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Abstract—Radio frequency identification (RFID) cardinality es-
timation with an accuracy guarantee is of practical importance in
various large-scale RFID applications. This paper proposes a fast
RFID cardinality estimation protocol, named Zero-One Estimator
(ZOE). ZOE only requires 1-bit response from the RFID tags per
estimation round.More importantly, ZOE rapidly converges to op-
timal parameter configurations and achieves higher estimation ef-
ficiency compared to existing protocols. ZOE guarantees arbitrary
accuracy requirement without imposing heavy computation and
memory overhead at RFID tags except the routine operations of
C1G2 standard. ZOE also provides reliable cardinality estimation
with unreliable channels due to the robust protocol design.We pro-
totype ZOE using the USRP software defined radio and the Intel
WISP tags. We extensively evaluate the performance of ZOE com-
pared to existing protocols, which demonstrates encouraging re-
sults in terms of estimation accuracy, time efficiency, as well as ro-
bustness over a large range of tag population.

Index Terms—Cardinality estimation, radio frequency identifi-
cation (RFID) systems.

I. INTRODUCTION

R ECENTLY, radio frequency identification (RFID) sys-
tems [9] have received significant interest from both

academia and industry. A large-scale RFID system usually
consists of multiple RFID readers and a huge amount of RFID
tags [24]. An RFID tag is capable of storing its unique ID as
well as some other information and wirelessly transmitting
them back to readers. By verifying the unique IDs of RFID
tags attached to physical objects, RFID readers are able to
identify and itemize the objects. Due to small form factor and
low cost of RFID tags, RFID systems provide us a scalable and
economic way for managing massive objects in a variety of
applications including inventory management [8], [15], [26],
logistics [27], [29], object tracking [18], [20], etc.
This paper studies the fundamental problem of estimating the

number of tags in large-scale RFID systems. Fast estimating of
the cardinality of RFID tags, accordingly the number of labeled
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items, is of primary importance to many applications [24]. For
instance, estimating the number of conference attendees with
RFID badges allows us to track the movement and distribution
of attendees in different conference rooms. A warehouse man-
ager may benefit from a quick estimate of products in stock. A
fast cardinality estimation scheme also serves as primary inputs
to various RFID protocols. For instance, Aloha-based RFID
identification protocols achieve near-optimal performance if the
contention frame size can be set according to the number of con-
tending tags [7], [12], [14]. Many missing tag monitoring pro-
tocols can also build upon accurate estimation results [15], [26].
To this end, probabilistic estimation approaches have been

proposed to efficiently estimate the number of RFID tags. Some
recent approaches achieve estimation efficiency to the
number of RFID tags [11], [19]. One most recent protocol,
Probabilistic Estimation Tree (PET), achieves
time efficiency for each estimation round [28]. Nevertheless,
existing protocols require many independent estimation rounds
to achieve high accuracy. For instance, PET takes several
seconds to achieve an accurate estimation. As a basic compo-
nent that may be frequently invoked by many applications, an
estimation protocol can easily become the bottleneck that limits
the overall performance of large-scale RFID systems. Further
improving the time efficiency of each estimation round will
significantly benefit the entire cardinality estimation process,
meet the stringent time requirement of many real-time applica-
tions, and support larger-scale RFID systems.
While pursuing the estimation efficiency at the optimum, we

are also aiming at reducing the computation and memory over-
head of resource-constrained RFID tags. Most existing proba-
bilistic approaches require generating a large volume of random
numbers or alternatively prestoring them at RFID tags, which
lead to heavy computation and storage burden for RFID tags.
We aim at shifting such overhead from resource-constrained
RFID tags to powerful RFID readers. Besides, most existing
works assume a reliable wireless channel between the RFID
reader and tags, which is contradicting with the fact that the
wireless channel is mostly error-prone.
This paper presents Zero-One Estimator (ZOE): a fast RFID

cardinality estimation protocol with guaranteed accuracy re-
quirement. ZOE first configures the system parameters and
converges to optimal settings with a bisection search with
negligible overhead. With the optimized parameter settings,
ZOE estimates the RFID cardinality with only 1-bit feedback
from tags at each round providing extremely high estimation
efficiency. We further consider the unreliable channels and
propose Error Estimation and Adjustment (EEA) algorithm to
adjust estimation results according to error rates.
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We implement a prototype system using the Universal
Software Radio Peripheral (USRP) [4] and the Intel Wireless
Identification and Sensing Platform (WISP) [23]. We im-
plement the ZOE reader functionality with USRP Software
Defined Radio (SDR) that interrogates programmable WISP
tags. The ZOE protocol only requires slight updates to the
EPCglobal Class 1 Generation 2 (C1G2) standard. We also
evaluate ZOE with extensive simulations in large-scale RFID
systems.
The rest of this paper is organized as follows. We briefly re-

view the related work in Section II. In Section III, we introduce
our system model and describe the problem of cardinality esti-
mation. We give a detailed description on ZOE in Section IV.
We present the implementation of ZOE in Section V. We eval-
uate ZOE with extensive simulations in Section VI. Section VII
concludes this paper.

