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IODetector: A Generic Service for Indoor/Outdoor Detection
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The location and context switching, especially the indoor/outdoor switching, provides essential and primi-
tive information for upper-layer mobile applications. In this article, we present IODetector: a lightweight
sensing service that runs on the mobile phone and detects the indoor/outdoor environment in a fast, accu-
rate, and efficient manner. Constrained by the energy budget, IODetector primarily leverages lightweight
sensing resources, such as light sensors, magnetism sensors, and cell tower signals. For universal applica-
bility, IODetector assumes no prior knowledge (e.g., fingerprints) of the environment and uses only on-board
sensors common to mainstream mobile phones. Being a generic and lightweight service component, IODe-
tector greatly benefits many location-based and context-aware applications. We prototype the IODetector on
Android mobile phones and evaluate the system comprehensively with data collected from 34 traces that
include 133 different places during a 6-week period, employing different phone models. We further perform a
case study where we make use of IODetector to instantly infer the GPS availability and localization accuracy
in different indoor/outdoor environments.
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1. INTRODUCTION

Current mobile phones are becoming important platforms that serve the ubiquitous
sensing and communication needs of people [Lane et al. 2010]. The sensing and com-
munication modules on mobile phones are usually developed to provide location and
context-aware services. However, they may have different availabilities, energy, and ac-
curacy profiles in different environments. An effective indoor/outdoor detection scheme
can provide primitive environment information for a variety of mobile applications and
thus potentially improve their performance. For example, in location-based applica-
tions, people usually source GPS for an accurate location reference when they are in
the outdoor environment. In contrast, GPS performs poorly without line-of-sight paths
to satellites when mobile devices are inside buildings [Bahl and Padmanabhan 2000;
Thiagarajan et al. 2009]. In mobile data services, mobile phones normally observe more
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WiFi access points (APs) with strong signals inside buildings, whereas it is unlikely
to have good WiFi connections in outdoor environments. Therefore, knowing whether
the environment is indoors or outdoors can help to make smarter decisions regard-
ing whether to turn on GPS or to perform AP scanning. In the context and activity
recognition applications, the knowledge of the surrounding indoor/outdoor environ-
ment potentially leads to more accurate recognition. Although many applications may
benefit from accurate and prompt indoor/outdoor information, the research study to-
ward generic indoor/outdoor detection surprisingly lacks. Many location-related works
simply assume that a clear preknowledge on the indoor/outdoor environment has been
known, but such an assumption hardly holds in practice. The unavailability or perfor-
mance degradation of GPS is sometimes used to infer the indoor/outdoor environment,
yet such an approach suffers from low accuracy, high energy consumption, and long
response time.

In this article, we present the Indoor/Outdoor Detector (IODetector): a generic and
lightweight service for the indoor/outdoor detection in mobile applications. Constrained
by the energy budget on mobile phones, we primarily make use of three lightweight
sensing resources: light sensor, cellular module, and magnetism sensor. Through a
6-week experiment, we observe that the light intensity, the cell tower signal, and the
intensity of magnetic field all individually exhibit distinct patterns in the indoor and
outdoor environments. Those patterns turn out to be viable for an accurate classifica-
tion of the ambient environments. More precisely, light signals exhibit distinct patterns
when they are captured inside and outside buildings. The reason behind is that the
natural and manmade light sources contain inherent difference by nature. The re-
ceived signal strength (RSS) from a cell tower by a mobile phone changes dramatically
from the outdoor to indoor environments as the dividing walls block the line-of-sight
paths between the mobile phone and the cell tower. The intensity of magnetic field
varies significantly across different places inside buildings due to the ambient electric
appliances and steel structures but remains much less fluctuated across an outdoor
environment. Motivated by those facts and observations, we target at achieving the
indoor/outdoor detection by exploiting the three sensing resources.

Translating such an idea into a practical indoor/outdoor detection service entails a
wide range of challenges, as the three aforementioned sensing resources show distinct
pros and cons. The ambient light intensity may vary over time and is potentially in-
fluenced by various factors (e.g., people movement, phone pose, and cover of sight).
The absolute cell tower signal strength may vary significantly at different places and
across different mobile phone models, making it difficult to confidently set a uniform
rule for the indoor/outdoor classification. The magnetometer readings are error prone
without careful calibrations. We develop practical solutions to cope with the preceding
challenges in IODetector. In particular, we extract unique identifiable indoor lighting
features to detect the indoor/outdoor environment and leverage particular light in-
tensity patterns to improve the detection accuracy (Section 3.2). We exploit the abrupt
period of the cell tower signal strength rather than its absolute value to distinguish the
indoor/outdoor context. We track the cellular signals from multiple visible cell towers
so as to enhance the robustness of the indoor/outdoor detection (Section 3.3). We take
advantage of the magnetic disturbance inside buildings and make use of the movement
status from accelerometers to ensure the detection performance (Section 3.4).

We constructively combine the three sensing components and develop an extensible
indoor/outdoor detection framework. By taking other ambient sensing readings and
evaluating the confidence levels of three sensing units, we intellectually aggregate
their detection results and guarantee optimized reliance on those sensing units. The
developed IODetector then works as an underlying service module that can be invoked
by upper-layer applications to provide instant indoor/outdoor information (Section 3.5).
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We implement and evaluate IODetector with an Android prototype using different
mobile phone models. We test IODetector in 34 traces including 133 different sites in our
campus and city areas, and demonstrate quite encouraging results. Since IODetector
only relies on lightweight sensors, the low energy cost allows continuous tracking of
indoor/outdoor state transitions. In particular, we perform a case study and show that
we can utilize IODetector to cheaply and accurately infer the current availability and
accuracy of the GPS module for mobile phones.

The rest of this article is organized as follow. In Section 2, we detail the background
of and motivation for this work. We describe the technical solutions of IODetector in
Section 3. We present the evaluation results in Section 4 and review related works in
Section 5. Finally, we conclude the article in Section 6.

2. BACKGROUND AND MOTIVATION

Indoor/outdoor detection can provide essential and primitive information for upper-
layer mobile applications. For example, before turning on GPS, one may first check
whether it is outside a building to ensure the GPS performance. As another example,
before searching for WiFi APs, one may check whether it is inside or near a building
and adapt the scanning strategy accordingly. The indoor/outdoor information is also
highly useful for cameras whose energy consumption and processing time depend on the
ambient environments [LiKamWa et al. 2013]. Primitive indoor/outdoor information
helps them achieve energy efficiency and higher performance. Many cellular service
providers [SingTel 2013; China Telecom 2012] usually receive complaints from their
customers about the poor communication performance. A deeper understanding of the
users’ indoor/outdoor environment definitely helps them diagnose the communication
problems and improve their service performance. There are also many research works
on human mobility modeling from both the users and cellular providers [Isaacman et al.
2012; Liu et al. 2013], and the indoor/outdoor detection is the most significant input
for those models. Many other applications, including automatic image annotation [Qin
et al. 2011], context and activity recognition [Keally et al. 2011], and indoor localization
[Chung et al. 2011], may also rely on the indoor/outdoor knowledge for a proper working
scheme. If the detection overhead (depending on the application profile) is sufficiently
small, most location and context-aware applications will greatly benefit from such
indoor/outdoor detection.

While practically useful, the problem of indoor/outdoor detection has not been thor-
oughly studied yet. Existing localization and tracking applications may indirectly infer
the ambient environment with the availability and accuracy of the GPS signal. It is
well known that localization and tracking systems perform poorly in the indoor en-
vironment as the line-of-sight paths to GPS satellites are blocked. The unavailability
of GPS signals and the the decreasing number of the visible satellites can thus infer
the indoor environment [Ravindranath et al. 2011]. Typical GPS modules, however,
draw substantial amount of energy and take minutes to warm up and conduct the
GPS satellite scanning on mobile phones [Thiagarajan et al. 2009]. As a result, detect-
ing indoor/outdoor environments solely with GPS can be slow and inefficient. There
are some other works relying on dedicated devices to assist the ambient environment
detection. The deployment cost of such infrastructure-based approaches significantly
limits the flexibility and scalability for general-purpose detection [Smith et al. 2004].
On the other hand, some recent works study the problem of logical localization by
sensing the surrounding environment [Lu et al. 2009; Azizyan et al. 2009; Liu et al.
2010]. By painstakingly fingerprinting ambient signals (e.g., sound, floor color, user
movement), the mobile phones can learn the ambient environment through an inten-
sive site survey. A central server is normally needed to store such ambient fingerprints
and answer queries from users. Such an approach is unlikely to be generalized to deal
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Fig. 1. Three indoor/outdoor environment types and the representative scenes. In reality, specific applica-
tions may need finer or rougher classification based on their requirements, and they can make parameterized
classification using the techniques introduced in this article.

with universal indoor/outdoor detection. Many works in image processing and pattern
recognition study the problem of the indoor/outdoor image classification and automatic
image tagging [Payne and Singh 2005; Szummer and Picard 1998; Qin et al. 2011].
Such approaches cannot directly be applied to our problem, as they require explicit,
manual input from users.

