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Abstract—The bus arrival time is primary information to most city transport travelers. Excessively long waiting time at bus stops often
discourages the travelers and makes them reluctant to take buses. In this paper, we present a bus arrival time prediction system
based on bus passengers’ participatory sensing. With commodity mobile phones, the bus passengers’ surrounding environmental
context is effectively collected and utilized to estimate the bus traveling routes and predict bus arrival time at various bus stops. The
proposed system solely relies on the collaborative effort of the participating users and is independent from the bus operating
companies, so it can be easily adopted to support universal bus service systems without requesting support from particular bus
operating companies. Instead of referring to GPS-enabled location information, we resort to more generally available and energy
efficient sensing resources, including cell tower signals, movement statuses, audio recordings, etc., which bring less burden to the
participatory party and encourage their participation. We develop a prototype system with different types of Android-based mobile
phones and comprehensively experiment with the NTU campus shuttle buses as well as Singapore public buses over a 7-week
period. The evaluation results suggest that the proposed system achieves outstanding prediction accuracy compared with those bus
operator initiated and GPS supported solutions. We further adopt our system and conduct quick trial experiments with London bus
system for 4 days, which suggests the easy deployment of our system and promising system performance across cities. At the same
time, the proposed solution is more generally available and energy friendly.

Index Terms—Bus arrival time prediction, participatory sensing, mobile phones, cellular-based tracking

1 INTRODUCTION

PUBLIC transport, especially the bus transport, has been
well developed in many parts of the world. The bus

transport services reduce the private car usage and fuel
consumption, and alleviate traffic congestion. As one of the
most comprehensive and affordable means of public trans-
port, in 2011 the bus system serves over 3.3 million bus
rides every day on average in Singapore with around 5
million residents [1].

When traveling with buses, the travelers usually want to
know the accurate arrival time of the bus. Excessively long
waiting time at bus stops may drive away the anxious trav-
elers and make them reluctant to take buses. Nowadays,
most bus operating companies have been providing their
timetables on the web freely available for the travelers. The
bus timetables, however, only provide very limited infor-
mation (e.g., operating hours, time intervals, etc.), which
are typically not timely updated. Other than those official
timetables, many public services (e.g., Google Maps) are
provided for travelers. Although such services offer useful
information, they are far from satisfactory to the bus trav-
elers. For example, the schedule of a bus may be delayed
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due to many unpredictable factors (e.g., traffic conditions,
harsh weather situation, etc). The accurate arrival time
of next bus will allow travelers to take alternative trans-
port choices instead, and thus mitigate their anxiety and
improve their experience. Towards this aim, many commer-
cial bus information providers offer the realtime bus arrival
time to the public [17]. Providing such services, however,
usually requires the cooperation of the bus operating com-
panies (e.g., installing special location tracking devices on
the buses), and incurs substantial cost.

In this paper, we present a novel bus arrival time pre-
diction system based on crowd-participatory sensing. We
interviewed bus passengers on acquiring the bus arrival
time. Most passengers indicate that they want to instantly
track the arrival time of the next buses and they are willing
to contribute their location information on buses to help
to establish a system to estimate the arrival time at var-
ious bus stops for the community. This motivates us to
design a crowd-participated service to bridge those who
want to know bus arrival time (querying users) to those
who are on the bus and able to share the instant bus route
information (sharing users). To achieve such a goal, we let
the bus passengers themselves cooperatively sense the bus
route information using commodity mobile phones. In par-
ticular, the sharing passengers may anonymously upload
their sensing data collected on buses to a processing server,
which intelligently processes the data and distributes useful
information to those querying users.

Our bus arrival time prediction system comprises three
major components: (1) Sharing users: using commodity
mobile phones as well as various build-in sensors to
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sense and report the lightweight cellular signals and the
surrounding environment to a backend server; (2) Querying
users: querying the bus arrival time for a particular bus
route with mobile phones; (3) Backend server: collecting the
instantly reported information from the sharing users, and
intellectually processing such information so as to monitor
the bus routes and predict the bus arrival time. No GPS
or explicit location services are invoked to acquire physical
location inputs.

Such a crowd-participated approach for bus arrival time
prediction possesses the following several advantages com-
pared with conventional approaches. First, through directly
bridging the sharing and querying users in the partici-
patory framework, we build our system independent of
the bus operating companies or other third-party ser-
vice providers, allowing easy and inexpensive adoption of
the proposed approach over other application instances.
Second, based on the commodity mobile phones, our sys-
tem obviates the need for special hardware or extra vehicle
devices, which substantially reduces the deployment cost.
Compared with conventional approaches (e.g., GPS sup-
ported ones [13], [24]), our approach is less demanding and
much more energy-friendly, encouraging a broader number
of participating passengers. Third, through automatically
detecting ambient environments and generating bus route
related reports, our approach does not require the explicit
human inputs from the participants, which facilitates the
involvement of participatory parties.

Implementing such a participatory sensing based sys-
tem, however, entails substantial challenges. (1) Bus detec-
tion: since the sharing users may travel with diverse means
of transport, we need to first let their mobile phones accu-
rately detect whether or not the current user is on a bus
and automatically collect useful data only on the bus.
Without accurate bus detection, mobile phones may col-
lect irrelevant information to the bus routes, leading to
unnecessary energy consumption or even inaccuracy in pre-
diction results. (2) Bus classification: we need to carefully
classify the bus route information from the mixed reports
of participatory users. Without users’ manual indication,
such automatic classification is non-trivial. (3) Information
assembling: One sharing user may not stay on one bus
to collect adequate time period of information. Insufficient
amount of uploaded information may result in inaccuracy
in predicting the bus route. An effective information assem-
bling strategy is required to solve the jigsaw puzzle of
combining pieces of incomplete information from multiple
users to picture the intact bus route status.

In this paper, we develop practical solutions to cope
with such challenges. In particular, we extract unique iden-
tifiable fingerprints of public transit buses and utilize the
microphone on mobile phones to detect the audio indica-
tion signals of bus IC card reader. We further leverage the
accelerometer of the phone to distinguish the travel pat-
tern of buses to other transport means. Thus we trigger
the data collection and transmission only when necessary
(Section 3.3). We let the mobile phone instantly sense and
report the nearby cell tower IDs. We then propose an
efficient and robust top-k cell tower set sequence match-
ing method to classify the reported cell tower sequences
and associate with different bus routes. We intellectually

identify passengers on the same bus and propose a cell
tower sequence concatenation approach to assemble their
cell tower sequences so as to improve the sequence match-
ing accuracy (Section ??). Finally, based on accumulated
information, we are then able to utilize both historical
knowledge and the realtime traffic conditions to accurately
predict the bus arrival time of various routes (Section 3.5).