II. RELATED WORK

RFID identification protocols aim at collecting the tag IDs
of all RFIDs in the interrogation area [7], [14], [21], [25], [30].
The identification protocols based on collision arbitration can
generally be classified into two categories: Aloha-based proto-
cols [14], [21] and Tree-based protocols [7], [30]. In small-scale
RFID systems, we may directly apply the identification pro-
tocols to count the exact tag cardinality. Nevertheless, such a
method becomes infeasible due to the low efficiency of identi-
fication protocols at scale. Rather than identifying all the tags,
probabilistic estimation protocols specifically tailored for large-
scale RFID systems estimate the number of tags to meet cus-
tomized accuracy requirement.
Kodialam and Nandagopal present Unified Simple Esti-

mator (USE) and Unified Probabilistic Estimator (UPE) [12].
Those schemes are vulnerable to multiple counting problems
when multiple RFID readers are deployed to cover the inter-
rogation region. Besides, the protocols require a cardinality
upper bound known in advance. Kodialam et al. [13] propose
Enhanced Zero-Based (EZB) estimator to estimate a relatively
large number of tags. Shahzad et al. [22] propose Average
Run-based Tag (ART) estimation protocol to improve estima-
tion efficiency. Such approaches require time-slots for
each estimation round to the total number of RFID tags .
Recent probabilistic estimation approaches achieve

estimation efficiency. Han et al. [11] propose the First Non-
Empty slot Based (FNEB) estimator with binary search method
to pinpoint the first nonempty slot. Qian et al. [19] propose the
Lottery Frame (LoF)-based estimator, which is a replicate-in-
sensitive estimation protocol. Both approaches require the tags
to cooperate with the reader by generating a large volume of
random numbers and respond accordingly. Onemost recent pro-
tocol, PET-based estimator [28], advances the estimation ef-
ficiency and achieves efficiency to the tag car-
dinality . Li et al. [16], [17] design energy-efficient estima-
tion algorithms to save energy for active RFID tags powered by
batteries. Unlike prior probabilistic estimation approaches, [16]
and [17] adopt the maximum likelihood estimation and propose
several approaches to avoid collisions to save power.

III. SYSTEM MODEL AND THE PROBLEM

A. System Model

We consider a large-scale RFID system consisting of three
major components: a large volume of RFID tags, several RFID
readers, and a back-end server connecting the readers. Mul-
tiple RFID readers are normally deployed to ensure a full cov-
erage of large-scale RFID systems. The back-end server coor-
dinates the RFID readers and initiates the cardinality estimation
process. The RFID readers relay the commands received from
the back-end server and broadcast to tags, and later report the
tags’ responses back to the server. For ease of description, we
first focus on the communication between the RFID tags and
one RFID reader covering all the tags. We discuss how to co-
ordinate multiple RFID readers in Section IV-E.2. The RFID
system may use lightweight passive RFID tags or more pow-
erful active ones.
In this paper, we exclusively focus on the RFID systems op-

erating in the 900-MHz ultra-high frequency band. We assume
that the RFID system works on a frame-slotted Aloha model.
RFID readers initiate interrogation by sending operation codes
and specifying PHY/MAC parameters. When energized by the
continuous waves from reader, each tag backscatters a message
or keeps silent. Such a communication model has been widely
adopted in many RFID systems compliant with the de facto
EPCglobal C1G2 standard [2].
The practical communication channel is mostly error-prone

depending on various factors including transmission power, in-
terrogation distance, antenna gain, interference, etc. [6]. Due to
the channel attenuation, even if there are some tags transmitting
back responses, the reader may fail to detect them in practice.
We call such missing detection errors as false negatives. On the
other hand, the reader may falsely detect a busy channel due to
the interferences, even when no response is transmitted. We call
such errors as false positives.

B. Problem Description

The objective of this work is to efficiently and accurately es-
timate the tag cardinality. To meet stringent real-time require-
ment, the estimation protocol should compute an accurate tag
cardinality in an efficient manner. Since the cardinality of RFID
tags could range from several hundreds to even tens of thou-
sands (e.g., a typical port inventory application may concern
hundreds of containers, each of which may contain tens of thou-
sands of RFID-labeled products), we need to design a scalable
and efficient estimation approach.
Consistent with the existing approaches [11], [19], [28], the

accuracy requirement is presented by -approximation. We
denote by the estimated number of the tag cardinality while
the actual number is . Given the accuracy requirement of

-approximation, we expect an estimation result , which
satisfies . For example, when the ac-
tual tag cardinality is 10 000, ( , )-approximation
expects an estimation result within the interval [9500, 10 500]
with a probability of 99% and above.
Although many recent protocols have been proposed to re-

duce the estimation time, it still takes several seconds to accu-
rately estimate the number of tags. For instance, PET [28] takes
roughly 9 s to achieve the accuracy requirement of ( ,
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Fig. 1. Illustrative comparison of ZOE with conventional schemes of EZB,
ART, FNEB, LoF, and PET. (a) Interested slots in a frame. (b) One aggregated
slot.

)-approximation. Further improving the time efficiency
will benefit many RFID protocols relying on accurate estima-
tion results.
We abstract the time efficiency with the total time-slots used

to estimate the cardinality. Most recent approaches only need
to distinguish an idle slot from a busy slot [11], [19], [28]. The
smaller number of time-slots means the shorter communication
time and thus the higher time efficiency, and vice versa. Mean-
while, we seek to reduce the computation and memory burden at
the RFID tags to facilitate the use of low-cost but resource-con-
strained passive tags rather than expensive active ones.
While most recent estimation protocols assume zero error

rates in the underlying wireless channel, we target at practical
unreliable channels. When the bit error rate is high, it becomes
very difficult to derive accurate cardinality estimation. Never-
theless, when the channel is in mild conditions, we expect that
the estimation protocol computes a reasonably accurate estima-
tion result.

