
Read Bulk Data from Computational RFIDs

Yuanqing Zheng, Mo Li
School of Computer Engineering, Nanyang Technological University, Singapore

{yuanqing1, limo}@ntu.edu.sg

Abstract—Without the need of local energy supply, computa-
tional RFID (CRFID) sensors are emerging as important plat-
forms enabling a variety of sensing and computing applications.
Nevertheless, the data throughput of CRFIDs is very low. This
paper aims at efficiently transferring bulk data from CRFIDs
to commodity RFID readers. We first investigate the problem
of low data throughput of CRFIDs. We then propose several
simple yet effective techniques to allow CRFIDs to meet stringent
timing requirement of commodity RFID readers and achieve
efficient data transfer. We implement a prototype system based
on the WISP CRFIDs and commercial off-the-self RFID reader.
The experiment results show that our approach provides better
compatibility with EPCglobal C1G2 compliant RFID devices and
works perfectly with the commodity RFID readers.

I. INTRODUCTION

Different from traditional RFIDs, Computational RFIDs
(a.k.a CRFID or RFID-based sensors) feature programmable
microcontrollers and various sensors, emerging as an impor-
tant platform for ubiquitous sensing and computing. CRFIDs
harvest energy from the reader’s RF interrogation, sense the
environment, perform local computation, and transmit data to
the reader via backscattering reader’s RF signals. Researchers
have been exploring the potential of CRFIDs in a wide variety
of applications, including inventory management [15, 16, 25],
environment monitoring [17], activity recognition [10], access
control [13, 27, 28] , etc. An essential requirement of those
applications is to efficiently transfer bulk data from CRFIDs to
an RFID reader [18]. An efficient data transfer scheme allows
individual CRFIDs to quickly offload data and resume sensing
tasks with transient harvested power.

To leverage commodity RFID infrastructures, we would
like a data transfer scheme to be compatible with the de
facto EPCglobal Class-1 Generation-2 (C1G2) standard, so
that we can collect data using commodity RFID readers. The
C1G2 standard [1] specifies a collection of message exchanges
between RFID reader and RFID devices. A commodity reader
shall be able to collect hundreds of bytes from an RFID device
per message exchange. In practice, however, the success rate
of data transfer approaches zero as the data size increases.
Although many potential reasons have been hypothesized (e.g.,
frequency drift, power drop, etc. [9, 18, 19, 26]), the root cause
of transmission failures still remains elusive.

We first investigate the data transfer failures of CRFIDs and
pinpoint the root cause. This not only benefits efficient data
transfer but also deepens our understanding on the emerging
sensing platform. Nevertheless, commodity RFID readers only
provide limited lower layer information to investigate the
transmission failures. To carry out a thorough investigation,
we build a software defined RFID reader and analyze the
communication at physical layer. The unveiled root cause

falls outside all prior hypotheses (Section III). The experiment
results suggest that the fundamental problem of data transfer
stems from the mismatch between the stringent timing require-
ment of commodity standard and the limited packet handling
capability of CRFIDs. In particular, commodity RFID readers
set the tight response deadlines on the orders of several μs and
ignore delayed responses, while resource-constrained CRFIDs
cannot respond in time to offload large volume of data due
to excessive computing time involved in CRC calculation. A
powerful processor incurs higher energy cost, inapplicable for
the energy-harvesting CRFIDs.

In this paper, we aim to fully enable the bulk data transfer
and improve data transfer efficiency for CRFIDs while being
compatible with the C1G2 standard. To this end, we propose
HARMONY, an efficient bulk data transfer scheme which
combines a set of simple yet effective techniques. In particular,
we propose to preprocess sensor data in preparation for data
collection to meet the response deadline of commodity readers
(Section IV-A). We present a novel data processing technique
to reuse intermediate computation results to save energy
and reduce computation overhead (Section IV-B). We ensure
proper completion and composition of data processing tasks
with a post confirmation mechanism which allows CRFIDs to
make an aggressive use of harvested energy (Section IV-C).
To the best of our knowledge, HARMONY is the first bulk
data transfer scheme that enables CRFIDs to transfer large
data packets to commodity readers.

We prototype HARMONY based on the Intel WISP CR-
FIDs [2, 20] and efficiently transfer large data packets to the
Alien ALR 9900+ commodity RFID reader [3]. We evalu-
ate data transfer performance of HARMONY under various
scenarios with single CRFID, multiple CRFIDs, as well as
mixed CRFIDs and commodity RFIDs. Experiment results
demonstrate the outstanding data transfer performance of
HARMONY as well as its compatibility with the commodity
RFID standard (Section V).

The rest of this paper is organized as follows. We first
introduce the background and motivation of CRFID bulk
data transfer in Section II. We describe the experiments of
identifying the root cause of data transfer failures in Section
III. We present the detailed design of HARMONY in Section
IV. We present experiment results in Section V. Related work
is in Section VI followed by conclusion in Section VII.

II. BACKGROUND AND MOTIVATION

A. Computational RFID
UHF RFID systems work at the frequency band between

902MHz and 928MHz [25]. High power RFID readers with
30dBm transmission power energize and interrogate RFID

CW TimeReader

RFID

ACK Req_RN ReadCW

RN16 EPC Handle Data

CW

Identification procedure Read procedure

Query CW

Fig. 1. An illustrative example of C1G2 protocol.

devices and collect data from them. A commodity RFID is
typically assembled with an dedicated chip implementing state
machines, and a printed antenna which harvests energy and
backscatters RF signals in communication [25]. The C1G2
standard specifies a set of message exchange primitives.

The commodity RFIDs however do not provide flexible
programmability and sensing capability. To fill such a gap,
CRFIDs implement the C1G2 protocol on programmable mi-
crocontrollers and integrate numerous sensors, e.g., accelerom-
eter, temperature sensor, etc. As CRFIDs work on harvested
energy, they adopt ultra-low power microcontrollers such as
MSP430 for energy efficiency and low manufacturing cost
[2, 20]. The computation tasks involved in communication as
well as data processing are performed by the microcontrollers.