In this work, we propose IODetector, a lightweight indoor/outdoor detection frame-
work that independently runs on each mobile phone and provides generic service to
upper-layer applications. As a basic component that might frequently be invoked by
many applications on energy-constrained mobile phones, IODetector needs to meet
several stringent design requirements:

—High accuracy. As a generic framework that many other applications would poten-
tially rely on, IODetector should accurately detect the indoor/outdoor environment.

—Prompt response. IODetector should promptly distinguish the indoor/outdoor envi-
ronment. An outdated detection result may be less valuable for many instantaneous
applications.

—Energy efficiency. Being a generic service running on mobile phones with constrained
energy budgets, IODetector should be energy efficient and use only inexpensive
sensing resources.

—Universal applicability. IODetector should avoid relying on a priori knowledge (or
site survey), special sensors, or explicit user feedback to ensure wide applicability.

Before we present the design of IODetector in detail, we formally define the
indoor/outdoor environment types studied in this work. To provide fine-grained
context information for upper-layer applications, we classify the environment into
three categories: outdoor (outside a building), semioutdoor (close to a building or a
semiopen building), and indoor (inside a building). Figure 1 illustrates representative
scenes for the three environment types. The reason of introducing the category of
semioutdoor is mainly due to potential application needs. For instance, the GPS may
not necessarily perform well even if it is outdoors, as the number of visible line-of-sight
satellites might be insufficient in many semiopen environments. In such cases, we
may not prefer to launch the GPS component. On the contrary, the situation could
become different for other types of applications. One typical example is that mobile
phones normally can find WiFi APs in indoor environments. Yet in most semioutdoor
environments, mobile phones may still detect a number of APs with good connections.
Additionally, some rooms with large windows could be treated as being semioutdoors,
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Fig. 2. System architecture of IODetector. There are three major sub-detectors and some assistant sensors.
We use accelerometer to detect user mobility. Each sub-detector works independently and their detection
results are aggregated to make the final detection decision.

since it is possible to receive good GPS signal in such environment, although it can
be less accurate as in fully outdoor environments. Thus, the designed IODetector does
not simply output a binary result (i.e., indoor or outdoor) for upper-layer applications.
Instead, it provides finer-grained classification on the indoor/outdoor scenes and thus
better meets different application needs.

3. SYSTEM DESIGN

In this section, we first introduce the system architecture and design details for each
component in IODetector. Then we specify how to aggregate the outputs obtained from
each component to construct a comprehensive and effective indoor/outdoor detector.

3.1. System Overview

Figure 2 illustrates the system architecture of IODetector. To meet stringent design
requirements, IODetector utilizes a series of lightweight sensors for the indoor/outdoor
detection. IODetector primarily makes use of three lightweight detectors: the light
detector, cellular detector, and magnetism detector. The light detector adopts light
sensors to capture ambient light signals to determine the surrounding environment
type. It also utilizes two other lightweight sensors, the proximity sensor and the system
time clock, to assist the detection. The cellular detector detects the attenuation of
cellular signals caused by obstacles (e.g., walls). It normally indicates the entrance/exit
of the device to/from an indoor environment. The magnetism detector exploits the
dramatic disturbance of the magnetic field inside or in the vicinity of buildings during
the movement of the mobile phone. It thus can distinguish the indoor/semioutdoor
environments from the outdoor environment.

Note that each component of IODetector shows unique advantages and disadvan-
tages in different environmental contexts. They process the sensor data and report
the respective and partial detection results. IODetector then aggregates those results
and generates a final decision, which is provided to upper-layer applications through a
service interface.

There are many other sensing resources available on today’s mobile phones, such
as gyroscope, WiFi, camera, and microphone. Compared with the sensing resources
used in our system, they are relatively not suitable to be used for indoor/outdoor
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detection due to the following considerations. First, they are not distinguishable for
different environment types. For example, there is no common observation that the
outdoor ambient noises are different from indoor ambient noises. There could be some
difference for specific sites but not for common sites. One way to use such kind of
signals is to war drive and label the sites using the signals as fingerprints. However,
such a method incurs substantial operation overhead and is not scalable. Second, some
of them are not stable and accurate enough to be used. For example, in our system,
we make use of cellular signal over other wireless signals (e.g., WiFi) mainly due to
such a consideration. Cell tower signal is available with no additional energy cost since
mobile phones have to maintain connectivity to cell towers for basic communication,
and cellular networks have almost universal coverage, both outdoors and indoors. But
for those high-frequency band signals such as 2.4GHz WiFi signal, because of the
short wavelength, they may severely suffer from the shielding effect of surrounding
objects or even the human body itself [Zhang et al. 2011b], which will bring too much
noise into the detection system. On the contrary, the cell tower signal of much longer
wavelength can easily diffract around these objects. The WiFi signals also suffer from
poor availability in many outdoor areas. Third, some of them are not energy efficient.
For example, the GPS lock is potentially useful to detect indoor/outdoor environments,
but its energy consumption is high. To achieve a generic service for indoor/outdoor
detection, we avoid using energy-expensive sensing resources.

In the rest of this section, we will describe the design details of each component. To
reveal the signal features with different environments, we empirically study the pat-
terns of light signal, cell tower signal, and magnetism signal in different environments
for 2 weeks. All of the signals are collected in 31 different environments under different
weather conditions, including sunny, cloudy, and rainy days, and at different times of
the day. The studied sites include indoor offices, homes, stores, outdoor campuses, some
downtown areas, and so forth. For each site, we collect light signal six times, magnetism
signal four times, and cell tower signal four times on average with different sampling
rates. The light signal is collected with different orientations of the light sensor, and
the cell tower signal is collected when the user walks from outdoors to indoors and vice
versa.

3.2. Light Detector

In outdoor and semioutdoor environments, the sun is the primary light source in
the daytime. In the indoor environment, however, we normally rely on artificial light
sources (e.g., fluorescent lamps).

3.2.1. Light Intensity. Our primary observation for the light detector is that the light
intensity inside buildings is typically much lower than that in either the outdoor or
semioutdoor environment even on cloudy or rainy days. The major reason for this is
that the intensity of sunlight within the visible spectrum is normally much higher than
that from ordinary lighting lamps. In addition, light sensors can also detect the light
in the invisible spectrums (e.g., infrared and ultraviolet). As a result, even when the
brightness of sunlight and artificial light looks similar, the luminous flux from sunlight
is much higher than that from artificial light sources during the daytime. Therefore,
the indoor environment can be accurately distinguished from the outdoor/semioutdoor
environment by using the observed light intensity.

To verify the preceding statement, we conduct a set of experiments. We measure the
light intensities in different environment types under different weather conditions. In
Figure 3(a), we plot the light sensor readings from three different types of mobile phones
(HTC Desire S, HTC Sensation G14, and Samsung Galaxy S2 i9100). Many current
Android platforms, however, only provides coarsely quantized light sensor readings for
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Fig. 3. Light signal measurements.

upper-layer applications. For instance, the Samsung Galaxy S2 i9100 only provides
five quantized levels (10, 100, 1000, 10,000, and 160,000), and the light intensity will
be rounded to the closest quantized level. From Figure 3(a), we can see that readings
of the light intensity from all three mobile phones are discrete and coarse. Yet the
readings still show clear and consistent transition behaviors in the experiments. When
the user moves outside of the office at the 30-second point, the light sensor readings
collected on all the three mobile phones increase significantly.