IV. ESTIMATION PROTOCOL

In this section, we first discuss the design principle of ZOE
protocol. We then consolidate the essential idea with a cardi-
nality estimation protocol, which provides time efficiency
for each estimation round.

A. Principle

The existing approaches take advantage of the frame-slotted
Aloha protocol to estimate the number of tags. The RFID reader
normally needs to examine each time-slot in the frame. Fig. 1(a)
presents illustrative examples of most recent protocols, e.g.,
EZB [13], ART [22], FNEB [11], LoF [19], and PET [28]. In
EZB, each tag randomly selects a slot from slots with uni-
form distribution functions to send a response in each frame.
If the frame size is fixed, then the more busy slots there are,
the larger the tag population would be. EZB measures all
slots to estimate tag cardinality. ART also measures slots
in each estimation round and uses the average run size of iden-
tical responses as an estimator. ART outperforms EZB because
ART has significantly smaller variance. FNEB notices that the
first busy slot (herein, slot 3) indicates the tag population (i.e.,
the smaller the first busy slot is, the larger the tag population
would be). Leveraging the monotonic feature, FNEB locates the
first busy slot that takes time-slots in each frame. LoF
and PET reduce the frame size to by letting each tag
select a slot with geometric distribution functions, such that ap-
proximately of tags respond in the th slot. PET achieves

time efficiency leveraging a probabilistic binary
tree structure. The estimation results of such protocols may sta-

tistically vary for each estimation round. For instance, the first
busy slot in FNEBmight dramatically deviate from the expected
slot. Existing protocols thus need many independent estima-
tion rounds to derive averages to accurately estimate the actual
number of tags.
To improve the estimation efficiency, we propose the ZOE

protocol in which each frame only contains one slot. In par-
ticular, all the responses from tags aggregate at a single slot,
leading to either an idle slot if no tag responds or a busy slot
otherwise as illustrated in Fig. 1(b). Suppose there exist RFID
tags, and each tag responds with the probability of , and keeps
silent with the probability of . Intuitively, the more tags
there are, the higher probability that the reader observes a busy
slot, and vice versa. We can thus measure the ratio of busy (idle)
slots and infer the tag population.
Unlike conventional approaches where only small portion

of tags participate in each time-slot, in ZOE, the responses
from all the tags aggregate in the single time-slot, which allows
ZOE to make extensive use of each time-slot. MLE [16], [17]
shares a similar design principle with ZOE in that each tag
probabilistically sends 1-bit response in each time-slot. The
total time overhead involved in the overall estimation process
is the number of estimation rounds multiplied by the overhead
per estimation round. Although one may reduce the overhead
per estimation round, it requires careful optimization to re-
duce the overall overhead and achieve higher time efficiency.
By intelligently setting the system parameters, ZOE only
needs comparable number of estimation rounds with conven-
tional approaches, meaning that we reduce the overhead in
each estimation round to while keeping the number of
estimation rounds similar to those in prior schemes. In the fol-
lowing, we present detailed theoretical analysis and parameter
optimization.

B. Zero-One Estimator Protocol

We describe the detailed ZOE protocol in this section.
1) Tag: When probed by a reader in the cardinality esti-

mation process, each tag independently computes a random
number with a uniform distribution hash function ,
where denotes a random seed. For simplicity, we omit the
notation of for the hash functions. We denote by the
binary representation of . We also denote by the
index of the right-most zero bit in as follows:

(1)

If , the tag responds to the reader where is a
threshold received from the reader; if , the tag keeps
silent.
Let the random variable of be , , then we

have the probability

where denotes the probability that a bit of turns out to
be “1.” Typically, we assume , i.e., the hash function is a
uniform distribution hash function. Then, we have
, and
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Fig. 2. obtains the maximum value at .

The probability that a tag keeps silent given a threshold is

On the other hand, a tag will respond to the reader with the
probability of .
2) Reader: A reader initiates cardinality estimation by

sending a random seed and the threshold to the tags
and waits for the responses from the tags. In the case that

, the reader observes no reply
from the tags. Therefore, with the assumption of independent
identical distribution (i.i.d) for , the probability that there is
no reply from the tags (i.e., the channel is idle) is as follows:

where the load factor , and .
The probability that there is a reply (no matter a singleton

reply from one tag or replies from multiple tags) is

We define a random variable that takes value 1 with prob-
ability and value 0 with probability

. Then, we have

Obviously, the random variable follows the Bernoulli dis-
tribution. Therefore, the expectation and the standard deviation
of X are as follows:

The maximum standard deviation of is

when

We define the random process as the
average of independent observations, where denotes the
th observation of random variable . We assume the trials of

are i.i.d, then we have and
.

According to the law of large numbers [10], when is large
we have

(2)

According to (2), we can estimate the load factor as follows:

where denotes the estimation of .
The observation of can thus be used to estimate the tag

cardinality as follows:

(3)

Since the result may vary slightly because of the estimation
variance, we seek a guaranteed cardinality estimation result,
e.g., . The estimation accuracy
requirement can be represented as follows:

We define a random variable , where
, and . By the

central limit theorem [10], we know is asymptotically stan-
dard normal distribution.
Given a particular error probability , we can find a constant

that satisfies

where is the Gaussian error function [10]. Therefore, we can
guarantee the accuracy requirement
if we have the following conditions:

and (4)

According to (4), we have

(5)

Therefore, with such estimation frames, ZOE can guar-
antee the accuracy requirement of .
In (5), we see that depends on indicating that the
threshold may influence the estimation efficiency. In the fol-
lowing, we discuss how to set the threshold to optimize perfor-
mance of ZOE.