Many compelling applications are proposed based on CR-
FID platforms. For instance, recent work labels everyday
objects with CRFIDs and collect accelerometer data to infer
daily activities [10]. The compact form factor of CRFIDs
allows scientists to collect bio-signals using CRFIDs attached
on in-flight insects [29]. Those promising applications benefit
from efficient data transfer for CRFIDs.

B. Commodity RFID protocol

Figure 1 illustrates how an RFID reader collects data
from an RFID in the C1G2 standard. Before the actual
data transmission, a reader can use an optional Select
command to inform particular RFIDs whether to reply or not
in the successive sessions (e.g., using prefix matching). The
reader initiates identification procedure by sending the Query
command. The reader keeps transmitting continuous waves
(denoted as CW) to energize RFIDs. The RFID responds a
short 16-bit message RN16. Then the reader sends an ACK
containing the RN16. The RFID checks whether the ACK
matches its RN16 and responds a 96-bit Electronic Product
Code (EPC) if it is a match. The {Query, RN16} and {ACK,
EPC} message exchanges allow the reader to identify an RFID
by collecting its globally unique 96-bit EPC [1].

Following the identification procedure, the RFID reader
further requests for more data in the read procedure. As shown
in Figure 1, the RFID reader first establishes a handshake
of {Req_RN, Handle}. Similar to the {Query, RN16}
handshake in identification procedure, {Req_RN, Handle} is
short, serving the collision arbitration purpose. Then the reader
acknowledges the 16-bit Handle and requests a large amount
of data. According to the C1G2 standard, the reader shall be
able to collect up to 510 bytes per {Read, Data} exchange.
Different from {ACK, EPC} primitive in the identification
procedure, the {Read, Data} primitive in the read procedure
is tailored for bulk data transfer with variable lengths [1].

Fig. 2. Transmission success rates of CRFID when a commodity RFID
reader requests different amount of data.

C. Motivating experiment
A natural way of reading bulk data from CRFIDs is to use

the {Read, Data} primitive of C1G2 standard. This approach
naturally allows the C1G2 compatibility and may collect hun-
dreds of bytes per message exchange in theory. Nevertheless,
the actual success rate of data transfer substantially decreases
as large data packets are requested from CRFIDs. We let
the Alien ALR 9900+ commodity RFID reader [3] request
data from WISP CRFIDs. Figure 2 plots the transmission
success rates when the reader requests different amount of
data at varied interrogation distance. For comparison, we also
measure success rates of EPC transmission. As a successful
read procedure always follows a successful EPC transmission,
the success rates of reading data from CRFIDs are lower
than that of EPC transmission. When more than 8 bytes of
data are requested in the read procedure, the success rates
suddenly drop to zero even within a small interrogation range.
Independent study reports similar error rates when reading
bulk data with Impinj Speedway reader [18].

The data transfer failures might be due to clock drift,
signal attenuation, and memory overhead, while many other
hypotheses include strong interference, high computation over-
head, sudden power drop, and incomplete operation execution
[9, 18, 19, 26]. Driven by practical demands, researchers en-
deavor to design various solutions to collect sensor data from
CRFIDs. Recent work [18] proposes to let CRFIDs preempt
backscatter channel and transfer multiple short identification
packets loaded with sensor data in bursts. To ensure fairness
in channel access, the C1G2 standard specifies that each RFID
should contend for the channel only once in each interrogation
round [1]. Thus, CRFIDs experience severe collisions and
contentions from coexisting RFID devices.

In this paper, we aim to fully enable the bulk data transfer
and improve data transfer efficiency for CRFIDs while being
compatible with the C1G2 standard. To this end, we first
conduct a series of experiments to identify the root cause
of data transfer failures. Based on the experiment findings,
we design a set of practical solutions to enable data transfer
for CRFIDs and substantially improve the data transmission
efficiency.

III. UNDERSTANDING CRFID DATA TRANSFER

A. Software-defined testbed
Commercial off-the-self RFID readers do not expose suffi-

cient lower layer information for us to pinpoint the root cause
of data transfer failures. We develop a Software-Defined RFID
reader (SDR reader) based on the GNURadio [4] platform
and the Gen2 project [5] to fetch PHY symbols for analysis.

Laptop

WISP

USRP

Antenna

Fig. 3. Experiment testbed: USRP N210 based SDR reader interrogates a
WISP CRFID. PHY layer symbols are processed at the laptop.

Fig. 4. Distribution of successful transmissions and errors in RN16, EPC,
Handle, and Data sessions.

We set the Backscatter Link Frequency (BLF) to 250KHz.
The SDR reader uses a USRP RFX900 daughterboard as
frontend, which operates at the center frequency of 915MHz.
The daughterboard comprises of a full-duplex transceiver
with the separate transmission chain and the reception chain
[6]. Two Alien ALR-8696-C circular polarized antennas are
connected to the daughterboard. The typical power output of
RFX900 daughterboard is only 23dBm, far less than 30dBm
of commodity reader. The weak power output of SDR reader
restricts communication range within 1m in our experiments.
Therefore, we start with controlled experiments to let the SDR
reader provide sufficient energy for CRFIDs. We also conduct
experiments in indoor lab at midnight to reduce potential
interferers. We note that the controlled experiment is only
for investigation purpose. We later evaluate our data transfer
scheme under various practical scenarios in Section V. Figure
3 depicts the experiment testbed.

B. Microscopic investigation

In the experiment, the SDR reader reads different amount
of data for 200 times with an interval of 1s. As a successful
data transfer involves multiple sessions, we look into each
session in Figure 4. We measure the successful data transfer
as well as the errors during RN16, EPC, Handle, and Data
transmission. We let the SDR reader request 2, 8, and 16 bytes
of data. We find that in contrast to the high error rates under
the interrogation of commodity reader as in Figure 2, CRFIDs
can transfer even 16 bytes of data with approximately 83%
success rate under the interrogation of SDR reader as in Figure
4. On the other hand, we find that the errors in RN16, EPC,
Handle, as well as Data are consistently lower than 8%.
This experiment result is unexpected since the SDR reader
generally cannot match commodity RFID readers in term of
power output, signal processing capability, etc.