We consolidate the above techniques and implement a
prototype system with the Android platform using two
types of mobile phones (Samsung Galaxy S2 i9100 and
HTC Desire). Through our 7-week experimental study, the
mobile phone scheme can accurately detect buses with 98%
detection accuracy and classifies the bus routes with up to
90% accuracy. As a result, the prototype system predicts bus
arrival time with average error around 80 seconds. Such a
result is encouraging compared with current commercial
bus information providers in Singapore. We further test the
flexibility and ease of deployment of the system in 4-day
trial experiments with the London bus system. With little
modification to the system configuration, we easily set up our
system for London buses. The experiment results from 5 bus
routes in London suggest promising system performance.

In the following of this paper, we first introduce the
background and motivation in Section 2. In Section 3, we
detail the challenges of our system and describe our technical
solutions. The evaluation results are presented in Section 4.
We perform a trial study in London and the results are shown
in Section 5. The related works are described in Section 6.
We summarize this paper in Section 7.

2 BACKGROUND AND MOTIVATION

The bus companies usually provide free bus timetables on
the web. Such bus timetables, however, only provide very
limited information (e.g., operating hours, time intervals,
etc.), which are typically not timely updated according to
instant traffic conditions. Although many commercial bus
information providers offer the realtime bus arrival infor-
mation, the service usually comes with substantial cost.
With a fleet of thousands of buses, the installment of in-
vehicle GPS systems incurs tens of millions of dollars [24].
The network infrastructure to deliver the transit service
raises the deployment cost even higher, which would
eventually translate to increased expenditure of passengers.

For those reasons, current research works [13], [24]
explore new approaches independent of bus companies
to acquire transit information. The common rationale of
such approaches is to continuously and accurately track the
absolute physical location of the buses, which typically uses
GPS for localization. Although many GPS-enabled mobile
phones are available on the market, a good number of
mobile phones are still shipped without GPS modules [26].
Those typical limitations of the localization based schemes
motivate alternative approaches without using GPS signal
or other localization methods. Besides, GPS module con-
sumes substantial amount of energy, significantly reducing
the lifetime of power-constrained mobile phones [26]. Due
to the high power consumption, many mobile phone users
usually turn off GPS modules to save battery power. The
mobile phones in vehicles may perform poorly when they
are placed without line-of-sight paths to GPS satellites [10].
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Fig. 1. Absolute localization is unnecessary for arrival time prediction.

To fill this gap, we propose to implement a crowd-
participated bus arrival time prediction system utilizing
cellular signals. Independent of any bus companies, the sys-
tem bridges the gap between the querying users who want
to know the bus arrival time to the sharing users willing to
offer them realtime bus information. Unifying the participa-
tory users, our design aims to realize the common welfare
of the passengers.

To encourage more participants, no explicit location ser-
vices are invoked so as to save the requirement of special
hardware support for localization. Compared with the high
energy consumption of GPS modules, the marginal energy
consumption of collecting cell tower signals is negligible on
mobile phones. Our system therefore utilizes the cell tower
signals without reducing battery lifetime on sharing pas-
sengers’ mobile phones. Our design obviate the need for
accurate bus localization. In fact, since the public transit
buses travel on certain bus routes (1D routes on 2D space),
the knowledge of the current position on the route (1D
knowledge) and the average velocity of the bus suffices to
predict its arrival time at a bus stop. As shown in Fig. 1,
for instance, say the bus is currently at bus stop 1, and a
querying user wants to know its arrival time at bus stop
6. Accurate prediction of the arrival time requires the dis-
tance between bus stop 1 and 6 along the 1D bus route
(but not on the 2D map) and the average velocity of the
bus. In general, the physical positions of the bus and the
bus route on the 2D maps are not strictly necessary. In our
system, instead of pursuing the accurate 2D physical loca-
tions, we logically map the bus routes to a space featured by
sequences of nearby cellular towers. We classify and track
the bus statuses in such a logical space so as to predict the
bus arrival time.

3 SYSTEM DESIGN

Though the idea is intuitive, the design of such a system in
practice entails substantial challenges. In this section, we
describe the major components of the system design. We
illustrate the challenges in the design and implementation,
and present several techniques to cope with them.

3.1 System Overview
Fig. 2 sketches the architecture of our system. There are 3
major components.

Querying user. As depicted in Fig. 2 (right bottom), a
querying user queries the bus arrival time by sending the

Fig. 2. System architecture.

request to the backend server. The querying user indicates
the interest bus route and bus stop to receive the predicted
bus arrival time.

Sharing user. The sharing user on the other hand
contributes the mobile phone sensing information to the
system. After a sharing user gets on a bus, the data col-
lection module starts to collect a sequence of nearby cell
tower IDs. The collected data is transmitted to the server
via cellular networks. Since the sharing user may travel
with different means of transport, the mobile phone needs
to first detect whether the current user is on a bus or not. As
shown in Fig. 2 (left side), the mobile phone periodically
samples the surrounding environment and extracts iden-
tifiable features of transit buses. Once the mobile phone
confirms it is on the bus, it starts sampling the cell tower
sequences and sends the sequences to the backend server.
Ideally, the mobile phone of the sharing user automatically
performs the data collection and transmission without the
manual input from the sharing user.

Backend server. We shift most of the computation bur-
den to the backend server where the uploaded information
from sharing users is processed and the requests from
querying users are addressed. Two stages are involved in
this component.

In order to bootstrap the system, we need to survey
the corresponding bus routes in the offline pre-processing
stage. We construct a basic database that associates partic-
ular bus routes to cell tower sequence signatures. Since we
do not require the absolute physical location reference, we
mainly war-drive the bus routes and record the sequences
of observed cell tower IDs, which significantly reduces the
initial construction overhead.

The backend server processes the cell tower sequences
from sharing users in the online processing stage. Receiving
the uploaded information, the backend server first classi-
fies the uploaded bus routes primarily with the reported
cell tower sequence information. The bus arrival time on
various bus stops is then derived based on the current bus
route statuses.

