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Abstract—This paper presents iType, a system that uses eye
gaze for typing private information on commodity mobile plat-
forms. The design combats three primary challenges: 1) relatively
low accuracy of mobile gaze tracking; 2) difficulties in correcting
input errors due to lacking the comparison with the true text-
entry value; and 3) device motions and other noises that may
interfere gaze tracking accuracy and thus the iType performance.
We devise a set of effective techniques, including leveraging a
collective behavior of the gaze tracking results, unique correlation
of the typing error spatial distributions, and motion sensor
hints from mobile devices, to address above challenges. A set of
enhancement techniques are applied to further improve iType’s
robustness and reliability. We consolidate above designs and
implement iType on iOS platform. Evaluations show that iType
achieves high keystroke detection accuracy for the secure typing
within a reasonable short latency.

I. INTRODUCTION

Motivation. Imagine the following scene. Bob notices a new

voice mail when he is on the bus and needs to input the

password to access his voice mailbox. He sequentially looks

at the buttons on the screen. The front camera of the phone

reads his gaze and infers each character he intends to type for

completing the input. Later when Bob enters a coffee shop,

he leverages his gaze again to input the password of his bank

card for the payment, prohibiting it to being exposed to nearby

customers. As a matter of fact, such an eye gaze based typing

can be potentially adopted to input various private information

in practice, e.g., for account login, phone unlocking, dialing

private numbers, etc.

While this may be an intriguing vision about the future, it

has unveiled an emerging and urgent privacy issue. Nowadays

mobile devices offer us the most convenient user experience

ever [10], e.g., at anytime and anywhere, but we unavoidably

face a new potential threat at the same time: the interaction

between users and mobile devices may be exposed to public

directly, which may leak very sensitive information of the user,

e.g., passwords, private data, account information, etc. If the

input of such information is not properly protected, the user’s

privacy can be easily emanated and compromised in public.

How do existing solutions prevent privacy leakage on mo-

bile devices? Recent approaches mainly leverage human’s bio-

metrics or behaviors, e.g., voices, faces [9], fingerprints [24],

iris and its move [7, 26], phone usage features [11], etc., to

avoid explicit input of the private information. However, most

of these approaches usually require specialized sensors, which

will increase the device cost and make solutions accessible to a

limited set of (and also expensive) devices. More importantly,

existing solutions are not generic — they are concentrated at

certain services, like unlocking or authenticating a device, but
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Fig. 1: Illustration of iType design. Screen is divided into (a)

a 4×3 grid on phones holding 10 numbers and (b) a 5×4 grid

on tablets holding both 10 numbers and 26 English letters on

two pages. Button “←” means delete. When one button hosts

multiple characters, we could use button “/” for paging.

they are not usable to many conventional services that require

an explicit private text-entry, e.g., providing textual password

for an on-line login, inputting the personal data in transactions,

unlocking devices without biometric sensors, etc.

In this paper, we propose iType for the private information

input using the eye gaze, as illustrated in Figure 1. In iType,

the keyboard consists of multiple buttons and each button

represents unique character(s) (number or letter). For the ease

of presentation, we refer password to various kinds of private

information for short. To type a password, the user looks at

the corresponding buttons sequentially, and iType essentially

solves a decoding puzzle: it reads the user’s gaze, infers the

buttons being looked at, and assembles the password. The

iType typing is secure primarily due to the fact that the eye

gaze is difficult to eavesdrop. Even an adversary in front of

the user could decode the eye gaze, the gaze itself conveys no

meaningful information, unless it matches with the keyboard

layout, which however can be user-defined and changed.

Challenges. Translating the iType idea to a practical system

entails crucial challenges, covering accuracy, latency and

mobility several aspects:

1) Low accuracy of mobile gaze tracking. iType is designed

atop the gaze tracking technique [12, 14], which relies on

the gaze tracker trained in advance. As the relative position

between front camera and user’s eyes may vary over time

during the real usage, it could make existing gaze tracking

solutions inherently inaccurate and unreliable when they are

used on mobile devices. Precisely inferring typed characters

based on low-accuracy gaze tracking results is difficult.

2) Lack of true text-entry value in error correction. The

assembled password may contain typing errors, which will be
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rejected by the underlying application, and the user has to

type it again to correct the errors. Due to the privacy concern,

the password plain text is not displayed on the screen, and

the correctness of each recognized character is thus unknown

to the user. If iType verifies to the application only when an

intact password is obtained, it may significantly impair the

typing efficiency and prolong the typing delay.