To understand why the SDR reader outperforms the com-
modity reader, we look into the PHY layer symbols during
data exchanges when the SDR reader requests 8 bytes from
the CRFID. Figure 5 plots the PHY layer symbols observed
at the SDR reader. At first glance, the raw signals do not
exhibit any anomaly. When we zoom in, however, unlike other
message exchanges (e.g., {Query, RN16}, {ACK, EPC},

Fig. 5. PHY layer signals collected at the SDR reader when requesting 8
bytes of data. The time interval between Read and Data indicates a large
response latency.

TABLE I
READ COMMAND OF RFID READER

Cmd MemBank Ptr WordCount RN CRC
8bits 2bits EBV 8bits 16bits 16bits

0xC2 00:Rsv Starting # of words handle CRC

01:EPC address to read

10:TID pointer

11:User

and {Req_RN, Handle}), the big gap between the Read
command of the SDR reader and the Data response of
the CRFID clearly stands out. Such a large time interval
manifests an excessively long response latency. From the RFID
reader’s perspective, the delayed responses imply idle slots.
In other words, the commodity RFID reader would view
the long idle period as no response and ignore the delayed
responses from CRFIDs. In contrast, restricted by the high
latency of software radio [22], the SDR reader is intentionally
configured to tolerate higher response latency. Thus in the
experiments, while the commodity RFID reader misses the
delayed response, the SDR reader “waits” for the reponse.

We measure the response delay of CRFIDs to differ-
ent amount of requested data in Figure 6. We find that
the response delay increases almost linearly with the data
size. The timing requirement of C1G2 standard is extremely
tight especially for the lightweight CRFID. According to
the C1G2 standard, data responses should be strictly within
T1 = Max(RTcal, 10/BLF), where RTcal denotes reader to
RFID timing calibration duration, and BLF denotes backscat-
ter link frequency [1]. In the experiment, RTcal is 60μs and
BLK is 250KHz which yields a T1 of 60μs. In Figure 6, we
see that as more data is requested, the CRFID cannot meet the
stringent timing requirement.

C. Root cause of large latency

To investigate the root cause of the lengthy latency, we
carefully examine the runtime of CRFID response to the data
request. As shown in Table I, a Read command specifies the
data size. Table II specifies the format of a Data packet in re-
sponse to the Read command [1]. To ensure the data integrity,
a CRFID appends a 16-bit CRC in the Data packet. A CRC is
an error detecting code widely used in digital communications
and storage systems [7, 21]. The CRC computation overhead
increases linearly with the data size.

CRFIDs need to compute CRCs and append to data packets
before responding to readers. The response deadline of C1G2
standard is extremely tight for CRFIDs with clock frequency
of 16MHz. We measure the CPU cycles that CRFIDs take

TABLE II
DATA RESPONSE OF RFID DEVICE

Header Memory Words RN CRC
1bit Variable 16bits 16bits

0 Data handle CRC

Fig. 6. Data response latency with varied number of requested data bytes.

Fig. 7. CPU cycles to finish the computation tasks of data packet response

TABLE III
THE COST OF CPU CYCLES OF THE BITWISE CRC AND THE

TABLE-LOOKUP CRC.

Data size (bytes) 2 6 10 14 18 22

Bitwise CRC 493 953 1409 1857 2309 2753

TBL-lookup CRC 125 217 309 401 493 585

to calculate CRCs for different data sizes. In particular, we
analyze the latest CRFID firmwares of both WISP [2] and Moo
[30] and count the CPU cycles with offline code execution.
Note that derived from the WISP project, the firmware imple-
mentation as well as hardware architecture pertaining to the
bulk data transfer are essentially the same across all the WISP-
based CRFID platforms. For instance, Moo’s microcontroller
has more memory, but the two MSP430 microcontrollers offer
the same clock frequency and instruction cycle time. Figure
7 plots CRC-related computation overhead along with non-
CRC computation tasks involved in handling data packets.
We find that the non-CRC overhead is small and remains
constant across different data sizes. In contrast, the compu-
tation overhead of calculating CRC increases linearly, which
eventually translates to large response latency. We convert
the CRC-related CPU cycles into the runtime according to
62.5ns instruction cycle time of MSP430 specification and
find that the processing time roughly fits the response delay
(as plotted in Figure 6). As CRFIDs typically adopt ultra-low
power microcontrollers for energy efficiency, the mismatch
between the limited packet handling capability of CRFIDs
and the stringent timing requirement of commodity standard
persists across various CRFID platforms. To date, CRFIDs
cannot meet the stringent response deadline and transfer large
data packets to commodity RFID readers.

A straightforward optimization is to trade memory for time
and energy. Current CRFIDs adopt the bitwise CRC calcu-
lation [2] which minimizes memory overhead. Nevertheless,
the bitwise method incurs higher computation overhead as
well as higher power consumption. On the other hand, the

Fig. 8. PHY layer signals when the SDR reader requests 64 bytes of data
and the WISP CRFID sends back a Data packet with a precomputed CRC.

Fig. 9. Transmission success rates when a reader requests 64 bytes.

MSP430 microcontrollers have abundant non-volatile memory
(e.g., 8KB flash). We adopt the table-lookup CRC computation
which allows CRFIDs to perform bytewise computation and
save computation time and harvested energy [8, 21]. Referring
to a lookup table, CRFIDs can efficiently shift the raw data
in bytes rather than in bits in the CRC computation. Table
III compares the computation cost of bitwise CRC calculation
and the bytewise table-lookup approach. Although the table-
lookup approach reduces the computation time down to ap-
proximately 25% of the bitwise approach, the response latency
still increases linearly with data size, and the CRFIDs cannot
transfer more than 8 bytes per message exchange. Using
powerful microprocessors may similarly reduce computation
time and deliver slightly more data, but this approach cannot
fundamentally solve the problem of data transfer for CRFIDs.