To further investigate the effectiveness of utilizing the light intensity to distinguish
the indoor environment, we further collect light intensities in three different environ-
ments using three TelosB motes in a cloudy and rainy day. We modify TinyOS code to
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Fig. 4. Outdoor light intensity during the rotation. The sensor is uniformly rotated from facing the sun (the
1st second) to back to the sun (the 16th second).

directly read the voltage on the light sensor S1087-01. The sensitivity range of the light
sensor is from 300nm to 1,200nm with a full coverage of the visible light spectrum and a
partial coverage of the infrared and ultraviolet spectrum. We note that the results and
observations obtained in this experiment can also be used to improve system perfor-
mance. In this experiment, the sampling rate of the light sensor is set to be one sample
per second. From Figure 3(b), the light intensities in both the outdoor and semioutdoor
scenarios are above 2,000Lux and much higher than that in the indoor environment
in the daytime (from 8:00AM to 17:00PM). We also find that during the night (from
20:00PM to 5:00AM), the outdoor light intensity is much smaller than indoor light
intensity. In addition, the light intensities in the indoor and outdoor environments are
both relatively stable. This observation is consistent with the indoor lighting standards
and measurements [Wikipedia 2013b], which show that in most cases, the indoor light
intensity is within the interval from 100Lux to 1,000Lux.

In practical scenarios, the mobile phone does not necessarily face the sun and the
phone may be dynamically rotated. To examine the robustness of our method, we record
the detected light intensity when rotating a TelosB mote in Figure 4. The light sensor
initially faces the sun and is gradually rotated until being toward an opposite direction.
Figure 4 shows that even when the light sensor is back to the sun (from the 13th sec to
17th sec), the light intensity is relative high as well (e.g., around 3,000Lux). Compared
with the light intensity observed in the indoor scenario as shown in Figure 3(b), we can
still distinguish them easily. Therefore, the detection of the light intensity is robust to
the mobile phone dynamics.

3.2.2. Light Flicker. We have demonstrated that the light intensity can serve as a good
feature of the indoor environment in the daytime. One problem, however, still remains.
If the detected light intensity is low, we still cannot confidently determine whether it is
an indoor or outdoor environment at night. As shown in Figure 3(b), the outdoor light
intensity might become comparable to or even lower than the light intensity from arti-
ficial light sources at night. In this case, solely using the light intensity is not adequate.

To tackle this issue, we propose utilizing more light features to jointly make the clas-
sification decision. Our proposed solution is based on the following facts. Fluorescent
lamps are the most widely available light sources in many indoor environments be-
cause of the low manufacturing cost and the high energy efficiency. Fluorescent lamps,
powered by the alternating current (AC) power, emit the light with periodic patterns,
which we call light flicker in this article. Suppose that the frequency of AC is f . After
rectifying, the frequency of fluorescent light intensity will be 2 f . Although the peri-
odical varying light intensity from fluorescent lamps is almost imperceptible to eyes,
such distinctive periodic patterns can be captured by light sensors [Li et al. 2012]. The
sunlight, on the contrary, does not exhibit such a periodic pattern.

To verify the effectiveness of the method mentioned earlier, we measure the frequency
of fluorescent light flicker using light sensors on TelosB mote in an office building. The
AC frequency is 50Hz, and we sample the light sensor with a 4kHz sampling rate
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Fig. 5. Light intensity exhibits a periodic pattern in the indoor environment as shown in (a), whereas the
periodic pattern is hardly observed outside buildings during the daytime as shown in (b). The overall trend
of light intensity variation is plotted in the bottom part of the figure.

that is sufficiently high to capture the periodic pattern of the fluorescent light. In
the experiments, we see a clear peak at 100Hz frequency band after a fast Fourier
transform (FFT) in the indoor environment, whereas in the outdoor environment,
such a peak is hardly observable in the daytime. In Figure 5 (bottom), we plot the
light intensity along a trajectory from an indoor office to an outdoor field passing
through a semioutdoor corridor. Figure 5(a) plots the finer variation of indoor light
signal at the 3rd second. We can observe the distinct periodical light intensity due to
the alternating pattern in the indoor office environment. When leaving the office and
entering the semioutdoor corridor (e.g., the 12th second), we find that the periodicity of
the light signal disappears immediately (Figure 5(b)). We also examine the detection
performance when the light from fluorescent lamps is mixed with the sunlight. It
usually occurs when the mobile phone is close to the window. From our experiment,
we observe that the sunlight contributes a direct component to the final result. The
periodical pattern from the fluorescent lamps nevertheless remains to appear, and we
can still detect its existence using FFT. The observed periodic patterns in one period
may exhibit multiple peaks (Figure 5(a)). This is because the observed result is a
mix of the light from multiple lamps, and each lamp may have different phases. In
this example, there are three dominant phases, as shown in Figure 5(a). The electric
characteristics of the bulb starter probably cause the light phase difference. Although
all of the fluorescent lamps may be powered by the same AC power, the bulb starter of
each lamp performs differently, which results in phase difference. As a matter of fact,
the bulb starter of a particular fluorescent lamp performs differently when we turn on
the lamp at different two times.

We also examine the robustness of the light flicker detection with dynamics. We
record the light intensity when rotating a TelosB mote in the indoor environment.
Figure 6 plots the light intensity in the indoor environment. The light sensor initially
faces to fluorescent lamps (at the 1st second) and is gradually rotated until being
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Fig. 6. Indoor light flicker during the rotation. The sensor is uniformly rotated from facing the lamp (the 1st
second) to back to the lamp (the 16th second). The top three graphs show the consistent periodical patterns
during the rotation.

Fig. 7. Detection flow of the light detector.

turned back to the lamps (at the 16th second). From Figure 6 (bottom), we observe
that the overall light intensity decreases. Yet when we take a fine look at any specific
portion (the 1st, 8th, and 16th seconds) of the collected light signals (as shown in the
top three graphs), we still see distinct periodic patterns at 100Hz due to the alternating
intensity of the fluorescent lamps. Such periodic component can be easily captured in
the frequency domain at the 100Hz band after FFT.

3.2.3. Detection Process in Light Detector. Since mobile phones may be placed in pockets
or bags, the light sensors may not be always available. We use the proximity sensor,
which is usually embedded at the same position as the light sensor on mobile phones,
to detect the presence of nearby objects that may block the light sensor. We associate a
confidence level CL ∈ [0, 1] for the detection result. Different light signals will lead to
different detection confidence levels.

Figure 7 summarizes the work flow of the light detector component. We denote L
as the detected light intensity. The light detector first queries the proximity sensor to
check whether the light sensor is currently available. If the light sensor is available,
the light intensity L is then compared with a threshold σ . If L > σ , the light detector
confirms an outdoor/semioutdoor environment detection with a high level confidence
CL = 1; if L ≤ σ , it needs to further differentiate whether it is an indoor environment
or an outdoor/semioutdoor environment at night. To this end, the light detector refers
to the system clock. If the clock indicates daytime, the detector infers the environment
to be indoors with a high confidence. If not, the light detector turns to the frequency
domain detection using FFT. After FFT, if the light flicker frequency flight is within
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the interval [ flower, fupper] (the selection of flower and fupper will be discussed soon),
it indicates an indoor environment with a high confidence level CL = 1; otherwise,
the mobile phone is in an outdoor/semioutdoor environment with a confidence level
CL = σ−L

σ
.

We now study how to properly configure each parameter involved. From Figure 3(b),
the sunlight intensity in the daytime is distinguishable from that of indoor lights.
According to our empirical study, we set the threshold σ to 2,000Lux. The frequency of
the electrical system varies by countries; nevertheless, most electric power operates at
either at 50 or 60 Hz [Rowe et al. 2009]. Thus, the fluorescent light intensity frequency is
normally 100 or 120 Hz, which simplifies the frequency domain detection. We therefore
choose a reasonable frequency interval [ flower = 95, fupper = 125] to enhance detection
robustness and reduce the computation overhead of FFT. Say that L = 1,000 < σ and
flight = 100 ∈ [95, 125], then the light detector will confirm the ambient environment
as the indoor environment with the confidence level CL = 1.

Although the readings of light sensors on many current mobile phone models are
coarsely quantized to upper applications, we see the trend that more and more mobile
phones grant upper-layer applications finer access to those lower-level sensors, such
as with Samsung Google Nexus One. We believe that most mobile phone models will
support such a functionality in the near future. The limitation of the light detector
is that the light signal is not always available. In addition, we cannot confidently
distinguish the outdoor and semioutdoor environments by merely using light sensors.

3.3. Cellular Detector

Mobile phones maintain connections to nearby cell towers to support the primary
functionality—that is, the telephone call. The marginal energy consumption of collect-
ing cellular RSS is thus negligible. Previous works utilize the information about visible
cell towers and their signal strength for localization and tracking [Thiagarajan et al.
2010]. Such approaches, however, suffer from low accuracy due to various factors. One
primary issue is the dividing wall effect, which refers to the fact that the dividing wall
significantly blocks the cellular signal and hence leads to dramatic signal strength
drop when people get into indoor environments. Unlike the localization works where
the dividing wall effect is undesired, in this work, we embrace and exploit the cellular
RSS variation for indoor/outdoor detection.