3) Noises from device motions. As front camera continu-

ously tracks the user’s face, device motions during typing

may blur the captured frames and degrade the quality of

gaze tracking. The gaze tracking accuracy further deteriorates,

which will in turn degrade the iType performance.

Contributions. In this paper, we tackle above challenges based

on the following observations and techniques.

1) We find that although the individual gaze tracking results

(points) are unreliable, their statistics can give good approxi-

mations. We thus look at a group of gaze tracking points and

leverage their collective behavior to approximate the user’s

true gaze position. Based on that we propose a technique to

confirm the typing of each character using a minimal number

of gaze tracking points. It ensures both the accuracy and delay

for typing individual characters.

2) When assembled password contains typing errors, iType

requires another round of user’s input. We observe that rear-

ranging the layout of buttons shuffles the vicinity of true gaze

positions, which thus provides opportunities to migrate typing

errors and jointly decode user’s input cross multiple rounds

even the typing channel has a low signal-to-noise ratio.

3) The quality of the frames generated from the front camera

is impacted by device motions. iType leverages accelerometer

readings to select frames with the best expected quality to

enhance the typing performance.

We implement iType on the iOS platform and comprehen-

sively evaluate its performance in various environments. We

show iType can achieve high accuracy for private information

typing, e.g., 97% and 89% for individual keystroke detections

in static and dynamic scenarios, respectively. Although private

information normally has limited length, e.g., 4 to 8 characters,

iType still controls the input within reasonable short latency,

e.g., 2.0s per character, and 84% (and all) correct passwords

are obtained after the first (and second) typing round, indi-

cating that good typing accuracy and latency can be achieved

simultaneously. Field trial studies further verify the efficacy of

iType cross different users.

Roadmap. §II is the overview. iType is designed in §III,

developed in §IV and evaluated in §V. We conduct literature

review in §VI before concluding in §VII.

II. OVERVIEW

Utility of iType. iType is specifically designed for applications

where private information needs to be explicitly typed on

mobile devices in public, such as passwords for logging into

on-line accounts, personal data needed in authentications or

transactions (e.g., birthday, security codes of credit cards, etc.),

unlocking devices without bio-information sensors, etc. iType

Screen size (mm) Exp. error (◦)

Phones
x 51 ∼ 69 1.7 ∼ 2.3
y 90 ∼ 122 1.8 ∼ 2.4

Tablets
x 120 ∼ 148 2.5 ∼ 3.0
y 161 ∼ 200 2.2 ∼ 2.9

TABLE I: Screen size survey for mobile devices.

design principle can be applied beyond commodity personal

devices as well, e.g., to support interactions with variant third-

party point-of-sale (POS) terminals, like depositions at bank

ATMs, and payments using membership cards or credit cards.

Although the gaze based typing is inherently less efficient

than traditional keyboard based methods due to the responsive-

ness of human’s eyes, iType is positioned as a secure channel

(or alternative) to type private information on mobile devices,

in stead of replacing these methods. Even private information

is usually short, e.g., less than 8 characters, iType still strives to

achieve high typing accuracy within reasonable short latency,

e.g., 2.0s per character, for this purpose.

Gaze tracking accuracy needed in iType. We survey on the

mainstream smartphones and tablets in Table I, where x and y
two directions are illustrated in Figure 1. Given these prevalent

screen sizes, the iType keyboard layout design considers both

the character recognition accuracy and the typing efficiency.

In particular, the screen is divided into a 4 × 3 grid to

accommodate 10 numbers, 0 ∼ 9, for smart phones, and a 5×4
grid to contain 10 numbers and 26 English letters for tablets

as shown in Figure 1. If the number of buttons is smaller than

the total number of characters, we can organize characters to

multiple pages and introduce a “/” button for paging, e.g.,
button “1/d” in Figure 1(b) means “1” and “d” are placed

on two pages, and the user sequentially types buttons “/” and

“1/d” to choose letter “d”.

According to above keyboard layout design, we derive the

gaze tracking accuracy required by iType, which is summa-

rized in Table I. At a common device-to-eye distance, e.g.,
25cm to 35cm, the error1 is expected to be about 2.0

◦
to 3.0

◦

to reliably confirm a typed character. Table I indicates iType

requires to precisely track the user’s eye gaze in the design.

