
PUNCTUAL CATEGORICITY AND UNIVERSALITY

ROD DOWNEY, NOAM GREENBERG, ALEXANDER MELNIKOV, KENG MENG NG,

AND DANIEL TURETSKY

Abstract. We describe punctual categoricity in several natural classes, including binary relational
structures and mono-unary functional structures. We prove that every punctually categorical struc-

ture in a finite unary language is PA(0′)-categorical, and we show that this upper bound is tight. We
also construct an example of a punctually categorical structure whose degree of categoricity is 0′′.
We also prove that, with a bit of work, the latter result can be pushed beyond ∆1

1, thus showing that

punctually categorical structures can possess arbitrarily complex automorphism orbits.
As a consequence, it follows that binary relational structures and unary structures are not univer-

sal with respect to primitive recursive interpretations; equivalently, in these classes every rich enough

interpretation technique must necessarily involve unbounded existential quantification or infinite dis-
junction. In contrast, it is well-known that both classes are universal for Turing computability.

1. Introduction

It is well-known that decidability of the Word Problem in a finitely generated group does not depend
on the choice of its presentation. Indeed, every two such presentations are computably isomorphic, in
particular preserving computability (or non-computability) of the Word Problem. Similarly, Cantor’s
back-and-forth proof shows that any two computable copies of (Q, <) are computably isomorphic. Also,
it is well-known that any structure A in a fixed finite language can be turned into a graph G(A) or into
a unary functional structure U(A) such that both G(A) and U(A) possess the same model-theoretic
and decidability properties as A. Some of these results are so basic and so “obviously computable”
that they are often used without explicit reference.

But what happens if we put some resource bounds on our effective procedures? Which of these
“algorithms” can be transformed into more feasible ones, and which are provably inefficient? Is there
any correlation between feasible computability on infinite algebraic structures and definability upon
these structures in some natural language? Can we turn any structure into, say, a unary structure
preserving most “online computable” features of the structure?

In this article we use the recently suggested punctual structure theory to systematically investigate
these and similar questions.

1.1. The punctual framework. Kalimullin, Melnikov and Ng [KMN17] have initiated a systematic
study which is focused on eliminating unbounded search from proofs and processes in algebra and
infinite combinatorics. The main underlying abstraction in the new framework is the old classical
notion of a primitive recursive algorithm which can be traced back to Kronecker. Informally, an
algorithm is primitive recursive if every loop and search operator in the algorithm has a precomputed
bound. Although a primitive recursive algorithm does not have to be computationally feasible, it
serves as a useful abstraction which unites most common complexity classes of interest. In fact, as
discussed in [KMN17, BDKM19], very often eliminating unbounded search is the crucial step in turning
a general Turing computable algebraic procedure into, say, a polynomial time or a polylogspace one;
see, e.g., [Gri90, CDRU09, CR92, CR98]. A non-trivial illustration of this phenomenon is the recent
solution [BHTK+19] to a problem of Khouissainov and Nerode on the characterisation of automatic
structures ([KN08], Question 4.9). The key step in the proof in [BHTK+19] is a simpler argument for
primitive recursive structures; with some extra work it is then pushed to the extremely narrow class of
automatic structures.

This work is supported by the Marsden Foundation of New Zealand.

1

2 R. DOWNEY, N. GREENBERG, A. MELNIKOV, K.M. NG, AND D.TURETSKY

Another useful role of primitive recursion is in proving that no feasible procedure is possible at all.
Indeed, it is often easiest to argue that a primitive recursive procedure fails to exist, let alone a polyno-
mial or exponential time procedure; see, e.g., [CR92, CR98, KMN17]. In such proofs one can typically
diagonalise even against all total (Turing) computable procedures, i.e., against those procedures which
eventually halt [Kie98, KPT94]. Thus with all its generality, primitive recursion could be even a bit
too narrow for such proofs; nonetheless, every total Turing computable function can be viewed as
a function primitive recursive relative to some (functional) oracle. Therefore, the above-mentioned
totality phenomenon is still within the reach of this framework; see the recent paper [KMM19] of
Kalimullin, Melnikov and Montalbán for more on totality, relativisation, and definability in primitive
recursive algebra. We cite the recent surveys [BDKM19, Mel17, DMN] for a detailed exposition of
the framework and its connections with computable structure theory, Weihrauch reducibility, infinite
games on structures, incremental reducibility in computer science, complexity of real functions, and
feasible combinatorics.

1.2. Categoricity and universality. One of the central definitions of the new framework is that
of a punctual presentation of a structure; this is an isomorphic copy of a given countably infinite
structure whose domain is N and the operations and relations are primitive recursive1. The structure
is “punctual” in the sense that it reveals itself without unbounded delay. In several broad classes,
including linear orders and torsion-free abelian groups, one can show that every Turing computable
structure has a polynomial time presentation [Gri90, CDRU09, KMN17]; for these classes it is sufficient
to build a punctual copy and observe that it is actually polynomial time.

The natural morphisms in the category of punctual structures are the isomorphisms f for which
both f and f−1 are primitive recursive. We call such isomorphisms punctual.

Definition 1.1. A structure is punctually categorical if it has a unique punctual presentation up to
punctual isomorphism.

The notion above is the most natural primitive recursive analogue of the notion of computable cat-
egoricity, which is central to computable structure theory [AK00, EG00]. Recall that a structure is
computably categorcial if it has a unique (Turing) computable presentation up to (Turing) computable
isomorphism. In computable structure theory, the study of computable categoricity and its generalisa-
tions revealed deep connections between algebraic, algorithmic, and syntactical properties of structures.
For instance, there are a large number of purely algebraic characterisations of computably categorical
members of standard classes [AK00]. It is also well-known that a structure is relatively computably
categorical if, and only if, there exists a computably enumerable list of existential first-order formulae
which describe automorphism orbits of tuples of the structure (see for example [DHK03]).

The lack of reasonable classification of computably categorical structures [DKL+15] shows that
computable categoricity and definability can vastly differ in many standard classes including undi-
rected graphs (folklore), unary functional structures (folklore), two-step nilpotent groups [HKSS02],
lattices [BFKMn17, HKSS02], and notably fields [MPSS18]. In all these classes, computability, al-
gebra, and definability can significantly diverge, and among other insights this leads to intricate
counterexamples disproving natural conjectures, such as Goncharov’s famous dimension two exam-
ples [Gon81, Gon80]. Although such results were initially designed to defeat regularity and definability,
there is a certain general methodology behind such proofs which itself heavily relies on definability. For
example, Goncharov’s original dimension two counterexample [Gon80] was designed for families of sub-
sets of N. To obtain similar examples for unary structures or two-step nilpotent groups, it is sufficient
to effectively turn any such family into a structure from the respective class which effectively encodes
the family in a way that preserves computable dimension and categoricity [GMR89]. In [HKSS02] this
idea was made explicit and more precise, and in [HTMMM17] it was shown that the two most natural
general definitions of effective interpretations, one via Turing effective functors and the other using
definability, are in fact equivalent.