3.3.1. Associated Cell Tower Signal Strength. We aim to find the correlation between the
cellular signal variation and the surrounding environment transitions. We first mea-
sure the cellular RSS in several representative places, such as offices and homes (in-
door), corridors and paths in the vicinity of building (semioutdoor), and plaza and
football field (outdoor). We find that the absolute value of the cellular RSS provides
limited information for the detection. It varies across different places, times, and phone
models. In contrast, the RSS variation within a short period of time normally indicates
the context transition. In our experiments, we observe a significant variation of the
cellular RSS when the ambient environment changes. For instance, when the user
walks into an office building from outside, the cellular RSS significantly drops due to
the dividing walls that block the line-of-sight paths to cell towers. Therefore, we ex-
ploit the abrupt variation of the cellular signal strength rather than its absolute value
to distinguish the indoor/outdoor context that is invariant across different places and
phone models.

To guarantee the communication quality, a mobile phone usually connects to the cell
tower with the strongest RSS. Figure 8(a) shows the RSS value from the connected
cell tower when the user walks out to the corridor and then back to the office. The
user walks outside at the 30th second. We can see that the RSS rises by approximately
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Fig. 8. Cell tower signal strength variation for indoor/outdoor detection.

15dB. Then at about the 90th second, the user comes back to the office and the RSS
drops back within 10 seconds. Such sharp cellular RSS variation can be used to detect
the ambient environment changes. On the other hand, since the antenna gain may
vary across different mobile phone models, it is hard to accurately map different RSS
values to different environments. Adopting the RSS variation can avoid the detection
error that would arise if the absolute RSS value were used, especially when applied on
diversified devices and environments. In short, our cellular detector is independent of
mobile phone models and environments, which ensures universal applicability.

However, we notice that using RSS information of the single associated cell tower
suffers from two inherent limitations. First, mobile phones may handover from one
cell tower to another. Such a handover normally introduces a significant cellular RSS
variation. In this case, the RSS variation may not necessarily imply an indoor/outdoor
transition. Second, due to the corner effect [Tripathi et al. 1998], the cellular RSS may
dramatically change in the semioutdoor environment. For example, in Figure 8(a), the
RSS suddenly drops by about 15dB at 50 seconds when the user turns around at a

ACM Transactions on Sensor Networks, Vol. 11, No. 2, Article 28, Publication date: December 2014.



IODetector: A Generic Service for Indoor/Outdoor Detection 28:13

corner. The corner effect usually happens in the semioutdoor environment due to the
change of the line-of-sight to cell towers.

3.3.2. Visible Cell Tower Signal Strength. A mobile phone is normally within the coverage
of multiple cell towers. Instead of using the single associated cell tower, we take a
full advantage of all visible cell towers to improve the detection accuracy [Zhou et al.
2012a]. In particular, we measure the signal strengths of all of cell towers and track
their RSS variation. Thereby, we naturally solve the inherent handover problem since
the cell tower that the phone may connect to is also among the observed cell towers. In
addition, with a rich set of cell towers, we can mitigate the problem of the corner effect.
Actually, since the evident corner effect usually indicates a semioutdoor environment,
we can exploit such a property to refine the detection.

We denote the RSS from cell tower i at time t as Ri(t), 1 ≤ i ≤ n. We track the
RSS variation within a time interval � and denote the variation of cell tower i as
Vi(t) = Ri(t + �) − Ri(t). We refer N+(t) as the number of cell towers whose RSS
increases more than ν—that is, N+(t) = |{i|Vi(t) ≥ ν, 0 ≤ i ≤ n}|; we also denote by
N−(t) the number of cell towers whose RSS decreases more than ν—that is, N−(t) =
|{i|Vi(t) ≤ −ν, 0 ≤ i ≤ n}|. In some cases, we will also see that N+(t) + N−(t) < n, since
the RSS of many cell towers remains quite stable and the differences do not exceed ν.
We define N0(t) = n − N+(t) − N−(t) to represent the stability of cell tower RSS. In our
experiments, we set � = 10 seconds and ν = 15dB.

Intuitively, if a user moves from indoors to outdoors, the RSS of cell towers will
increase, and vice versa. In addition, the more cell towers whose RSS exhibits the
same trend, the more confident the detection will be. We correspond the detection
results with different confidence levels CC . Say that we find N0(t) = 1, N+(t) = 1,
N−(t) = 4, and n = 6, then the cellular detector will confirm the ambient environment
as the indoor environment with confidence level CC = N−(t)/n = 0.67. The cellular
detector will also report the confidence level for the semioutdoor/outdoor environment
as N+(t)/n = 0.17.

Figure 8(b) illustrates the RSS of multiple cell towers when the user walks out to
the corridor (at the 45th second) and then returns to the office (at the 90th second).
In Figure 8(b), we see that the RSS of the four cell towers rapidly climbs up, which
implies that the user has moved from the indoor environment to the outside. At the
90th second, the RSS of the four cell towers drops sharply, which means that the user
gets back to the indoor office. During the period from the 60th to 70th second, the
RSS of the associated cell tower varies significantly, whereas other cell towers remain
relatively stable. In this case, the majority rule helps filter out bursts and reduces
detection errors.

We note that the visible cell towers are not necessarily from the same GSM network
operator. A phone may detect cellular signals from multiple GSM networks, which
ensures a sufficient number of visible cell towers. In our experiment, mobile phones
typically see four to six cell towers at one time. Figure 8(c) plots the detection preci-
sion of the cellular detector with the varying number of cell towers. We find that the
detection precision increases as the number of visible cell tower increases, and it is
satisfactory when the number of cell towers is more than four. Since mobile phones
need to maintain connections to cell towers, the energy consumption of the cellular
detector is almost negligible. The major limitation is that the cellular detector may
perform poorly without a sufficient number of visible cell towers in some cases.

3.4. Magnetism Detector

Many steel structures and electric appliances disturb the geomagnetic field and gen-
erate the electromagnetic fields in the indoor environment [Rowe et al. 2009]. The
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Fig. 9. The variation of magnetic field intensity. The magnetism signal varies significantly when the user
moves to indoor environments but keeps relatively stable when the user gets to outdoor environments.

disturbance of the earth’s magnetic field inside buildings can be utilized as fingerprints
for the indoor localization [Chung et al. 2011]. However, such a localization approach
requires a labor-intensive fingerprinting and cannot be applied to the indoor/outdoor
detection directly. In this section, we seek to explore useful characteristics of magnetic
fields in different ambient environments that may help to enhance the indoor/outdoor
detection.

The magnetic field exhibits distinct patterns in indoor/outdoor environments. In the
indoor environment, the earth’s geomagnetic field varies at different positions due
to the disturbance of steel structures and electric appliances inside buildings. For
instance, the intensity of the magnetic field near the equator and near the pole varies
from 0.25 to 0.65 G (i.e., 25 to 65μT). In comparison, a strong refrigerator magnet has
a field of around 100G (two orders of magnitude higher) [Wikipedia 2013a]. Therefore,
the intensity of magnetic fields shows a high variance across different places near and
inside buildings than that in the open space.

