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Abstract—Estimating the RFID cardinality with accuracy
guarantee is an important task in large-scale RFID systems. This
paper proposes a fast RFID cardinality estimation scheme. The
proposed Zero-One Estimator (ZOE) protocol rapidly converges
to optimal parameter settings and achieves high estimation
efficiency. ZOE significantly improves the cardinality estimation
efficiency, achieving 3x performance gain compared with existing
protocols. Meanwhile, ZOE guarantees arbitrary accuracy re-
quirement without imposing computation and memory overhead
at RFID tags. Due to the simplicity and robustness, the ZOE
protocol provides reliable cardinality estimation even over noisy
channel. We implement a prototype system using the USRP
software defined radio and Intel WISP RFID tags. We also
evaluate the performance of ZOE with extensive simulations.
The evaluation of ZOE shows encouraging results in terms of
estimation accuracy, time efficiency, as well as robustness.

I. INTRODUCTION

Radio Frequency Identification (RFID) systems [9] have
recently received significant interests from both industry and
academia. A large-scale RFID system usually consists of
multiple RFID readers and a huge amount of RFID tags [23].
An RFID tag is capable of storing its unique ID as well as
some other information and wirelessly transmitting them back
to readers. By verifying the unique IDs of RFID tags attached
to physical objects, RFID readers are able to identify and
itemize the objects. Due to small form factor and low cost of
RFID tags, RFID systems provide us a scalable and economic
way for managing massive objects in a variety of applications
including inventory management [8, 14, 17, 22, 25], logistics
[26, 28], object tracking [15, 18], etc.

Fast estimating the cardinality of RFID tags, accordingly
the number of labeled items, is of primary importance in
many applications, e.g., estimating the number of conference
attendees with RFID badges. The estimated RFID cardinality
with guaranteed accuracy may also serve as primary inputs to
upper-layer RFID protocols. For instance, Aloha-based RFID
identification protocols can achieve near-optimal performance
if the frame size is set according to the number of tags.

In order to achieve efficient RFID cardinality estimation,
probabilistic estimation approaches have been proposed which
aim to estimate the approximate number of RFID tags. Some
recent approaches achieve O(log n) estimation efficiency to
the number of RFID tags n [11, 16]. One most recent protocol,
Probabilistic Estimation Tree (PET), achieves O(log log n)
time efficiency for each estimation round [27]. Nevertheless,
existing protocols require many independent estimation rounds
so as to achieve high accuracy on the estimation results.

Further improving the time efficiency of each estimation
round will significantly benefit the entire cardinality estimation
process, meet the stringent time requirement of many realtime
applications, and support larger scale of RFID systems. While
pursuing the estimation efficiency at the optimum, we are
also aiming at reducing the processing overhead of resource-
constrained RFID tags. Most existing probabilistic approaches
require generating large volume of random numbers or alter-
natively pre-storing them at RFID tags, which leads to heavy
computation and storage burden for RFID tags. We aim at
shifting such processing overhead from resource-constrained
RFID tags to the much more powerful RFID readers. Besides,
most existing works assume a reliable wireless channel be-
tween the RFID reader and tags, which is contradicting with
the fact that the wireless channel is mostly error-prone.

In this paper, we present Zero-One Estimator (ZOE): a
simple yet fast RFID cardinality estimation protocol with
guaranteed accuracy requirement. ZOE first tunes the system
parameters and converges to optimal settings with a bisection
search with small overhead. With the optimized parameter
settings, ZOE estimates the RFID cardinality with only one
bit feedback from tags at each round providing extremely high
estimation efficiency. Through simply XORing the original
random number stored at each RFID tag with a common
random number generated by RFID readers, ZOE shifts the
burden of generating randomness from lightweight tags to
relatively powerful readers. We further take the noisy wire-
less channel into consideration and propose Error Estimation
and Adjustment (EEA) algorithm to adjust estimation results
according to the practical communication error rates.

We implement a prototype system using the Universal
Software Radio Peripheral (USRP) [4] in concert with the
Intel Wireless Identification and Sensing Platform (WISP)
[21]. We implement the ZOE reader functionality with USRP
Software Defined Radio (SDR) that interrogates programmable
WISP tags. The ZOE protocol only requires slight updates to
the EPCglobal Class 1 Generation 2 (C1G2) standard. We
also evaluate ZOE with extensive simulations to study its
performance in large-scale RFID systems.

The rest of this paper is organized as follows. We first
briefly review the related work in Section II. In Section III,
we introduce our system model and describe the problem of
cardinality estimation. We give detailed description on ZOE
in Section IV. We present the implementation of ZOE in
Section V. We evaluate the performance of ZOE with extensive
simulations in Section VI. Section VII concludes this paper.



II. RELATED WORK

One closely related problem is RFID identification which
aims at collecting the tag IDs of all RFIDs in the interro-
gation area [7, 19, 20, 24, 29]. The identification protocols
based on collision arbitration can generally be classified into
two categories: Ahola-based protocols [20] and Tree-based
protocols [7, 29]. In small-scale RFID systems, we may
directly apply the identification protocols to count the exact tag
cardinality. Nevertheless, such a method becomes infeasible
due to the low efficiency of identification protocols. Rather
than identifying all the tags, probabilistic estimation protocols
estimate the number of tags which meets the customized
accuracy requirement.