C. Parameter Setting

Before we perform the estimation process, we need to set the
threshold that directly influences the behaviors of the tags and
the estimation efficiency. If is too big, the reader will con-
sistently observe idle slots, i.e., ; if is too small, the
reader will observe busy slots in almost every time-slots, i.e.,

, with high probability. In either situation, it consumes
extra processing time to meet an accuracy requirement. As a
matter of fact, if we look at the lower bound of the estimation
round measured in (5), since , the lower bound
depends on the tag cardinality, which is not known in advance.
We denote by , the denomi-
nator of in (5). To reduce the number
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Algorithm 1: Threshold setting algorithm

1:
2: while do
3:
4: , Compute with Algorithm 2
5: if and
then

6: ; break;
7: end if
8: if then
9:
10: else
11:
12: end if
13: end while
14: return

of estimation rounds, we maximize the denominator since
the numerator is constant given an accuracy require-
ment. Fig. 2 plots against for different . We observe that

reaches the maximum value at .
We compute the first order derivative of

(6)

According to (6), the first order derivative vanishes at ,
and we have . Therefore, the lower bound is
achieved at , i.e., when .
This observation motivates us to adapt the threshold ac-

cording to the observation of a short sequence of the tags’ re-
sponses such that becomes close to . When the reader
observes too many idle slots, i.e., , it decreases the
threshold to increase the probability that tags would send re-
sponses; when the reader observes almost all the busy slots, i.e.,

, it increases the threshold to decrease the response
probability.
The expected value of is monotonically nondecreasing

against the threshold. We exploit such a monotonic feature to
fast converge to an optimal threshold. We can reach a suitable
that provides us with bisection search. Since we know
the target average of , i.e., , we can terminate
the bisection search when the intermediate value of becomes
very close to . In particular, we adapt and termi-
nate the bisection process when the intermediate value
reaches the interval and use

as the threshold.
Algorithm 1 presents the threshold setting process using bi-

section search method. The threshold is set to be the average
of and . The end and end are adjusted ac-
cording to (lines 8–12). Finally, the two ends converge, and
the average is used as the threshold (line 2). When the in-
termediate value becomes close to the target average ,
the bisection process terminates, and is used as the
threshold (lines 5–7).
Fig. 3(a) depicts an example of setting the threshold. In the

experiment, the actual tag cardinality is 1024, and thus the op-
timal threshold is . We repeat a small

Fig. 3. Parameter setting process: (a) fast convergence to the optimal threshold
value with bisection search method; (b) when or , the
variance is very small.

number of trials in each bisection step to derive . In Fig. 3(a),
we see that the experiment consists of four steps (i.e., ,
8, 12, and 10), and the number of trials is set to be an em-
pirical number of 32 (we will elaborate why 32 is sufficient
shortly). At the first step (1–32), we start with the threshold

. The reader observes 32 consecutive idle slots denoted
by “1”s in Fig. 3(a). Since , we adjust the param-
eter by decreasing at the second step (33–64), and we repeat
again 32 trials with the threshold . The reader observes 32
straight busy slots denoted by “0”s. At the third step (65–96),
the threshold is tuned to be . In this case, the
reader observes both “1”s and “0”s

. At the final step (97–128), we run the estimation with
, and the reader observes mixed “1”s

and “0”s . Since at the final
step is quite close to , we set the threshold to be
10.
Here, we elaborate why the empirical number of 32 trials is

sufficient for the threshold setting. Fig. 3(b) plots the variance
of against the expectation of . We find that when the expec-
tation or , the variance ,
indicating that when is either too big or too small, shall be
relatively stable around to tell the scale of . Therefore,
it is safe to roughly and rapidly estimate the scale of tag car-
dinality and set the threshold accordingly with a small number
of runs. This is the reason why we can use a small sequence of
32 slots to calculate the optimal .
The parameter setting process involves several bisection

steps to determine a threshold. This small amount of over-
head after further reduction by early termination becomes
almost negligible (about 3% of the total estimation overhead).
Therefore, we can first tune the threshold and converge to
an optimal parameter setting at a very small cost. Using this
optimal threshold, we can estimate the accurate cardinality with
minimal number of estimation rounds achieving higher overall
efficiency.

D. ZOE Algorithms

Algorithm 2 regulates the behavior of the RFID reader. The
reader calculates the estimation rounds according to (5) given
an accuracy requirement (line 1). The reader initiates the estima-
tion process by energizing the tags and sending the threshold
(line 2). The reader generates random seeds and broadcasts them
(lines 3 and 4), and records the tags’ responses (lines 5–9). The
average is thus calculated based on the estimation rounds
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Fig. 4. Distribution of random numbers in 100 estimation rounds. The skyline
depicts .