Gaze tracking accuracy on mobile devices. The input of gaze

tracking is a stream of frames from front camera that captures

user’s eyes. The core module, gaze tracker, then calculates

(x, y) coordinates of the user’s gaze on the screen plane for

each frame. The implementation of one state-of-the-art gaze

tracker is detailed in §IV. We now evaluate the mobile gaze

tracking performance under various settings including both

static and dynamic environments. The expected error range

in Table I, e.g., 2.0
◦

to 3.0
◦
, is marked in Figure 2(a) and (b),

which indicate that the achieved performance cannot obtain the

desired accuracy to directly support the iType design. We thus

need novel solutions to effectively cope with this unreliable

gaze tracking issue in the next section.

1Errors are normally measured by the angle between two line segments:
from the eye to the target point and the derived gaze point on the screen [19].
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Fig. 2: Gaze tracking errors. Accuracy achieved on (a)

phones and (b) tablets. Distributions along (c) x-axis and (d)

y-axis. The shadow area indicates the exp. errors in Table I.

III. ITYPE DESIGN

Figure 3 depicts the architecture and components of iType.

Gaze engine. Gaze engine converts the live video frames to

a stream of gaze point coordinates. After iType starts, video

frames are extracted from front camera and they are attached

with accelerometer readings. Due to the processing delay, only

a subset of frames can be utilized to produce gaze tracking

points (§IV), and frame selector leverages accelerometer read-

ings to select best quality frames against external dynamics

(§III-C). The derived gaze coordinates (xi, yi), from the i-th
processed frame, are streamed to the iType engine.

iType engine. iType engine converts gaze tracking points

to the typed information. The keystroke detector embraces

group centroid estimator and transitional gaze remover two

techniques to recognize each typed character (§III-A), which

are concatenated as a password in the password assembler. If

the password contains typing errors, the typing error corrector

leverages joint decoder and keyboard rearranger two tech-

niques to migrate errors and jointly decode user’s input cross

multiple typing rounds (§III-B). We further propose virtual
button and flying button two techniques in the enhancement

layer to improve the robustness of iType (§III-D).

A. Keystroke detector

1) Group centroid estimator: Observation. To address the

low accuracy issue of gaze tracking on mobile platforms, we

observe when a user stares at one position on the screen,

although individual gaze tracking results could contain highly

disturbed errors, they all scatter around user’s true gaze posi-

tion. This phenomenon inspires us to look at a group of gaze

tracking results, instead of individual ones, and leverage their

collective behavior to approximate the user’s gaze position.

We analyze the distribution of gaze points when the user

looks at different positions on the screen. Figure 2(c) and

(d) plot the histograms of gaze points from one group along

x and y axises. We divide each axis into multiple bins and

count the percentage of gaze points falling into each bin.

The result suggests that the gaze points along each direction
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Fig. 3: iType architecture. iType converts eye frames and

motion sensor signals to the securely typed information.

nearly follow a Gaussian distribution, i.e., N (μ, σ), where μ
and σ are the expectation and standard deviation, respectively.

Gaze points from other groups exhibit similar distributions

but with different μ and σ values. For each group, the

expectations (μ)s of the two Gaussian distributions along x
and y directions together indicate the user’s intended gaze

position. This motivates us to leverage the centroid of each

group to approximate this position, and the question turns to

how many gaze points are enough to derive the centroid, since

each point is merely a sample from two underlying unknown

Gaussian distributions.

Solution. A natural solution is to collect enough gaze points

and apply curve fitting to determine the expectations when the

fitting error becomes sufficiently small. It could however incur

a long computation delay, and may not be suitable for real-

time mobile applications. To address this issue, we employ T-
distribution [13] to define a confidence range for quantifying

the possibility that the difference between the group centroid

and the expectations of underlying Gaussian distributions falls

into this range. Their closeness can be determined as follows:

Suppose there are n gaze points gi, where i = 1, 2, . . . , n. A

confidence interval (x̃− σ̃√
n
tα

2
, x̃+ σ̃√

n
tα

2
) can be constructed

along the x axis. For this interval, parameters x̃ and σ̃ are

the average and the standard deviation of gi respectively, α
represents the error rate, and tj is can be determined from the

t-distribution look-up table. The confidence interval along the

y axis can be similarly defined. The expression of the interval

indicates that with more gaze points, the confidence interval

becomes smaller (i.e., the confidence level is increased). It can

be proven that the confidence level for the true expectation of

the Gaussian distribution within this constructed confidence

interval equals to 1− α.