Apart from various definability techniques, some of which are quite intricate, such results provide
us with proofs that some natural classes are Turing universal, and some are not. Informally, a class

1Although the definition can be pushed to infinite languages, we assume that the language of a structure is finite. If
the structure itself is finite then the domain of its punctual presentation will be an initial segment of N.

PUNCTUAL CATEGORICITY AND UNIVERSALITY 3

is Turing universal if any countable structure can be Turing computably turned into a structure from
this class preserving most decidability-theoretic properties of interest; see [HTMMM17] for technical
details. The majority of such proofs in the literature rely on indirect ∆0

0-definability, meaning that
both a relation and its complement are ∃-definable. It is rather natural to ask whether such definitions
can be turned into proper direct ∆0

1-definability, meaning that all quantifiers have to be bounded in
some reasonable predetermined way, and so that the bound does not vary from a presentation to a
presentation. Equivalently, if F is a functor translating a structure A into a structure F (A), can
we avoid searching for witnesses throughout the entire structure F (A) to reconstruct A? Is there a
more feasible definition of A within F (A)? Can the functor F itself be made more feasible, and made
to preserve feasible algorithmic features of structures? For instance, which of the standard Turing
universal classes remain punctually universal?

The formal definition of punctual universality can be found in [HTMMM17]; we omit it. It will
be sufficient to know that it is obtained from the notion of Turing universality by replacing Turing
functionals with primitive recursive functionals throughout the definition. In this paper it is only im-
portant to know that every punctually universal class must be Turing universal, because a primitive
recursive functional is obviously a Turing functional too. So, for instance, the transformations witness-
ing punctual universality preserve not only punctual categoricity but also computable categoricity and
its generalisation ∆0

α-categoricity (see [AK00]).
A natural example of a punctually universal class is the class of structures in the language of

one binary functional symbol [DHTK+]. It is well-known that graphs are Turing universal. It has
recently been discovered that every punctually categorical graph becomes automorphically trivial after
fixing finitely many constants [DHTK+]. In particular, every punctually categorical graph must be
(relatively) computably categorical. Remarkably, Kalimullin, Melnikov and Ng [KMN17] constructed
an example of a punctually categorical structure which is not computably categorical. Since punctual
universality must respect both punctual and computable categoricity, it follows that graphs are not
punctually universal. Indeed, if they were punctually universal then we could punctually interpret the
example from Kalimullin, Melnikov and Ng [KMN17] and obtain a punctually categorical graph which
is not computably categorical, contradicting the above-mentioned description of punctually categorical
graphs [DHTK+]. Recently Kalimullin and Miller [KM19] have obtained a purely algebraic description
of punctually categorical fields. Similarly to the case of graphs, the description entails that the Turing
universal class of fields [MPSS18] is not punctually universal.

These results show that unbounded ∃-quantification or the use of infinite disjunction (equivalently,
unbounded µ-operator) is intrinsic to any powerful enough coding technique in these classes. Such
results give an explicit correlation between punctual universality, describing punctual categoricity in
natural classes, and pushing the technical boundaries of the topic by producing highly counter-intuitive
examples. The latter two themes are of independent interest as well.

In this article we continue the systematic investigation of punctual categoricity in natural classes,
with applications to punctual universality. Before we state our results, we note that our proofs tend to
be rather combinatorially involved with Theorem 1.3 being perhaps the only pleasant exception. We
suspect that this complexity cannot be avoided. To sort out some of this combinatorics we develop a
technical framework which will be discussed in Section 2.

1.3. The results. The first main result of the paper extends the main result from [DHTK+] to arbi-
trary structures in the language of finitely many at most binary relations.

Theorem 1.2. Every punctually categorical structure with at most binary relational symbols is auto-
morphically trivial.

This solves a problem left open in [DHTK+]; see also [BDKM19]. The proof of the theorem is
not merely a generalisation of the proof from [DHTK+] since it relies on a new strategy; it is also
combinatorially more intricate. As a consequence, we obtain that the class of all structures in any
finite language containing at most binary relational symbols is not punctually universal. We note that
this corollary does not need to rely on the analysis of punctual categoricity. In fact, the more direct
argument in [KMM19] covers the more general case of arbitrary relational structures. However, the
methods in [KMM19] do not seem to help with the description of punctual categoricity in the class.

4 R. DOWNEY, N. GREENBERG, A. MELNIKOV, K.M. NG, AND D.TURETSKY

In contrast with binary relational structures, a punctually categorical structure with only one unary
functional symbol (a mono-unary structure) does not have to be automorphically trivial. For example,
a punctually categorical mono-unary structure may consist of infinitely many loops of some fixed size.
Another example of a punctually categorical mono-unary structure is an infinite star; this is a unary
structure (X,u) in which for some y ∈ X we have (∀z 6= y)(u(z) = y). (Note that there are exactly
two isomorphism types described by the property above, depending on u(y).) Interestingly, the two
examples above essentially describe punctual categoricity for such structures.

Theorem 1.3. Suppose X is an infinite structure with only one unary functional symbol. Then X is
punctually categorical if and only if there is a finite subset F of X such that either:

1. X \ F is a disjoint union of loops of identical size,
2. X \ F is an infinite star.

In both 1. and 2. of the theorem above, the structures are (relatively) computably categorical.
Although it is not known whether the class is Turing universal (and it perhaps is not), from the
perspective of Turing computability it is at least no simpler than the rich class of trees. However, it
turns out that in the punctual world mono-unary structures are rather tame.

The case of several unary functional symbols is significantly harder to grasp. We say that a structure
is PA(0′)-categorical if, for every pair of its computable copies and every X ∈ PA(0′), there is an
isomorphism between the copies computable from X. In particular, there is always a low over 0′

isomorphism between any two copies of the structure. This notion is not really new. Hirschfeldt and
Khoussainov (see, e.g., [Hir17]) observed that every locally finite connected graph is PA(0′)-categorical.
We note that, building on a work of Gromov [Gro07], Melnikov and Nies [MN13] obtained a similar
bound for compact separable Polish spaces. We prove:

Theorem 1.4. Every punctually categorical unary structure is PA(0′)-categorical2.

The proof of Theorem 1.4 goes through several cases and uses various strategies, most of which are
new. The proof of the theorem shows that the orbit of every tuple in such a structure must be finite. It
is natural to ask whether the theorem above can be pushed to a purely algebraic description or at least
to (relative) ∆0

2-categoricity. However, it turns out that the upper bound established in the theorem
above is tight.

Theorem 1.5. There exists a punctually categorical unary structure for which the categoricity spectrum
is precisely the PA(0′) degrees.

(Recall that the categoricity spectrum of a structure is the set of all degrees a such that any two
computable copies of the structure are a-isomorphic.) The proof of Theorem 1.5 is of some independent
interest. For instance, in the proof we will introduce a new strategy of building a punctually categorical
structure.