Algorithm 2: ZOE algorithm for RFID readers

1:
2: Initiate the estimation, broadcast
3: for to do
4: Generate a random seed and broadcast it
5: if there is no response in the slot then
6:
7: else
8:
9: end if
10: end for
11:
12: return

Algorithm 3: ZOE algorithm for each RFID tag

1: Receive the threshold
2: while TRUE do
3: Receive the random seed ; Compute
4: if then
5: Respond immediately
6: else
7: Keep silent
8: end if
9: end while

(line 11). Finally, the estimated tag cardinality is computed ac-
cording to (3) (line 12).
Algorithm 3 regulates the behavior of each tag. In each esti-

mation round, when receiving a random seed , the tag computes
the random number according to (1). The tag keeps silent
or responds to the reader according to and the threshold
. If the tag sends a response, and otherwise keeps
silent (lines 2–9).
Fig. 4 gives an illustrative example of the estimation process.

The subfigures depict the three cases where the total numbers
of RFID tags are 512, 1024, and 2048, respectively. The -axis
represents 100 independent estimation rounds, and the -axis
represents the random numbers. The gray level intensity of grid

indicates the amount of tags that generate the random
number of at the th estimation round. The skyline thus in-
dicates the maximum values . At each slot, if the
skyline is higher than the threshold , the reader will receive
responses from some tags (i.e., ), and if the skyline is

lower than the threshold , the reader will observe an idle slot
(i.e., ). The average of the 1-bit responses then can be
utilized to estimate the total number of tags.

E. Discussion

1) Reliable Estimation With Unreliable Channel: Most ex-
isting protocols study the cardinality estimation assuming a re-
liable communication channel, while the wireless channel is
error-prone depending on various conditions (e.g., interrogation
power, communication distance, etc.). The recent protocols fail
to capture the actual cardinality under unreliable channels even
with the knowledge of error rates. For instance, the false detec-
tion of response signal might tamper the monotonic feature of
response signal along the estimation path in PET protocol [28]
and substantially degrades estimation accuracy. LoF [19] also
significantly relies on the channel condition, and the estimation
accuracy decreases dramatically even with a small error rate.
Due to the structure of tag responses, it becomes very chal-

lenging and complicated for existing protocols to adjust the esti-
mation and compute an accurate result even when error rates can
be measured. In contrast, since the ZOE protocol relies solely on
0/1 responses from tags and does not assume any (e.g., mono-
tonic in [11] and [28]) patterns of the tag responses, it is inher-
ently more robust over unreliable channels. Before the estima-
tion process, we can measure the communication error rate be-
tween tags and readers. For example, the reader requests the tags
to transmit zero-one alternating responses and compares them to
the received messages to measure the error rate, assuming that
the error rate is relatively stable during the short period of esti-
mation process.
We denote the false negative rate and false positive rate to be
and , respectively. We propose the EEA algorithm to adjust

the estimation results according to the error rates.
We denote by the average value of independent

observations with the error rates of and . Then, we have

(7)

According to (7), we compute as follows,

We extend (3) and estimate the tag cardinality as follows:

(8)

From (8), we find that the ideal channel condition is equiva-
lent to the special case where . Over a totally random
channel (i.e., ), the errors completely overwhelm
the measurement and estimation. Nevertheless, we can success-
fully compensate the communication error, if .
2) Coordinating Multiple RFID Readers: In practical RFID

systems, multiple RFID readers are typically used to cover a
large interrogation area. Deploying more readers reduces the
number of tags in the coverage of each reader, which mitigates
the tag-to-tag contention. Besides, the readers without overlap-
ping coverage can interrogate tags in parallel without reader-to-
reader interference [22], [26].
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Commodity RFID readers are typically connected to a pow-
erful back-end server via high-speed Gigabit Ethernet links. As
such, slot-level time synchronization among multiple readers
can be easily achieved. Thus, many prior works view multiple
readers coordinated by the server as a single reader [22], [28].
Some prior estimation schemes, however, suffer multiple
counting problems when a tag located in the overlapped area
reports to multiple readers [12], [19], [22]. In ZOE, each reader
relays the commands of back-end server in such a way that a
tag in the overlapped area receives the same set of parameters
(e.g., random seed , threshold , etc.) in each estimation round
possibly from multiple readers. We note that whether a tag
would respond only depends on the system parameters and its
unique ID, meaning that in each synchronized slot, a tag either
responds to all readers or consistently keeps silent. Therefore,
the back-end server may merge tag responses by applying the
logical OR on all the responses observed by multiple readers,
and obtain the same result as if using a single reader [22], [28].
3) Reducing the Overhead at RFID Tags: In the basic

algorithm, each tag needs to generate a random number at each
estimation round. Generating random numbers, however, re-
quires a fair amount of computation at the RFID tags. Existing
approaches propose to preload multiple random numbers into
tags for multiple estimation rounds and use a new random
number in each estimation round, which incurs extra memory
overhead. At resource-constrained RFID tags, either method in
providing the randomness is far from satisfactory. Instead of
using new random numbers at different estimating rounds, ZOE
only preloads one 32-bit random number into each RFID tag de-
noted as . In each estimation round, the back-end server
generates a uniformly distributed random number denoted as

and broadcasts it to tags. Receiving , each tag computes
, where denotes

the bitwise XOR, and participates in the estimation round with
. Such a method only requires the tags to perform a

lightweight bitwise XOR function. The memory overhead for
each tag can thus be reduced to one 32-bit random number. By
this modification, we may expect nearly independent trials, and
the above analysis of the ZOE protocol still holds.

