even to fragments of code. But reg-
ular expressions can quickly get quite complex. For example, in C++ and
Java if a student writes “x = x + 1;” one common critique is “Instead of x =
x + 1 just write ++x.” The regular expression pattern for matching code in
the form of var = var + 1; is “(\w+)\s*=\s*\1\s*\+\s*1\s*;” This is not very
teacher-friendly.

It is common to discover a regular expression pattern either fails to match
in places where it should, or matches many places where it should not. To sup-
port the incremental authoring of patterns based on experience, a built-in pat-
tern editor lets the teacher attach to each pattern examples of code that the pat-
tern should and should not match (see Figure 7). Both positive and negative
test cases are helpful for debugging patterns, recording particularly tricky
cases, and pointing out cases that cannot be handled. The system automatical-
ly matches the pattern against the test cases and highlights each test case with
either red or green to indicate whether the test result complies with expecta-
tion. This approach of using test cases to work out the right pattern resembles
the machine learning approach that utilizes positive and negative cases to con-
verge a pattern over time. The integration of test cases supports the optimiza-
tion patterns. It also helps to publicize the critique database by documenting
through examples the intent of both the pattern and the associated critique.

Unfortunately, there’s another problem with regular expressions. Regular
expressions are unable to match arbitrary nested constructs such as paren-
thesized arithmetic expression. For example, if a student writes “return (x +
1);” a possible critique is “Those parentheses are unnecessary. Just write
return x + 1;” However with normal regular expressions, you can’t write a
pattern that matches “return (anything);” where anything is supposed to
match any expression, including code with parentheses.

The Java Critiquer uses JavaML patterns to overcome this problem.
JavaML patterns are applied to the output of an internal Java parser, and use-
ful for matching larger Java structures. (Details about JavaML patterns will

130 Qiu and Riesbeck

be described later). A prototype of the JavaML pattern editor allows the
teacher to create patterns by writing Java source code with variables embed-
ded. For example, the teacher can write $x = $x + 1 and indicate that $x is a
pattern variable. The system automatically generates the JavaML pattern for
matching code such as a = a + 1. Compared to regular expression, the
authoring of JavaML patterns is can be more direct and simpler.

When certain pattern-based critiques become reliable enough, the teacher
can make them accessible through a web interface to students for self-
assessment. A student interface (see Figure 8) lets students themselves run
the automatic critiquing on their code, reducing turn-around time and
teacher effort even more.

The Java Critiquer uses the web-based client-server architecture. It pro-
vides a web interface for teachers to use the system. Once the teacher pastes
student Java source code into the web interface, the system starts two rule-
based matching processes. One process converts the source code into
JavaML and matches it against JavaML patterns using the pattern matcher.
The other process matches regular expression patterns against the Java
source code using a regular expression pattern matcher. Critiques with pat-
terns matched in either process are inserted into the source code. Figure 9

An Incremental Model for Developing Educational Critiquing Systems 131

Figure 7. The interface of the Pattern Editor

shows the software components in the Java Critiquer.

SYSTEM ARCHITECTURE

The Java Critiquer’s architecture can be customized for supporting cri-
tiquing in other domains. A Lisp parser has been plugged into the system for
using Lisp patterns to critique Lisp code. Results of its use are discussed in
the evaluation section.

Critiquing Rules
Critiquing rules in the Java Critiquer are written in a specific type of XML

format called LMX (Language for Mapping XML) (Maruyama, Tamura, &
Uramoto, 1999). The left-hand side of a rule is a LMX pattern. In the Java
Critiquer, the pattern is a JavaML pattern for matching JavaML code gener-
ated from the Java parser. The right-hand side of a rule is a critique.