In the Turing computable world, the class of structures with just two unary functional symbols
is already universal. Perhaps the same could hold in the world of punctual structures. Perhaps,
every punctually categorical structure, unary or not, could be PA(0′)-categorical. In fact, it seemed
that finiteness of automorphism orbits must be a characteristic property shared among all punctually
categorical structures. Nonetheless, using a novel and rather involved machinery we prove:

Theorem 1.6. There is a punctually categorical structure whose degree of (Turing) categoricity is 0′′.

Theorems 1.4 and 1.6 imply:

Corollary 1.7. The class of all structures in any finite language containing at most unary symbols is
not punctually universal.

2Without loss of generality we could also allow unary relations in the language. A unary relation can be imitated by
a unary function as follows: P (x) ⇐⇒ u(x) = x; we could set u(x) equal to some special constant if ¬P (x). Note that

this definition is quantifier-free and thus punctual. We also note that the proof shows that such structures are “relatively
PA(∆0

2)-categorical”; we leave the formal clarification of this notion to the reader.

PUNCTUAL CATEGORICITY AND UNIVERSALITY 5

In contrast with relational structures, we do not know any direct proof of non-universality of unary
structures which would not filter through Theorems 1.5 and 1.6; we leave this as an open problem.
In the proof of Theorem 1.6 we develop a relatively complicated apparatus of macro-labels which we
also combine with the new “preventing” strategy. The significance of these new techniques is that they
allow us to produce complex enough punctually categorial structures which have infinite automorphism
orbits (in contrast with, e.g., examples in [KMN17] or in Theorem 1.5). Once these two techniques
are described and verified, it is actually not that hard to push the proof of Theorem 1.6 beyond any
computable ordinal α:

Theorem 1.8. There is a punctually categorical structure which is not ∆1
1-categorical.

The theorem will reappear as Corollary 8.3 of a more general Theorem 8.1 which essentially turns
any Turing computable structure into a punctually categorical one. These results show that punctually
categorical structures can be arbitrarily complicated. It also illustrates the power of the macro-label
technique which we expect will find further applications. Theorem 1.8 solves a problem left open in
[BDKM19]. Also, Theorem 1.8 will likely be useful in showing that certain classes of structures are not
punctually universal, similarly to how Theorem 1.6 was used to establish punctual non-universality of
unary structures.

2. A general framework

Throughout this paper, we will be showing results of the form “If a structure A is punctually
categorical, then it has property X.” We will argue these by contrapositive; under the assumption that
A does not have property X, we will build a punctual structure B which is isomorphic to A but not
punctually (bi-primitive recursively) so.

We present here a general framework for most of these arguments (but not all; see for example
Lemmas 3.2 and 3.3). A construction will have two phases: a diagonalization phase and a recovery
phase, which it will alternate between. The diagonalization phase will be lengthy, such that we expect no
primitive recursive bound on the lengths of each phase, and a priori there may even be a diagonalization
phase which never ends. The phases will be designed to have the following properties:

• In all cases, we construct a punctual structure B.
• If there is a diagonalization phase which never ends, then B 6∼= A.
• If every diagonalization phase eventually ends (and thus there are infinitely many recovery

phases), then B ∼= A.

Each diagonalization phase will be targeted for a particular pair of primitive recursive functions
(p, q), as we aim to show that either p : A → B is not an embedding or at least q is not its inverse.
Note that as primitive recursive functions, p and q are total. So if p is not an embedding, we see proof
at some finite stage: either elements x, y with x 6= y but p(x) = p(y), or some atomic formula θ and
some x̄ with A |= θ(x̄) ⇐⇒ B 6|= θ(p(x̄)). Similarly, if q is not the inverse of p, we will see some x
with p(q(x)) 6= x. Once this occurs, (p, q) is forever defeated; there is no chance our construction might
inadvertently rescue the pair.

A diagonalization phase will continue until we see proof that the targeted pair is not an isomorphism.
If the diagonalization phase never ends, then by construction there can be no isomorphism from A to
B, and so in particular either p is not an embedding, or it is not surjective and thus q is not its inverse.
Thus we will eventually see the desired proof and end the diagonalization strategy. So our construction
will have infinitely many recovery phases, meaning B ∼= A. We will also successfully diagonalize against
every pair, and so we will have shown that A is not punctually categorical.

3. At most binary relations

Recall that a structure is automorphically trivial if there is a finite subset F such that every per-
mutation of the structure which fixes F pointwise is an automorphism. An automorphically trivial
structure is clearly punctually categorical: nonuniformly map the finite set F , and then extend to the
rest of the structure via any bi-primitive recursive permutation.

6 R. DOWNEY, N. GREENBERG, A. MELNIKOV, K.M. NG, AND D.TURETSKY

Theorem 3.1. Every punctually categorical structure with only binary and unary relational symbols
is automorphically trivial.

Proof. Consider a punctually categorical structure A whose signature consists of finitely many binary
and unary relations. We show such a structure must be automorphically trivial.

Consider every possible 2-element atomic diagram in our signature. Each is a color. We have an
inverse operation on colors, so that c(x, y) = a ⇐⇒ c(y, x) = a−1. Some colors are their own inverses.
Note that c(·, ·) is primitive recursive.

Lemma 3.2. If such a structure A is punctually categorical, then for every x ∈ A and every color a
such that there are infinitely many y with c(x, y) = a, there is a primitive recursive function f such
that for all n, there are at least n elements y with c(x, y) = a and y < f(n).

Proof. Suppose not. Then fix an x ∈ A and a color a forming a counterexample. That is, if
NA(x) = {y : c(x, y) = a}, and NAs (x) is the natural stage-based approximation, then for any primitive
recursive function f , there are infinitely many s such that NAs (x) = NAf(s)(x). By a primitive recursive

renumbering of stages, we assume that A is fully defined on [0, s) by stage s.
We construct two structures B0 and B1, along with primitive recursive maps ϕ0, ϕ1 : ω → A, such

that ϕi : Bi → A is an isomorphism. Indeed, Bi will simply be defined to be the pull-back of A along
ϕi. To ensure that each Bi is primitive recursive, we will maintain that the domain of ϕi is either
[0, s−1) or [0, s) at stage s, while the range is contained in [0, s). For at least one of the i, and possibly
both, we will have that dom(ϕi) = [0, s) at stage s.

We must diagonalize against each pair (p0, p1) of primitive recursive functions, showing that at least
one of the following holds:

• p0 : B0 → B1 is not an isomorphism; or
• p0 and p1 are not inverses.

We consider each such pair in some effective order, addressing each in turn. While we are working
for a pair (p0, p1), we are always watching for proof that we have succeeded. That is, if at stage s
there is a z < s such that p0(z) and p1(p0(z)) have both converged, but p1(p0(z)) 6= z, then we have
proof that p0 and p1 are not inverses. If there are w, z < s − 1 such that p0(w), p0(z) < s − 1 have
converged by stage s, but c(ϕ0(w), ϕ0(z)) 6= c(ϕ1(p0(w)), ϕ1(p0(z))), then we have proof that p0 is not
an isomorphism. Once we have proof, we discard the pair (p0, p1) and move on to the next pair.