Kodialam and Nandagopal present Unified Simple Estimator
(USE) and Unified Probabilistic Estimator (UPE) [12]. Those
schemes are vulnerable to multiple counting problems when
multiple RFID readers are deployed to cover the interrogation
region. Besides, the protocols require a cardinality upper
bound known in advance. Kodialam et al. propose Enhanced
Zero-Based (EZB) estimator to estimate relatively large num-
ber of tags [13].

Recent probabilistic estimation approaches achieve
O(log n) estimation efficiency to the total number of RFID
tags n. Han et al. propose the First Non-Empty slot Based
(FNEB) estimator with binary search method [11]. Qian et al.
[16] propose the Lottery Frame (LoF) based estimator, which
is a replicate-insensitive estimation protocol. Both approaches
require the tags to cooperate with the reader by generating
large volume of random numbers and respond accordingly.
One most recent protocol, Probabilistic Estimating Tree (PET)
based estimator [27], advances the estimation efficiency and
achieves O(log log n) processing time efficiency to the tag
cardinality n. Such approaches only consider an ideal wireless
channel which is free of transmission error.

III. SYSTEM MODEL AND PROBLEM DESCRIPTION

A. System model

We consider a large-scale RFID system consisting of three
major components: a large volume of RFID tags, several RFID
readers, and a backend server connecting the readers. Multiple
RFID readers are normally deployed to ensure a full coverage
in large-scale RFID systems. The backend server coordinates
the RFID readers and initiates the cardinality estimation pro-
cess. The RFID readers relay the commands received from
the backend server and broadcast to tags, and later report
the tags’ responses back to the server. When coordinated and
synchronized, the multiple readers can logically be considered
as one RFID reader. The RFID system may use lightweight
passive RFID tags or powerful active ones.

RFID systems may operate over a wide variety of frequency
bands (e.g., 13.56/433/900MHz). We exclusively focus on the
RFID systems operating in the 900MHz ultra-high frequency
band. We assume that the RFID system works on frame-slotted
Aloha model. RFID readers initiate interrogation by sending
operation codes and specifying PHY/MAC parameters. When
energized by the continuous waves from reader, each tag

backscatters a message or keeps silent according to the reader’s
command. Such a communication model has been widely
adopted in many RFID systems compliant with the de facto
EPCglobal C1G2 standard [2].

The practical communication channel is mostly error-prone
depending on various factors including transmission power,
interrogation distance, antenna gain, interference, etc [6].
Due to the channel attenuation even if there are some tags
transmitting back responses, the reader may fail to detect them
in practice. We call such missing detection errors as false
negatives. On the other hand, the reader may falsely detect a
busy channel due to the interferences, even when no response
is transmitted. We call such errors as false positives.

B. Problem description

The objective of this work is to efficiently and accurately
estimate the tag cardinality. To meet stringent realtime re-
quirement, the estimation protocol should compute an accurate
tag cardinality in an efficient manner. Since the cardinality of
RFID tags could easily grow up to tens of thousands (e.g., a
typical port inventory application concerns hundreds of con-
tainers, each of which contains a large number of products),
we need to design a scalable and efficient estimation approach
that can guarantee the customized accuracy requirement.

Consistent with the existing approaches [11, 16, 27], the
accuracy requirement is presented by (ε,δ)-approximation. We
denote by n̂ the estimated number of the tag cardinality while
the actual number is n. Given the accuracy requirement of
(ε,δ)-approximation, we expect an estimation result n̂, which
satisfies Pr{|n̂ − n| ≤ εn} ≥ 1 − δ. For example, when
the actual tag cardinality is 10000, (ε = 5%, δ = 1%)-
approximation expects an estimation result within the interval
[9500, 10500] with a probability of 99% and above.

We abstract the time efficiency with the total time slots used
to estimate the cardinality. Most recent approaches only need
to distinguish an idle slot from a busy slot [11, 16, 27]. The
smaller number of time slots means the shorter processing time
and thus the higher time efficiency, and vice versa. Meanwhile,
we seek to reduce the computation and memory burden at
the RFID tags to facilitate the use of low-cost but resource-
constrained passive tags rather than expensive active ones.

While most recent estimation protocols assume zero error
rates in the underlying wireless channel, we target at practical
channel conditions with false negatives and false positives.
When the bit error rate is high, it becomes very difficult to
derive accurate cardinality estimation. Nevertheless, when the
channel is in mild conditions, we expect that the estimation
protocol computes a reasonably accurate estimation result.

IV. ESTIMATION PROTOCOL

In this section, we first discuss the design principle of
ZOE protocol. We then consolidate the essential idea with
a cardinality estimation protocol, which provides O(1) time
efficiency for each estimation round. Table I summarizes the
key notations used across this paper.