132 Qiu and Riesbeck

Figure 8. The student interface of the Java Critiquer

Figure 10 shows an example of a critiquing rule. Symbols starting with a
$ sign in the pattern are variables to match parts of the JavaML, such single
JavaML elements or attribute values of JavaML elements. For example, in
Figure 10, $srcBegin; and $srcEnd; are variables to match attributes in
JavaML referring to the beginning and ending character position of the test
condition in an if statement. Variables and their matched value are saved in
a table during the match. After the match, variables in the critique are
replaced with their matched values. The use of variables allows a critique to
quote student code in its text. For example, Figure 11 shows the critique gen-
erated by the rule shown in Figure 10. It includes a part of the user’s code,
“length > 10,” in its text. This way, a general critique is customized to one
that is specific to a student’s code.

Pattern Matcher
In the Java Critiquer, the pattern matcher matches JavaML patterns

against the JavaML tree generated from the Java parser. It starts from the
root of the tree and traverses the tree matching every pattern against every
node in the tree. When a pattern is matched, its corresponding critique is
inserted into the Java source code.

The pattern matcher is a general matcher that can take any XML source

An Incremental Model for Developing Educational Critiquing Systems 133

Figure 9. The system architecture of the Java Critiquer

as input. It has been used experimentally in the math domain to critique stu-
dents’ mathematical proofs written in MathML. A proof of concept critiquer
for UML models was also developed using the same matcher. The domain
independent feature of the matcher makes it reusable in other domains.

Specialized Java functions can be called in the matcher to check for con-
ditions including logical connectives (“and”, “or” and “not”) and ones that

134 Qiu and Riesbeck

<lmx:pattern>

<lmx:lhs>

<if srcEnd="$srcEnd1;">

<test srcBegin="$srcBegin;" srcEnd="$srcEnd;">

<lmx:extension class="lmx.extension.SegmentMatch"/>

</test>

<true-case>

<return><literal-boolean value="true"/></return>

</true-case>

<false-case>

<return><literal-boolean value="false"/></return>

</false-case>

</if>

</lmx:lhs>

<lmx:rhs>

<critique pos="$srcEnd1;">

<text>

There is more code than you need to write. You already have a boolean value. Just write <code>return
<srcCode srcBegin="$srcBegin;" srcEnd="$srcEnd;"/>; </code>instead. You never need to write an IF
to return true in one case and false in the other.

</text>

</critique>

</lmx:rhs>

</lmx:pattern>

Figure 10. A critiquing rule

Java code Critique

If (length > 10) There is more code than you need to write. You already have a boolean value.
return true Just write return length > 10; instead. You never need to write an if statement;

else to return true in one case and false in the other.
return false;

Figure 11. A piece of problematic Java code with a corresponding critique

are difficult to express in XML. For instance, a Java function is built to detect
if the first character of a string is in lower case. It is used in a pattern to detect
class or interface names starting with a lower-case character, which violates
standard Java naming conventions. These Java functions are loaded during
runtime using the Java reflection API when the pattern matcher detects
“extension” tags. These extension functions are saved in individual Java files
rather than hard-coded into the matcher. This extension mechanism is similar
to the software plug-in architecture where components can be added without
changing the host program. It allows rule writers to create their own Java
functions and use them in their rules without changing the matcher.

Evaluation
Two evaluation studies were conducted with the Java Critiquer. One was

on the performance of JavaML critiquing rules. The other was on the usabil-
ity for incremental authoring.

In the performance evaluation study, an experimental system was developed
to test the accuracy of automatic critiquing using 22 JavaML critiquing rules.
Twenty-eight Java programs were randomly selected from student homework
submission in two introductory Java courses as test cases. Three-hundred fifty-
seven critiques were generated on the programs. Our domain expert, a computer
science professor, rated each critique with good or inappropriate. Inappropriate
indicates that a critique is either wrong or not worth saying in the given context.