3.2 Pre-Processing Cell Tower Data
The backend server needs to maintain a database that stores
sequences of cell tower IDs that are experienced along dif-
ferent bus routes. Wardriving along one bus route, the
mobile phone normally captures several cell tower sig-
nals at one time, and connects to the cell tower with the
strongest signal strength. We find in our experiments that
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Fig. 3. Cell tower connection time and received signal strength. (a) Cell tower coverage. (b) Connection at position A. (c) Connection at position B.

even if a passenger travels by the same place, the connected
cell tower might be different from time to time due to vary-
ing cell tower signal strength. To improve the robustness of
our system, instead of using the associated cell tower, we
record a set of cell tower IDs that the mobile phone can
detect. To validate such a point, we do an initial experi-
ment. We measure the cell tower coverage at two positions
A and B within the university campus, which are approxi-
mately 300 meters apart (Fig. 3(a) depicts the two positions
on the map).

Fig. 3(b) and (c) report the cell tower that the mobile
phone can detect, as well as their average signal strength
and connection time at A and B, respectively. We find that
position A and position B are both covered by 6 cell towers
with divergent signal strength. In Fig. 3(b), we find that at
position A the mobile phone is connected to the cell tower
5031 over 99% of the time, while its signal strength remains
consistently the strongest during the 10-hour measurement.
In Fig. 3(c), the mobile phone at position B observes two cell
towers with comparable signal strength. We find that the
mobile phone is more likely to connect to the cell tower
with stronger signal strength, and also may connect to
the cell tower with the second strongest signal strength.
Nevertheless, during our 7-week experiments, we consis-
tently observe that mobile phones almost always connect
to the top-3 strongest cell towers. Therefore, in practice
we choose the set of the top-3 strongest cell towers as the
signature for route segments.

Fig. 4 illustrates the cell tower sequence collected on our
campus bus traveling from our school to a rapid train sta-
tion off the campus. The whole route of the bus is divided
into several concatenated sub-route segments according to
the change of the top-3 cell tower set. They are marked
alternately in red and black in the figure. For example,
the mobile phone initially connects to cell tower 5031 in

Fig. 4. Cell tower sequence set along a bus route.

the first sub-route and the top-3 cell tower set is {5031,
5092, 11141}. Later the mobile phone is handed over to
cell tower 5032 and the cell tower set becomes {5032, 5031,
5092} in the second sub-route. We subsequently record the
top-3 cell tower in each sub-route. Such a sequence of cell
tower ID sets identifies a bus route in our database. By war-
driving along different bus routes, we can easily construct
a database of cell tower sequences associated to particular
bus routes.

3.3 Bus Detection: Am I on a Bus?
During the on-line processing stage, we use the mobile
phones of sharing passengers on the bus to record the
cell tower sequences and transmit the data to the backend
server. As aforementioned, the mobile phone should intel-
ligently detect whether it is on a public transit bus or not
and collect the data only when the mobile phone is on a
bus. Some works [16], [18] study the problem of activity
recognition and context awareness using various sensors.
Such approaches, however, cannot be used to distinguish
different transport modes (e.g., public transit buses and
non-public buses). In this section, we explore multi-sensing
resources to detect the bus environment and distinguish it
from other transport modes. We seek a lightweight detec-
tion approach in terms of both energy consumption and
computation complexity.

3.3.1 Audio Detection
Nowadays, IC cards are commonly used for paying transit
fees in many areas (e.g., EZ-Link cards in Singapore [2],
Octopus cards in Hong Kong [3], Oyster cards in
London [4], etc). On a public bus in Singapore, several card
readers are deployed for collecting the fees (as depicted in
Fig. 5(a)). When a passenger taps the transit card on the

Fig. 5. Transit IC card readers. (a) On buses. (b) At rapid train station
entrances.
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Fig. 6. Bus detection using audio indication signal.

reader, the reader will send a short beep audio response to
indicate the successful payment. In our system, we choose
to let the mobile phone detect the beep audio response of
the card reader, since such distinct beeps are not widely
used in other means of transportation such as non-public
buses and taxis.

In order to exploit the unique beeps of IC card readers, in
our initial experiment we record an audio clip on the bus at
the audio sampling rate of 44.1kHz with Samsung Galaxy
S2 i9100 mobile phone. Such a sampling rate is more than
sufficient to capture the beep signals [22]. Fig. 6 (bottom)
plots the raw audio signal in the time domain, where the IC
card reader starts beeping approximately from 11000th sam-
ple and lasts to 18000th sample. We crop the section of the
beep audio signal and depict the section in Fig. 6(b). After
we convert the time domain signal to the frequency domain
through 512pt Fast Fourier Transform (FFT) (Fig. 6(b)), we
observe clear peaks at 1kHz and 3kHz frequency bands.
For comparison we depict the audio clip as well where no
beep signal is sent. Both time domain and the frequency
domain signals are plotted in Fig. 6(a). We find no peaks at
1kHz and 3kHz frequency bands.

With the knowledge of the frequency range of the dual-
tone beep signal sent by the IC card reader, in our system
we can lower down the audio sampling rate of the mobile
phone to 8kHz (8000 samples/s) which is sufficient to cap-
ture the beep signals with maximum frequency of 3kHz. We
find that in practice 128pt FFT suffices to detect the IC card
reader on the bus with tractable computation complexity
on commodity mobile phones. We use the standard slid-
ing window averaging technique with window size w = 32
samples to filter out the noises in both 1kHz and 3kHz fre-
quency bands. We use an empirical threshold ε of three
standard deviation (i.e., 99.7% confidence level of noise) to
detect beep signals. If the received audio signal strengths in
1kHz and 3kHz frequency bands both exceed the threshold,
the mobile phone confirms the detection of the bus. Fig. 7
depicts the beep signal detection process. When the IC card
reader starts beeping, the signal strengths in both 1kHz and
3kHz frequency bands jump significantly and therefore can
be detected.

The audio detection module is running all the time
on mobile phones. We test the audio indication based
bus detection method with various scenarios, and the
experiments show encouraging results for bus detection
(Section 4.2.1). As the dual-tone responsive signal is univer-
sally used in almost all public transit buses in Singapore,
we can use it as an identifiable signature to distinguish the
buses from other vehicles. Therefore, we use the dual-tone

Fig. 7. Detecting audio beeps in the frequency domain.

as the acoustic trigger for the successive cell tower data col-
lection and transmission of the mobile phones of sharing
users. We can easily adopt similar techniques [19] to detect
certain audio indications to identify the public transports
as well in other areas (e.g., the bell ringing tunes in Hong
Kong buses).