TABLE I
KEY NOTATIONS

Symbols Descriptions
n Actual number of tags

n̂ Estimated number of tags

m Estimation rounds

H(.) A uniform hash function

HB(.) Binary representation of H(.)

R(.) Position of right-most zero in HB(.)

θ A threshold affecting the behavior of tags

λ Load factor n/2θ

q Channel error rate

A. Principle

The conventional approaches take advantage of the frame-
slotted Aloha protocol to estimate the number of tags. The
RFID reader normally needs to examine the state of each time
slot in the frame. Figure 1(a) presents illustrative examples of
most recent protocols, e.g., FNEB [11], LoF [16], and PET
[27]. In FNEB, each tag randomly selects a slot from O(n)
slots with uniform distribution functions to send a response
in each estimation round. If the frame size is fixed, then the
first busy slot (herein, slot 3) indicates the tag population (i.e.,
the smaller the first busy slot is, the larger the tag population
would be). Leveraging the monotonic feature, FNEB locates
the first busy slot by examining O(log n) slots. LoF and
PET reduce the frame size to O(log n) by letting each tag
select a slot with geometric distribution functions, such that
nearly 1/2i of tags respond in the ith slot. PET achieves
O(log log n) time efficiency leveraging a probabilistic binary
tree structure. The estimation results of such protocols may
statistically vary for each estimation round. For instance, the
first busy slot in one estimation round might dramatically
deviate from the expected value. Existing protocols thus need
many independent estimation rounds to derive an average to
accurately approximate the actual number of tags.

To improve the estimation efficiency, we propose the ZOE
protocol in which each frame only contains one slot. In
particular, all the responses from tags aggregate at a single
slot, leading to either an idle slot if no tag responds or a busy
slot otherwise as illustrated in Figure 1(b). Suppose there exist
n RFID tags, and each tag responds with the probability of
P , and keeps silent with the probability of 1− P . Intuitively,
the more tags there are, the higher probability that the reader
observes a busy slot, and vice versa. We can thus measure the
ratio of busy (idle) slots, and infer the tag population with a
priori knowledge of P .

Unlike conventional approaches where only small portion
of tags participate in each time slot, in ZOE the responses
from all the tags aggregate in the single time slot, which
allows ZOE to make extensive use of each time slot, thereby
achieving higher time efficiency. By intelligently setting the
system parameters, ZOE only needs comparable number of
estimation rounds with conventional approaches, meaning that
we reduce the overhead in each estimation round to O(1)
while keeping the number of estimation rounds similar to
those in conventional approaches. Towards the more efficient
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Fig. 1. An illustrative comparison of ZOE with conventional schemes of
FNEB, LoF and PET.

cardinality estimation, we present detailed theoretical analysis
and consolidate the aforementioned design principle with a
prototype system in the following.

B. Zero-One Estimator protocol

We describe the detailed ZOE protocol in this section.
1) Tag: When probed by a reader in the cardinality esti-

mation process, each tag independently computes a random
number with a uniform distribution hash function H(id, s),
where s denotes a random seed. For simplicity, we omit the
notation of s for the hash functions. We denote by HB(id) the
binary representation of H(id). We also denote by R(id) the
index of the right-most zero bit in HB(id) as follows

R(id) = min{i|HB(id)[i] = 0}. (1)

If R(idi) ≥ θ the tag responds to the reader where θ is a
threshold received from the reader; and if R(idi) < θ the tag
keeps silent.

Let the random variable of R(idi) be Ri, 1 ≤ i ≤ n, then
we have the probability

Pr(Ri) = pRi(1− p),
where p denotes the probability that a bit of HB(id) turns
out to be ‘1’. Typically, we assume p = 0.5, i.e., the hash
function is a uniform distribution hash function. Then we have
p = 1− p = 0.5, and

Pr(Ri) = pRi+1 =
1

2Ri+1
.

The probability that a tag keeps silent given a threshold θ
is

Pr(Ri < θ) =

θ−1∑
k=0

Pr(k) =

θ−1∑
k=0

1

2k+1
= 1− 1

2θ
.

On the other hand, a tag will respond to the reader with the
probability of 1− Pr(Ri < θ) = 1

2θ
.

2) Reader: a reader initiates cardinality estimation by send-
ing a random seed and the threshold θ to the tags, and waits
for the responses from the tags. In the case that R(idi) < θ,
∀i ∈ {1, 2, . . . , n}, the reader observes no reply from the
tags. Therefore, with the assumption of independent, identical
distribution (i.i.d) for Ri, the probability that there is no reply
from the tags (i.e., the channel is idle) is as follows

Pr(idle) = [Pr(Ri < θ)]
n

=

(
1− 1

2θ

)n
≈ e−n/2

θ

= e−λ,

where the load factor λ = n/2θ, and λ > 0.
The probability that there is a reply (no matter a singleton



Algorithm 1 ZOE algorithm for RFID readers

1: m← [
cσ(X)max

e−λ(1−e−ελ) ]2

2: Initiate the estimation, broadcast θ
3: for i← 1 to m do
4: Generate a random seed s and broadcast it
5: if there is no response in the slot then
6: Xi ← 1
7: else
8: Xi ← 0
9: end if