The experiment results suggest that the large response la-
tency of CRFID is the primary reason for data transfer failures,
which departs from all existing hypotheses [18, 19, 26].
Although the data transfer primitive is semantically correct,
CRFIDs cannot meet the response deadline of commodity
standard in practice. The fundamental problem stems from
the mismatch between the tight timing demand of commodity
standard and the limited packet handling capability of CRFIDs.

IV. SYSTEM DESIGN

We seek an efficient, lightweight, and standard-compliant
data transfer scheme. (1) We want an efficient data transfer
protocol which allows CRFIDs to quickly offload buffered
sensor data and resume sensing tasks. An efficient data transfer
protocol also reduces power consumption and saves harvested
energy to perform sensing and computing. (2) We want a
pure software solution without any hardware extension. Using
extra hardware is costly, drains more power, and increases
form factors. Powered by harvested energy, current CRFID
platforms cannot afford the luxury of dedicated radio chips
used in traditional sensor motes with reliable power supply. (3)
To leverage commodity RFID infrastructures, we want the data
transfer approach to be compatible with the C1G2 standard.
In the following, we explore to schedule workloads, optimize

0 Data1 handle CRC1

0 Data2 handle CRC2

Unit1

Unit2

Fig. 10. HARMONY patches intermediate CRCs to concatenate multiple
units.

computation, and make the best use of harvested energy.

A. Precomputing CRC

Instead of computing CRC on-the-fly, we explore to pre-
compute CRCs for data packets so as to reduce response
latency. We let the SDR reader request 64-byte data from
the CRFID. The CRFID transfers data packets appended with
precomputed CRCs. Figure 8 plots the PHY layer signals
collected by the SDR reader during one data packet trans-
mission. In the figure, we observe that the response latency
becomes comparable with other message exchange primitives.
Compared with the on-the-fly packet handling as depicted in
Figure 5, we see that the response latency can be substantially
reduced as in Figure 8.

We further investigate the success rate of data transfer with
commodity RFID reader. We let the commodity reader request
64 bytes from the CRFID. The CRFID responds data packets
with precomputed CRCs. Figure 9 plots the transmission
success rates of using precomputed CRC compared with the
success rates of calculating CRC on-the-fly. We plot the
success rates of EPC transmission for comparison. According
to the results, the CRFID can achieve much higher success
rates by precomputing CRC, while computing CRC on-the-fly
leads to zero success rates.

The precomputation however requires the prior knowledge
of reader command (e.g., WordCount in Table I [1]). Note that
a data packet would be decoded incorrectly or directly dropped
by commodity reader if the data size does not match the
reader command. Using fixed packet size limits the flexibility
and efficiency of data transfer. In practice, a CRFID can
form a Data packet with precomputed CRC beforehand, and
overload EPC packet to inform RFID readers the packet size
during the identification procedure. Then the RFID reader can
parse EPC and figure out the packet size to request. The RFID
reader then specifies the data size in the Read command so
that reader and CRFID can agree on the packet size. Similarly,
a common handle can be shared between the CRFID and
reader during {Req_RN, handle} handshakes, as the 16-
bit handle is determined by the CRFID. By doing this,
CRFIDs are able to precompute CRCs and prepare Data
packets beforehand. We call such self-verifiable Data packets
as HARMONY units.

B. Exploiting intermediate computations

Precomputing the CRCs and preparing HARMONY units
can effectively reduce the response latency. However, the size
of each unit prepared by CRFID is fixed. If an RFID reader
wants to collect Unit1 and Unit2 from a CRFID as depicted
in Figure 10, the two units have to be transferred separately
via two data transfer procedures which involves additional
communication overhead. Calculating CRC for a new data

Pin3.3

GND

Vout

Fig. 11. Capacitor voltage measurement and output pin monitoring.

packet incurs extra computation overhead for CRFIDs and
leads to larger latency.

To address this problem, CRFIDs first precompute CRCs
and prepare short units, and later concatenate multiple units
to form a large data packet according to reader’s request.
We propose a lightweight approach to concatenate multiple
units by reusing intermediate computation results (e.g., CRC1,
CRC2 in Figure 10) without calculating a new CRC from every
data bit. The key idea is to isolate CRC calculation within each
unit and thereby achieve transparent unit concatenation.

Directly concatenating the two units without any changes
as in Figure 10 may result in CRC verification failure. When
receiving the concatenated packet, the RFID reader parses
it (according to Table II [1]) as a leading ‘0’ bit, a data
payload starting from Data1 to Data2, a handle, followed by
CRC2. In this case, CRC2 cannot serve as a valid CRC for
the concatenated packet. The reason is the CRC remainder
of Unit1 carries over to Unit2, which invalids CRC2 for the
concatenated packet. Therefore, if we isolate the influence of
remainder carryover from Unit1 to Unit2, we can reuse the
computation result of CRC2 for the concatenated packet.

The C1G2 standard adopts a 16-bit CRC which uses the
polynomial divisor (denoted as Poly) of 0x1021. The initial
value and final value are both 0xFFFF [2, 8]. The final value
of 0xFFFF means that the remainder is bitwise-inverted at the
final stage of CRC calculation. Therefore, when the CRC is
bitwise-inverted back, we will obtain the remainder. We denote
by Rmd the remainder of a message M. In the 16-bit CRC,
we have

Rmd = (M|0x0000) mod Poly, (1)

CRC = Rmd + 0xFFFF,

where the notation “|” concatenates message M and 0x0000,
both “+” and “−” are bitwise XOR. From Eq.(1), when we
append the remainder to the message, we have

0x0000 = (M|Rmd) mod Poly.