Figure 9 plots the magnetic field intensity and its variance in an example scenario
in which a user walks outside of the office, passing through a corridor. In particular,
the user walks from the 1st second to 25th second, stops walking from the 25th second
to 50th second inside the building, and then walks along the corridor from the 50th
second to 100th second. In the end, the user walks along the road. In Figure 9(a), we
find that the intensity of magnetic field in the indoor environment varies dramatically.
Figure 9(b) plots the variance averaged over τ seconds to filter out noises. We find that
the variance is very high when the user moves (from the 1st second to 25th second).
When the user is walking through the corridor, the magnetic field intensity also shows
significant variance. In contrary, after the user goess outside after the 100th second,
the variance drops significantly. Therefore, by choosing a suitable threshold α, we could
distinguish the indoor/semioutdoor from the outdoor environment.
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Table I. Summary of the Three Subdetectors

Detector Accuracy Latency Efficacy Availability

Light Medium Fast Indoor vs. Outdoor/Semioutdoor Without blockage
Cellular High Slow Indoor vs. Outdoor/Semioutdoor Sufficient cell tower

coverage
Magnetism High Slow Outdoor vs. Indoor/Semioutdoor When moving

We vary the threshold α from 0 to 40 with step length 2 and statistically analyze the
detection accuracy using the collected data described in Section 3.1. If the threshold
is small, most indoor/semioutdoor environments will be correctly classified, whereas
many outdoor environments will be wrongly detected as the indoor/semioutdoor envi-
ronment. On the other hand, if the threshold is too large, most outdoor environments
will be correctly classified, but we will miss the detection of many indoor/semioutdoor
environments. Therefore, we select an empirical threshold 18 to achieve a balance. In
our implementation, we first refer to the accelerometer to detect whether the mobile
phone is moving. If so, the magnetism detector samples the magnetism sensor and
uses the variance averaged over τ = 10 seconds to detect the environment. When the
user stops walking (from the 25th second to the 50th second), the variance becomes
very small. When the user is moving, the magnetism detector confirms the detection of
an indoor/semioutdoor environment if the field variance is larger than α; otherwise, it
reports an outdoor environment. Since a larger τ yields a higher detection robustness,
we set the confidence level of the magnetism detector CM = τ/10.

3.5. Aggregated IODetector

Each of the three subdetectors shows unique advantages and disadvantages as sum-
marized in Table I. They best fit different scenarios. For instance, the light detector
can rapidly detect the ambient environment. The light detector, however, requires the
mobile phone to be exposed in the space. If the phone is inside a pocket or bags, the
light detector cannot provide accurate detection results. The cellular detector needs
sufficient cell tower coverage to confidently detect the ambient context. The detection
response is also slower. The magnetism detector is only available when the user is
moving around such that the magnetic disturbance inside buildings can be exploited.
We refer to the three individual detectors as subdetectors and integrate them to output
an arbitrated decision.

At first, we directly aggregate the instant detection results of all three subdetectors.
We let each subdetector report a detection profile-that is, a triplet of confidence levels
for the three possible environment types and sum the confidence levels from all three
subdetectors. The environment type with the highest summed confidence level will be
output as the final detection result. Such a combination makes a stateless decision—
in other words, the detection output is solely determined by the current environment
status and the instant sensor readings. We refer to it as the stateless IODetector in the
following.

Figure 10(a) shows the aggregation processing of the stateless IODetector. We denote
the detection profile from the three subdetectors as [DL(t), CL(t)] (light), [DC(t), CC(t)]
(cellular), and [DM(t), CM(t)] (magnetism), where D is the output detection result from
each subdetector and C is the set of associated confidence levels for the three possi-
ble environment types. As described in Section 3, each individual subdetector outputs
the possible environment types and associated confidence levels for them. For exam-
ple, each detection profile of the light detector can be denoted as [DL, CL] = {(indoor,
CL,indoor), (semioutdoor, CL,semi−outdoor), (outdoor, CL,outdoor)}. For each possible environ-
ment type, we sum the confidence levels from the three subdetectors and obtain the
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Fig. 10. Aggregated stateless and stateful IODetectors.

triplet of overall confidence levels CE ∈ {Cindoor, Csemi−outdoor, Coutdoor}. The environment
type with the highest overall confidence level will be reported as the final detection
result.

The stateless IODetector provides us with instant detection results. Users can ac-
tivate IODetector on an as-needed basis. Thus, the significant out-of-the-box func-
tionality ensures the energy efficiency of the stateless IODetector. In our experiments,
however, we find that the current environment state of human beings is usually related
to the previous state. For example, during the movement from indoors to outdoors, the
user has a good chance of experiencing the semioutdoor environment. The stateless
IODetector does not consider previous states and thus may suffer from noises. In the
following, we alternatively consider a stateful integration of the three subdetectors,
which makes decisions on top of both current and previous observations.

To do so, we let all subdetectors perform continuous detection and return sequential
results. Figure 10(b) sketches an illustrative example of the stateful IODetector. We
make use of the hidden Markov model (HMM) [Thiagarajan et al. 2009] to integrate
the subdetectors. The HMM models a Markov process with underlying hidden states.
Every hidden state emits observable states with particular conditional probability dis-
tribution called the emission probability distribution. The HMM traverses the states,
and the transitions among the hidden states are governed by the transition probabil-
ities. With the HMM, we estimate the most likely sequence of hidden states that may
produce the sequence of observable states. We use the first-order HMM in which the
current environment state is only affected by the immediate previous state. We denote
the hidden state at time t as H(t) ∈ {indoor, semioutdoor, outdoor} and the observed re-
sults from the three subdetectors as RL(t)(light), RC(t)(cellular), and RM(t)(magnetism),
where R is the output environment type with the highest confidence level from each
individual subdetector. For example, the detection result from the light detector is
RL ∈ {indoor, semioutdoor/outdoor}. IODetector incorporates the detection results from
all sub-detectors and treats them as the observable state B(t) = [RL(t), RC(t), RM(t)].
IODetector will thus infer the most likely hidden state H(t) from the previous hid-
den state H(t − 1) and the current observable state B(t). The transition and emission
probabilities determine the inference result.

Transition probability. We set the transition probability based on the following ob-
servation: (1) for each environment state, there is a substantial probability that the
user will remain in his previous environment; and (2) there is constrain on the user’s
moving speed, so the transition from the previous environment’s state to the current
environment’s state is constrained as well.
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Table II. Transition Probability Settings

To Indoor Semioutdoor Outdoor
Indoor 0.85 0.15 0

From Semioutdoor 0.33 0.4 0.27
Outdoor 0 0.23 0.77

Table III. Emission Probability Settings

Detector Observable State Indoor Semioutdoor Outdoor
Light Indoor 0.9 0.11 0.11

detector Semi/outdoor 0.1 0.89 0.89
Cellular Indoor 0.82 0.16 0.16
detector Semi/outdoor 0.18 0.84 0.84

Magnetism Semi/indoor 0.88 0.88 0.17
detector Outdoor 0.12 0.12 0.83

We thus determine the transition probabilities based on the observations and
the characteristics of IODetector. Since the detection period of IODetector is set to
10 seconds, when a user is previously indoors, the current environment state is prob-
ably indoors and might be semioutdoors but is not likely outdoors because the user
unlikely moves directly from indoors to a fully outdoor environment. It is similar when
a user is outdoors. When the user is semioutdoors, however, he could be able to directly
move indoors or outdoors, or he may stay semioutdoors.

We denote the transition probability from environment H1 to H2 (elaborated as
I:indoor, O:outdoor, and S:semioutdoor in the following) as T (H1, H2). We make statis-
tical analysis from more than 30 independent real user trajectories that cover many
sites across all three environment types. We calculate the transition probabilities (sum-
marized in Table II) based on the environment transitions experienced in those tra-
jectories. The transition interval is set to 10 seconds. Such settings are according the
environment type distributions on those trajectories that for most of the time users are
either indoors or outdoors.

Emission probability. The emission probability E(B, H) is the likelihood that an
observable state B is observed in H environment. We set the emission probability
according to the training data as described Section 3.1. Table III shows the emission
probability of each hidden state (indoor, semioutdoor, and outdoor) to each observable
state in detail.

In each detection window, the probability of each environment state p(H) =
{p(indoor), p(semioutdoor), p(outdoor)} is first calculated based on the emission proba-
bility and the detection results of the three subdetectors. Then, p(H) is further updated
according to the transition probability from the previous environment state. Finally,
the stateful IODetector outputs the environment state with the highest probability.
Thus, the transition probability does not accumulate across multiple states. For the
stateful IODetector, we do not keep all the sensors on. We use the accelerometer as a
trigger. Only when the accelerometer detects the user movement does IODetector ac-
tivate the sensors and start to infer the new environment state from the HMM. When
the user is stationary, the user environment state is deemed unchanged and all sensors
are deactivated, as is is the HMM processing.

The HMM-based stateful IODetector provides sequential detection results from the
sensor readings. For easy system implementation, we also provide a simplified design
alternative for the stateful IODetector. The environment state of current state is de-
noted as st, and the previous environment state is denoted as s0. For each detection,
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Table IV. Experimental Sites

Environment Type Representative Places Total

Outdoor 12 campus sites, 11 downtown areas, 39
on roofs of 10 buildings, 6 buses

Semioutdoor 15 campus sites, 12 downtown areas, 43
16 open windows

Indoor 10 office rooms, 18 stores, 6 restaurants, 8 classrooms, 51
7 underground rapid train stations, 2 shopping malls

the probability of each environment type p(si) is calculated as

p(si) = pt(si|s0) ∗ (p(si|Ol) + p(si|Oc) + p(si|Om)),

where the transition probability pt(si|s0) = 0 for transition between indoors and out-
doors directly and pt(si|s0) = 1 for the rest. p(si|Ol), p(si|Oc) and p(si|Om) are the proba-
bility based on the observations of the light detector, cellular detector, and magnetism
detector, respectively. They can be adopted from the emission probability.