3.3.2 Accelerometer Detection: Bus vs. Rapid Train
For the audio detection technique, there may be false posi-
tives in our daily lives. Some similar beep signal may exist
in other scenarios when users are tapping other types of
cards like the cash card and employee’s card. In some noisy
environments, the background sound or music may cause
false positives. These kinds of false positives do not influ-
ence the system performance because the collected data can
be filtered out at the backend server using bus classification
algorithm which we will introduce later in Section 3.4.

Besides such cases, the most possible false positives are
from Rapid Train systems (MRT [4] in Singapore) because
the IC card systems are also deployed in rapid train sta-
tions where the IC card readers in the entrances may send
the same beep signal (Fig. 5(b)). Many other cities in the
world have the similar situation as well. Solely relying on
the audio detection the mobile phones may falsely trigger
the cell tower ID collection when they go with the rapid
trains. Since the train routes have substantial above-ground
segments that overlap with bus routes, simply using cell
tower signals does not effectively differentiate the two tran-
sit means. We expect to leverage the accelerometer sensor
on the mobile phone to reduce such false detection.

Intuitively, the rapid trains are moving at relatively sta-
ble speeds with few abrupt stops or sharp turns. On the
contrary, the buses are typically moving with many sharp
turns and frequent acceleration and deceleration. We collect
the accelerometer data at a moderate sampling rate of 20Hz.
The raw accelerometer readings are first made orientation-
independent by computing the L2-norm (or magnitude) of
the raw data [23]. Fig. 8 (top) plots the accelerometer read-
ings on a rapid train and a public transit bus which suggest
that the accelerometer reading on the bus fluctuates much
frequently with larger magnitudes. We explore such accel-
eration features to distinguish the buses from the rapid
trains.

We measure the statistics of the accelerometer readings
during 12.5 seconds (250 samples) to reduce the impact
of noise, such as average and variance of the accelera-
tion. Fig. 8 (bottom) plots the variance of the accelerometer
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Fig. 8. Accelerometer readings on rapid train and bus.

readings on the rapid train and the public transit bus,
respectively. According to the figure, the variance on the
bus is significantly larger than that on the train. Therefore,
we distinguish the buses from the trains using the variance
of accelerometer readings by setting a proper threshold.

We confirm the detection of buses if the measured accel-
eration variance is above the threshold, and the detection
of rapid trains otherwise. We vary the threshold from 0.005
to 0.2 and calculate the detection accuracy. If the thresh-
old is small, most buses will be correctly detected, while
many trains will be misdetected as buses as well, which
may lead to noisy inputs to the backend server and energy
waste of mobile phones in collecting cell tower IDs. On the
other hand, if threshold is too big, most rapid trains will
be filtered out, while we will miss the detection of many
actual buses, which may lose the opportunities in collect-
ing useful cell tower information on the buses. We select an
empirical threshold 0.03 to balance the false negative and
false positive.

In practice, we find that accelerometer based detec-
tion can distinguish the buses from the trains with an
accuracy of approximately 90% (Section 4.2.2). The error
rate of falsely detecting rapid trains as buses is even
smaller. The detection error of falsely classifying public
buses into rapid trains is mainly due to the abnormality
of the bus routes (e.g., long straight routes) especially dur-
ing non-peak hours. Such a detection error is tolerable in
the bus classification stage, where the backend server has
information redundancy to handle the noisy reports.

3.4 Bus Classification
When a sharing user gets on the bus, the mobile phone
samples a sequence of cell tower IDs and reports the
information to the backend server. The backend server
aggregates the inputs from massive mobile phones and
classifies the inputs into different bus routes. The statuses
of the bus routes are then updated accordingly.

3.4.1 Cell Tower Sequence Matching
We match the received cell tower sequences to those sig-
nature sequences store in the database. Fig. 9 shows an
illustrative example where a sharing passenger gets on the
bus at location A. The backend server will receive a cell
tower sequence of 〈7, 8, 4, 5〉 when the sharing user reaches
location B. Say that the cell tower sequence of the bus
route stored in the database is 〈1, 2, 4, 7, 8, 4, 5, 9, 6〉, then
the sequence 〈7, 8, 4, 5〉 matches the particular bus route as
a sub-segment as shown in Table 1.

Fig. 9. Cell tower sequence matching.

In practical scenarios, the sequence matching problem
becomes more complicated due to the varying cell tower
signal strength. Recall that for each sub-route we record
the top-3 cell tower IDs instead of the connected cell tower
ID in the pre-processing period. We let each mobile phone
send back the sequence of cell towers that the mobile phone
has connected to. In the matching process on the server, we
accordingly devise a top-k cell tower sequence matching
scheme by modifying the Smith-Waterman algorithm [28].
Smith-Waterman is a dynamic programming algorithm
for performing local sequence alignment which has been
widely used in bioscience (e.g., to determine similar regions
between two nucleotide or protein sequences).

We make concrete modifications on the original algo-
rithm to support the top-k cell tower sequence matching.
We weigh a matching of a cell tower ID with a top-k set
according to the cell tower signal strength. Say that in a
top-k set S = {c1, c2, . . . , ck} ordered by signal strength (i.e.,
si ≥ sj, 1 ≤ i ≤ j ≤ k), where ci and si denote cell tower i
and its signal strength, respectively.

We denote the uploaded cell tower sequence from a
sharing user as Sequpload = 〈u1u2 . . . um〉 where m is the
sequence length. We also denote a cell tower set sequence
in database as Seqdatabase = 〈S1S2 . . . Sn〉 where n is the set
sequence length. If ui = cw ∈ Sj, ui and Sj are considered
matching with each other, and mismatching otherwise. We
assign a score f (sw) for a match, where f (sw) is a positive
non-decreasing scoring function and w is the rank of signal
strength. In practice, we use f (sw) = 0.5w−1 as the scoring
function according to the signal strength order in the set.
The penalty cost for mismatches is set to be an empirical
value of −0.5 which balances the robustness and accuracy
in practice.

We choose top-3 cell tower IDs with strongest cell
tower signal strength to form a set based on our initial
observations (Section 3.2). The distinctive advantage of the
proposed classification algorithm is its robustness to the
variation of cell tower signal strength. Table 2 shows a
cell tower set sequence matching instance. In the exam-
ple, the uploaded cell tower sequence is Sequpload =
〈1, 8, 10, 15, 16〉, and the cell tower ID set is shown in the
first three rows sorted in decreasing order of the associated
cell tower signal strength.