Among the generated critiques, 68% were rated good and 32% were rated
inappropriate (see Figure 12).
By analyzing each critiquing
rule’s accuracy, only three rules
were found to have fault rates
over 23%. One was a rule that
critiques functions that contains
more than one thousand charac-
ters for being too long. This cri-
tique was not appropriate in
some situations such as when a
function was used to construct a
graphic user interface. The rea-
son for this problem was that
the system could not understand
the context or purpose of the
function. The other two prob-
lematic critiquing rules had
incorrect patterns. After remov-
ing these three problematic
rules from automatic critiquing,

An Incremental Model for Developing Educational Critiquing Systems 135

Figure 12. Ranking of 357 generated
critiques

Figure 13. Ranking of 205 generated cri-
tiques without three problem-
atic critiquing rules

the accuracy rate dramatically increased to 97% (see Figure 13). With the total
number of generated critiques decreased to 205, each program still received 7
good critiques in average. This performance is satisfactory in providing useful
feedback to students as well as saving effort for teachers.

The evaluation of usability for incremental authoring was done with two
teachers using the Java Critiquer together for university-level introductory pro-
gramming courses. The teachers used the Java Critiquer to critique Java code
as well as HTML and JSP code. A total of 436 critiques were collected during
the use. Of these, 232 critiques were for Java. Forty of them had regular expres-
sion patterns. Nineteen of them had JavaML patterns. Fifty-six critiques were
collected for HTML. Fourteen of them had regular expression patterns.

The Java Critiquer has been extended with a Lisp parser for critiquing
Lisp code. It has collected 148 Lisp critiques. Nine of them have Lisp pat-
terns. The reason for having such a small number of patterns is that most
Lisp critiques with patterns have been thoroughly tested and offered to stu-
dents in a student version of the critiquer for self-assessment. Students are
required to check their code with the critiquer and correct all mistakes before
submitting their code to the teacher. Therefore, there is no need to have those
critiques in the teacher version.

Figure 14 shows the distribution of the critiques in the current system.
The large number of critiques collected suggests that the Java Critiquer has
successfully supported teachers in incrementally authoring critiques.

The Java Critiquer has been used for one year and ten months. It was first
used by one teacher and then shared with another teacher. Among the total
of 232 Java critiques collected in the system, one teacher authored 98 and
the other authored 134. During the use of the system, the number of Java cri-
tiques reached a maximum around 200 and has remained relatively stable for

136 Qiu and Riesbeck

Figure 14. Critiques in the Java Critiquer

over a year with occasional new critiques to refine existing critiques. This
suggests that critiques converged when the system was used by authors with
similar views and skills for a fixed syllabus of topics.

When the critiques in the Java Critiquer became relatively stable, the sys-
tem was introduced to several teaching assistants (TAs). The TAs were given
limited access to the system in that they could add new critiques into the sys-
tem, but could not modify or delete existing ones. The TAs were given a
homework exercise before they started using the system to critique student
code. They were asked to critique several programs where they needed to
modify and delete critiques generated by automatic critiquing, as well as
manually apply existing critiques and add new critiques into the system.
This was to make the TAs familiar with the critiquing process and aware of
the need to verify and complement the results of automatic critiquing.

When the TAs used the Java Critiquer, they tended to write new critiques
duplicating existing ones in the system. Their new critiques were usually
overly specialized versions of existing generalized critiques. The cause of the
problem was that they did not believe the critique database was extensive
enough to cover most critiques. Therefore, they did not completely master the
critiques in the database beforehand. In addition, it was difficult for them to
understand a general critique without seeing how the critique was applied.

Future research is needed to find ways to facilitate the sharing and use of
existing critiques. Our experience with another critiquing system developed for
a commercially offered programming course suggests that allowing authors to
view examples of the use of a critique helps the understanding of a critique. The
system records every use of a critique with the critique so that authors can eas-
ily retrieve previous use cases of a critique. The feature greatly helped one of
our authors understand the critiques created by others. Another way to facilitate
the use of existing critiques is to improve the interface for finding critiques. The
current Java Critiquer allows the user to do a keyword search or select a name
from a list to find existing critiques. Additional features such as automatically
suggesting similar critiques on the side when the user types a new critique
could help the user choose an existing critique in the process of writing a new
one. This would save the author the effort of doing an explicit search. More
studies are needed to compare and evaluate different approaches.