When we discard a pair at stage s, it may be that the domain of one of the ϕi at stage s is [0, s−1).
So there is some element u < s with u 6∈ range(ϕi). We extend ϕi at stage s + 1 with ϕi(s − 1) = u,
ϕi(s) = s. In this way we are certain that when we begin considering the next pair at stage s+ 1, we
have dom(ϕi) = range(ϕi) = [0, s].

Before we even consider the first pair of primitive recursive functions, we begin by simply defining
ϕi(s) = s at every stage s + 1 (for each i < 2). This continues until we reach a stage s with x < s,
and thus x ∈ range(ϕi). Once this occurs, we begin considering the first pair of primitive recursive
functions.

Let z0 = ϕ−10 (x). Of course, inspection will reveal that z0 = x, but it is convenient to have a
different name for the element to distinguish when we are considering it as an element of A versus as
an element of B0.

Our strategy for the pair (p0, p1). By assumption, at stage s, we have ϕi : [0, s)→ [0, s) a bijection,
for each i < 2. If, by stage s, p0(z0) has not converged, or it has converged to a value greater than or
equal to s, we simply extend ϕi at stage s+ 1 by ϕi(s) = s, for both i < 2.

If instead p0(z0) < s has converged by stage s, we define z1 = p0(z0). Note that there is no reason
to believe ϕ1(z1) = x. The element ϕ−11 (x) will have no special role in our construction.

For i < 2, define N i
s = {y ∈ dom(ϕi,s) : c(ϕi(zi), ϕi(y)) = a}. Since Bi is defined by the pullback

of ϕi, this is the set of all y such that c(zi, y) = a in Bi. We wish to engineer a situation in which the
following holds at stage s:

• |N0
s | 6= |N1

s |; and
• If j0, j1 < 2 are such that |N j1

s | > |N j0
s |, then:

– dom(ϕj1) = [0, s); and

PUNCTUAL CATEGORICITY AND UNIVERSALITY 7

– If dom(ϕj0) = [0, s − 1), and u < s is the unique element not in the range(ϕj0), then
c(ϕj0(zj0), u) = a.

We henceforth refer to this situation as “the desired state”. Until we are in the desired state, at every
stage s + 1, we extend each ϕi by defining ϕi(s) = s, unless choosing not to extend ϕ0 would put us
into the desired state at stage s + 1. In that case, we extend ϕ1 but not ϕ0. So until we are in the
desired state, we have dom(ϕi,s) = [0, s) for both i < 2.

Since there are infinitely many y with c(x, y) = a, let y0 be the least such y which is greater than
the stage s0 at which we began considering the pair (p0, p1). At stage s = y0, we may already be
in the desired state. If not (meaning |N0

s | = |N1
s |), there are two possibilities. If c(ϕ1(z1), y0) 6= a,

then extending ϕi(s) = s for both i will put us into the desired state with (j0, j1) = (1, 0) and
dom(ϕj0) = [0, s). If c(ϕ1(z1), y0) = a, then extending ϕ1(s) = s and not extending ϕ0 will put us in
the desired state with (j0, j1) = (0, 1) and u = y0.

Thus we will eventually enter the desired state (or see proof that we have defeated the pair (p0, p1)).
Once in the desired state, the remainder of our strategy is to simply maintain the desired state (possibly
interchanging the j0 and j1 as we do so). We explain how this is done.

If |N j1
s | − |N j0

s | > 1, then at stage s + 1 we can extend each ϕi by letting r be the least element
not in its domain (so r ∈ {s − 1, s}) and defining ϕi(r) = s. Since |N j0 | can increase by at most one

element between stages s and s + 1 (specifically, the element r), while N j1
s ⊆ N j1

s+1, we maintain the
desired state.

If |N j1
s | − |N j0

s | = 1 and at least one of c(ϕj0(zj0), s) 6= a or c(ϕj1(zj1), s) = a holds, then we

can again extend each ϕi by ϕi(r) = s. If we have c(ϕj0(zj0), s) 6= a, we will have N j0
s = N j0

s+1,

while N j1
s ⊆ N j0

s+1, and so the desired state is maintained. If we have c(ϕj1(zj1), s) = a, we will have

|N j1
s+1 \N j1

s | = 1, while |N j0
s+1 \N j0

s | ≤ 1, and so again the desired state is maintained.

If |N j1
s |− |N j0

s | = 1, c(ϕj0(zj0), s) = a and c(ϕj1(zj1), s) 6= a, then our behavior depends on whether
or not dom(ϕj0,s) = [0, s). If so, then we can choose not to extend ϕj0 , defining ϕj0,s+1 = ϕj0,s while
extending ϕj1 by ϕj1(s) = s. Then we have maintained the desired state, now with u = s.

If |N j1
s | − |N j0

s | = 1, c(ϕj0(zj0), s) = a, c(ϕj1(zj1), s) 6= a and dom(ϕj0,s) = [0, s − 1), then we can

extend by ϕj0(s−1) = u, ϕj0(s) = s and ϕj1(s) = s. Now we have |N j0
s+1 \N j0

s | = 2, while N j1
s+1 = N j1

s .
So we have maintained the desired state, albeit by interchanging the roles of j0 and j1.

Next, we argue that if we maintain the desired state indefinitely, we will eventually see proof that
we have defeated the pair (p0, p1). Define the function f such that f(s) is the least t > s such that
p0 and p1 have both converged on all of [0, s) by stage t, and for all w ∈ [0, s), we have p0(w) < t
and p1(w) < t. Note that f is primitive recursive, and thus so is f ◦ f . Then, as previously observed,
there are infinitely many s such that NAs = NAf(f(s)). Fix such an s1 after the stage at which we begin

maintaining the desired state for the pair (p0, p1).
Suppose we have not seen the desired proof by stage s1, and thus are still maintaining the desired

state at stage s1. There are two cases. In case (1), we are maintaining the desired state with j0 = 0.
An examination of our strategy for maintaining the desired state will show that since there is no
s ∈ [s1, f(f(s1)) with c(x, s) = a, N j0

s1 = N j0
f(s1)

. But by assumption, |N j1
s1 | > |N

j0
s1 |, and p1 converges

on all of N j1
s1 by stage f(s1). Thus, by counting, either p1 fails to be injective, or p1(z1) 6= z0, or there

is a y ∈ N j1
s1 = N1

s1 such that c(ϕ1(z1), ϕ1(y)) = a and c(ϕ0(p1(z1)), ϕ0(p1(y))) 6= a, thus witnessing
that p1 is not an isomorphism or is at least not the inverse of p0.

In case (2), we are instead maintaining the desired state with j0 = 1. There are two subcases.
We know that we are maintaining the desired state at stage f(s1). Case (2a) is that at stage f(s1)

we have not interchanged the roles of j0 and j1. Then we have |N j0
s1 | ≤ |N

j0
f(s1)
| < |N j1

f(s1)
| = |N j1

s1 |.
This final equality is again by the fact that NAs1 = NAf(s1) and an examination of our strategy for

maintaining the desired state. But by assumption, p0 converges on all of N j1
s1 by stage f(s1). Thus, by

counting, either p0 fails to be injective, or there is a y ∈ N j1
s1 = N0

s1 such that c(ϕ0(z0), ϕ0(y)) = a and
c(ϕ1(p0(z0)), ϕ1(p0(y))) 6= a, thus witnessing that p0 is not an isomorphism.