Algorithm 1 details the execution of above process. As

gaze points are streamed into the gaze engine, Cx and Cy

are used to temporarily store the x and y coordinates of n
gaze points received so far, respectively, and we calculate

their standard deviations σ̃x and σ̃y . Given α (e.g., 10%)

and the confidence range thresholds lx and ly , which are set

to be half of the distances between two neighboring buttons
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Algorithm 1: Group centroid estimator

1 input: Cx = {xi}, Cy = {yi}, where i = 1, 2, . . . , n, and

(xi, yi) is the coordinates of the i-th gaze point;

2 output: the group centroid (xc, yc);

3 calculate σ̃x and σ̃y for Cx and Cy , respectively;

4 if σ̃x√
ñ
tα/2 ≤ lx && σ̃y√

ñ
tα/2 ≤ ly then

5 return (xc =
1
n

∑n
i=1 xi, yc =

1
n

∑n
i=1 yi);

along x and y directions respectively, the group centroid

(xc, yc) can precisely approximate the expectations of two

underlying Gaussian distributions when the condition in line 4

of Algorithm 1 is satisfied. The keystroke is confirmed as the

button that is closet to group centroid (xc, yc). The device then

displays an “x” sign on the screen to inform the completion

of the current keystroke to the user.

2) Transitional gaze remover: After finishing one

keystroke, the user’s gaze may delay on the previous button2

and then shifts to the next one. As front camera generates

continuous video frames, the transitional gaze points will also

be streamed to the iType engine, which however should be

excluded; Otherwise the Gaussian property for next keystroke

will be violated that may cause incorrect detections.

Observation. Our key observation here is that gaze points can

demonstrate distinctive spatial distributions in different phases,

e.g., a tail-like distribution in the transition phase v.s. the

Gaussian distribution in the typing phase. Although we have

profiled the Gaussian distribution in the previous subsection,

it is difficult to precisely describe transitional gaze points,

since their exact distribution is determined by from which two

buttons the transition phase starts and ends, and how a user

shifts eyes in between. We thus need to separate them even

the exact distribution in the transition phase is unknown.

We divide the screen plane into k ∗ k grids (this division

can be denser than the keyboard layout in Figure 1) and the

time into a sequence of consecutive time windows with size

w, where w gaze points are generated in each time window.

For example in Figure 4(a), k and w equal to 4 and 12,

respectively. We observe that in the transition phase, the gaze

point distributions in different time windows change gradually.

However, when the user’s gaze falls on the intended button, the

gaze points exhibit Gaussian distributions. This motivates us

to leverage the changes of the gaze point distribution, instead

of its exact expression, to distinguish the transition phase.

Our design principle is thus: if the gaze point distributions

cross different time windows keep changing, the user’s gaze is

considered in the transition phase. If such distributions become

stable, we conclude the gaze focuses on an intended button.

Solution. For any two discrete distributions Q = {qi} and

P = {pi}, Kullback-Leibler divergence (KLD) [17] could be

2With the virtual button design in §III-D, such residual gaze points will
not mis-trigger keystroke on the previous button for the second time.
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Fig. 4: Transitional gaze remover design. (a) 4 × 4 screen

grids. (b) Example in 3 windows, where window size w = 12.

applied to quantify their similarity as follows:

DKL(Q‖P ) =
∑

i

qi log2
qi
pi
, (1)

where DKL(Q‖P ) represents the information lost when P is

used to approximate Q. A smaller DKL indicates that two

distributions are more similar to each other.

According to our design principle, for time window Wj , we

define its discrete distribution Gj as the normalized histogram

of w gaze points falling into k ∗ k grids, e.g., G1 to G3 in

Figure 4(b). Therefore, we obtain a series of G = {Gj} as

time elapses. Since some bins could be empty as shown in

Figure 4(b), we assign a small value, e.g., 1/w, to all the

bins in each Gj initially to avoid pi = 0 in Eqn. (1), and the

normalized histogram is added atop this baseline. Transitional

gaze remover then works as follows:

1) After one keystroke detection is confirmed (by Algo-

rithm 1 in §III-A1), transitional gaze remover starts to build

G for the next keystroke. We denote P = Gj and Q = Gj+1,

and apply Eqn. (1) to calculate their DKL value.

2) If DKL is greater than a threshold τ , the gaze points

in P are considered in the transition phase, which will be

excluded from the centroid estimation for the next keystroke.

In the example of Figure 4(b), we configure τ = 0.2. As

DKL(G2‖G1) = 1.806, gaze points in G1 will be excluded.

3) If DKL is less than τ , it means that P and Q share

a similar distribution, e.g., DKL(G3‖G2) = 0.107, and we

emerge them, e.g., histogram over these two time windows, to

improve the reliability for the next comparison.

4) We conclude that the user’s gaze is in the typing phase

when Gj with similar distributions are consecutively observed.