RELATED WORK AND DISCUSSION

In the following, we discuss work related to the Java Critiquer in the area
of software development methodologies, educational critiquing systems,
intelligent tutoring systems, and systems for code review.

Incremental Development Methodologies
The Java Critiquer presents an incremental authoring model for develop-

An Incremental Model for Developing Educational Critiquing Systems 137

ing educational critiquing systems. The following discusses other incremen-
tal software development methodologies.

Seeding, evolutionary growth, reseeding
Seeding, evolutionary growth, reseeding (SER) is a model describing

three stages (seeding, evolutionary growth, and reseeding) in the evolution-
ary development of software systems (Fischer, 1998; Fischer & Ostwald,
2002). Seeding is the first stage where a system is created with initial knowl-
edge that enables the system to be used for practice. Evolutionary growth is
the stage where the system supports user work and collects information gen-
erated by use. Reseeding is the stage where information collected during evo-
lutionary growth is formalized and organized to support the next cycle of
development. The SER model has been used in the development of domain-
oriented design environments (Fischer, 1993), organizational memories
(Lindstaedt, 1996), course information environments (dePaula, Fischer, &
Ostwald, 2001), and open systems approaches (Fischer & Scharff, 2000;
Raymond & Young, 2001). While our model also uses an evolutionary
approach, it does not have a separate stage of reseeding. Critiquing rules col-
lected by the system are already reusable. Individual rules can be refined
independently at use time. There is no need for an explicit optimization stage.

Extreme Programming
Extreme programming (XP) (Beck, 1999; Fowler, 2001) is an agile soft-

ware development methodology (Boehm & Hansenm, 2001; Constantine,
2001). It reduces the upfront development effort in the traditional waterfall
model (Royce, 1970) by developing systems through a series of small full-
functional deliverables. Its development process is a continual integration of
new functions into deliverables to implement new use cases. Both XP and
our incremental authoring model try to avoid unnecessary planning and
designing effort. They share some common perspectives.

Systems in the XP model are developed to meet current requirements. No
effort is spent on features that are needed in the future. Our incremental
authoring model enables teachers to perform authoring during the critiquing
process. Authoring work such as adding a critique or creating a pattern is
done to improve the current performance of the system. It has immediate
effect on the system performance.

Small full-functional releases in XP are often developed for customers to
use them to provide feedback for improvement. Our incremental authoring
model provides a functional critiquing system for teachers to use. During the
usage, teachers identify situations where the system needs to be improved.
For example, when a critique is applied incorrectly, the pattern for the cri-
tique needs to be corrected. When the system does not have a critique for a
mistake, a new critique needs to be added into the system. These situations

138 Qiu and Riesbeck

are discovered through the use of the system.
XP often requires a customer continuously involved in the development

process to provide system requirements. Our incremental authoring model inte-
grates critique authoring into the critiquing process, so that by using the system
for critiquing the teacher naturally involves in the development process.

Educational Critiquing Systems
A number of rule-based critiquing systems have been developed to teach

programming. For example, the Lisp-Critic (Fischer, 1987) is a system for
teaching Lisp programming. It matches users’ code against a large set of cri-
tiquing rules. These rules look for mistakes in the code and suggest corre-
sponding improvements (e.g., safer list operations, more advanced func-
tions, etc.). Information such as which rules have been triggered and what
functions the user is using forms a user model. The user model determines
the set of rules used to check the code. There is also a visualization tool and
a browser of Lisp concepts for helping the user understand the critiques.
Rules in the Lisp-Critic are specified in Lisp which makes it difficult for
non-programmers to author. Its domain dependent feature further makes it
hard to be reused in other domains.