TABLE 1
Cell Tower Sequence Matching
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TABLE 2
Top-3 Set Sequence Matching

After running the sequence matching algorithm across
all bus route sequences in the database, the backend server
selects the bus route with the highest score. If the high-
est matching score is smaller or the sequence length is
shorter than our empirical thresholds, the backend server
postpones the updates to avoid errors. Intuitively, the small
highest matching score would be due to mistriggering of
sharing phones uploading cell tower sequence not from
interested bus routes (e.g., rapid trains, private cars, etc).
Too short cell tower sequence may not be informative since
the misclassification rate of such short sequence is high and
thus the backend server postpones the classification and the
updating process until the sequence excesses the empirical
threshold (which will be elaborated later).

One problem of the cell tower sequence matching is
that some bus routes may overlap with each other. The
mobile phones on the overlapped road segments are likely
to observe similar cell tower sequences. Since many buses
typically arrive at and depart from several major transit
centers, such overlapping road segments among different
bus routes are common.

We survey 50 bus routes in Singapore and measure their
overlapped road segments using Google Maps. Fig. 10(a)
plots the distribution of the lengths of overlapped road seg-
ments, which suggests that over 90% of the overlapped
route segments are shorter than 1400 meters, and over
80% are less than 1000 meters. Considering that the cov-
erage range of each cell tower in urban area is about
300-900 meters, we set the empirical threshold of cell tower
sequence length to 7.

Fig. 10(b) plots the cell tower sequence matching accu-
racy in classifying the bus routes. We vary the length of
uploaded cell tower sequence from 2 to 9. We find that
the matching accuracy is low when the cell tower sequence
length is small (e.g, <4) largely because of the problem
of route overlap. We observe that when the cell tower
sequence length reaches 6, the accuracy increases substan-
tially to around 90%. When the cell tower sequence length

Fig. 10. Overlaped routes and matching accuracy with varying sequence
length. (a) CDF of the overlapped route length. (b) Matching accuracy
with varying sequence length.

Fig. 11. Cell tower sequence concatenation.

is larger than 8, the experimental results are reasonably
accurate and robust.

3.4.2 Cell Tower Sequence Concatenation: Solving
Jigsaw Puzzles

In many practical scenarios, the length of the cell tower
sequence obtained by a single sharing user, however, may
be insufficient for accurate bus route classification. An intu-
itive idea is that we can concatenate several cell tower
sequences of different sharing users on the same bus to
form a longer cell tower sequence. In Fig. 11, both cell tower
sequences of sharing user A and B are short, while by con-
catenating the two cell tower sequences the backend server
may obtain an adequately long cell tower sequence which
can be used for more accurate bus classification. A simple
way of concatenating the cell tower sequences is to let the
mobile phones of sharing passengers locally communicate
with each other (e.g., over Bluetooth) [20]. This approach,
however, mandates location exposure among sharing pas-
sengers and might raise privacy concerns. We thereby shift
such a job to the backend server.

Recall that the mobile phone needs to collect audio sig-
nals for bus detection (Section 3.3.1). Here, we reuse such
information to detect whether the sharing passengers are
on the same bus for cell tower sequence concatenation. At
each bus stop, normally several passengers enter a bus and
multiple beeps of the IC card readers can be detected. The
time intervals between the consecutive beep signals fin-
gerprint each bus in the time domain. Fig. 12 depicts an
instance of the audio signals captured by three different
mobile phones on the same bus. We depict the raw audio

Fig. 12. Time intervals of audio indication signals.
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Fig. 13. Bus arrival time prediction.

signals in Fig. 12(a), and corresponding frequency domain
signals in Fig. 12(b)–(d). Compared with the time domain
signal, the frequency domain signal is robust against the
background noise (e.g., though signal strength increases are
observed in 1kHz frequency band around 0.8s, the signal
strengths in 3kHz frequency band remain low). We can see
that in the frequency domain the signals are highly cross-
correlated and thus can be used to determine whether the
phones are on the same bus. Specifically, the time intervals
observed by three mobile phones are all approximately dT1
and dT2 in Fig. 12.

We therefore use the time intervals between the detected
beeps to determine whether multiple mobile phones are on
the same bus. In our system, the mobile phones of sharing
users keep sampling the audio signal and record the time
intervals between the detected beeps. Such beep interval
information is reported along with the cell tower sequences
to the backend server. Receiving the uploaded sensing data
from sharing passengers, the backend server detects and
groups the sharing passengers on the same bus by compar-
ing both cell tower sequences and the time intervals of the
beep signals. The backend server concatenates the pieces of
cell tower sequences from the same bus and forms a longer
cell tower sequence.

3.5 Arrival Time Prediction
After the cell tower sequence matching, the backend server
classifies the uploaded information according to differ-
ent bus routes. When receiving the request from querying
users the backend server looks up the latest bus route
status, and calculates the arrival time at the particular
bus stop.

Fig. 13 illustrates the calculation of bus arrival time pre-
diction. The server needs to estimate the time for the bus
to travel from its current location to the queried bus stop.
Suppose that the sharing user on the bus is in the cover-
age of cell tower 2, the backend server estimates its arrival
time at the bus stop according to both historical data as
well as the latest bus route status. The server first com-
putes the dwelling time of the bus at the current cell (i.e.,
cell 2 in this example) denoted as t2. The server also com-
putes the traveling time of the bus in the cell that the
bus stop is located denoted as tbs. The historical dwelling
time of the bus at cell 3 is denoted as T3. The arrival
time of the bus at the queried stop is then estimated as
follows,

T = T2 − t2 + T3 + tbs.

Without loss of generality, we denote the dwelling time
in cell i as Ti, 1 ≤ i ≤ n, the bus’s current cell num-
ber as k, and the queried bus stop’s cell number as q.

The server can estimate the arrival time of the bus as
follows,

T =
q−1∑

i=k

Ti − tk + tq.

The server periodically updates the prediction time
according to the latest route report from the sharing users
and responds to querying users. The querying users may
indicate desired updating rates and the numbers of succes-
sive bus runs to receive the timely updates.

4 IMPLEMENTATION AND EVALUATION

We implement a prototype system on the Android plat-
form with different types of mobile phones, and collect
the real data over a 7-week period. We first present the
experiment environment and methodology (Section 4.1).
We test the performance of each system component indi-
vidually to evaluate the design feasibility. We test the bus
detection techinique in Section 4.2 and route classification
method in Section 4.3. When we evaluate the whole system
performance, i.e., the accuracy of arrival time prediction
(Section 4.4), all the components are working together.