Then the gaze points in these time windows having similar

distributions, together with subsequent points (if any), will be

used in the group centroid estimation for the next keystroke.

In transitional gaze remover, two parameters, i.e., the win-

dow size w and threshold τ , are configured empirically through

the experiments.

3) Button selector: In summary, to type a character in

iType, transitional gaze points (in the transition after the previ-

ous keystroke) are first excluded. Later when transitional gaze

remover confirms a new typing phase, group centroid estimator

accepts consequent gaze points until the group centroid (xc,

yc) is derived. Button selector selects the button that is closest
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round, but the joint decoder can correct this error. However,

joint decoder fails if the centroid is c′2. (c) Keyboard rearranger

shuffles keyboard layout to increase button spatial diversity.

to (xc, yc) for this keystroke. The device then displays an “x”

on the screen to inform this typing to the user.

B. Typing error corrector
After all characters are typed, password assembler concate-

nates them as the password and verifies to the application.

The verification however could get rejected if the password

contains typing errors. In this case, the user needs to type

them again, but incorrect characters may still occur in the

new typing round. As the password content is not shown due

to the privacy concern, the correctness of each typed character

is unknown to the user. If the input terminates only when an

intact password is obtained, it may dramatically impair the

typing efficiency and prolong the input delay.

1) Joint decoder: Observation. We have the following

observation to address this issue. Suppose the first character

of a password is “1”. Unfortunately, the centroid for the first

keystroke is estimated as c1 in the first round of typing, as

illustrated in Figure 5(a), which will cause button “4” to be

typed. However, we note that although this keystroke detection

is incorrect, the intended button, e.g., button “1” in Figure 5(a),

is not far away from centroid c1. Even the keystroke detection

for this character is incorrect in the second round of typing as

well, the intended button is still in the vicinity of the estimated

centroid, e.g., centroid c2 causes button “2” to be typed in

Figure 5(b), but the intended button “1” is still close to c2. As

a result, typing the same character within a password, only

the intended button can be consistently close to the estimated

gaze group centroids cross different rounds, e.g., c1 and c2 in

Figure 5(a) and (b), respectively.

Solution. This spatial correlation provides us an important hint

to correct typing errors even the password plain text is not visi-

ble to the user. The idea is to leverage the cumulative distances

from group centroids to each button cross different rounds.

After the m-th retry, we propose the following joint decoding

approach to recognize each character j̃ in the password:

j̃ = argminj
∑m+1

i=1
d(ci, j), j = 1, 2, . . . , N, (2)

where d(ci, j) represents the distance between centroid i and

the center of button “j” and N is the total number of buttons

on the screen. For the first character in the example of Figure 5,

solving above equation (when m = 1 and N = 12) leads to

j = 1, which is the intended button to be typed. Joint decoding

thus provides one more password candidate in addition to

those derived from each typing round directly.

2) Keyboard rearranger: Although the joint decoder can

leverage the typed information cross multiple rounds to correct

typing errors, it may still fail in certain scenarios. For instance,

if the group centroid is estimated as c′2 in Figure 5(b), the

output of Eqn. (2) is button “4” instead of “1”. To address

this issue, we propose to further reshuffle the keyboard layout

for each new typing round. By doing so, the mutual distance

between different buttons is enforced to be changed, and it

becomes rare that the group centroids are consistently close to

a same incorrect button cross different rounds. In light of this,

Eqn. (2) could fully leverage the spatial diversity in the error

correction. For example, if the keyboard layout is rearranged

as Figure 5(c) in the second round, d(c1, 1) + d(c′′2 , 1) is less

than any d(c1, j)+d(c′′2 , j), where j indicates all other buttons

on the screen, and button “1” can be selected correctly.

To permutate buttons in different rounds, the pseudo-random

arrangement is a feasible solution and a set of optimal key-

board layouts can also be determined. In particular, denote

Bm = [bmi,j ], where bmi,j represents that button i accommodates

character j on the m-th layout, and m = 1, 2, . . . ,M + 1,

where M is the total number of retries allowed to correct the

typing errors. The optimal layouts for each typing round can

be determined by maximizing the minimum cumulative inter-

button distances cross M + 1 rounds as follows:

max
B1,B2,...,BM+1

{minj
∑M+1

m=1
d(bmu,j , b

m
v,j)}. (3)

The above problem could be solved off-line in advance to

derive the optimal layouts, which is an one-time effort. When

users need a new round of typing, the derived layout for

this round can be loaded to use directly. As §V reveals,

a small number of error correction rounds, e.g., M = 1,

could be sufficient in practice. Users can thus familiarize with

few additional layouts (from pseudo-random arrangement or

Eq. (3)) in advance and smoothly type for the error correction.