V. IMPLEMENTATION

We implement a prototype system to validate ZOE using
USRP SDR and WISP tags. Commercial off-the-shelf RFID
readers only provide limited high-level APIs for developers [1].
The combination of the USRP and the WISP platform provides
us full programmability to both RFID reader and tags. We
implement the ZOE reader using USRP N210 software defined
radio based on the GNURadio platform and the Gen2 RFID
projects [3] to interrogate WISP RFID tags. The ZOE reader
uses the USRP RFX900 daughterboard that operates in the
900-MHz band [4]. Due to hardware constraints, we do not
implement channel hopping using USRP N210 [2]. We connect
the daughterboard to Alien ALR-8696-C circular polarized
antennas with the antenna gain of 8.5 dBic [1]. The typical
power output of an RFX900 daughterboard is only 23 dBm
(200 mW), far less than 30 dBm (1 W) of a commercial RFID
reader. We bypass the SAW filter of RFX900 daughterboard to
increase the transmission power in the ISM band. We connect
the USRP N210 via Gigabit Ethernet to a laptop equipped

Fig. 5. Testbed: Two circular antennas aremounted to the USRPN210 software
defined radio. The USRP N210 is connected via GigE to a laptop, which acts as
an RFID reader. The reader interrogates WISP RFID tags.

Fig. 6. Communication between reader and tag in the inventory communica-
tion. The Query command is sent by the reader at around 4 ms followed by the
reply of RN16 from a tag. The ACK is sent at around 6 ms followed by the EPC
code from the tag. The QueryRepeat is sent to query other tags.

with a qual-core 2.67-GHz processor and 2.9 GB memory
running Ubuntu 10.10. Physical-layer responses of WISP tags
are transferred to and processed at the laptop. Fig. 5 shows the
testbed.
We implement the ZOE tag using the programmable WISP

tags based on the WISP4.1 hardware and firmware. The WISP
tag mainly consists of an RFID circuitry and an ultra-low-power
MSP430 microcontroller. The RFID circuitry is used to harvest
power and respond radio signals. TheWISP4.1 firmware written
in C and assembly codes has partially implemented the EPC-
global C1G2 protocol [2], [5]. We extend the EPCglobal C1G2
protocol with the functionality of ZOE cardinality estimation.
The implementation of the ZOE protocol only requires a slight
extension to the EPCglobal C1G2 protocol.
In EPCglobal C1G2 standard [2], the RFID reader initiates

each communication round between an RFID reader and tags.
The reader transmits an operation code (e.g., Query, Write,
Select, ACK, etc.) indicating the expected operation of tags,
the backscatter bit rate, and tag encoding schemes (e.g., FM0 or
Miller) [2]. Fig. 6 shows the communication between a reader
and a tag in the inventory communication round where the
downlink uses pulse interval encoding at 40 kHz and uplink
uses Miller-4 encoding at 250 kHz. The reader initiates the
communication by sending a Query command to the tag.
When receiving a command, each tag responds according to
the operation code. As the operation code is Query in this
case, the tag transmits a 16-bit random number (RN16) back to
the reader and waits for ACK following the EPCglobal C1G2
standard [2]. Once the reader correctly ACKs the RN16, the tag
responds with the EPC code as depicted in Fig. 6.
We implement the ZOE protocol by following the conven-

tional reader-initiated approach. We first add the Count com-
mand into the command set of the standard. To estimate the tag
cardinality, the reader initiates counting procedure by sending a
Count command alongwith other parameters ( , , encoding
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Fig. 7. Communication between reader and tag in the ZOE protocol. The first
Count command is sent at around 4 ms followed by a busy slot. The second
Count command is followed by an empty slot.

Fig. 8. Tag response detection using moving window summation of signal
strength. When multiple tags respond simultaneously, the aggregated signal
strength increases.

scheme, etc.). In the case that the operation code is Count,
the tag computes . If

, the tag transmits a short response according to the
encoding scheme, and keeps silent otherwise. Fig. 7 shows the
communication between the reader and the tag in four counting
rounds, where the operation code is Countwith , varying
, and theMiller-4 encoding scheme. In Fig. 7, we can see that

two short responses follow the first and the third Count com-
mands at around 4 and 7 ms, respectively; while no response
follows the second and the fourth Count commands. One may
notice that the first Count command takes a slightly longer
time than the second Count command. The reason is that RFID
reader uses the pulse interval encoding scheme, in which bit-1
takes twice the transmission time of bit-0. As the reader gener-
ates different for each Count command, the transmission
time varies slightly across the commands.
To send a short response, a tag simply transmits a single tone

(at 250 kHz) that allows robust response detection at readers.
We first feed the signals into a bandpass filter with center fre-
quency of 250 kHz to remove most background noise. We use
the standard moving window summation (with window width
of 64) to smoothen out any sudden changes due to noises in the
band. If the signal strength exceeds the mean plus three standard
deviations (i.e., 99.7% confidence level), we say the channel
is busy, and idle otherwise. Fig. 8 shows the signal strength
around the frequency band of 250 kHz and the moving window
summation of the tag response following the first Count com-
mand approximately between 4.25 and 4.5 ms. We observe a
big jump of moving window summation during the tag response
period (4.25–4.5 ms), while the sum is small and flat when no
tag response is transmitted (e.g., after 4.6 ms). As shown in
Fig. 8, when multiple tags respond simultaneously using on–off
keying, the aggregated signal strength still provides valid indi-
cations of tag responses.