4.1 Experimental Methodology
Mobile phones. We implement the mobile phone applica-
tions with the Android platform using Samsung Galaxy S2
i9100 and HTC Desire. Both types of mobile phones are
equipped with accelerometers and support 16-bit 44.1kHz
audio signal sampling from microphones. The Samsung
Galaxy S2 i9100 has a 1GB RAM and Dual-core 1.2GHz
Cortex-A9 processor, while the HTC Desire has a 768MB
RAM and 1GHz Scorpion processor. For most of our
experiments, we base on the SingTel GSM networks in
Singapore.

Backend server. We implement the backend server in
Java running on the DELL Precision T3500 workstation
with 4GB memory and Intel Xeon W3540 processor. The
bus arrival time prediction service can be implemented
in a computing cloud for dynamic and scalable resource
provisioning as well.

Experiment environment. Public bus transit system
serves millions of bus rides every day covering most parts
of Singapore. The public bus transit system is supervised
by Land Transport Authority (LTA) of Singapore and com-
mercially operated mainly by two major public transport
providers, SBS Transit and SMRT Corporation [5], [17].
Many other transit means coexist with the public bus sys-
tem. Mass Rapid Transit (MRT) trains form the backbone
of the railway system. There are also tens of thousands of
taxicabs operated by commercial companies and individual
taxi owners [11]. IC cards are widely used for paying tran-
sit fees. Several card readers are deployed for collecting the
fees on SBS and SMRT public buses and at entrance gates
of MRT stations.

We experiment on both campus shuttle buses and public
transport buses (SBS Transit bus service in Singapore). As
shown in Fig. 14, there are 4 shuttle bus routes (i.e., Route
A-D) in our campus. The shuttle buses serve from 08:00 to
23:00 with time intervals varying from 5 to 20 minutes. The
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Fig. 14. Campus shuttle bus routes.

bus route lengths span approximately from 3.8km to 5.8km
with cell tower set sequence lengths varying from 9 to 22.
The average velocity of the buses is about 20km/h. Table
3 gives the details of the bus routes. The shuttle bus routes
have overlapped road segments as depicted in Fig. 14. The
campus bus C travels in clockwise direction, while buses
A, B, and D move in counterclockwise direction. We see
that Route A and Route C have substantial overlapped
segments. Table 4 summarizes the shared route segments
between each pair of bus routes, which span from 0km to
3.4km. We see that around 85% (3.4km/4km) of Route A
overlaps with Route C. We experiment on SBS Transit bus
route 179 and 241 as well. For comparison study, we also
collect cell tower sequences and accelerometer readings in
East-West and the North-South MRT Lines in Singapore.

In our experiments in NTU campus shuttle buse routes
and SBS public transit bus routes, we do experiments with
the help of more than 70 participants, mainly the under-
graduate students and some volunteers. The exact number
of sharing users is not very clear sometimes. In our sta-
tistical analysis, the number is about 1∼5 users on one
particular bus.

4.2 Bus Detection Performance
4.2.1 Audio Detection Accuracy
We collect more than 200 beep signals on different public
transit buses during our 7-week experiments. We set the
audio sampling rate to be 8kHz, and we use 128-pt FFT to
detect the IC card reader. We test the bus detection method
by varying the distances between the IC card reader and
the mobile phones (approximately 1 meter to 7 meters). We
also consider the scenarios where mobile phones may be

TABLE 3
Campus Bus Route Details

TABLE 4
Lengths of Shared Bus Routes

Fig. 15. Bus detection performance. (a) Audio detection accuracy.
(b) Bus vs. MRT.

held in hand and inside bags. We report the average detec-
tion accuracy of single beeps in different circumstances.
In Fig. 15(a), we see that the detection rate is over 95%
when mobile phones are in close vicinity to the IC card
reader (e.g., within 3 meters) even when they are placed
in bags. With mobile phones placed 5 meters away from
the reader, the detection accuracies are about 71% held in
hand, and 58% placed in bags, respectively. As the distance
increases further (e.g, >7 meters), the detection accuracy
drops substantially.

The experiment results suggest that the audio based
method effectively detects the beep signal on the bus when
the distance between the IC card reader and the mobile
phone is within 3 meters. Considering that the entrance
gate of the bus is about 1.4 meters wide, when a sharing
user enters a bus, the mobile phone would be normally
less than 1 meter away from the IC card reader. Notice
that our system tolerates some missing beeps because there
are multiple opportunities to detect the audio when other
passengers are tapping their cards.

4.2.2 Bus vs. MRT Train
We next evaluate the accelerometer based bus detection
method that is used to distinguish the buses from the MRT
trains. Fig. 15(b) plots the accuracy in detecting the buses.
We find that accelerometer based method can distinguish
the buses from the MRT trains with an accuracy of over
90% on average. We analyzed the main reason for falsely
detecting public buses as MRT trains, and find that it hap-
pens mostly when the buses are driving along long straight
routes late during night time. The accelerometer readings
may be relatively stable and very similar to those on the
MRT trains.

4.3 Bus Classification Performance
We present the evaluation results for our bus classifica-
tion algorithms. In our prototype system, we collect the
cell tower sequences on the 4 campus bus routes and store
them in the database. The campus buses do not have IC
card readers, so we use the GNUradio to produce and
play the dual-tone (1kHz and 3kHz) beeps. Mobile phones
start to collect data after detecting the beeping signals on
buses. For the public transit buses (e.g., SBS transit and
SMRT Corporation buses), the mobile phones can directly
detect their IC card readers. The data collection process
spans over a period of 7 weeks. We collect 20 runs for each
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Fig. 16. Bus classification accuracy.

shuttle bus route for the bus route classification. As the cel-
lular networks are likely to be updated incrementally, most
cell towers along the bus routes typically remain consistent
during the experiment period.

We implement the cell tower sequence matching with the
top-3 cell tower sequence matching algorithm. In Fig. 16(a),
we plot the bus classification results for the 4 campus bus
routes. According to the experiment results, the bus clas-
sification accuracy is approximately 90% with the highest
accuracy of 96% for Bus B and the lowest of 87% for Bus
D. Although 85% of Route A is overlapped with Route C,
the bus classification accuracy for Bus A and C are still
around 94%. The main reason is that Bus A and C travel in
the opposite directions. Since Route D shares a large por-
tion of overlapped road segments with Route A and Route
C, and buses travel in the same direction on the shared
road segments, buses along Route D might be misclassified
to Route A or Route C. Fig. 16(c) depicts the classification
ratio of buses along Route D. We can find that 7% of the
buses are misclassified to Route A and 6% are misclassified
to Route C. Although Route B has many overlapped road
segments with Route A and C, the buses travel in the oppo-
site directions on those road segments. Fig. 16(b) depicts
the classification ratio of buses along Route B. We find that
only 3% of the buses are misclassified to Route C. Overall,
the bus classification accuracy is satisfactory, considering
the high overlap ratio of the four routes in the campus (the
city-wide public bus routes are far less overlapped, e.g., SBS
179 and 241).