C. Frame selector

Frame selector in the gaze engine (Figure 3 on p. 3) ensures

the frame quality for the gaze tracker to derive more reliable

gaze points in dynamic environments. When device shakes

due to motions, although users has the instinct to track the

stared button, the generated frames could get blurred, which

will degrade the gaze tracking accuracy.

Observation. To understand this impact, we experiment in

three typical cases for iType. We record accelerometer readings

(denoted as acc) to indicate the mobility level and calculate

the number of detectable image features to quantify the frame

quality, e.g., more features indicate a sharper frame [31].

Figure 6(a) depicts the result when a device is shaken (at index

20 on the x-axis). Figure 6(b) and (c) report the results when a

user is moving and on a vehicle, respectively. Figure 6 shows
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Fig. 6: Relation between frame quality and device motions.

(a) Shaken by hand. User is (b) moving and (c) on the vehicle.

that the frame quality (sharpness) relates to the device mobility

level, consistent with the recent observation in [31].

Front camera of a mobile device generates frames at fixed

rate r, e.g., 30 to 120 fps (frames per second). Nevertheless,

due to the processing delay, the effective gaze point generation

rate r̃ is less than r, and we denote r/r̃ = v. It means that to

derive one gaze point, i.e., (x, y) coordinates, v new frames are

generated. Gaze points can thus be derived using every v new

frames. However, in dynamic environments, after processing

the i-th frame, the newly generated (i+v)-th frame could have

a highly unclear frame quality.

Solution. We leverage accelerometer readings to select the

frames experiencing least external motions with the best

expected quality. As frame generation rate r is higher than

gaze point generation rate r̃, this principle can be instantiated

by buffering sufficient (e.g., b) fresh and high-quality frames

that are not applied for gaze tracking yet. Specially, when a

new frame is generated from front camera and the previous

frame is still under processing, the new frame is pushed into

the buffer if the buffer is empty; Otherwise, the new frame

could replace the existing frame in case its associated acc
value is smaller. When the processing of the previous frame

is completed, frame selector feeds the buffered frame into gaze

tracker as input to derive the gaze point. By doing so, a fixed

frame buffer size will be sufficient for selecting better quality

frames, and this design is compatible with various devices’

hardware specifications, e.g., camera’s frame rate and CPU’s

processing delay. In summary, frame selector works as follows:

Step 1. A new frame is generated from camera.

Step 2. Push new frame into buffer if empty; Otherwise,

keep the frame with a smaller acc value associated.

Step 3. Pop out the buffered frame when the processing

of the previous frame is completed.

D. Enhancement layer

1) Virtual button: To handle the case that a password

contains repeated characters, e.g., “...11...”, we propose virtual

button, where some external item, e.g., the front camera itself,

device home button, unused typing area, etc., can be viewed as

a functional button for the separation purpose. Thus, to input

repeated characters, like two “1”s, the virtual button needs to

be typed in between, e.g., “1” → virtual button → “1”.

As discussed in §III-A2, after finishing one keystroke, the

user’s gaze may delay on the previous button. Virtual button

can also ensure that such residual gaze points will not type the

previous button one more time by mistake, since the virtual

button is not recognized in between.
2) Flying button: Different buttons could have different

numbers of neighboring buttons. Since a typing error usually

occurs as the result that one neighbor of the intended button is

selected by mistake, more neighbors imply more typing error

candidates, e.g., button “5” in Figure 3. In iType, we introduce

an extra copy for this button so that the new copy flies along

certain trajectory at a constant speed. As flying button has no

explicit neighbors, user can also track its flying to type by the

trajectory matching. We omit design details due to page limit.

IV. ITYPE IMPLEMENTATION AND CONFIGURATION

We implement iType on the iOS mobile platform, including

all the components introduced in §III, and adopt iPhone 6 and

6 Plus as primary implementation devices.

Gaze engine. We develop a mobile gaze tracker based on a

state-of-the-art gaze tracker design [1] using ordinary cameras

[12] on Mac OS X from the gaze tracking domain. To train

a gaze tracker, the user sequentially looks at a set of stimulus

points on the screen and the training is completed within about

35s. The trained gaze tracker is locally stored and utilized for

the typing purpose. To derive the gaze (x,y) coordinates for

each frame, the gaze engine tracks the user’s face and chops

sub-images of the eye area [14]. To further enhance the gaze

tracking performance, the development in [12] contains the

following techniques: the user’s eye area on each frame is

scaled to a consistent predefined eye image size for alleviating

the mismatch, the eye blink frames are excluded and the image

normalization is conducted to minimize illumination impacts,

which are also included in our implementation. Reported

accuracy in Figure 2(a) and (b) is already the performance

using these enhancing techniques.