Although ZOE can run in real time on the USRPN210 in con-
cert with the WISP RFID tags, in small-scale RFID systems, it
is sufficient to collect tag IDs and derive an accurate tag number.
In the following, we focus on the large-scale simulations to com-
pare ZOE to the existing cardinality estimation schemes. This is
for two reasons. First, partially due to the complexity of existing
cardinality estimation schemes, such approaches have not yet
been successfully implemented on programmable RFID tags.
Second, we want to compare the schemes in various complex
settings, such as error-free and error-prone channel conditions,
and varying number of tags. Besides, programming, debugging,
and testing a large number of programmable RFID tags still re-
main challenging.

VI. EVALUATION

We conduct extensive simulations under various scenarios to
study the performance of the ZOE protocol. We first investigate
the estimation accuracy and the corresponding processing cost
of ZOE. We then compare ZOE to the most recent approaches
FNEB [11], LoF [19], PET [28], and ART [22] in terms of the
time efficiency, as well as computation and memory overhead
at tags. We further investigate the estimation performance of
different protocols over noisy channels.

A. Simulation Setting and Performance Metrics

We first focus on the ideal communication channel (i.e.,
no transmission error occurs between RFID tags and RFID
readers), and the reader is capable of correctly detecting the
responses from tags. After that, we evaluate the robustness and
reliability of the estimation protocols with unreliable channel
conditions. For all simulation instances, we repeat 300 runs and
report the average if not explicitly specified otherwise.
The estimation accuracy is one of the most important met-

rics for an estimator. Consistent with existing works, we use the
same accuracy metric as studied in [11], [28]

where denotes the estimation result and refers to the actual
number of tags. This metric evaluates the estimation accuracy
and bias. An ideal estimator is expected to return an estimation
result close to the actual value. The closer it is to 1, the higher
the estimation accuracy is.
We use the standard deviation to measure the estimation

precision

where the operator denotes the average of all runs. A high
standard deviation indicates the estimation results spread out,
whereas a low standard deviation means the estimation results
concentrate. Therefore, we expect an ideal estimator with a low
standard deviation.
Given the accuracy requirement of -approximation, we

examine the estimating time that it takes to meet the require-
ment. Since the data rate varies depending on various factors
(e.g., PHY/MAC implementations and time-varying channel
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Fig. 9. Performance of ZOE with different numbers of estimating rounds.
(a) Estimation accuracy. (b) Standard deviation.

conditions, etc.), same as the benchmark approaches, we ab-
stract the estimation time with the number of total time-slots
that each protocol consumes for fair comparison.
Finally, another metric we consider is the computation and

memory overhead at RFID tags. We measure the overhead by
comparing the quantity of random numbers generated or stored
at RFID tag side.

B. Proposed Protocol Investigation

We demonstrate that the ZOE protocol provides tunable esti-
mation accuracy at the cost of processing time. Fig. 9(a) depicts
different estimation accuracies while different numbers of esti-
mation rounds are applied. The threshold is set at the optimal
value for all cases. The figure suggests that one can improve the
estimation accuracy by running additional rounds of estimation.
By repeating 64 rounds of estimation, ZOE already achieves the
accuracy very close to 1 regardless of the actual tag cardinality,
which suggests that the tag cardinality has little impact on the
estimation accuracy.
Fig. 9(b) illustrates the standard deviation that indicates the

precision of the estimator. The figure suggests that one can re-
duce the standard deviation and thus improve the estimation ac-
curacy by performing extra estimation rounds. With 64 estima-
tion rounds, ZOE achieves standard deviation less than 20% of
total RFID tag number, i.e., it achieves less than 0.2 of normal-
ized standard deviation.
We investigate the estimation accuracy for different commu-

nication error rates. The estimation round is fixed at 64 in all
experiments. In the cases that , the simulation results
suggest similar trends. Fig. 10 plots the estimation accuracy
with and without the EEA algorithm, respectively. As shown
in Fig. 10, the estimation accuracy of the basic ZOE protocol
degrades dramatically with the increase of the communication
error, whereas the estimation accuracy with EEA remains reli-
able with various error rates. That is because EEA takes into the
consideration the communication error and incorporates such
information into the estimation.

C. Performance Comparison

In the following, we compare the performance of ZOE to the
representative estimation protocols, FNEB, LoF, and PET. As
the existing approaches do not tolerate communication errors,
we first focus on the performance comparison with the ideal
channel.
Given the same estimation accuracy requirement of ( ,

)-approximation, we compare the time-slots that each

Fig. 10. Evaluation of estimation accuracy under different error rates: (a) error
rate %; (b) error rate %; (c) error rate %; (d) error rate %.

Fig. 11. Performance comparison to estimate different tag cardinality with the
same accuracy requirement of ( , )-approximation.

estimation protocol takes to achieve the accuracy requirement
to varied number of tags ranging from 850 to 50 000 in Fig. 11.
For the proposed ZOE protocol, the entire estimation process
consists of the time-slots to select a suitable threshold and
time-slots to improve the accuracy. We add the time-slots for
the two stages and present the sum. For other benchmark pro-
tocols, we assume that they have the upper bound of tag pop-
ulation (e.g., ) as prior knowledge so they can opti-
mize their settings. In the figure, we see that ZOE takes sub-
stantially less time compared to benchmark schemes. In partic-
ular, ZOE only needs approximately 22% of time-slots that PET
needs to achieve the same accuracy requirement. Compared to
FNEB and LoF, ZOE yields higher performance gain when the
RFID network further scales up. The results suggest that while
benchmarks need more time-slots to estimate more tags, the tag
cardinality has little impact on estimation efficiency for ZOE. In
the following, we compare the estimating time-slots that each
protocol takes to achieve different accuracy requirements to the
fixed tag cardinality of 50 000.
We first keep the error probability fixed and vary the

confidence interval from 5% to 20%. Fig. 12(a) plots the total
time-slots needed by each protocol. Then, we keep the confi-
dence interval fixed and vary the error probability
from 1% to 15%, and the simulation results are presented in
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Fig. 12. Performance comparison: (a) protocol performance with different con-
fidence interval , and the same error probability ; (b) protocol per-
formance with different error probability and the same confidence interval

.