10: end for
11: X̄ ← 1

m

∑m
i=1Xi

12: return n̂← −2θ ln X̄

Algorithm 2 ZOE algorithm for each RFID tag
1: Receive the threshold θ
2: while TRUE do
3: Receive the random seed s; Compute R(id)
4: if R(id) ≥ θ then
5: Respond immediately
6: else
7: Keep silent
8: end if
9: end while

reply from one tag or replies from multiple tags) is

Pr(reply) = 1− Pr(idle) ≈ 1− e−n/2
θ

= 1− e−λ.
We define a random variable X which takes value 1 with

probability Pr(idle) ≈ e−n/2
θ

= e−λ and value 0 with
probability Pr(reply) ≈ 1 − e−n/2

θ

= 1 − e−λ. Then we
have

Pr(X = 1) ≈ e−λ,Pr(X = 0) ≈ 1− e−λ.
Obviously, the random variable X follows the Bernoulli dis-

tribution. Therefore, the expectation and the standard deviation
of X are as follows

E(X) = e−λ, σ(X) =
√
V ar(X) =

√
e−λ(1− e−λ).

The maximum standard deviation of X is
σ(X)max = 0.5,when e−λ = 0.5.

We define the random process X̄ = 1
m

∑m
i=1Xi as the

average of m independent observations, where Xi denotes the
ith observation of random variable X . We assume the trials
of Xi(1 ≤ i ≤ m) are i.i.d, then we have E(X̄) = E(X) and
σ(X̄) = σ(X)√

m
.

According to the law of large numbers [10], when m is
large we have

X̄ = E(X̄) = E(X) = e−n/2
θ

= e−λ. (2)

According to (2), we can estimate the load factor as follows
λ̂ = − ln X̄,

where λ̂ denotes the estimation of λ.
The observation of X̄ can thus be used to estimate the tag

cardinality n̂ as follows
n̂ = −2θ ln X̄. (3)

Since the result may vary slightly because of the estimation
variance, we seek a guaranteed cardinality estimation result,
e.g., Pr{|n̂ − n| ≤ εn} ≥ 1 − δ. The estimation accuracy

requirement can be represented as follows
Pr{|n̂− n| ≤ εn} = Pr{e−λ(1+ε) ≤ X̄ ≤ e−λ(1−ε)}.

We define a random variable Y = X̄−µ
σ , where µ =

E(X̄) = e−λ, and σ = σ(X̄) = σ(X)√
m

. By the central limit
theorem [10], we know Y is asymptotically standard normal
distribution.

Given a particular error probability δ, we can find a constant
c that satisfies

1− δ = Pr{−c ≤ Y ≤ c} = erf(
c√
2

),

where erf is the Gaussian error function [10]. Therefore, we
can guarantee the accuracy requirement Pr{|n̂− n| ≤ εn} ≥
1− δ if we have the following conditions

e−λ(1+ε) − e−λ

σ
≤ −c and

e−λ(1−ε) − e−λ

σ
≥ c. (4)

According to (4), we have

m ≥ max{[
cσ(X)max

e−λ(1− e−ελ)
]2, [

cσ(X)max

e−λ(eελ − 1)
]2}

≥ [
cσ(X)max

e−λ(1− e−ελ)
]2. (5)

Therefore, with such m estimation frames, ZOE can guar-
antee the accuracy requirement of Pr{|n̂−n| ≤ εn} ≥ 1− δ.
Algorithm 1 regulates the behavior of the RFID reader. The
reader calculates the estimation rounds m according to (5)
given an accuracy requirement (line 1). The reader initiates
the estimation process by energizing the tags and sending the
threshold θ (line 2). The reader generates random seeds and
broadcasts them (line 3-4), and records the tags’ responses
(line 5-9). The average X̄ is thus calculated based on the
m estimation rounds (line 11). Finally, the estimated tag
cardinality is computed according to (3) (line 12).

Each tag performs simple tasks as regulated in Algorithm
2. In each estimation round, when receiving a random seed
s, the tag computes the random number R(id) according to
(1). The tag keeps silent or responds to the reader according
to R(id) and the threshold θ. If R(id) ≥ θ the tag sends a
response, and otherwise keeps silent (line 2-9).

Yet one problem remains. In (5), we see that m depends on
λ = n/2θ indicating that the threshold θ may influence the
estimation efficiency. In the following, we discuss how to set
the threshold to guarantee the optimal performance of ZOE.