The stateful IODetector further explores the sequential observations and provides
stateful detection results, which are robust to noisy measurements [Thiagarajan et al.
2009]. Its detection accuracy, which we show in Section 4.2.2, is better than the state-
less IODetector. However, the stateful IODetector may consume extra energy since it
has to perform continuous detection. We show the energy consumption of IODetector
Sections 4.2.2 and 4.3.3. Users can choose either the stateless or stateful IODetector,
whichever is more suitable for the application scenarios.

4. EVALUATION

We implement a prototype system on the Android platform with different types of
mobile phones. We collect sensor data at 34 traces including 133 different sites over a
6-week period of experiments. The following details the experiment methodology and
the results.

4.1. Experimental Methodology

Mobile phones. We implement IODetector on the Android platform and test its perfor-
mance using four different types of mobile phones (Samsung Galaxy S2 i9100, HTC
Desire S, HTC Sensation G14, and Samsung Google Nexus One). All types of mo-
bile phones are equipped with light sensors, proximity sensors, magnetism sensors,
accelerometers, and so forth. Since the light sensor on three types of mobile phones
(Galaxy S2 i9100, HTC Desire S, and Sensation G14) does not provide continuous sen-
sor readings, we only use the light intensity difference for the light detector [Zhou
et al. 2012b]. The Nexus One provides us with continuous and real sensor readings,
and we make full implementation of the light detector using both intensity and flicker
difference on Nexus One. As IODetector is independent of platforms, we believe that
the proposed indoor/outdoor detection method can be simply implanted to other mobile
computing platforms, such as Apple iOS and Windows Phone.

Experiment environment. We experiment with 34 different walking traces and collect
sensor readings from 39 outdoor segments (covering football fields, downtown squares,
etc.), 43 semioutdoor segments (covering corridors and paths near buildings), and 51
indoor segments (including offices and shopping malls) mainly in campus and city
areas (Table IV) during the period 5:00 to 22:00 in 6 weeks with different weather con-
ditions. The users walk along these traces, and the mobile phones perform continuous
detection for the experimental sites along the traces. These sites are different from the
environments where we collected prior data and developed the IODetector philosophy.
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Fig. 11. Detection performance of three subdetectors. For each subdetector, we report the performance
under two kinds of scenarios. For example, we test the light detector in indoor environments and outdoor/
semioutdoor environments, respectively.

4.2. System Performance

In this section, we show the detection performance of the three individual subdetectors
as well as the aggregated IODetector. We also compare the performance of the stateless
and stateful IODetectors.

4.2.1. Performance of Subdetectors. One may query the three different detectors inde-
pendently and select an arbitrary one in practice. To evaluate the contribution of each
detector (i.e., light detector, cellular detector, and magnetism detector), we examine the
detection performance independently in Figure 11. Each detector reports the environ-
ment type with the highest confidence level after the local computation.

The light detector is available when there are clear paths between mobile phones
and ambient light sources. Figure 11(a) depicts the detection performance of the light
detector. We find that the light detector can effectively distinguish the indoor environ-
ment from the semioutdoor/outdoor environment. In Figure 11(a), when mobile phones
are in the indoor environment, the detection accuracy is around 90%. When the phones
are in the semioutdoor/outdoor environment, the detection accuracy is around 92%.
Figure 11(b) shows the detection performance of the cellular detector that classifies
the indoor environment from the semioutdoor/outdoor environment. We obtain quite
a close performance of the cellular detector compared with that of the light detector.
Our experiments mainly cover the campus and city areas where most sites are covered
by at least five cell towers. In such experiment settings, the cell tower–based detection
performs with 87% accuracy.

We note that both the light detector and cellular detector can effectively classify the
indoor environment from the semioutdoor/outdoor environment. On the other hand,
the magnetism detector can enhance the detection capability of IODetector in classi-
fying the semioutdoor and outdoor environment. Figure 11(c) plots the performance
of the magnetism detector. The magnetism detector can successfully distinguish the
indoor and semioutdoor environments from the outdoor environment with an accuracy
around 78%.

4.2.2. Performance of Aggregated IODetector. As described in Section 3.5, there are two
approaches to constructively combine the results from the three subdetectors.

Detection accuracy. In Figure 12, we show the detection accuracy of both stateless
and stateful IODetectors. We report the average detection results, including detection
precision and recall [Junker et al. 1999], in different scenarios. The overall detection
accuracy of the stateless IODetector is about 85%. When the three subdetectors are
aggregated as the stateful IODetector, there is improvement of detection accuracy for
all different types of indoor/outdoor environments, but not much. According to the
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Fig. 12. Detection precision and recall of stateless and stateful IODetectors.

Fig. 13. An experiment trace in the university campus. The user uniformly walks along the path in
20 minutes, and the detection results are stored on the user’s mobile phone. The ground truth data is
manually collected.

experiment results, for both stateless and stateful IODetectors, the detection preci-
sion and the recall for the semioutdoor detection are much lower than the detection
results for the other two environment types. Compared with the other two types, the
semioutdoor environment is defined flexibly as “near a building,” as shown in Figure 1.
Different applications may have different definitions for it and can parameterize such
environment type based on their specific requirements; the detection accuracy could
then be improved accordingly. Compared with less than 82% detection accuracy of in-
dividual detectors, in the aggregated IODetector both the precision and the recall are
consistently above 92% for the indoor and outdoor environment type. The experiment
results suggest that IODetector accurately classifies the indoor/outdoor environments
for most cases. For the stateful IODetector, with the optimization of the HMM param-
eters, the detection accuracy could be further improved.

In Figure 13, we show one of the walking traces that we experiment with at the NTU
campus. The experiment was done on a rainy day. The detection results from stateless
and stateful IODetectors can be seen in the bottom portion of Figure 13. The detection
results of both IODetectors are accurate. When we look at their detection results
separately, there are some differences. In some segments, the stateless IODetector
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Table V. Battery Duration for Different Sensor Settings (in Hours)

Sensors Samsung i9100 HTC Desire HTC Sensation
No sensor 18.3 15.4 18.1
Magnetism 2Hz 18.0 14.9 17.8
Light 400Hz+FFT 17.8 15.0 17.5
Cell tower 2Hz 18.1 15.1 17.9
Stateful IODetector 17.4 14.3 17.1

suffers from misdetection of some semioutdoor environments, which are usually in
the trace between indoor and outdoor environments. In some segments, although the
ambient environment does not change, the detection result of the stateless IODetector
may vary. The detection result of the stateful IODetector is relatively more stable due to
the effect of the HMM. Considering the previous state, the HMM filters out some noise
and avoids the misdetection of semioutdoor environments during user movements.
However, the stateful IODetector may give inaccurate results for frequent environment
changes, as it reacts insensitively to the sudden change of environment types and
there are extra energy consumptions for the stateful IODetector due to its continuous
operation.

Detection latency. The detection latency of IODetector is bounded by the time con-
sumed by three subdetectors. The light detector is fast, sampling at 400Hz, which is
sufficient to capture the alternating light intensity. We set the same detection window
length of 10 seconds for both the cellular detector and magnetism detector. Considering
that three detectors can run in parallel, it typically takes 10 seconds to warm up and
then starts reporting detection results. After that, IODetector can keep tracking the
indoor/outdoor transitions according to the application requirements.

System overhead. We measure the energy consumption of continuously sampling light
sensor, magnetism sensor, and cellular signals. Table V shows the measured battery
lifetime when the mobile phones continuously sample different sensors. The mobile
phone’s battery is fully charged before the measurement. During the measurement,
we set the mobile phone screen brightness to the minimum brightness (but not turned
off) while completely discharging the phone’s battery. The experiments were done with
the screen turned on, and we can expect the phone battery lifetime to be significantly
longer if the screen were turned off. During the measurement, the mobile phone is in
idle mode with cellular network connection. The setting “No sensor” means that the
sensors (exclude the idle cellular module) used in our system are not triggered by other
applications. In Table V, we find that the battery durations for sampling magnetism
sensor at 2Hz and sampling light sensor at 400Hz with the FFT are quite close to the
battery duration without sampling any sensors. Sampling the cellular signal consumes
little extra battery power as well. Thus, although the stateful IODetector needs to
perform continuous detection, the low energy consumption makes it affordable for the
users.