Fig. 13. Cumulative distribution of estimation results: (a) theoretical perfor-
mance versus simulation results of ZOE; (b) cumulative distribution compar-
ison of different protocols.

Fig. 12(b). According to the simulation results, ZOE only con-
sumes about 31% processing time of PET to provide the same
estimation accuracy, which translates to more than 3 perfor-
mance improvement in terms of time efficiency and even more
compared to LoF and FNEB. We can infer from the simulation
results that provided the same amount of processing time, the
estimation accuracy of ZOE should be more accurate. As the
ZOE protocol features estimation efficiency, the time effi-
ciency improvement of ZOE will be more remarkable over ex-
isting protocols when the RFID network scales up.
Fig. 13(a) presents the simulated performance against the

analytical performance of the proposed ZOE protocol given
the accuracy requirement of and with the
actual tag cardinality of 50 000. In Fig. 13(a), we observe
that the simulation results match the analytical performance.
Almost all the estimated values fall into the 5% interval
[47 500, 52 500]. We examine the small portion of estimated
numbers and find them very close to the
expected range.
We provide PET, FNEB, and LoF the same amount of time-

slots to estimate the actual tag cardinality of 50 000 and present
the distributions in Fig. 13(b). According to the simulation re-
sults, we find that the estimation results of ZOE are much more
concentrated about the actual cardinality. Moreover, the number
of outliers is much smaller than those of PET, FNEB, and LoF.

Fig. 14. Memory overhead in storing the random numbers: (a) with different
confidence interval , and the same error probability ; (b) with different
error probability , and the same confidence interval .

TABLE I
COMPARISON OF TIME-SLOTS NEEDED TO ACHIEVE ( ,

)-APPROXIMATION WITH VARYING ESTIMATED UPPER BOUNDS.
THE ACTUAL NUMBER OF TAGS IS 50 000

In particular, with the same processing time that 99% estima-
tion results fall into the confidence interval [47 500, 52 500] in
ZOE, the existing approaches can only guarantee less than 80%
results within such an interval.
In the following, we compare against the most recent esti-

mation protocol ART [22]. ART uses the average run size of
identical responses as an estimator. ART outperforms many ex-
isting protocols in terms of time efficiency [22] because ART
has significantly smaller variances. ART, however, needs the
upper bound of tag numbers to set several key parameters, e.g.,
frame size, persistence probability, etc.When the upper bound is
not available or the upper bound estimation is inaccurate, ART
takes more time-slots to meet an accuracy requirement.
Table I compares the time-slots needed to achieve the same

( , )-approximation to varying estimated upper
bounds. The actual number of tags is 50 000. According to the
results, we find that ZOE can reduce the time-slots by approx-
imately 20% compared to ART even when ART accurately es-
timates the upper bound of number of tags in advance. We find
that ART takes more time-slots when it underestimates the tag
population in parameter settings. In comparison, ZOE does not
have to know the upper bound in advance.
We compare the computation and memory overhead at RFID

tags. We examine the memory overhead and compare ZOE to
recent protocols in Fig. 14. We fix the error probability
and vary the confidence interval from 5% to 20% in Fig. 14(a).
We vary the error probability from 1% to 15%with fixed confi-
dence interval in Fig. 14(b). We find that ZOE and PET
consume constant small storage and outperform other schemes
that require larger memory cost.
Until now, we focus on the performance comparison over

ideal channels. In Fig. 15, we examine the estimation accu-
racy of ZOE compared to recent approaches with different error
rates. We vary the error rate from 5% to 30%, and the actual
tag cardinality is 50 000. According to Fig. 15, we find that the
estimation accuracies of LoF and PET are significantly biased
from the actual value. Though FNEB and ART are more robust



1896 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 6, DECEMBER 2014

Fig. 15. Accuracy comparisons under varying error rates.

than LoF and PET, FNEB and ART still fail to provide unbiased
results. On the other hand, ZOE with EEA resists the various
error rates and provides accurate estimation results even when
the error rate reaches 30%.

VII. CONCLUSION

In this paper, we propose a cardinality estimation protocol
based on Zero-One Estimator, which improves the estimation
time efficiency in meeting arbitrary accuracy requirement. ZOE
only requires 1-bit response from the RFID tags per estima-
tion round. Moreover, ZOE rapidly converges to optimal pa-
rameter configurations and achieves high estimation efficiency.
We enhance the robustness of cardinality estimation over noisy
channels. We implement a prototype system based on the GNU-
Radio/USRP platform in concert with the WISP RFID tags.
ZOE only requires slight updates to the EPCglobal C1G2 stan-
dard. We also conduct extensive simulations to evaluate the per-
formance of ZOE in large-scale settings. The results demon-
strate that ZOE outperforms the most recent cardinality estima-
tion protocols.
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