C. Parameter setting

Before we perform the estimation process, we need to set
the threshold θ which directly influences the behaviors of the
tags and the estimation efficiency. If θ is too big, the reader
will consistently observe idle slots, i.e., X̄ = 1; if θ is too
small, the reader will observe busy slots in almost every time
slots, i.e., X̄ = 0, with high probability. In either situation, it
consumes extra processing time to meet an accuracy require-
ment. As a matter of fact, if we look at the lower bound of
the estimation round m measured in (5), since λ = n/2θ, the
lower bound depends on the tag cardinality which is not known
in advance. We denote by f(λ) = e−λ(1 − e−ελ) ≈ e−λελ,
the denominator of cσ(X)max

e−λ(1−e−ελ)
in (5). To reduce the number



Algorithm 3 Threshold setting algorithm
1: low ← 0, high← 32
2: while low < high do
3: mid← (low + high)/2
4: θ ← mid, Compute X̄ with Algorithm 1
5: if X̄ >= e−2+e−1

2
and X̄ <= e−0.5+e−1

2
then

6: θ ← mid; break;
7: end if
8: if X̄ > e−0.5+e−1

2
then

9: high← mid
10: else
11: low ← mid
12: end if
13: end while
14: return θ

of estimation rounds, we maximize the denominator f(λ)
since the numerator cσ(X)max is constant given an accu-
racy requirement. We compute the first order derivative of
f(λ) ≈ e−λελ as follows,

df(λ)

dλ
= εe−λ(1− λ). (6)

According to (6), we find the first order derivative vanishes
at λ ≈ 1, and we have εe−λ > 0. Therefore, the lower bound
mmin is achieved at λ ≈ 1, i.e., when X̄ = e−λ ≈ e−1.

This observation motivates us to adapt the threshold θ
according to the observation of a short sequence of the tags’
responses such that X̄ becomes close to e−1. When the reader
observes too many idle slots, i.e., X̄ � e−1, it decrements
the threshold to increase the probability that tags would send
responses; when the reader observes almost all the busy slots,
i.e., X̄ � e−1, it increments the threshold to decrease the
probability that tags would send responses.

The expected value of X̄ is monotonically non-decreasing
against the threshold. We exploit such a monotonic feature to
fast converge to an optimal threshold. We can reach a suitable
θ that provides us X̄ ≈ e−1 with bisection search. Since
we know the target average of X̄ , i.e., e−1 ≈ 0.37, we can
terminate the bisection search when the intermediate value of
X̄ becomes very close to e−1 ≈ 0.37. In particular, we adapt
θ and terminate the bisection process when the intermediate
value X̄(θint) reaches the interval [(e−2 + e−1)/2, (e−0.5 +
e−1)/2] and use θint as the threshold.

Algorithm 3 presents the threshold setting process using
bisection search method. The threshold is set to be the average
of low and high. The low end and high end are adjusted
according to X̄ (line 8-12). X̄ is computed according to
Algorithm 1 with the parameters θ = mid (line 4). Finally, the
two ends converge, and the average is used as the threshold
θ (line 2). When the intermediate value X̄ becomes very
close to the target average e−1, the parameter setting process
terminates and θ = mid is used as the threshold (line 5-7).

Figure 2(a) depicts an example of setting the threshold. In
the experiment, the actual tag cardinality is 1024, and thus
the optimal threshold is θ = log2 1024 = 10. We repeat a
small number of trials in each bisection step to derive X̄ . In
Figure 2(a), we see that the experiment consists of 4 steps
(i.e., θ = 16, 8, 12, and 10), and the number of trials is set
to be an empirical number of 32 (we will elaborated why 32
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Fig. 2. Parameter setting process: (a) Fast convergence to the optimal
threshold value with bisection search method; (b) When E(X) → 0 or
E(X) → 1, the variance is very small.

is sufficient shortly). At the first step (1-32), we start with
the threshold θ = 16. The reader observes 32 consecutive idle
slots denoted by ‘1’s in Figure 2(a). Since X̄ � e−1, we adjust
the parameter by decreasing θ at the second step (33-64), and
we repeat again 32 trials with the threshold θ = 8. The reader
observes 32 straight busy slots denoted by ‘0’s. At the third
step (65-96), the threshold is tuned to be (8 + 16)/2 = 12.
In this case, the reader observes both ‘1’s and ‘0’s (X̄ =
24/32 = 0.75 > e−1). At the final step (97-128), we run
the estimation with θ = (8 + 12)/2 = 10, in which case
the reader also observes mixed ‘1’s and ‘0’s (X̄ = 11/32).
Since X̄ = 11/32 ≈ 0.34 at the final step is quite close to
e−1 ≈ 0.37, we set the threshold θ to be 10.

Here, we elaborate why the empirical number of 32 trials
is sufficient for the threshold setting. Figure 2(b) plots the
variance of X against the expectation of X . We find that
when the expectation E(X)→ 0 or E(X)→ 1, the variance
V ar(X)→ 0, indicating that when θ is either too big or too
small, X̄ shall be relatively stable around E(X) to tell the
scale of n. Therefore, it is safe to roughly and rapidly estimate
the scale of tag cardinality and set the threshold accordingly
with a small number of runs. This is the reason why we can
use a small sequence of 32 slots to calculate the optimal θ.

The parameter setting process involves several bisection
steps to determine a threshold. This small amount of overhead
after further reduction by early termination becomes almost
negligible (about 3% of the total estimation overhead). There-
fore, we can first tune the threshold θ and converges to an
optimal parameter setting at a very small cost. Using such
an optimal threshold, we can estimate the accurate cardinality
with minimal number of estimation rounds achieving higher
overall estimation efficiency.