Different from the Lisp-Critic, the Java Critiquer can be customized to
support a wider range of domains. Its rules are in XML format with regular
expression or XML patterns. They can be written for critiquing sources other
than Java programs. Furthermore, the architecture of the Java Critiquer
allows it to use parsers in other domains to generate XML source and use the
XML pattern matcher. The Java Critiquer does not have a student model to
determine which critiquing rules to use. All rules are activated during cri-
tiquing. This avoids the complexity of a student model. It, however, requires
a teacher in feedback loop to verify the appropriateness of the generated cri-
tiques before they are sent to the students.

Hendrikx, Olivie and Loyaerts (2002) built a system to detect novice
Java programmer’s misconceptions. The system uses XSLT for pattern
matching. It lets users run a local client program to transfer files to the serv-
er making it possible for their system to detect misconceptions involving
code in different classes. The Java Critiquer asks users to cut and paste Java
code into a browser and therefore can only handle mistakes in a single class.
However, using its own pattern matcher, the Java Critiquer can use rules
with Java function calls embedded. This extends the range of rules that can
be written and handled by the system.

To the best of our knowledge, critiquing systems developed so far are
mostly closed systems. They assume a substantial set of critiques developed
at design time and do not provide interfaces for instructors to modify these
critiques. The Java Critique provides an interface for teachers to author cri-
tiques in the system during critiquing. It leverages human expertise to com-

An Incremental Model for Developing Educational Critiquing Systems 139

plement automatic critiquing so that the system can function without com-
plete critiquing knowledge. The knowledge acquisition process takes place
gradually during the use of the system.

The Java Critiquer implements the incremental critique authoring model
in the software programming domain. We believe that critiquing should be
applicable to those subject areas where the creation of text artifacts is a crit-
ical skill. That includes programming, writing, business planning, mathe-
matical analysis, and a host of other areas. We also believe that the incre-
mental critique authoring model can be used to help teachers collect and
author critiques in those areas. For example, one of the authors has devel-
oped and used two other critiquing systems, one for communication skills in
business writing for English as a Second Language (ESL), and one for goal-
based scenario (GBS) (Schank, Fano, Bell, & Jona 1993) learning environ-
ment design. Figure 15 shows two example critiques used in the critiquer for
learning environment design. They address problems in student’s answers to
the question “what mistakes do people make and why do they matter,” the
first question that students need to answer when they start designing a GBS
learning environment. Critiques like the ones shown in the figure were grad-
ually collected during the usage of the critiquer and generalized into a set of
pitfalls that were shared with students to help them avoid common problems
when they create initial designs for learning environments.

We have also implemented the incremental critique authoring model in a
learning environment authoring tool called INDIE (Qiu & Riesbeck, 2005).
INDIE creates learning environments where students need to solve problems
by conducting simulated experiments, collecting data, generating hypothe-
ses, and using the data to support or refute the hypotheses. INDIE provides

140 Qiu and Riesbeck

Answers to the question Critiques
“What mistakes do people make
and why do they matter?”

Saying yes to expenditures and signing bills without Close but "without thinking" is not a mistake,
thinking of the timing of when money from the nor, for that matter, is saying yes. A mistake is
budget will actually be used. something linked directly to a bad outcome, e.g.,

"they say yes to all requests, use up their budget
in one month, and have no money left for the rest
of the year." "Not thinking" is an explanation of
why they make this mistake, albeit a vague one.

New managers often struggle with understanding how This is vague. First, understanding is too broad a
to maintain the monthly budget for their department. term. Even an expert might be accused by anoth-

er of not really understanding something. Second,
maintaining a budget is also too broad.

Figure 15. Example critiques on students’ answers to the question “What
mistakes do people make and why do they matter?”

a critiquing interface where teachers can critique problems in student work
in the learning environment (e.g., running an unnecessary experiment or
generating an unsound conclusion from inadequate data), and save the cri-
tiques for future reuse. For example, Figure 16 shows three example cri-
tiques created by a teacher when using Corrosion Investigator, a learning
environment delivered by INDIE where students work as environmental
engineering consultants to help a paper processing company diagnose the
cause of its recurring pipe corrosion. These critiques address student’s data
interpretation and critical reasoning skills in diagnostic problem-solving. We
are experimenting with natural language processing techniques to help
teachers retrieve and reapply these critiques.