Taking the example of concatenating Unit1 and Unit2 in Figure
10, after we bitwise-invert CRC1, the remainder of Unit1 will
become 0x0000. Then we treat Unit1 (Data1+handle+CRC1)
as a whole data piece and the remainder of 0x0000 will carry
over to Unit2. Although the remainder differs from the initial
value of 0xFFFF which is used in calculating CRC2 for Unit2,
we can leverage the linearity of CRC computation to do an
adjustment to convert CRC2 accordingly.

We denote by CRC(M, Ini) the CRC result of message M
with initial value of Ini. Then the mismatch of CRCs due to
different initial values can be described as CRC(M, 0x0000)
�= CRC(M, 0xFFFF). Leveraging the linearity of CRC com-
putation, recent theoretical work proposes several approaches
to calculate CRC for different initial inputs without recalcu-

(a) Single interrogation (b) Conveyor reading (c) Grid monitoring
Fig. 12. Harvested energy of CRFIDs with different interrogation modes of commodity RFID reader.

lating data content of M [7]. In particular, we have

CRC(M, 0x0000) = CRC(M, 0xFFFF) + Patch,

Patch = (0x0000− 0xFFFF) � |M| mod Poly, (2)

where Patch denotes the necessary adjustment to convert
CRC(M, 0xFFFF) into CRC(M, 0x0000). “�” represents
a bitwise shift and |M| is the fixed length of message M.
In Eq.(2), as all the parameters are known constants, we
can compute Patch at compile time and apply it to convert
CRC(M, 0xFFFF) to CRC(M, 0x0000).

Back to the example of concatenating Unit1 and Unit2
as depicted in Figure 10, a CRFID can first bitwise-invert
CRC1 which makes the carryover of Unit1 to Unit2 a constant
of 0x0000, and then adjust CRC2 by XORing Patch as
computed in Eq.(2). With the adjustment to CRC1 and CRC2,
the concatenated packet will pass the CRC test at RFID
readers given no errors. Similarly, we can concatenate multiple
HARMONY units, at the cost of one 16-bit XOR per unit
concatenation.

This patching technique allows CRFIDs to leverage inter-
mediate computation results and concatenate multiple HAR-
MONY units. This approach only incurs small communication
overhead (4 extra bytes of handle and CRC for every
unit). As a matter of fact, the actual transmission time of
additional 4 bytes is negligible compared with the control
overhead involved in the collision arbitrations (e.g., {Query,
RN16}, {Req_RN, Handle}). By precomputing and exploit-
ing intermediate results, lightweight CRFIDs can meet the
stringent response deadline of C1G2 standard and transfer
large data packets to commodity reader without sacrificing the
data transfer efficiency and flexibility.

C. Computing with transient power
1) Characterizing harvested energy: Unlike traditional sen-

sor motes with reliable power supplies, a CRFID features
transient harvested energy, which comes from RFID reader’s
interrogation. Although CRFIDs do not actively generate RF
signals, the computation tasks may drain onboard energy
stored in the tiny capacitor (e.g., 10μF on WISP) and lead to
incomplete task execution [9, 19, 26]. The minimum operation
voltage is around 1.8V, below which the CRFID cannot work
properly, and the over-voltage protection is set to 5.8V for
circuit protection purpose [9, 19]. A voltage regulator is
used to stabilize alternating capacitor voltages and provide
stable power to CRFIDs. As volatile state will be lost if
the onboard energy depletes, the computation results need
to be properly saved into non-volatile memory. The CRFID

adopts 1.8V EEPROM via I2C serial connection, while the
flash memory requires a higher voltage of 2.2V. We use an
oscilloscope (Tektronix TDS 1012) for power measurement
and realtime monitoring. In particular, we toggle Vout (i.e.,
capacitor voltage) and GND (i.e., ground) pins to monitor the
capacitor voltage as in Figure 11.

We measure the capacitor voltage of the CRFID which is in
the coverage of a commodity RFID reader. Figure 12 depicts
the capacitor voltage over 2s with three typical interrogation
modes, i.e., single interrogation in (a), conveyor reading in (b),
and grid monitoring in (c). In Figure 12(a), we find that the
sporadic interrogation charges the capacitor and the voltage
quickly exceeds the operation voltage of 1.8V, which provides
sufficient power to perform some computation tasks. When the
reader stops RF signals, the capacitor voltage quickly drops
due to high power consumption of active microcontroller.
When the capacitor voltage drops below 1.5V, the microcon-
troller transits to sleep mode, followed by the gradual depletion
of capacitor voltage due to power leakage. To study whether
CRFIDs can compute and store CRCs into non-volatile EEP-
ROM during short energized periods, we measure the runtime
by monitoring a pin which outputs indication signals during
program execution as plotted in Figure 12(a). According to the
result, we see that the CRFID can quickly compute and save
computation results into EEPROM. Moreover, the CRFID can
potentially compute several CRCs during the short energized
period in the single interrogation scenario.

In Figure 12(b), working in the conveyor mode, the RFID
reader periodically energizes RFIDs. Thus the CRFID can
harvest sufficient energy for sensing and computing. In Figure
12(c), when the reader works in the grid monitoring mode
with higher interrogation frequency [3], the capacitor voltage
quickly rises up to 5.8V and the voltage protection has to
kick in. In the experiment, we see that although the harvested
energy exhibits different patterns under different interrogation
environments, energy harvesting opportunities are abundant
especially when RFID readers frequently interrogate RFID
devices in the field.

2) Post confirmation for complete operations: According to
the above experimental results, CRFIDs can perform multiple
computation tasks during short energized periods. Therefore,
we propose to aggressively perform computation tasks when
the CRFIDs are powered up. One challenging issue is that
the harvested power supply is indeterministic [17], e.g., RFID
readers may terminate on-going interrogations, line-of-sight
paths between readers and CRFIDs may be blocked, etc. As a

Fig. 13. Aggregated throughput of multiple CRFIDs.

result, CRFIDs may not finish the complete execution of every
task and lose intermediate results.