After iType starts, front camera generates frames at 30fps.

However, Figure 7(a) shows that the delay to locate the user’s

face and then derive one gaze point is about 364ms even a

recent A8 CPU chip is used, which leads to 2.7 gaze points

per second merely. The major processing overhead originates

from the face and eye detection, and the lightweight optical

flow technique can be adopted [25] to track the user’s face

and eyes after they are detected for the first time. Figure 7(b)

implies this processing can be accelerated by 6.97x to 8.93x.

iType engine. We develop keystroke detector, typing error

corrector and enhancement layer three components in the

implementation of the iType engine. We also study the two

parameters used in the design but not investigated yet: window

size w for transitional gaze remover and the KLD similarity

threshold τ , and conduct an empirical configuration for these

two parameters, e.g., w = 5 and τ = 0.2. Due to the page

limitation, we omit these experimental details.
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V. PERFORMANCE EVALUATION

A. End-to-end performance

Individual keystroke detections. We first evaluate the per-

formance of individual keystroke detections. We experiment

in static and dynamic two scenarios and focus on the evalu-

ation on accuracy and latency two performance metrics. We

generate random passwords with 5 to 8 characters and input

the passwords using iType.

Accuracy. We compare each recognized password with its

ground truth to examine the accuracy of individual keystroke

detections. Figure 8(a) shows that keystroke detection in iType

is accurate, e.g., 97% and 89% accuracy in static and dynamic

environments, respectively. The performance deterioration in

the latter case is possibly because dynamics could distort the

parameters of the Gaussian distribution of gaze points and also

intensify the variation of the relative device-to-eye position.

Latency. Figure 8(b) shows the latency performance that

iType achieves to type one character, i.e., the latency between

the ends of two consecutive keystrokes. From the result, we

observe that iType is responsive for the keystroke typing,

where the latency is 2.0s and 2.6s on average in static and

dynamic environments, respectively.

We note that the gaze based input designs are inherently

slower than traditional keyboard based input methods, which

is dominated by the responsiveness of human’s eyes. However,

as iType is positioned as a secure channel (or alternative)

to enhance the typing privacy, instead of replacing existing

input methods, and the password normally has a short length,

Figure 8 suggests that iType could achieve reasonable latency

performance for such a purpose.

Overall typing performance. Next we evaluate the overall

typing performance of iType. When the assembled password

contains typing errors, the user has to type it again to correct

them. Figure 9(a) shows that all the passwords can be correctly

obtained within the first two rounds of typing, especially, 84%

of passwords are already correct after the first round, and

all correct passwords are obtained after the second attempt

in this experiment. Due to additional typing rounds, the

effective latency to correctly input one character is increased.

Figure 9(b) shows that it increases by 0.3s on average. In

Figure 9, we also examine the efficacy of the joint decoder so

that the input is successful only when an intact password is

obtained. Figure 9(a) shows that for about 3% cases, at least

3 rounds of typing is needed and the per-character input delay

is increased by 0.4s on average in Figure 9(b).

B. Micro-benchmark experiments

We then conduct micro-benchmark experiments to under-

stand how variant factors could impact iType’s performance.

Impact of input password sequences. In this trial of exper-

iments, we first control the repetition of a same character in

the password. For instance, the repetition for “1” in “...11...”

is 2 and its input sequence is “...1”→ virtual button→ button

“1...”. We vary repetitions from 2 to 4. From Figure 10(a), we

find that compared with purely random input sequences, there

is no significant impact on the keystroke detection accuracy.

However, as longer repetitions lead to more keystrokes on

virtual button, Figure 10(b) indicates that the average latency

per character is increased from 2.2s to 3.2s. As passwords

usually have few repeated characters due to the security

concern in practice, e.g., 2, the impact of input repetitions

on iType is thus not substantial.

In Figure 10(c), we further study the impact of the paging
function during typing. We observe similar performance as in

the experiment for repetition, e.g., no obvious influence on the

accuracy and the per character latency increases from 2.2s to

3.0s on average.