Intelligent Tutoring Systems
Intelligent tutoring systems (Wenger, 1987) employ detailed student

modeling to provide individualized feedback to students. They asked a stu-
dent to solve a specific problem, and analyze the student’s solution to update
and refine an internal model of the knowledge and misconceptions that the
student has. Tutoring rules use the student model to guide the selection of
feedback and future problems to pose.

The Lisp Tutor (Anderson, Conrad, & Corbett, 1989) is one of the earliest
systems developed to teach Lisp programming. Students using this tutor are
asked to solve programming exercises. These exercises are usually deter-
mined by the system’s understanding of the student’s competence level based
on the interactions with the student. While the student writes programs in the
system, the tutor closely monitors student’s moves. It uses about 500 pro-

An Incremental Model for Developing Educational Critiquing Systems 141

Student work critique

Test Result: [Water Chemistry check point 9]SO4: This is NOT evidence supporting chemical
83.08 mg/L corrosion as a cause.
Reason: High sulfate is still present, indicating SRB's
may be active.

Test Result: [Water Chemistry check point 3]pH: There are other possibilities for chemical corrosion
6.378 at neutral pH's - should acknowledge this.
Reason: Neutral pH, indicating process is probably
not a chemical one

Test Result: [Water Chemistry check point 9]H2S: Not well explained- is H2S derived from activity at
32.546 mg/L that location, or is it left over from water derived
Reason: Not as high as in recirculating pipes. from flushed recirculating water.
Corrosions may be a combination of bio and
chemical processes.

Figure 16. Example critiques in the Corrosion Investigator learning
environment

duction rules to generate the next correct moves that the student should make,
a technique called model tracing (Anderson et al., 1989). If the student makes
a move that differs from the predicted steps, the tutor provides feedback to
indicate problems in the code, suggestions for the right function, or pseudo
code for the next step. The tutor also uses a set of buggy rules to detect mis-
takes in student work. Using the tutor, the student receives step-by-step
instructions on how to write a program. Unnecessary time and effort can be
saved from debugging a simple syntax error or pondering on a wrong path.
The student always stays on the right track by following the advice from the
tutor. Over the years, various tutoring systems have been built to teach pro-
gramming (e.g., PROUST (Johnson, 1986), MENO-II (Soloway, Rubin,
Woolf, Johnson, & Bonar, 1983), and ELM-PE (Weber & Möllenberg, 1995).

Intelligent tutoring systems provide step-by-step support for completing a
program, but they usually need extensive knowledge about the domain content,
student modeling and pedagogical strategy (Wenger, 1987). In addition, stu-
dents can only work on a predefined set of exercises in the system. Critiquing
systems do not have these limitations. They can critique any code, which
enables them to be beneficial for both beginner and intermediate level pro-
grammers. Furthermore, our incremental model allows authoring to be done at
run-time. Systems can be developed with relatively small initial effort and be
put into use early to test their efficacy. Only when the initial design proves to
be effective, further authoring effort is invested. During the authoring process,
instructors can receive immediate benefits from their authoring effort.

Systems for Code Review
There are existing commercial systems that provide code review for pro-

grammers. For example, LINT (Johnson, 1978) is a tool that checks C code for
potential problems not caught by a compiler. It reports issues such as question-
able pointer assignments, unreachable code, and unused variables. It is
designed to be used on code after its successful compilation. Pattern-Lint (Sefi-
ka, Sane, & Campbell, 1996) is a similar tool but focuses on design-level prob-
lems. It checks code against its design specifications to make sure the code
faithfully implements architectural models and design principles such as design
patterns in its intended design. SoftBench CodeAdvisor (Hewlett-Packard
Company, 1998) is a tool that provides advanced code checking for C and C++.
It can detect a variety of actual and potential code problems that compilers can
not detect, for example, potential heap corruption, dangling pointers, ambigu-
ous initializations, and dependencies on system-specific compiler/linker behav-
ior. It allows users to add custom rules by writing C++ classes using provided
API (application programming interface). CodeWizard (Kolawa & Hicken,
1998) is a tool that concentrates on C++ coding standards and recommended
practices. It allows user to add or customize rules used in error checking using
a wizard. Checkstyle (URL: http://checkstyle.sourceforge.net) and PMD