D. Discussion
1) Reliable estimation with unreliable channel: Most ex-

isting protocols study the cardinality estimation with reliable
communication channel, while the wireless channel is error-
prone depending on various conditions. The recent protocols
fail to capture the actual cardinality over noisy channels even
with the knowledge of error rates. For instance, the false
detection of response signal might tamper the monotonic
feature of response signal along the estimation path in PET
protocol [27], and substantially degrades estimation accuracy.
LoF [16] also relies on channel qualities, and estimation
accuracy decreases dramatically even with a small error rate.



Fig. 3. Testbed: 2 circular antennas are mounted to the USRP N210 software
defined radio. The USRP N210 is connected via GigE to a laptop which acts
as an RFID reader. The reader interrogates WISP RFID tags.

We assume that the error rate is time-invariant during the
short period of estimation process. We consider the false
negative rate and false positive rate are both q for simplicity
(i.e., the chances of missing a tag response and triggering a
false detection are equally likely). One may easily extend it
to the cases of asymmetric false positive/negative rates. We
propose Error Estimation and Adjustment (EEA) algorithm to
adjust the estimation results according to error rates.

We denote by X̄Error the average value of m independent
observations with the error rate q. Then we have

E(X̄Error) = E(X̄ − q(2X̄ − 1)). (7)
According to (7), we compute E(X̄) with q as follows,

E(X̄) =
E(X̄Error)− q

1− 2q
.

We extend (3) and estimate the tag cardinality as follows,

n̂Error = −2θ ln(
X̄Error − q

1− 2q
). (8)

From (8), we find that the ideal channel condition is the
special case where q = 0. When q = 0.5, the communication
becomes totally random, i.e., the channel noise completely
overwhelms the measurement. Nevertheless, we can success-
fully compensate the communication error, if 0 < q < 0.5.

2) Reducing the overhead at RFID tags: In the basic
algorithm, each tag needs to generate a random number at
each estimation round. Generating random numbers, however,
requires a fair amount of computation at the RFID tags.
Existing approaches propose to preload random numbers into
tags, which requires extra memory. At resource-constrained
RFID tags, either method in providing the randomness is far
from satisfactory. Instead of using new random numbers at
different estimating rounds, a 32-bit random number is stored
at each RFID tag during tag manufacturing and used for all
estimation rounds. Many off-the-shelf methods are available
for manufacturers to preload the random numbers to tags
[27]. The backend server generates a uniformly distributed
random number at each estimation round and broadcasts it
to RFID tags. We denote the random number in the binary
form as RB . Receiving the random number, each tag computes
R(id) = min{i|[HB(id) ⊕ RB ][i] = 0}, where ⊕ denotes
the bitwise XOR operation, and participates in the estimation
round with R(id). Such a method only requires the tags
to perform a lightweight bitwise XOR function. By this
modification, we may expect nearly independent trials, and
the above analysis of the ZOE protocol still holds.

V. IMPLEMENTATION

We implement a prototype system to validate ZOE using
USRP SDR and WISP tags. Commercial RFID manufacturers
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only provide limited interfaces to developers. The combination
of the USRP and the WISP platform provides us full pro-
grammability to both RFID reader and tags. We implement
the ZOE reader using USRP N210 based on the GNURa-
dio platform and the Gen2 RFID projects [3] to interrogate
WISP RFID tags. The ZOE reader uses the USRP RFX900
daughterboard which operates in the 900MHz band [4]. We
connect the daughterboard to Alien ALR-8696-C circular
polarized antennas with the antenna gain of 8.5dBic [1]. The
typical power output of RFX900 daughterboard is only 23dBm
(200mW), far less than 30dBm (1W) of commercial RFID
reader. We connect the USRP N210 via Gigabit Ethernet to
a laptop equipped with a qual-core 2.67GHz processor and
2.9GB memory running Ubuntu 10.10. Figure 3 shows the
testbed.

We implement the ZOE tag using the programmable WISP
tags based on the WISP4.1 hardware and firmware. The WISP
tag mainly consists of an RFID circuitry and an ultra-low
power 16-bit MSP430 microcontroller. The RFID circuitry is
used to harvest power and backscatter radio signals. Current
WISP firmware has partially implemented the EPCglobal
C1G2 protocol [2, 5]. We extend the EPCglobal C1G2 protocol
with the functionality of ZOE cardinality estimation. The
implementation of the ZOE protocol only requires a slight
extension to the EPCglobal C1G2 protocol.

In EPCglobal C1G2 standard [2], the RFID reader initiates



each communication round between an RFID reader and tags.
The reader transmits an operation code (e.g., Query, Write,
Select, ACK etc.) indicating the expected operation of tags,
the backscatter bit rate, and tag encoding schemes (e.g., FM0
or Miller) [2]. Figure 4 shows the communication between a
reader and a tag in the inventory communication round where
the downlink uses pulse interval encoding at 40kHz and uplink
uses Miller-4 encoding at 250kHz. The reader initiates the
communication by sending a Query command to the tag.
When receiving a command, each tag responds according to
the operation code. As the operation code is Query in this
case, the tag transmits a 16-bit random number (RN16) back to
the reader and waits for ACK following the EPCglobal C1G2
standard [2]. Once the reader ACKs the RN16, the tag responds
with the EPC code as depicted in Figure 4.