4.4 Arrival Time Prediction
We present the final bus arrival time prediction results
based on above estimations. We collect the campus bus
traces using a high accurate vehicle GPS navigator as
the benchmarks. In the same buses, we collect cell
tower sequences using two mobile phones and stored the
sequence in memory stick for our later trace-driven study.

In the trace-driven study, we generate queries at different
campus bus stops according to poisson arrival process, and
compare the predicted arrival time with the actual arrival
time of the campus buses. The average of the absolute pre-
diction error is shown in Fig. 17(a). The median prediction
errors vary approximately from 40s (Bus B) to 60s (Bus D).
The 90th percentiles are approximately from 75s (Bus B)
to 115s (Bus D), respectively. The average estimation error
increases as the length of bus route increases. Fig. 17(b)
plots the average error against the distance between the
sharing user and the querying user, where we approximate

the distance using the number of bus stops. We observe
that as the bus moves closer to the querying user, the pre-
diction error becomes smaller. The error of Bus D increases
faster than those of Bus A, B, and C.

We experiment with commercial bus system as well. For
comparison, we also query the arrival time of public transit
buses provided by LTA of Singapore. The public buses are
periodically tracked with on-bus localization devices and
respond to the queries for the bus information. People can
send an SMS to query the bus arrival time indicating the
interested bus route and stop. In the experiment we test the
arrival time prediction on SBS bus route 179 and 241. We
compute the prediction error by comparing the predicted
results with the actual arrival time of the buses. Both predic-
tion errors of LTA and our system are measured and we plot
the CDF of the prediction results in Fig. 17(c). According
to the results, the average prediction error of our system
is approximately 80 seconds, while the prediction result of
LTA is around 150 seconds. Such a comparison result is sur-
prising, as we expect more accurate prediction result from
the commercial system of LTA where a rich set of resources
including on-bus GPS sensors are proactively used. We sus-
pect that the deployed system of LTA is intentionally made
inaccurate (e.g., using caching to reduce computation and
communication cost), yet we cannot further dig into such
a commercially running system for more details.

4.5 System Overhead
Mobile phone. In order to maintain the sample resolution
and remove the noise, we extract the audio signal with
sliding widows with the window size of 32. We record
the audio signal at the sampling rate of 8kHz, and use
n = 128pt FFT to convert the time domain audio signals to
frequency domain signals. The major computational com-
plexity is attributed to performing FFT on mobile phones
which is O(n log n). Current mobile phones can finish the
computation task in realtime. For example, it takes approx-
imately 1.25ms and 1.8ms on average to finish to 128pt FFT
on Samsung Galaxy S2 i9100 and HTC Desire, respectively.

We measure the power consumption of continuously
sampling microphone, accelerometer, GPS, and cellular sig-
nals. Table 5 illustrates the measured battery lifetime when
the mobile phones continuously trigger different sensors.
The experiments were performed with the screen set to
minimum brightness. We report the average results over
10 independent measurements. The battery duration was
quite similar for sampling accelerometer at 20Hz, sampling
audio signal at 8kHz with 128pt FFT, and sampling no sen-
sors. Sampling the cell tower signal consumes limited extra
battery power as well. On the other hand the battery life-
time is substantially reduced when the GPS module in the
phone is enabled.

Backend server. Since our implementation is in a partic-
ular area of Singapore, we do not have the experience when
the system scales to the entire city. We make mathematical
analysis to forecast the computation capacity needed when
the system scales. The computation overhead of backend
server is mainly bounded by the bus classification algo-
rithm, i.e., the uploaded cell tower sequence length l, the
cell tower set sequence length k, and the number of cell
tower set sequences in the database N. The computation
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Fig. 17. Arrival time prediction performance. (a) Bus arrival time prediction error. (b) Bus arrival time prediction. (c) Our system v.s. LTA.

complexity of sequence matching using dynamic program-
ming is O(lk), and as we need to compare with N candidate
sequences in database the overall computation complexity
is O(lkN). Since in practice both m and n are usually small
(e.g., max{l,k} is around 40 according to our experiments),
the computation complexity increases almost linearly to the
number of candidate cell tower sequences in the database.

5 TRIAL STUDY IN LONDON

5.1 London Buses
In addition to Singapore, we do trial experiments with
London bus system as well. Buses have been used on
London streets since 1829 [6]. London Buses Services
Limited (London Buses), which is part of “Transport for
London" [7], manages one of the largest bus networks in
the world. About 7500 iconic red buses carry more than
6,000,000 passengers each weekday on a network serving
all parts of London. Oyster cards [4] are widely used for
paying the transit fees on London buses.

As depicted in Fig. 18, we primarily experiment with
London bus route 27, 7, 36, 23 and 159. We collect the audio
beeps on buses and the cellular signals observed along the
bus routes. The bus route details are summarized in Table 6.
The bus route lengths span from 11km to 20km and the cell
tower sequence lengths along the bus routes are 48 to 67.
The average bus speed is about 23km/h. The overlapped
bus route segments are mainly in the city center.

5.2 Bus Detection
Audio detection. We record the beep audio signal from the
card readers on London buses at a sampling rate of 44.1kHz
and extract the frequencies using 512pt FFT. Different from
Singapore buses, the beep from London buses is a single
frequency audio signal of 2.4kHz unique frequency. There
are typically 2∼4 card readers installed beside the front and
back doors of the buses. With the knowledge of the audio

TABLE 5
Battery Duration for Different Sensor Settings (in Hours)

frequency, we can downscale the sampling rate to 8kHz to
detect the signal jump in 2.4kHz band.

We collect the audio beeps at different positions on the
buses. Their distances to the nearest card reader vary from
1m to 5m. Some of the London buses are double-decker
buses and we evaluate the audio based bus detection on the
second floor of the bus as well. For all the testing positions,
we consider the scenarios where the mobile phone may be
held in hand or placed inside bags.