8 R. DOWNEY, N. GREENBERG, A. MELNIKOV, K.M. NG, AND D.TURETSKY

Case (2b) is that we are maintaining the desired state at stage s1 with j0 = 1 and at stage f(s1)
with j0 = 0. Then, as in Case 1, by stage f(f(s1)) we still have j0 = 0. The argument now proceeds
as in Case (1), using stages f(s1) and f(f(s1)). �

Lemma 3.3. If such a structure A is punctually categorical, then the coloring is stable, in that (∀x ∈
A)(∃a)(∀∞y ∈ A) c(x, y) = a.

Proof. Suppose not. Then fix an x ∈ A forming a counterexample. Since there are only finitely
many colors, by pigeon hole there must be distinct colors a and b such that ∃∞y c(x, y) = a and
∃∞y c(x, y) = b. Fix an infinite primitive recursive set D such that the principal function of D grows
faster than any primitive recursive function. By a primitive recursive renumbering of stages, we assume
that both A and D are fully defined on [0, s) by stage s.

By lemma 3.2, there is a primitive recursive f such that for all n, there are at least n + 1 distinct
y ∈ [0, f(n)) such that c(x, y) = a. We may assume f is strictly increasing, and thus has a primitive
recursive range. We will build a punctual structure B ∼= A violating lemma 3.2 for the color b, a
contradiction.

We define B by defining a primitive recursive bijection ϕ : ω → A and then defining B to be the
pullback. To keep ϕ primitive recursive, we will ensure that dom(ϕ) is [0, n) at stage f(n).

At stage s, if s is not in the range of f , we define ϕs+1 = ϕs.
If instead s = f(n), by induction we have doms = [0, n). If n ∈ D, we let u < f(n) be the least

element not in the range of ϕs, and we extend ϕ by ϕs+1(n) = u. If n 6∈ D, we let u < f(n) be the
least element not in the range of ϕs such that c(x, u) = a (such a u exists below f(n) by counting),
and we extend ϕ by ϕs+1(n) = u.

Since f has infinite range, it follows that ϕ is surjective, and thus B ∼= A. On the other hand, by
construction we have that c(ϕ−1(x), n) 6= a ⇒ n ∈ D. By the sparsity of D, this means there is no
primitive recursive bound on the frequency of y with c(ϕ−1(x), y) = b in B, contrary to lemma 3.2. �

Now we can extend the coloring to individual elements, defining ĉ(x) = limy c(x, y).
We say that ĉ(·) is almost symmetrically monochromatic if there is a color a with a−1 = a and

ĉ(x) = a for almost every x.
For a color a, an element x ∈ A and a stage s, define dega(x, s) = #{y < s : c(x, y) = a}. If we

have another structure B, we define degBa (x, s) similarly, using the atomic diagram of B to determine

colors instead. We define dega(x) = lims dega(x, s), and similarly for degBa (x).

Lemma 3.4. If c(·, ·) is stable but ĉ(·) is not almost symmetrically monochromatic, then

∀x∀∞y ∀∞s∃a [dega(x, s) 6= dega(y, s)].

Also, every orbit is finite.

Proof. Fix an x. Let ĉ(x) = a. There are two cases.
If almost every y is colored a−1, then by assumption a 6= a−1, so ĉ(x) 6= a−1. Then dega−1(x) <∞.

So for every y with c(y) = a−1, for almost every s, dega−1(y, s) > dega−1(x) ≥ dega−1(x, s). Also,
since almost every element is colored differently from x, x must have finite orbit.

If there are infinitely many elements not colored a−1, then by pigeon hole there is some color b with
b−1 6= a such that infinitely many elements are colored b. Since c(x) 6= b−1, then degb−1(x) < ∞.
But since there are infinitely many elements colored b, almost every y has degb−1(y) > degb−1(x).
For such a y, for almost every s, degb−1(y, s) > degb−1(x) ≥ degb−1(x, s). Since almost every y has
degb−1(y) > degb−1(x), x must have finite orbit. �

Lemma 3.5. Suppose c(·, ·) is stable, but ĉ(·) is not almost symmetrically monochromatic. Then A is
not punctually categorical.

Proof. Once again, we build B ∼= A by constructing a primitive recursive bijection ϕ : ω → A and
defining B to be the pullback. Again, by a primitive recursive renumbering of stages, we assume that A
is fully defined on [0, s) by stage s. We will have dom(ϕs) either [0, s−1) or [0, s), and range(ϕs) ⊆ [0, s).

PUNCTUAL CATEGORICITY AND UNIVERSALITY 9

We will follow the general framework described in Section 2. Our recovery phase will consist of
making ϕ “catch up”, as in the proof of lemma 3.2, so that when we begin the next diagonalization
phase at stage s+ 1, we will have dom(ϕs+1) = [0, s+ 1).

At stage 0, we begin the first diagonalization phase.
When we begin the diagonalization phase for the pair (p, q) at some stage s0, we omit an element from

B. That is, we define ϕs0+1 = ϕs0 , leaving s0 temporarily out of the range of ϕ. At subsequent stages
s, we extend ϕ by defining ϕs+1(s−1) = s until we reach a stage s at which there is a u0 and an n0 < s
such that (ϕ ◦ p)n0(s0) = u0 has converged by stage s, and for some color a, dega(s0, s) 6= dega(u0, s).

We take a moment to argue why such n0 and u0 must eventually be found (under the assumption
that p is an isomorphism). Since ϕ is injective, if p is injective, then (ϕ ◦ p) is injective. Since s0 is
not in the range of ϕ, (ϕ ◦ p)m(s0) is a sequence with no repetition that grows for as long as we are
searching for u0 and n0. So by lemma 3.4, we will eventually find such an a, u0 and n0.

Suppose we find our desired n0 and u0 at stage s. Then we add s0 to the range of ϕ. That is, we
extend ϕ by defining ϕs+1(s − 1) = s0. At this and all subsequent stages s, we continue to extend ϕ
by ϕs+1(s) = s until we reach a stage where c(s0, s) 6= c(u0, s). Let w0 = s. At this stage, we omit w0

from the range of ϕ, defining ϕs+1 = ϕs.
We take a moment to argue why such a w0 must eventually be found (under the assumption that

p is an isomorphism). While we are searching for it, we are making ϕ surjective, and so ϕ will be an
isomorphism. So if p is also an isomorphism, then s0 and u0 are in the same orbit and thus have the same
color. Since

∑
c degc(s0, s) =

∑
c degc(u0, s) = s, and we have dega(s0, s) 6= dega(u0, s) for the stage s

at which we find u0, by counting there must be at least one other color b with degb(s0, s) 6= degb(u0, s).
So WLOG, ĉ(s0) 6= a, and thus ĉ(u0) 6= a. So dega(s0) and dega(u0) are finite, and if they’re in the
same orbit, they must be equal. WLOG, dega(s0, s) < dega(u0, s) for the stage s at which we find u0.
So in order to bring these degrees into agreement, there must later appear a w0 with c(s0, w0) = a and
c(u0, w0) 6= a.