142 Qiu and Riesbeck

http://checkstyle.sourceforge.net

(URL: http://pmd.sourceforge.net) are two open source tools that scan Java
source code and report violations of coding standards. The above systems focus
on providing feedback to software developers on memory management, bug
detection, deviation from standards, and design flaws. They are not intended for
educational purposes.

CONCLUSIONS

We have described a development model that allows teachers to incre-
mentally author a critiquing system during use. Just as “design for testing”
affects system design, so does “design for incremental authoring.” Systems
designed for incremental authoring do not use complex domain models to
generate feedback. Its architecture has to provide a place for a human in the
loop. That means that the system needs to be able to display inputs and sys-
tem responses to authors in a readable form. It needs to allow the human to
easily modify those responses as needed before returning them to the end
user. It also needs to allow the authors to modify the processes that generate
those responses. By providing an architecture and interface for in-task
authoring, systems in our model support early deployment and testing
through instructor involvement.

We described the Java Critiquer, a critiquing system that we built, as an
exemplar of our model. The Java Critiquer helps teachers detect and critique
bad programming choices in student Java code. It allows teachers to gradu-
ally enter and update critiquing knowledge during real use of the system.
Results from real-life usage have shown that the system successfully pro-
vides a setting for accumulating critiques and supports critique authoring.
We believe our model presents a practical and beneficial approach to devel-
oping critiquing systems for education.

References
Anderson, J. R., Conrad, F. G., & Corbett, A. T. (1989). Skill acquisition and the LISP tutor.

Cognitive Science, 13, 467-505.

Badros, G. (2000). JavaML: A markup language for Java source code. In Ninth International
World Wide Web Conference, May 2000.

Bransford, J. D., Brown, A. L., & Cocking, R.R. (Eds.) (1999). How people learn: Brain, mind,
experience, and school. Washington, DC: National Academy Press.

Bransford, J. D., Goldman, S. R., & Vye, N. J. (1991). Making a difference in people’s ability to
think: Reflections on a decade of work and some hopes for the future. In R. J. Sternberg and
L. Okagaki (Eds.), Influences on Children (pp. 147-180). Hillsdale, NJ: Erlbaum.

Brown, A. L. (1988). Motivation to learn and understand: On taking charge of one’s own
learning. Cognition and Instruction, 5, 311-321.

Chi, M. T. H., de Leeuw, N., Chiu, M., & LaVancher, C. (1994). Eliciting self-explanations improves
understanding. Cognitive Science, 18, 439-477.

An Incremental Model for Developing Educational Critiquing Systems 143

http://pmd.sourceforge.net

Collins, A., Brown, J.S., & Newman, S. (1989). Cognitive Apprenticeship: Teaching the Craft of
Reading, Writing, and Mathematics, In L.B. Resnick (Ed.) Knowing, Learning, and Instruction:
Essays in Honor of Robert Glaser. Lawrence Erlbaum Associates, Hillsdale, NJ.

dePaula, R., Fischer, G., & Ostwald, J. (2001). Courses as seeds: Expectations and realities.
Proceedings of the Second European Conference on Computer-Supported Collaborative
Learning (Euro-CSCL’ 2001), Maastricht, Netherlands, 2001, pp. 494-501.

Fischer, G. (1987). A critic for LISP. In Proceedings of the 10th International Joint Conference on
Artificial Intelligence, Milan, Italy.