To overcome this problem, CRFIDs must be able to resume
incomplete operations. In HARMONY, a successful CRC
precomputation finishes with a successful writing operation
into EEPROM. While writing data into EEPROM incurs high
power cost, reading data from EEPROM is much cheaper.
Thus, we propose to use a post confirmation approach to
ensure complete task execution. In particular, CRFIDs read the
computation results just written to the EEPROM and check
whether the computation results have been correctly saved.
CRFIDs then update the computation progress if the results
are successfully saved. When powered up later, the CRFIDs
can resume from the last incomplete operation.

V. IMPLEMENTATION AND EVALUATION

A. Implementation and experiment setting

1) Commodity RFID reader: We implement the HAR-
MONY data transfer scheme on the Alien ALR-9900+ reader.
The commodity reader can work in a variety of configurations,
e.g., single reading, continuous monitoring, etc. The imple-
mentation overhead of data transfer protocol on the reader
side is fairly small, i.e., only slight modifications based on
the reader SDK codes are needed. As the HARMONY reader
only requires the routine functions of C1G2 standard, it is
compatible with other C1G2 standardized RFID readers and
thus we believe HARMONY can be implemented on other
models of commodity readers.

2) CRFID: We implement HARMONY CRFIDs based
on the WISP4.1DL hardware and firmware [2]. The WISP
CRFIDs are equipped with MSP430 microcontrollers. The
WISP firmware, written in C and assembly codes, has partially
implemented the C1G2 standard [1]. We primarily make three
extensions to the CRFID firmware: the CRC computation
module, the precomputing scheduling module, and the data
transfer module. In particular, we adopt the table-lookup CRC
algorithm based on the TI specification [8] which roughly
saves 75% CRC computation time. CRFIDs cannot transfer
more than 8 bytes with the table-lookup approach as the
response latency increases linearly with the data size. To
reduce response latency, we implement the CRC precom-
puting algorithm and ensure complete operation with the
post confirmation mechanism to allow CRFIDs to make the
best use of transient energy. We implement the data transfer
module which concatenates multiple HARMONY units to
improve data transfer efficiency and flexibility. HARMONY
only requires firmware updates, so our scheme can be applied
on other WISP-based CRFID platforms [17, 23, 30].

Fig. 14. Single CRFID throughput.

3) Experiment setup: The Alien ALR-9900+ reader uses
one ALR-8696-C circular polarized antenna with antenna gain
of 8.5dBic for transmission as well as reception. The RFID
devices are attached to a poster panel parallel to the antenna
1m away with line-of-sight paths to the reader. We vary the
power output from 18dBm to 30dBm to study the data trans-
fer performance with different power conditions. We present
experiment results in equivalent distances calculated using
free-space propagation for intuitive interpretations compared
to different power outputs [9].

B. Performance of HARMONY

We compare the throughput of three data transfer schemes:
(1) HARMONY, the proposed scheme in this paper; (2) WISP
[2], the default data transfer scheme of WISP that overloads
one identification packet in each interrogation round; and (3)
Burst [18], the burst data transfer scheme that exclusively
occupies backscatter channel and uses multiple identification
packets to transfer data in each interrogation round. We
study the data throughput under various scenarios with single
CRFID, multiple CRFIDs, as well as mixed CRFIDs and
commodity passive RFIDs.

1) Single CRFID: We measure the data transfer throughput
where single CRFID transfers data without contention or col-
lision from coexisting RFID devices. We use the commodity
reader to power up and interrogate the CRFID. The CRFID
senses ambient temperature, preprocesses sensor data, and
buffers intermediate data in the non-volatile memory. We
collect the same amount of data from the CRFID using three
different schemes and compare their performance. We repeat
experiments at 4 different power outputs. We collect 100 data
traces for each scheme immediately one after another with
little change to the interrogation environment. We report the
average throughput in Figure 14. According to the experiment
results, we see that by exclusively occupying the channel
and sending multiple identification packets in each interro-
gation round, the burst transfer scheme can achieve higher
throughput than the default data transfer scheme of WISP
which transfers only one identification packet in each round.
HARMONY can also transfer multiple data packets after the
handshake establishment of {Req_RN, Handle}. Besides,
HARMONY gains much higher throughput by transferring
larger data packets per message exchange. With large data
packets, CRFIDs can effectively amortize the control overhead
involved in the handshake establishment. According to Figure
14, HARMONY with 32-byte data packets already exceeds
the throughput of burst transfer scheme. With 64-byte data
packets, HARMONY yields almost 80% improvement over
the burst transfer scheme. According to the C1G2 standard, a

Fig. 15. Aggregated data throughput of mixed CRFIDs and commodity
passive RFIDs.

commodity reader shall be able to read 510 bytes of data per
{Read, Data} exchange [1]. The Alien ALR-9900+ reader,
however, only supports a request up to 64 bytes. We expect
a higher throughput gain once RFID readers fully support the
C1G2 standard [3].

2) Multiple CRFIDs: We study the data transfer perfor-
mance where a commodity RFID reader collects data from
multiple CRFIDs. The RFID reader takes turns to interrogate
each CRFID. Each CRFID sends off the bulk data in response
to the data collection in its turn. For the rest time, each CRFID
senses the environment, stores the data, and performs local
computation (e.g., to precompute unit CRCs in HARMONY).
Such an iterative sensing and interrogation mode can be
applied to many practical applications [10, 23, 29].

In the experiment, the commodity reader requests the same
amount of data from varied number of CRFIDs. We re-
port the aggregated throughput in Figure 13. We find that
HARMONY with large data packets (e.g., 32-byte and 64-
byte) consistently outperforms the benchmark schemes and
the aggregated throughput remains stable across different CR-
FID population. In HARMONY, each CRFID strictly follows
the C1G2 standard in channel contention and harmonically
coexists with other CRFIDs. Following the C1G2 standard,
HARMONY CRFIDs ensure exclusive collision-free channels
with lightweight handshakes, and transfer large data packets
in their turns. In the default WISP data transfer scheme, the
aggregated throughput does not decrease with the increased
number of CRFIDs since CRFIDs also follow the C1G2
standard. In the burst scheme, the aggregated throughput
gradually decreases as the CRFID population scales up due
to severe collisions among the burst CRFIDs.