Having found w0 and kept it out of range(ϕ) temporarily, we will continue for a time defining
ϕs+1(s− 1) = s. We now argue that while we are doing this, the sequence (ϕ ◦ p)m(s0) must continue
without repetition (under the assumption that p is an isomorphism). Suppose not, and suppose we
continue extending ϕ is in this way forever. Then by injectivity, there must be an m with (ϕ◦p)m(s0) =
s0. It follows then that (ϕ ◦ p)m(u0) = u0. While ϕ is not currently being built to be an isomorphism,
it is being built to be color preserving (as it will omit only a single element), so ĉ(s0) = ĉ(u0). Recall
that c(s0, w0) 6= c(u0, w0), so we have that at least one of the following holds: c(s0, w0) 6= ĉ(s0), or
c(u0, w0) 6= ĉ(u0). WLOG, c(s0, w0) 6= ĉ(s0). Let c(s0, w0) = b.

Note that for all i,
degAb ((ϕ ◦ p)i(s0)) = degBb (p ◦ (ϕ ◦ p)i(s0)),

because p is an isomorphism. Further,

degBb (p ◦ (ϕ ◦ p)i(s0)) = degA−w0

b ((ϕ ◦ p)i+1(s0)),

because ϕ : B → A− w0 is an isomorphism. Also,

degA−w0

b ((ϕ ◦ p)i+1(s0)) ≤ degAb ((ϕ ◦ p)i+1(s0)),

because the addition of w0 can only increase the degree. Further, these values are all finite, because
all (ϕ ◦ p)i(s0) have a color other than b. So by induction, we have that

degAb (s0) ≤ degA−w0

b ((ϕ ◦ p)m(s0)) = degA−w0

b (s0) = degAb (s0)− 1.

Where the last equality comes from c(s0, w0) = b. But this is a contradiction.
So while we keep w0 out of range(ϕ), the sequence (ϕ◦p)m(s0) must continue without repetition. So

eventually we will find a new pair n1 and u1 with (ϕ◦p)n1(s0) = u1 and for some color a, dega(s0, s) 6=
dega(u1, s). When we find this u1, we permit w0 to enter the range of ϕ by defining ϕs+1(s− 1) = w0.
We then begin searching for a new w1 with c(s0, w1) 6= c(u1, w1), and we omit w1 from the range of ϕ.
The construction continues in this fashion, constantly obtaining new ui and wi, keeping wi out of the
range of ϕ until such time as we find ui+1, and then repeating.

Thus, if the diagonalization phase never ends, ϕ is surjective, as no element is ever kept out of the
range forever. So ϕ is an isomorphism. If p is also an isomorphism, (ϕ ◦ p) is an automorphism. But

10 R. DOWNEY, N. GREENBERG, A. MELNIKOV, K.M. NG, AND D.TURETSKY

we also argued that (ϕ◦p)m(s0) can have no repetition. Thus s0 has an infinite orbit, while lemma 3.4
says that every orbit of A is finite, and so B 6∼= A, and the diagonalization phase must in fact end. �

Lemma 3.6. Suppose ĉ(·) is almost symmetrically monochromatic, but A is not automorphically trivial.
Then A is not punctually categorical.

Proof. Let a be the color such that ĉ(x) = a for almost every x. Then a−1 = a by assumption.
Fix z0, . . . , zn ∈ A such that all other elements have color a, and let ci be the color of zi. Then for

every ȳ ∈ A− z̄, there are infinitely many x with c(zi, x) = ci and c(y, x) = a for y ∈ ȳ.
We again construct a B using the general framework from section 2. We will construct a computable

isomorphism ϕ : B → A. At every stage s of the construction, we will have Bs = domϕs t Cs for
a finite set Cs. Bs will be defined by pull-back on domϕs, and for x ∈ Cs it will be the case that
c(i, x) = ci for i ≤ n, and c(y, x) = a for y ∈ Bs \ [0, n].

We begin by defining ϕ0(i) = zi for i ≤ n, and then we enter the first diagonalization phase.
At every stage s of the diagonalization phase, we will let x = |Bs|, the least element not in Bs, and

we will define Bs+1 = Bs ∪ {x}, Cs+1 = Cs ∪ {x}, defining the relations on Bs+1 such that c(i, x) = ci
for i ≤ n and c(y, x) = a for y ∈ Bs+1. If the diagonalization phase never ends, then C =

⋃
s Cs is

an a-clique, and our structure is automorphically trivial with the finite set domϕs0 . So B 6∼= A, as
required.

During the recovery phase, we continue to expand Cs by a single element at each stage, as we did in
the diagonalization phase. This continues until we see an element w ∈ As \ rangeϕs with c(zi, w) = ci
and c(y, w) = a for y ∈ rangeϕs \ z̄. When we find such a w, we let x = minCs, and we define
ϕs+1(x) = w. We define Cs+1 = Cs \ {x}, and we extend Bs+1 and ϕs+1 such that [0, s) ⊆ rangeϕs+1.
We then continue to the next diagonalization phase.

Note that if we have infinitely many recovery phases, then lims Cs = ∅, and domϕ = ω, so that
ϕ : B → A is an isomorphism, as required. �

This completes the proof of Theorem 3.1. �

4. One unary function

This section will frequently employ the sort of argument which appeared in Lemma 3.6. Previous
constructions in Section 3 relied on omitting one or several points—a new structure was built that lagged
behind the original structure. As we constructed the new structure, we simultaneously constructed a
primitive recursive isomorphism from it to the old structure, but this isomorphism was slow to put
some points into the range, and so its inverse was not primitive recursive. Now we will build new
structures that run ahead of the original structure, as in the proof of Lemma 3.6, adding points before
the corresponding points appear in the original structure. We will still build an isomorphism from
the new structure to the original structure, but now we will put some points into our new structure
significantly before we define the isomorphism on them, and thus the isomorphism will not be primitive
recursive.

Theorem 4.1. Suppose A is an infinite structure with only one unary functional symbol. Then A is
punctually categorical if, and only if, either:

1. A is almost equal to a disjoint union of loops of identical size,
2. A is almost equal to an infinite star.

We prove a sequence of lemmas restricting the isomorphism type of such an A.

Lemma 4.2. Suppose A is an infinite punctually categorical structure with only one unary function
symbol f . Then for every x ∈ A, there are n 6= m such that A |= fn(x) = fm(x).

Proof. Suppose not. Then for some x ∈ A, the sequence x, f(x), f2(x), f3(x), . . . is without repetition.
Fix such an x. By applying a bi-primitive recursive permutation to A, we may without loss of generality
assume that x = 0. By a primitive recursive renumbering of the stages, we may assume that at every
stage s, fk(a) is defined in A for every a+ k ≤ s.