Table 7 summarizes the average detection accuracy of
single beeps. We set the threshold ε carefully by training
about 60 beeps collected on the bus. The average detec-
tion accuracy (Table 7) is above 80% when the distance is
within 4m, even when the mobile phone is placed inside
bags. The audio detection accuracy decreases as the dis-
tance increases. The audio detection accuracy on London
buses is lower than on Singapore buses (Fig. 15). One possi-
ble reason is that the volume of the audio beeps on London
buses is much weaker than that on Singapore buses, which
results in lower accuracy in extracting the beep signal out
of the background noise.

5.3 Bus Classification
We present the bus classification results from 5 bus routes.
As depicted in Fig. 18, there are many overlapped route
segments between the 5 bus routes. We use different lengths
of cell tower sequences to perform the bus classification and
compare the classification accuracy with varied lengths in
Fig. 19.

In Fig. 19(a), the classification accuracy increases as the
cell tower sequence length grows. When the length is longer
than 8, the classification accuracy becomes higher than 90%.

TABLE 6
London Bus Route Details

TABLE 7
Audio Detection Accuracy on London Buses
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Fig. 18. Experimental bus routes in London.

When the cell tower sequence length is shorter than 4, the
classification accuracy drops significantly.

The cell tower sequence collected from the overlapped
bus route segments contributes less to those collected from
non-overlapped segments. Fig. 19(b) plots the individual
performance of bus classification of the 5 experimented bus
routes. The overall bus classification accuracy is higher than
85% for all bus routes. In Fig. 18, we see that route 27 has
the shortest overlapped route segments while route 23 has
the longest, which results in a highest classification accu-
racy of 94% for route 27 and a lowest classification accuracy
of 82% for route 23.

5.4 Bus Arrival Time Prediction
We present the bus arrival time prediction results on the 5
bus routes. We collect time-stamped cell tower sequences
on each bus route for 3 runs, one of which is stored in the
database and the other 2 runs of data are used as test cases
for the later trace-driven study.

In the trace-driven study, we generate random queries
at different bus stops for each test case. The backend server
estimates the bus location with the uploaded cell tower
sequences and predicts the bus arrival time based on the
time-stamped cell tower sequence stored in the database.
The overall prediction error (Fig. 20) is calculated by com-
paring the predicted and the actual bus arrival time. We
can see that the prediction error of route 27 is the lowest
and that of route 36 is the highest. For the 5 bus routes, the
median prediction error varies from 65s (route 27) to 125s
(route 36) and 90th percentiles are about from 135s (route
27 and 7) to 230s (route 36), respectively.

The overall prediction error of bus arrival time in
London is higher than that in Singapore (Fig. 17) mainly
due to the following reasons. First, the lengths of the exper-
imental bus routes in London are much longer than what
we experiment in Singapore, which brings more unpre-
dictable factors influencing the bus operation. Second, the
time duration between two adjacent buses of some bus

Fig. 19. Bus classification results.

Fig. 20. CDF of bus arrival time prediction error.

routes in London is much longer than that in Singapore,
which usually results in far away buses from the query-
ing user. Third, the traffic conditions in London are much
more complicated than our experiment region in Singapore.
Many unpredictable factors like traffic jam, adaptive traffic
lights, pedestrians, etc., may affect the system performance.

6 RELATED WORK

Phone-based transit tracking. Our work is mostly related
to recent works on the transit tracking systems [13], [24].
EasyTracker [13] presents an automatic system for low-
cost, real-time transit tracking, mapping and arrival time
prediction using GPS traces collected by in-vehicle smart-
phones. Thiagarajan et al. [24] present a grassroots solution
for transit tracking utilizing accelerometer and GPS mod-
ules on participating mobile phones. EEMSS [27] presents a
sensor management framework which uses minimum num-
ber of sensors on mobile devices to monitor user states.
VTrack [26] estimates road travel time based on a sequence
of WiFi-based positioning samples using an HMM-based
algorithm for map matching. CTrack [25] presents trajectory
mapping using cell tower fingerprints and utilizes vari-
ous sensors on mobile phones to improve the mapping
accuracy. Our work differs from them in that it predicts
the bus arrival time based on cell tower sequence infor-
mation shared by participatory users. To encourage more
participants, no explicit location services (e.g., GPS-based
localization) are invoked so as to reduce the overhead of
using such special hardware for localization.

Cell tower sequence matching. StarTrack [9] provides a
comprehensive set of APIs for mobile application devel-
opment. Applying new data structures, [15] enhances
StarTrack in efficiency, robustness, scalability, and ease of
use. CAPS [21] determines a highly mobile user’s posi-
tion using a cell-ID sequences matching technique which
reduces GPS usages and saves energy on mobile phones.
Unlike those proposals, our work does not aim to position
the mobile users though similar in spirit to these existing
works in utilizing the cell tower sequences.

Participatory sensing. Many recent works develop par-
ticipatory platforms for people-centric mobile computing
applications [8]. MoVi [12] studies the problem of social
activity coverage where participants collaboratively sense
ambience and capture social moments through mobile
phones. Escort [14] obtains cues from social encounters
and leverages an audio beacon infrastructure to guide a
user to a desired person. WILL [29] designs an indoor
logical localization technique leveraging user mobility and
WiFi infrastructure while avoiding site survey. Although
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targeted at totally different applications and problems, the
common rationale behind these works and our design is
that the absolute physical locations of users though some-
times sufficient are not always necessary to accomplish
particular tasks.

7 CONCLUSION AND FUTURE WORK

In this paper, we present a crowd-participated bus arrival
time prediction system. Primarily relying on inexpensive
and widely available cellular signals, the proposed sys-
tem provides cost-efficient solutions to the problem. We
comprehensively evaluate the system through an Android
prototype system. Over a 7-week experiment period, the
evaluation results demonstrate that our system can accu-
rately predict the bus arrival time. Being independent of
any support from transit agencies and location services, the
proposed scheme provides a flexible framework for par-
ticipatory contribution of the community. For a particular
city, the only requirement of our system implementation is
that there exist a backend server and an IC card based bus
system.

Future work includes how to encourage more partic-
ipants to bootstrap the system because the number of
sharing passengers affects the prediction accuracy in our
system. This common issue of crowd-sourced solutions is
largely influenced by the penetration rate and popularity of
the services. One may actively promote the service to reach
a critical penetration rate so as to ensure that at least one
sharing user is on the bus willing to report the bus status.
At the initial stage, we may encourage some specific pas-
sengers (like the bus drivers) to install the mobile phone
clients.
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