Fischer, G., (1998). Seeding, evolutionary growth and reseeding: Constructing, capturing and
evolving knowledge in domain-oriented design environments. International Journal of Auto-
mated Software Engineering, Kluwer Academic Publishers, Dordrecht, Netherlands, 5(4),
October 1998, pp. 447-464,

Fischer, G., Nakakoji, K., Ostwald, J., Stahl, G., & Sumner, T. (1993). Embedding Critics in Design
Environments. The Knowledge Engineering Review, 8(4). 1993.

Fischer, G., & Ostwald, J. (2002). Seeding, evolutionary growth, and reseeding: Enriching
participatory design with informed participation. In Proceedings of the Participatory Design
Conference (PDC’02), T. Binder, J. Gregory, I. Wagner (Eds.), Malmö University, Sweden, June
2002, CPSR, P.O. Box 717, Palo Alto, CA 94302, pp 135-143.

Fischer, G., & McCall, R. (1989). Janus: Integrating hypertext with a knowledge-based design
environment. In Proceedings of the ACM Hypertext’89, p. 105-117. ACM, November 1989.

Gertner, A. (1995). Critiquing: Effective decision support in time-critical domains. Ph.D.
Dissertation, Dept. of Computer and Information Science, University Of Pennsylvania.

Hewlett-Packard Company. (1998). SoftBench SDK: CodeAdvisor and static programmer’s
guide. HP Part Number: B6454-90005, URL:http://docs.hp.com/hpux/onlinedocs/B6454-
90005/B6454-90005.html

Johnson, S. C. (1978). Lint, a C program checker. Unix Programmer’s Manual. AT&T Bell
Laboratories: Murray Hill, NJ.

Johnson, W. L. (1986). Intention-based diagnosis of novice programming errors. London: Pitman.

Nakakoji, K., Reeves, B. N., Aoki, A., Suzuki, H., & Mizushima, K. (1995). eMMaC: Knowledge-
based color critiquing support for novice multimedia authors. Proceedings of ACM Multime-
dia ‘95, San Francisco.

Qiu, L., & Riesbeck, C. K. (2005). The design for authoring and deploying web-based interactive
learning environments, In Proceedings of World Conference on Educational Multimedia,
Hypermedia & Telecommunications (ED-MEDIA), June 2005.

Robbins, A. E. (1998). Design critiquing systems. Tech Report UCI-98-41. Available at
http://www.ics.uci.edu/~jrobbins/papers/CritiquingSurvey.pdf

Schank, R., A. Fano, B. Bell, & M. Jona. (1993). The design of goal-based scenarios. Journal for
the Learning Sciences, 3(4). 305-345.

Sefika, M., Sane, A., & Campbell, R. H. (1996). Monitoring compliance of a software system with
its high-level design models. In Proceedings of the 18th International Conference on Soft-
ware Engineering, Berlin, Germany.

Soloway, E., Rubin, E., Woolf, B., Johnson, W. L., & Bonar, J. (1983). MENO II: An AI-based
programming tutor. Journal of Computer-Based Instruction, 10, 20-34.

144 Qiu and Riesbeck

http://docs.hp.com/hpux/onlinedocs/B6454-90005/B6454-90005.html
http://docs.hp.com/hpux/onlinedocs/B6454-90005/B6454-90005.html
http://www.ics.uci.edu/~jrobbins/papers/CritiquingSurvey.pdf

Wenger, E. (1987) Artificial intelligence and tutoring sustems: Computational and cognitive
approaches to the communication of knowledge. Los Altos, CA: Morgan Kaufmann Publish-
ers, Inc.

Weber, G., & Möllenberg, A. (1995). ELM programming environment: A tutoring system for LISP
beginners. In Wender, K. F., Schmalhofer, F., and Böcker, H.-D., eds., Cognition and Comput-
er Programming. Norwood, NJ: Ablex Publishing Corporation, 373-408.

An Incremental Model for Developing Educational Critiquing Systems 145