We will build a punctual structure B witnessing the failure of punctual categoricity. For clarity,
we will use f for the function symbol in A and g for the function symbol in B. For every primitive

PUNCTUAL CATEGORICITY AND UNIVERSALITY 11

recursive function p, we will ensure that p : B → A is not an isomorphism. We will also construct a
computable isomorphism ϕ : B → A. We will only work at stages of the form s = t2. We will maintain
that for every a ∈ rangeϕs, there is a b and k with b + k < s and fk(b) = a. Thus f(a) = fk+1(b) is
defined by stage s. We will also maintain that Bs is a proper initial segment of ω, and if s = t2, then
[0, t) ⊆ Bs.

We begin by defining ϕ1(0) = 0 and B1 = {0}. At every stage s > 0, if s is not of the form s = t2,
we define ϕs+1 = ϕs and Bs+1 = Bs.

Suppose we are at stage s = t2. To defeat the primitive recursive function p, we will define a
sequence y0, y1, y2, . . . with g(yk) = yk+1, but we will keep this sequence out of the domain of ϕ. As
we will see, the domain of ϕs will be precisely Bs \ {y0, y1, y2, . . . }.

Let n be least such that gn(0) is not yet defined in Bs, and let k be least such that yk is not yet
defined. We first check if the following hold:

• k > 0 and n+ k < s;
• p(0) and p(y0) have converged;
• fn(p(0)) is defined in A by stage s; and
• A |= fn(p(0)) 6= p(y0).

If this does not hold, let yk = |Bs|, the least element not in Bs. Let D = {f(a) : a ∈ rangeϕs} \
rangeϕs and d = |D|. We let Bs+1 = [0, yk + d + 1), and we extend ϕs to ϕs+1 via some bijection
from [yk + 1, yk + d + 1) to D. Thus domϕs+1 = Bs+1 \ {y0, . . . , yk}. For z ∈ domϕs, we define
g(z) = ϕ−1s+1(f(ϕs(z))). If k > 0, we also define g(yk−1) = yk.

If instead the above does hold, we define gn(0) = y0. By assumption, since n + k < s, fn+k(0) is
defined in A at stage s. So we may define θ extending ϕs with dom θ = domϕs ∪ {y0, . . . , yk−1} with
fn(0) = θ(y0) and f(θ(yi)) = θ(yi+1) for i < k − 1. Fix w the least element of [0, s) \ rangeθ. Let
D = {f(a) : a ∈ rangeϕs} \ rangeϕs \ {w} and d = |D|. We set Bs+1 = [0, |Bs|+ d+ 1), and we extend
θ to ϕs+1 via some bijection from [|Bs|+ 1, |Bs|+ d+ 1) to D, and by ϕs+1(|Bs|) = w. For z ∈ domϕs,
we define g(z) = ϕ−1s+1(f(ϕs(z))). We have now diagonalized against p, and so we are ready to begin
working on the next primitive recursive function.

Since at every stage s = t2, we defined Bs+1 to be an initial segment of ω with at least one more
element than Bs, we see that [0, t) ⊆ Bs as promised. Also, since g is defined on all of Bs by the end
of stage s, and s = t2 is a primitive recursive function, B is a punctual structure.

Suppose we are working against primitive recursive function p. Then at almost every stage s = t2

while we wait for the desired conditions to hold, we will have k > 0 and n + k < s. This is because
at each such stage, k and n grow by precisely 1, while s increases quadratically. Since p is primitive
recursive, eventually p(0) and p(y0) will converge. Then at almost every stage s = t2 while we wait,
fn(p(0)) will be defined. Again, this is because s increases quadratically while n increases linearly, and
by our assumption about the convergence of f . Of course, there is at most one n with fn(p(0)) = p(y0),
and so eventually the desired conditions will hold, and we will complete our work for p. Since we will
arrange that gn(0) = y0, while fn(p(0)) 6= p(y0), p cannot be an isomorphism.

Since we eventually finish with every primitive recursive function p, by construction we are sure to
enumerate all of A into the range of ϕ, and thus ϕ is an isomorphism. So B ∼= A, but there is no
primitive recursive isomorphism witnessing this, contrary to assumption. �

So we see that in such an A, every element generates a finite component terminating in a loop.

Lemma 4.3. Suppose A is an infinite punctually categorical structure with only one unary function
symbol f . If there is an x ∈ A for which there are infinitely many y ∈ A with f(y) = x, then A is
almost equal to an infinite star.

Proof. Suppose not, and fix an x such that there are infinitely many y with f(y) = x. By applying a
bi-primitive recursive permutation to A, we may without loss of generality assume that x = 0. By a
primitive recursive renumbering of the stages, we may assume that at every stage s, fk(a) is defined
in A for every a+ k ≤ s.

Again we will construct a punctual B ∼= A witnessing the failure of punctual categoricity. For clarity,
we again use g for the unary function in B. For every primitive recursive function p, we will ensure

12 R. DOWNEY, N. GREENBERG, A. MELNIKOV, K.M. NG, AND D.TURETSKY

that p : A → B is not an embedding. We will also construct a computable isomorphism ϕ : B → A.
We will maintain that at every stage s, for every a ∈ rangeϕs, there is a b and k with b + k < s and
fk(b) = a. Thus f(a) = fk+1(b) is defined by stage s. We will also maintain that Bs is a proper initial
segment of ω with [0, s) ⊆ Bs.

At stage 0, we define ϕ1(0) = 0, B1 = {0}.
At stage s, suppose we are working to diagonalize against p, and s0 is the stage at which we began

considering p. We first check if both of the following hold:

(1) p has proven itself not to be an embedding. That is:
• There are a, b < s with a 6= b, but p(a) = p(b) has converged by stage s; or
• There are a, b < s with f(a) = b, but p(a), p(b) and g(p(a)) have converged by stage s

with g(p(a)) 6= p(b).
(2) For the least y 6∈ domϕs0 , y ∈ domϕs.

If at least one does not hold, we let y = |Bs|, the least element not in Bs. Let D = {f(a) : a ∈
rangeϕs} \ rangeϕs and d = |D|. We let Bs+1 = [0, y + d + 1), and we extend ϕs to ϕs+1 via some
bijection from [y+ 1, y+d+ 1) to D. For z ∈ domϕs, we define g(z) = ϕ−1s+1(f(ϕs(z))). We also define
g(y) = 0. If A |= f(s − 1) = 0 and s − 1 6∈ D, we let z be the least element not in domϕs (possibly
z = y), and we also define ϕs+1(y) = s− 1.

If both of the above conditions do hold, we proceed exactly as above. However, if there is an a < s
which is not otherwise in the range of ϕs+1, we fix the least such a and define ϕs+1(y + d + 1) = a,
and redefine Bs+1 = [0, y + d+ 2). We then proceed to consider the next primitive recursive function.

At every stage, we increase Bs by at least one element and define g on all elements of Bs, so B is
primitive recursive.