We implement the ZOE protocol by following the con-
ventional reader-initiated approach. We first add the Count
command into the command set of the standard. To estimate
the tag cardinality, the reader initiates counting procedure by
sending a Count command along with other parameters (θ,
RB , encoding scheme, etc). In the case that the operation
code is Count, the tag computes R(id) = min{i|[HB(id)⊕
RB ][i] = 0}. If R(id) ≥ θ, the tag transmits a short response
according to the encoding scheme, and keeps silent otherwise.
Figure 5 shows the communication between the reader and the
tag in 4 counting rounds, where the operation code is Count
with θ = 1, varying RB , and the Miller-4 encoding scheme.
In Figure 5, we can see that two short responses follow the
first and the third Count commands at around 4ms and 7ms,
respectively; while no response follows the second and the
fourth Count commands. One may notice that the the first
Count command takes slightly longer time than the second
Count command. The reason is that RFID reader uses the
pulse interval encoding scheme, in which bit-1 takes twice of
the transmission time of bit-0. As the reader generates different
RB for each Count command, the transmission time varies
slightly across the commands in Figure 5.

To send a short response, a tag simply transmits a single
tone (at 250kHz) which allows simple yet robust detection at
readers. We first feed the signals into a bandpass filter with
center frequency of 250kHz to remove most background noise.
We use the standard moving window summation (with width
of 64) to smoothen out any sudden changes due to noises
in the band. If the signal strength exceeds the mean plus
three standard deviations (i.e., 99.7% confidence level), we
say the channel is busy, and idle otherwise. Figure 6 shows
the signal strength around the frequency band of 250kHz and
moving window summation of the tag response following the
first Count command approximately between 4.25ms and
4.5ms. We observe a big jump of moving window summation
during the tag response period (4.25-4.5ms), while the sum is
small and flat when no tag response is transmitted (e.g., after
4.6ms). As shown in Figure 6, when multiple tags respond
simultaneously using on-off keying, the aggregated signal
strength still provides valid indications of tag responses with
moving window summation.

Although ZOE can run in realtime on the USRP N210
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Fig. 7. Performance of ZOE with different numbers of estimating rounds.

in concert with the WISP RFID tags, we turn to the large-
scale simulations to compare ZOE with the existing cardinality
estimation schemes. This is for two reasons. First, partially due
to the complexity of existing cardinality estimation schemes
(e.g., FNEB, LoF, and PET), such approaches have not yet
been successfully implemented on programmable RFID tags.
Second, we want to compare the schemes in various complex
settings, such as error-free and error-prone channel conditions,
and varying number of tags. Besides, programming, debug-
ging, and testing a large number of programmable RFID tags
still remain challenging.

VI. EVALUATION

We conduct extensive simulations under various scenarios
to study the performance of the ZOE protocol. We first
investigate the estimation accuracy and the corresponding
processing cost of ZOE. We then compare ZOE with the
most recent approaches FNEB, LoF, and PET in terms of the
time efficiency, as well as computation and memory overhead
at tags. We further investigate the estimation performance of
different protocols over noisy channels.

A. Simulation setting and performance metrics
We first focus on the ideal communication channel (i.e.,

no transmission error occurs between RFID tags and RFID
readers) and the reader is capable of correctly detecting the
responses from tags. After that, we evaluate the robustness and
reliability of the estimation protocols with unreliable channel
conditions. For all simulation instances, we repeat 300 runs
and report the average if not explicitly specified otherwise.

The estimation accuracy is one of the most important
metrics for an estimator. Consistent with existing works, we
use the same accuracy metric as studied in LoF and PET.

Accuracy = E(n̂/n),

where n̂ denotes the estimation result and n refers to the actual
number of tags. This metric evaluates the estimation accuracy
and bias. An ideal estimator is expected to return an estimation
result close to the actual value. The closer it is to 1, the higher
the estimation accuracy is.

We use the standard deviation to measure the estimation
precision

σ =
√
E[(n̂− n)2],

where the operator E[.] denotes the average of all runs. A high
standard deviation indicates the estimation results spread out,
whereas a low standard deviation means the estimation results
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q = 10%; (b) q = 30%.

concentrate. Therefore, we expect an ideal estimator with a
low standard deviation.

Given the accuracy requirement of (ε,δ)-approximation,
we examine the estimating time that it takes to meet the
requirement. Since the transmission rate varies depending on
various factors (e.g., PHY/MAC layer implementations and
channel conditions, etc.), same as the benchmark approaches
we abstract the estimation time with the number of total time
slots that each protocol consumes for fair comparison.

Finally, another metric we consider is the computation and
memory overhead at RFID tags. We measure the overhead
by comparing the quantity of random numbers generated or
stored at RFID tag side.