In summary, the performance gain of HARMONY primarily
stems from two aspects. First, HARMONY CRFIDs can
effectively transfer larger data packets which fundamentally
improves the data transfer efficiency. Second, HARMONY
avoids collisions in data transfer among multiple coexisting
CRFIDs which guarantees high aggregated throughput.

3) Coexisting with commodity RFIDs: We evaluate data
transfer performance of HARMONY coexisting with commod-
ity RFID devices. In the experiment, we evaluate the data
transfer performance of HARMONY as well as its impact
on commodity RFID devices. We test with 6 different types
of commodity passive RFIDs from 2 different RFID manu-
facturers [3]. The commodity RFIDs are equipped with non-
volatile memory which allows an RFID reader to read/write
data from/to the RFIDs [1]. We do not compare with other
bulk data transfer approaches, because those approaches are
not fully compatible with the C1G2 commodity RFIDs.

Fig. 16. Time to identify RFIDs.

First, we let the commodity RFID reader request 64 bytes
from 5 CRFIDs coexisting with varied number of commodity
RFIDs. Figure 15 plots the aggregated throughput of 5 CRFIDs
as well as coexisting commodity RFIDs. According to the
results, as the number of commodity RFIDs increases, the
throughput of commodity RFIDs eventually overtakes that of
CRFIDs. This result is expected since the C1G2 standard
provides equal chances for HARMONY CRFIDs as well as
commodity RFIDs to transfer data.

In some applications, we may want to collect data only
from HARMONY CRFIDs but not from coexisting commodity
RFIDs. In such cases, the RFID reader can use the optional
Select command to turn passive RFIDs into sleep mode [1].
We let the reader use the Select command to suppress con-
tentions from coexisting commodity RFIDs, and then request
64-byte data packets from CRFIDs. The blue line in Figure
15 plots the aggregated throughput of HARMONY CRFIDs.
According to the results, we see that the aggregated throughput
remains consistently high since the undesirable contentions
from commodity RFIDs can be effectively suppressed.

In the following, we examine how HARMONY CRFIDs
influence the identification procedure of commodity RFIDs. In
some practical scenarios, a reader may want to identify RFIDs
rather than collecting bulk data from them. In Figure 16, we
measure the average identification time with varied number of
commodity RFIDs changing from 5 to 50. We see that the
identification time increases with the number of commodity
RFIDs. To examine the influences of HARMONY CRFIDs,
we replace 5 commodity RFIDs with 5 HARMONY CRFIDs
and repeat the experiment without changing the experiment
setting. HARMONY CRFIDs behave in much the same way
as the C1G2 compliant RFIDs in the identification procedure.
We find that the reader takes almost the same amount of time
to identify the mixed RFID devices. This result suggests that
HARMONY CRFIDs can peacefully coexist with commodity
RFIDs with negligible influence on the identification perfor-
mance.

VI. RELATED WORK

CRFID platforms. Since the pioneering Intel WISP project
[2], many CRFID platforms have been developed to enable
ultra-low power sensing and computing. We have implemented
and tested HARMONY on the latest version of WISP4.1DL
CRFIDs. The SoCWISP [29] adopts the system-on-chip design
which is sufficiently small to be attached to in-flight insects
for bio-signal collection. The Blue Devil WISP [23] uses a
v-shape antenna for improved omnidirectional antenna gain in
complex interrogation environments. The Moo [30] upgrades
the CRFID hardware based on the WISP for larger memory

and flexible general-purpose I/O extensions. The WISP5.0
CRFIDs under development adopt dual orthogonal antennas
to improve energy harvesting efficiency and increase com-
munication range [2]. The mismatch between the stringent
requirement of commodity standard and the limited packet
handling capability of CRFIDs persists across all the CRFID
platforms.

Testbed and measurement. The Gen2 project [5] imple-
ments an opensource RFID reader based on the GNURadio
project [4], which provides the access to PHY/MAC layer
and allows fast prototyping of novel RFID protocols. We
build our software radio testbed based on the Gen2 project.
The Gen2 Monitor [12] uses software radio as a probe to
analyze backscatter communications, which allows researchers
to reverse-engineer and study commodity RFID systems [19].
The Gen2 Listener [14] decouples the functionality of trans-
mission and reception of RFID readers which simplifies par-
allel interrogation and cooperative decoding. Buettner et al.
[11] characterize the PHY/MAC layer of RFID systems, which
promotes our understanding of RFID communications.

Data transfer. BUZZ [24] proposes to exploit PHY layer
collisions and decode them to improve data transfer effi-
ciency. BUZZ however requires the PHY layer information
which is not available on current commodity readers. Flit
[18] leverages idle slots and transfers short data packets in
bursts. Flit however is not fully compatible with the com-
modity RFID standard and the CRFIDs experience severe
collisions at scale. BLINK [31] proposes an efficient data
rate adaptation scheme for RFID communications. We present
an efficient, lightweight, and standard-compliant data transfer
scheme, which enables CRFIDs to transfer large data packets
to commodity readers.

Applications. Buettner et al. [10] label everyday objects
with CRFIDs and infer daily activities from accelerome-
ter readings, necessitating continuously data collection from
multiple CRFIDs. Yeager et al. [29] design wearable ultra-
small CRFIDs to collect bio-signals from in-flight insects
which would also benefit from efficient data transfer schemes.
Czeskis et al. [13] propose to enhance the security of IC cards
with CRFID enabled secret handshakes. All such applications
benefit from the efficient bulk data transfer with HARMONY.