Impact of device-to-eye distances. The device-to-eye distance

is usually around 25cm to 35cm when people use mobile

devices. In this experiment, we make 30cm as the benchmark

and vary the distance from 25cm to 50cm to examine its

impact on the typing performance. Figure 11(a) shows that

compared with the benchmark, the performance exhibits no

remarkable differences within 35cm, but it drops significantly

beyond this distance. As a result, the device-to-eye distance,

within a common range like 25cm to 35cm, has a minimal

impact on the typing performance.

Impact of head movements. To understand the impact of head

movements on the performance, we intentionally introduce

three types of head movements during typing: perpendicular
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to the screen in Figure 11(b), parallel to the screen in Fig-

ure 11(c), and rotation in Figure 11(d), and compare with

the performance without such head movements. From the

results, we observe that the first two types of head movements

can be tolerated by our typing design to some extent, while

iType is more sensitive to the head rotation, e.g., when the

rotation is large, e.g., approximately 6
◦

to 9
◦
, the accuracy is

dramatically degraded. We also find when head moves back,

the performance can be recovered at a certain degree, but this

experiment still inspires us to further enhance iType by better

handling head movements in the future.

Impact of illuminations. In Figure 12(a), we evaluate the

impact of ambient illuminations at different locations, where

the illumination varies from more than 1000 to less than 10

Lux. In the experiment, we observe that when the illumination

is sufficiently bright, e.g., from 77 to 351 Lux, the keystroke

detection is accurate, as depicted in Figure 12(b). When the

illumination is excessively strong or weak, many eye details

might be lost due to overexposure or underexposure, which

could significantly degrade the gaze tracking performance, as

the consequence of the typing performance.

User study. To further examine the usability and the security

of iType, we conduct a user study. We recruit 5 participants.

Each participant is given 15min to familiarize with iType and

they then test the performance. Throughout the experiment, we

find users can achieve good typing performance using iType.

Figure12(c) further details their typing speeds of individual

keystrokes, where the average latency is also about 2 seconds.

VI. RELATED WORK

Gaze tracking. Gaze tracking techniques fall into two main

streams [19]: model based detection and appearance based

matching. The former category detects the pupil-iris bound-

ary that works best with near-infrared illumination sources

[20]. The latter category requires no special hardware and

works with common cameras [19]. iType falls into the sec-

ond category. Gaze tracking is mature for wearable devices

already, like iShadow [19], iGaze [30] and CIDER [20].

This technique, however, still suffers low accuracy on mobile

devices. Although some existing efforts have been made to

develop gaze tracking using mobile devices, e.g., [14, 15], this

crucial issue is not explicitly addressed yet. Some commercial

products, e.g., Tobii [3], can handle this issue yet incurs

additional hardware, solution cost and relatively high energy

consumption [20]. iType thus requires effective and generic

solutions to precisely infer the typed information atop the

limited accuracy of gaze tracking on mobile devices.

There are also some software-based gaze tracking SDKs

for mobile platforms from companies [2, 4], while Snapdragon

SDK [2] supports a limited set of Android-based devices using

the Snapdragon processors merely and Umoove’s EyeMove-

mentSDK is not open to the general public yet [4].

Privacy leakage and protection. Recent studies show serious

privacy leakage issues on mobile devices [18, 21, 29], through

acoustic or acceleration signals. To prevent such privacy leak-

age, existing efforts mainly leverage human’s biometrics, e.g.,
voices, faces [9], fingerprints [24], iris and its move [7, 26],

phone usage features [11], etc., and also user’s behavioral

features, like the user’s gestures on touch screen [23], phone

usage patterns [27], keystroke patterns [22] and the multimodal

using both gaze and touch [16]. These solutions usually focus

on some dedicated services, e.g., device authentication, and/or

require specialized hardware. Different from existing works

above, iType provides a secure channel for many conventional

services that require direct textual input of privacy.

Typing on mobile devices. Recent studies have various novel

typing approaches, e.g., acoustic signals [28], Wi-Fi [6, 8],

accelerometers [5], etc. These designs focus on improving

the typing efficiency or exploring alternatives for physical

keyboards on mobile devices, which however are not for

solving the privacy leakage issue of the text-entry.

VII. CONCLUSION

We have described iType that uses eye gaze to enhance

typing privacy on commodity mobile devices. We have devised

effective techniques to address a series of design challenges,

covering accuracy, latency and mobility several aspects. We

have consolidated our techniques and implemented iType on
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the iOS platform. Experiments show iType achieves high

typing accuracy within reasonable short latency in variant

environments. A user study further verifies the efficacy of the

iType design. In the future, we plan to conduct a larger-scale

field study to obtain more feedbacks from different users.
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