4.3. Case Study: Inferring GPS Availability

In this section, we conduct a case study and demonstrate how IODetector can be used
to provide indicative information on GPS availability. Today, many smartphones are
equipped with commodity GPS modules that provide localization and navigation ser-
vices for mobile applications. Traditional works [Thiagarajan et al. 2009] study how
to adaptively use GPS/GSM/WiFi signals for energy-efficient localization or tracking.
Such approaches, however, either assume the preknowledge of the ambient environ-
ment or infer it passively with high overhead and low efficiency. Serving as a generic
and lightweight service, IODetector can be used to provide cheap and instant triggers
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for switching on/off the GPS component to achieve energy efficiency. Many research
works [Burigat and Chittaro 2011; Zhang et al. 2011a] aim to improve GPS accuracy
and are orthogonal to IODetector. IODetector tells the applications when GPS satellites
are visible, and the applications can operate accordingly.

4.3.1. Indoor/Outdoor-Dependent Performance. For accurate localization, GPS normally
needs clear line-of-sight paths to more than four GPS satellites. In the outdoor envi-
ronment, with clear paths to a sufficient number of satellites, commodity GPS modules
can achieve high localization accuracy within 20m. In the shadow of tall buildings, the
line-of-sight paths to some satellites would be blocked and the mobile phone may only
receive signals from a small number of satellites. Some received GPS signals might
be from the reflecting walls leading to the multipath problem. In such scenarios, the
localization accuracy degrades dramatically. In the indoor environment, there is nor-
mally no line-of-sight path to satellites. As a result, the mobile phone takes minutes
to scan the satellites without finding any strong signals from satellites, and the local-
ization error can be up to 400m or may not even get a location fix. In addition to the
inaccuracy, it usually causes high responsive latency and extra power consumption. As
GPS performance differs significantly in the indoor and outdoor environments, mobile
phones greatly benefit from a priori knowledge of the ambient environment types.

4.3.2. GPS Availability and Localization Accuracy. We evaluate the localization accuracy
and energy consumption of a mobile phone GPS module along with a walking path
in our experiment. Figure 14(a) plots the experiment path on our campus. We mark
the route segments from A to S. The total length of the walking path is approximately
1,600m, with 620m outdoor, 380m semioutdoor, and 600m indoor segments, respec-
tively. We query the GPS for location information when we travel along the circular
path with different mobile phone models under different weather conditions during the
1-month experiments.

Figure 14(b) plots the number of visible satellites as well as the signal to noise ratio
(SNR) of the GPS signals in the indoor, semioutdoor, and outdoor environments, respec-
tively. In the left-hand portion of Figure 14(b), we find that in the indoor environment,
fewer than two GPS satellites are visible, although the mobile phones can sometimes
capture slightly more GPS signals near windows. In the outdoor environment, mobile
phones normally receive signals from more than six GPS satellites, even on cloudy and
rainy days. The number of observed satellites varies in between in the semioutdoor
environment (e.g., corridors and paths in the shadow of buildings). The right-hand
portion of Figure 14(b) plots the SNR of the received GPS signals. The SNR value is
a normalized value from the Android API indicating the SNR of the received satellite
signal. An SNR greater than 20 is usually high enough for the mobile phone to get a
location fix, and typically, the greater, the better. As well in the right-hand portion of
Figure14(b), we observe that in the indoor environment, the SNR of GPS signals varies
from 0 to 10. In the outdoor environment, the SNR becomes much higher, varying from
25 to 42 due to the clear line-of-sight paths between the phones and GPS satellites. In
the semioutdoor environment, although we may sometimes observe GPS signals from
more than four satellites, typically the SNR of GPS signals is not high enough to ensure
accurate localization.

Figure 14(c) plots the summarized GPS localization error against the number of
visible satellites. We find that the GPS modules can obtain more accurate localization
results with more visible satellites. According to the experiment results, with fewer
than 4 visible satellites, GPS service is generally unavailable. The GPS module is
able to work with more than 4 visible satellites. However, even with 4 satellite signals,
the localization accuracy varies dramatically in our experiment. With more than 6
visible satellites, the localization error is around 20m. We also observe that more visible
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Fig. 14. Indoor/outdoor-dependent GPS performance.

satellites (e.g., >9) yield less marginal improvements in the localization accuracy. With
10 GPS satellites, the localization error can be within 10m.

In summary, the experiment results demonstrate that GPS availability and localiza-
tion accuracy are highly correlated to the environment types. Yet solely reading such
availability from the GPS module itself can be up to minutes and consume much extra
energy in scanning the satellites.

4.3.3. IODetector-Augmented GPS: IO-GPS. We can simply leverage IODetector to in-
fer the GPS with accurate indoor/outdoor awareness. In our IOdetector-augmented
GPS (IO-GPS) scheme, mobile applications invoke IODetector for the indoor/outdoor
detection before switching on the GPS module. If the mobile phone is outdoors, the
applications can confidently call the GPS for an outdoor localization; if it is indoors,
the applications may postpone the GPS localization and resort to a variety of alterna-
tive indoor localization techniques [Yang et al. 2012]. In this experiment, we track the
localization accuracy and energy consumption of the traditional GPS and the IO-GPS
scheme.

IO-GPS localization accuracy. We follow the path in Figure 14(a) at a walking speed
and collect the GPS localization data. We repeat the experiment 10 times and report
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Fig. 15. GPS localization accuracy of an example instance along the walking path. The user uniformly walks
along the path, and the environment detection results are stored on the user’s mobile phone. The ground
truth data is collected manually, and the GPS localization error is calculated offline.

Fig. 16. CDF of localization error.

the average results. We use the stateful IODetector to estimate the environment type.
Figure 15 presents one example instance. In this figure, we observe that the GPS
localization error varies across different path segments. We see apparent variation on
GPS localization error due to the indoor/outdoor environment transition. For example,
when we move from segment G to H (indoors → outdoors), we see a big dive of the
localization error; when we move from P to Q and then to R (outdoors → semioutdoors
→ indoors), we observe a two-stage jump of the localization error. Consistent with the
preceding measurement, in the indoor environment the GPS localization error is much
larger than that in the semioutdoor or outdoor environment. The path segment J has
a particularly high error because the segment is underground and the GPS component
detects almost no satellite signals.

Figure 16 summarizes the localization error from the 10 experiments, and we take a
fine look at the localization error in outdoor, semioutdoor, and indoor areas, respectively.
The median localization error in the outdoor environment is around 24m with the
maximum error within 50m in our experiments. In the semioutdoor areas, the median
error is around 44m, whereas the 90th percentile can be up to 100m. In the indoor
environment, the median localization error is around 140m with the 90th percentile of
235m. The overall localization error presents the performance of the traditional GPS.
We find that the median localization error is around 55m with a long tail up to 400m.
In our experiment setting, users walk around campus with comparable route segments
inside buildings and in outdoor environments. Yet the research on human activity
patterns show that people spend around 89% of the time in the indoor environment
[Klepeis et al. 2001].
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Table VI. Battery Consumption Comparison (in Hours)

Environment Samsung i9100 HTC Desire HTC Sensation
Indoor GPS 9.2 6.6 8.7
Semioutdoor GPS 9.8 7.2 9.7
Outdoor GPS 10.1 7.3 9.8
Overall GPS 9.8 7.2 8.9
IO-GPS 15.3 12.7 14.5

Without discriminating the indoor/outdoor environment, blindly using the tradi-
tional GPS scheme would perform similarly to that in indoor cases most of the time.
Augmented by IODetector, the IO-GPS performance would be closer to that in the
outdoor/semioutdoor environment. In the bottom portion of Figure 15, we compare
the indoor/outdoor detection results with the ground truth along the experiment path.
We see that IODetector provides promising detection accuracy. In particular, IODetec-
tor successfully detects the indoor cases from the semioutdoor and outdoor cases. For
outdoor/semioutdoor detection at some places, IODetector cannot provide the most ac-
curate result. We revisit places such as the path segments D and E, where IODetector
misclassifies the semioutdoor and outdoor environments. We find that D and E are
located at a corner passing by a two-storey building. It is even difficult to manually
label such places as ground truth, yet we believe that the misclassification results of
IODetector in such corner cases would introduce little influence to the GPS localization
service.