VII. CONCLUSION

In this paper, we describe the design and implementation
of HARMONY, an efficient bulk data transfer scheme for CR-
FIDs. We conduct comprehensive experiment study for a better
understanding on the CRFID data transfer. The fundamental
problem of data transfer stems from the mismatch between the
tight timing demand of commodity standard and the limited
packet handling capability of CRFIDs. We combine a set of
simple yet effective techniques to enable CRFIDs to meet the
stringent response deadline and transfer large data packets to
commodity RFID readers. In particular, we propose to prepro-
cess data packets to reduce response latency, efficiently reuse
intermediate computation results, and resume incomplete tasks
to aggressively exploit ephemeral power. We implement a
prototype on top of the WISP CRFIDs and a commodity RFID

reader. Experiment results show that HARMONY substantially
improves the data transfer efficiency.

ACKNOWLEDGEMENT

We acknowledge the support from Singapore MOE AcRF
Tier 1 grant MOE2013-T1-002-005, and NTU Nanyang As-
sistant Professorship (NAP) grant M4080738.020.

REFERENCES

[1] EPC C1G2 Standard. http://www.epcglobalinc.org/standards/uhfc1g2.
[2] WISP. http://wisp.wikispaces.com.
[3] Alien Tech. http://www.alientechnology.com.
[4] GNU Radio. http://gnuradio.org.
[5] Gen2 project. https://www.cgran.org/wiki/Gen2.
[6] Ettus Research. http://www.ettus.com.
[7] A. Kadatch and B. Jenkins. Everything we know about CRC but afraid

to forget. http://crcutil.googlecode.com/files/crc-doc.1.0.pdf.
[8] MSP430 CRC. http://www.ti.com/lit/an/slaa221/slaa221.pdf.
[9] M. Buettner, B. Greenstein, and D. Wetherall. Dewdrop: an energy-

aware runtime for computational rfid. In USENIX NSDI, 2011.
[10] M. Buettner, R. Prasad, M. Philipose, and D. Wetherall. Recognizing

daily activities with rfid-based sensors. In ACM Ubicomp, 2009.
[11] M. Buettner and D. Wetherall. An empirical study of uhf rfid perfor-

mance. In ACM MobiCom, 2008.
[12] M. Buettner and D. Wetherall. A ‘gen 2’ rfid monitor based on the usrp.

SIGCOMM Computer Communication Review, 40(3):41–47, 2010.
[13] A. Czeskis, K. Koscher, J. R. Smith, and T. Kohno. Rfids and secret

handshakes: defending against ghost-and-leech attacks and unauthorized
reads with context-aware communications. In ACM CCS, 2008.

[14] D. De Donno, F. Ricciato, L. Catarinucci, A. Coluccia, and L. Tarricone.
Challenge: towards distributed rfid sensing with software-defined radio.
In ACM MobiCom, 2010.

[15] W. Gong, K. Liu, X. Miao, and H. Liu. Arbitrarily accurate approx-
imation scheme for large-scale rfid cardinality estimation. In IEEE
INFOCOM, 2014.

[16] W. Gong, K. Liu, X. Miao, Q. Ma, Z. Yang, and Y. Liu. Informative
counting: Fine-grained batch authentication for large-scale rfid systems.
In ACM MobiHoc, 2013.

[17] J. Gummeson, S. S. Clark, K. Fu, and D. Ganesan. On the limits of
effective hybrid micro-energy harvesting on mobile crfid sensors. In
ACM MobiSys, 2010.

[18] J. Gummeson, P. Zhang, and D. Ganesan. Flit: a bulk transmission
protocol for rfid-scale sensors. In ACM MobiSys, 2012.

[19] B. Ransford, J. Sorber, and K. Fu. Mementos: system support for long-
running computation on rfid-scale devices. In ASPLOS, 2011.

[20] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mamishev, and
J. R. Smith. Design of an rfid-based battery-free programmable sensing
platform. IEEE Transactions on Instrumentation and Measurement,
57(11):2608–2615, 2008.

[21] D. V. Sarwate. Computation of cyclic redundancy checks via table look-
up. Communications of the ACM, 31(8):1008–1013, 1988.

[22] T. Schmid, O. Sekkat, and M. B. Srivastava. An experimental study of
network performance impact of increased latency in software defined
radios. In WinTECH, 2007.

[23] S. Thomas, J. Teizer, and M. Reynolds. Smarthat: A battery-free worker
safety device employing passive rfid technology. In IEEE RFID, 2011.

[24] J. Wang, H. Hassanieh, D. Katabi, and P. Indyk. Efficient and reliable
low-power backscatter networks. In ACM SIGCOMM, 2012.

[25] R. Want. An introduction to rfid technology. IEEE Pervasive Computing,
5(1):25–33, 2006.

[26] X. Xu, L. Gu, J. Wang, and G. Xing. Negotiate power and performance
in the reality of rfid systems. In IEEE PerCom, 2010.

[27] L. Yang, J. Han, Y. Qi, and Y. Liu. Identification-free batch authentica-
tion for rfid tags. In IEEE ICNP, 2010.

[28] L. Yang, J. Han, Y. Qi, C. Wang, T. Gu, and Y. Liu. Season: Shelving
interference and joint identification in large-scale rfid systems. In IEEE
INFOCOM, 2011.

[29] D. Yeager, F. Zhang, A. Zarrasvand, N. T. George, T. Daniel, and B. P.
Otis. A 9 μA, addressable gen2 sensor tag for biosignal acquisition.
IEEE Journal of Solid-State Circuit, 45(10):2198–2209, 2010.

[30] H. Zhang, J. Gummeson, B. Ransford, and K. Fu. Moo: A batteryless
computational rfid and sensing platform. UMASS Tech Report UM-CS-
2011-020, 2011.

[31] P. Zhang, J. Gummeson, and D. Ganesan. Blink: a high throughput link
layer for backscatter communication. In ACM MobiSys, 2012.