B. Proposed protocol investigation

We demonstrate that the ZOE protocol provides tunable
estimation accuracy at the cost of processing time. Figure 7(a)
depicts different estimation accuracy while different number
of estimation rounds are applied. The threshold θ is set at
the optimal value for all cases. The figure suggests that one
can improve the estimation accuracy by running additional
rounds of estimation. By repeating 64 rounds of estimation,
ZOE already achieves the accuracy very close to 1 regardless
of the actual tag cardinality, which suggests that the variation
of tag cardinality has little impact on the estimation accuracy.

Figure 7(b) illustrates the standard deviation which indicates
the precision of the estimator. The figure suggests that one can
reduce the standard deviation and thus improve the estimation
accuracy by performing extra estimation rounds. With 64
estimation rounds, ZOE achieves standard deviation less than
20% of total RFID tag number, i.e., it achieves less than 0.2
of normalized standard deviation.

We investigate the estimation accuracy for different commu-
nication error rates varying from 5% to 30%. The estimation
round m is fixed at 64 in all experiments. In the cases that
m 6= 64, the simulation results suggest similar trends.

Figure 8 plots the estimation accuracy with and without Er-
ror Estimation and Adjustment (EEA) algorithm, respectively.
As shown in Figure 8, the estimation accuracy of the basic
ZOE protocol degrades dramatically with the increase of the
communication error, whereas the estimation accuracy with
EEA remains reliable with various error rates. That is because
EEA takes into the consideration the communication error and
incorporates such information into the estimation.
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C. Performance comparison

We compare the performance of ZOE with the recent
estimation protocols, FNEB, LoF, and PET. As the existing
approaches do not tolerate the communication errors, we first
focus on the performance comparison with the ideal channel.

Given the same estimation accuracy requirement of (ε,δ)-
approximation, we compare the estimating time slots that each
estimation protocol needs to achieve the accuracy requirement.
The actual tag cardinality is 50000. For the proposed ZOE
protocol, the entire estimation process consists of the time slots
to select a suitable threshold, and m time slots to improve the
accuracy. We add the time slots for the two stages and present
the sum for the comparison with other protocols.

The recent protocols shall perform multiple estimation
rounds to meet the certain estimation accuracy. We first keep
the error probability δ = 1% fixed and vary the confidence
interval from 5% to 20%. Figure 9(a) plots the total time
slots needed by each protocol. Then we keep the confidence
interval ε = 5% fixed and vary the error probability δ
from 1% to 15%, and the simulation results are presented
Figure 9(b). According to the simulation results, ZOE only
consumes about 31% processing time of PET to provide the
same estimation accuracy, which translates to more than 3x
performance improvement in terms of time efficiency and even
more compared with LoF and FNEB. We can infer from the
simulation results that provided the same amount of processing
time, the estimation accuracy of ZOE should be more accurate.

We provide PET, FNEB and LoF the same amount of
time slots to estimate the actual tag cardinality of 50000,
and present the distributions in Figure 10. According to the
simulation results, we find that the estimation results of ZOE
are much more concentrated about the actual cardinality.
Besides, the number of outliers is much smaller than those of
PET, FNEB and LoF. In particular, with the same processing
time that 99% estimation results fall into the confidence
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interval [47500, 52500] in ZOE, the existing approaches can
only guarantee less than 80% results within such an interval.

We compare the computation and memory overhead at
RFID tags. We examine the memory overhead and compare
ZOE with recent protocols in Figure 11. We fix the error
probability δ = 1% and vary the confidence interval ε from 5%
to 20% in Figure 11(a). We vary the error probability δ from
1% to 15% with fixed confidence interval ε = 5% in Figure
11(b). According to the statistics, we observe that ZOE and
PET consume constant small storage, and outperforms FNEB
and LoF which require much larger memory cost.

Till now we focus on the performance comparison over ideal
channels. In Figure 12, we examine the estimation accuracy
of ZOE compared with recent approaches with different error
rates. We vary the error rate from 5% to 30%, and the actual
tag cardinality is 50000. According to Figure 12, we find that
the estimation accuracies of LoF and PET are significantly
biased from the actual value. Though FNEB is more robust
than LoF and PET, it still fails to provide an unbiased and
accurate estimation. On the other hand, ZOE with EEA resists
the various error rates and provides accurate estimation results
even when the error rate reaches 30%.

VII. CONCLUSION

In this paper, we propose a cardinality estimation protocol
based on Zero-One Estimator (ZOE) which improves the
estimation time efficiency in meeting arbitrary accuracy re-
quirement. ZOE only requires one-bit response from the RFID
tags per estimation round while prior works require several
time slots. We also enhance the robustness of cardinality
estimation over noisy channels. We implement a prototype
system based on the GNURadio/USRP platform in concert
with the WISP RFID tags. ZOE only requires slight updates
to the EPCglobal C1G2 standard. We also conduct extensive
simulations to evaluate the performance of ZOE in large-
scale settings. The experiment results demonstrate that ZOE
outperforms the most recent cardinality estimation protocols.
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