Energy consumption. We measure the power consumption when we run the GPS
module during the experiment. We measure the battery life with the screen set to the
minimum brightness. Table VI summarizes the battery life of three different mobile
phone models in different environments. We also present the battery duration for
running the stateful IODetector for the indoor/outdoor detection. In Table VI, the first
three rows show the energy consumption of mobile phones when the GPS is turned
on for indoor, semioutdoor, and outdoor environments. We also measure the energy
consumption of “Overall GPS” and IO-GPS. In IO-GPS, the GPS module is turned
off when the user is in indoor environments. In the “Overall GPS” case, the GPS
module is always on regardless of the ambient environment type. We find that the GPS
drains the battery rapidly in all environments. The energy consumption of the GPS is
especially high in the indoor environment, where the GPS module continuously scans
the satellite signals and rapidly depletes the battery energy. IO-GPS can significantly
save the battery power that was wasted before because the mobile phone cannot sense
and receive enough GPS satellite signals to get a location fix. With the awareness of
the indoor/outdoor environment, IO-GPS avoids unnecessarily switching on the GPS
module and saves the energy consumption in the indoor environment.

5. RELATED WORK

Although there have not yet been generic approaches proposed for explicit in-
door/outdoor detection, there exists a wide body of related works that implicitly deal
with such a problem.

Environment detection. GPS lock status can be used to indirectly infer the ambient
environment [Ravindranath et al. 2011], but it usually incurs substantial energy cost
and high latency. ABL [Lane et al. 2007] proposes the approach that allows mobile
sensors to localize themselves by exploiting their ambient physical environment sig-
nals. FLIGHT [Li et al. 2012] explores the fact that the light intensity changes with a
stable period in the indoor environment and uses the feature to perform clock calibra-
tion. TempIO [Krumm and Hariharan 2004] classifies the ambient environment by
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comparing the environment temperature with the current outdoor temperature
through the network query. Yet temperature sensors are not widely available on cur-
rent mobile phones. Along with many other sensing recourses, the temperature sensor,
if available on mobile phones, can be used to complement our work. TagSense [Qin
et al. 2011] classifies the ambient environments to automatically annotate images dur-
ing the picture click. Some works in image processing and pattern recognition [Payne
and Singh 2005; Szummer and Picard 1998] also study the problem of classifying im-
ages according to ambient environments. Those works can provide partial indication
of indoor/outdoor environment. As taking photos normally incurs substantial human
effort and energy cost, we can hardly rely on such classification approaches to build a
generic and automatic indoor/outdoor detection service.

Localization and tracking. Many works study GPS/GSM/WiFi localization schemes.
StarTrack [Ananthanarayanan et al. 2009] provides a comprehensive set of APIs for
the development of mobile localization and tracking applications. Zhou et al. [2012a]
use cell tower sequences to track the buses and make bus arrival time predictions
for the waiting passengers. LANDMARC [Ni et al. 2004] proposes a location sens-
ing prototype system that uses RFID technology for locating objects inside buildings.
EnTracked [Kjærgaard et al. 2009] focuses on outdoor pedestrian tracking using a
lightweight accelerometer to trigger GPS to reduce power consumption. Jurdak et al.
[2010] complement GPS duty cycling with short-range radio contacts to balance po-
sitioning accuracy and energy consumption. VTrack [Thiagarajan et al. 2009] studies
reducing energy consumption by using inaccurate WiFi positioning schemes to mea-
sure road traffic conditions. Chung et al. [2011] present an accurate positioning system
based on the magnetic signatures in the indoor environment. Liu et al. [2012] design a
cloud-offloaded GPS solution that allows a sensing device to merely collect little GPS
signal for postprocessing with cloud computation. Such a method may lower the energy
consumption of GPS sensing and make GPS-based localization more energy efficient.
The proposed approach suffers substantial detection delay that may not be feasible for
real-time applications. Walkie-Markie [Shen et al. 2013] is an indoor pathway mapping
system that is based entirely on crowdsourcing and leverages user trajectories obtained
from ordinary pedestrians and their mobile phones.

The preceding approaches primarily focus on obtaining accurate physical locations
and track the targeted objects. They can potentially benefit from the indoor/outdoor
awareness of IODetector—that is, adaptively switching on/off the GPS modules in
localization.

Context awareness and activity recognition. A number of works have studied the use
of sensors to recognize user activities and detect ambient context. Yan et al. [2012]
design and build FALCON to remedy slow app launch using contexts to predict the
next app to launch. CenceMe [Miluzzo et al. 2008] exploits sensors on mobile phones
to automatically infer people’s ambient context and then allows users to share that
through social networks. Mercury [Lorincz et al. 2009] monitors patients using wear-
able sensors in indoor medical environments. EEMSS [Wang et al. 2009] presents
an energy-efficient sensor management framework that uses a minimum number of
sensors on mobile devices to monitor user status. Jigsaw [Lu et al. 2010] supports con-
tinuous sensing applications on mobile phones to infer human activities and ambient
context. PBN [Keally et al. 2011] proposes a user activity detection system using sen-
sors on both mobile phones and on-body wireless sensors. Such works either implicitly
assume the activity context or passively infer the ambient context. Unlike those works,
our work proactively detects the indoor/outdoor environment using various lightweight
sensors (e.g., light sensor, cellular signal, and magnetism sensor) without any remote
supports.

ACM Transactions on Sensor Networks, Vol. 11, No. 2, Article 28, Publication date: December 2014.



IODetector: A Generic Service for Indoor/Outdoor Detection 28:27

Christodoulidis et al. [2012] describe a software video processing and analysis sys-
tem to assist the near real-time detection of human activity. SoundSense [Lu et al.
2009] classifies general sound types (e.g., music, voice) to achieve context recognition.
SensLoc [Kim et al. 2010] collects WiFi beacons to extract useful patterns to infer con-
textual information. Kobe [Chu et al. 2011] aids the mobile classifier development by
automatically extracting high-level semantics from raw sensory data while balancing
energy, latency, and accuracy. Our work primarily differs from them in that IODetec-
tor instantly detects the primitive ambient context without any labor-intensive site
survey and user feedback. Those works may benefit from IODetector by taking the
indoor/outdoor information as a primary filter for context recognition.

6. CONCLUSIONS

We present the design and implementation of an indoor/outdoor environment detection
system that efficiently takes input from a variety of lightweight sensors to derive the
indoor/outdoor information. By intelligently aggregating the subdetectors, IODetector
achieves prompt and accurate detection results in various times and environments. We
comprehensively test IODetector through a prototype implementation and evaluate
the system based on different Android mobile phone models. We particularly conduct a
case study where we make use of IODetector results to infer the GPS availability and
accuracy under various indoor/outdoor environments.

REFERENCES

Ganesh Ananthanarayanan, Maya Haridasan, Iqbal Mohomed, Doug Terry, and Chandramohan A.
Thekkath. 2009. StarTrack: A framework for enabling track-based applications. In Proceedings of ACM
MobiSys. 207–220.

Martin Azizyan, Ionut Constandache, and Romit Roy Choudhury. 2009. SurroundSense: Mobile phone local-
ization via ambience fingerprinting. In Proceedings of ACM MobiCom. 261–272.

Paramvir Bahl and Venkata N. Padmanabhan. 2000. RADAR: An in-building RF-based user location and
tracking system. In Proceedings of IEEE INFOCOM. 775–784.

Stefano Burigat and Luca Chittaro. 2011. Pedestrian navigation with degraded GPS signal: Investigating
the effects of visualizing position uncertainty. In Proceedings of ACM MobileHCI. 221–230.

Argiris Christodoulidis, Konstantinos K. Delibasis, and Ilias Maglogiannis. 2012. Near real-time human
silhouette and movement detection in indoor environments using fixed cameras. In Proceedings of ACM
PETRA. Article No. 1 DOI:http://dx.doi.org/10.1145/2413097.2413099

David Chu, Nicholas D. Lane, Ted Tsung-Te Lai, Cong Pang, Xiangying Meng, Qing Guo, Fan Li, and Feng
Zhao. 2011. Balancing energy, latency and accuracy for mobile sensor data classification. In Proceedings
of ACM SenSys. 54–67.

Jaewoo Chung, Matt Donahoe, Chris Schmandt, Ig-Jae Kim, Pedram Razavai, and Micaela Wiseman. 2011.
Indoor location sensing using geo-magnetism. In Proceedings of ACM MobiSys. 141–154.
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