Observe that by construction, if y ∈ Bs \ ϕs, then g(y) = 0. While we are waiting for condition (2)
to hold, we never increase ϕ except as forced to by f , and so rangeϕs is contained in the substructure
generated by rangeϕs0 . By Lemma 4.2, this substructure is finite. Since there are infinitely many a
with f(a) = 0, there will eventually be an s− 1 with f(s− 1) = 0 and s− 1 6∈ D. When that happens,
we act to satisfy condition (2). So eventually condition (2) will hold for each p we consider.

Suppose that for some p, we never satisfy condition (1). Then, by construction, B is almost equal to
an infinite star. For B will consist of the finite substructure generated by rangeϕs0 and infinitely many
elements y with g(y) = 0. Since A is not almost equal to an infinite star, there can be no embedding
of A into B. Since p is total, eventually it will prove itself not to be an embedding, and condition (1)
will be satisfied. Thus we successfully diagonalize against every primitive recursive function p.

Finally, since we meet condition (2) for every primitive recursive function p we consider, and we
proceed to consider every primitive recursive function, domϕ = ω. By our action every time we finish
considering a primitive recursive function, rangeϕ = ω. By construction, ϕ is an isomorphism, and
thus B witnesses the failure of punctual categoricity for A, contrary to hypothesis. �

Lemma 4.4. Suppose A is an infinite punctually categorical structure with only one unary function
symbol f . If there is some n such that A contains infinitely many loops of size n, then A is almost
equal to an infinite union of loops of size n.

Proof. Suppose not, and fix an n such that there are infinitely many loops of size n, but A is not
almost equal to an infinite union of loops of size n. Again we construct a punctual B witnessing the
failure of punctual categoricity. This construction is as the proof of Lemma 4.3, except that instead of
adding a new point with g(y) = 0 at every stage, we instead add a new loop of size n. �

Lemma 4.5. Suppose A is an infinite punctually categorical structure with only one unary function
symbol f , and A is not almost equal to an infinite star or a union of infinitely many loops of a fixed
size. Then there are infinitely many elements which are not part of a loop.

Proof. Suppose not. By a bi-primitive recursive permutation of A, we may assume that there is some
m such that [0,m) is the substructure generated by the finitely many points which are not part of a
loop. We will again build a punctual B witnessing the failure of punctual categoricity.

Observe that since there are only finitely many loops of each size (Lemma 4.4), omitting any loop
changes the isomorphism type of A. So our plan to diagonalize against a given primitive recursive

PUNCTUAL CATEGORICITY AND UNIVERSALITY 13

function p : A → B is to omit a loop disjoint from [0,m) but otherwise copy A until p demonstrates
that it is not an embedding. As soon as we have defeated p, we add the loop we were previously omitting
and then proceed to the next primitive recursive function. This is all as in previous arguments, except
for the details on how we arrange to omit a loop while maintaining that B is primitive recursive. So
we will explain that and then consider the proof complete.

We define a sequence by m0 = 0, ms+1 = max{ms, f(a) : a ≤ ms} + 1. Observe that s 7→ ms is
primitive recursive. By a primitive recursive renumbering of stages, we may assume that ms and f(a)
for a ≤ ms have converged by stage s.

We will only act at stages of the form s = t2. At such a stage we will define g(x) for every x ∈ Bs,
but we might not add any new points to Bs, resulting in Bs = Bs+1. However, this will not happen
at two consecutive such stages s, and so we will always have [0, t/2) ⊆ Bs. As t 7→ (2t)2 is primitive
recursive, this will suffice to make B primitive recursive.

Suppose we begin considering p at stage s0 = t20. Until we have seen the full substructure generated
by rangeϕs0 , we add no new points except those required to mirror this substructure. At some stage
s1 = t21, we will see that the full substructure has revealed itself, and we will have ϕs1+1 an isomorphism
from Bs1+1 to the substructure generated by rangeϕs0 , which is contained in [0,ms1].

Beginning with stage s2 = (t1 + 1)2, we build a chain y0, y1, . . . in B, with g(yi) = yi+1. At
subsequent stages of the form s = t2, we extend this chain by 1 element. While this is occurring, we
do not extend ϕ. We continue until the first stage s3 = (t3 + 1)2 at which [0,ms] \ rangeϕs contains a
loop.

Fix some a ∈ [0,ms2] \ rangeϕs1+1, which is nonempty because it contains [ms1 ,ms2]. We observe
that at stage s3, a generates a chain longer than the chain we have so far constructed. For if s3 = s2 =
(t1 + 1)2, then we have constructed a chain of length 0, and 〈a〉 is a chain of length 1. If s3 = (t1 + 2)2,
then our chain has length 1, and f(a) 6= a (as otherwise it is a loop, contrary to choice of s3), so
〈a, f(a)〉 is a chain of length 2. If the loop occurred at a stage s3 = (t3 + 1)2 for t3 ≥ t1 + 2, then since
there was no loop at stage t23, and t23 − s22 > t3, it must be that

〈
a, f(a), f2(a), . . . , f t(a)

〉
contains no

repeats, and so is a chain of length t3 + 1, while our chain has length at most t3.
If there is a loop in [0,ms3] \ rangeϕs3 which is disjoint from this chain generated by a, then this is

the loop we will omit. We define ϕs3+1 to send the chain we have constructed to the chain generated
by a. At subsequent stages s > s3, [0,ms] will contain new elements, and these new elements will
necessarily not generate the omitted loop (as they are part of disjoint loops, by assumption), so we can
copy those elements while continuing to omit the loop.

If the chain generated by a is part of the only loop in [0,ms3] \ rangeϕs3 , then this is the situation
in which we define Bs3+1 = Bs3 . In particular, we do not extend our chain at this stage. Now consider
b = ms3 + 1, and let s4 = (t3 + 2)2, the next stage after s3 at which we act. Since s4 − (s3 + 1) > t3,
we see that either b generates a loop in [0,ms4] or it generates a chain longer than that which we have
constructed. In the former case, we can now map our chain to the chain generated by a (adding at
least one element, since the latter chain is strictly longer) and decide that the loop generated by b is
the one we omit; in the latter case, we can map our chain to the chain generated by b (again adding
at least one element) and decided that the loop generated by a is the one we omit.

In this way we have arranged to omit a loop while only occasionally having a stage at which we do
not add a new element to B. �

Lemma 4.6. Suppose A is an infinite punctually categorical structure with only one unary function
symbol f , and A is not almost equal to an infinite star or a union of infinitely many loops of a fixed
size. Then for every proper substructure B ⊂ A, B 6∼= A.

Proof. Fix B a proper substructure. For each x ∈ A, let m(x) and n(x) be the least 0 ≤ m < n such
that A |= fm(x) = fm+n(x). Note that n(x) is the size of the loop generated by x, m is the minimum
distance from x to the loop it generates, and, if x ∈ B, then m(x) and n(x) are also the least 0 ≤ m < n
such that B |= fm(x) = fm+n(x).

By Lemmas 4.3 and 4.4, the sets

Dn,m = {x ∈ A : m(x) = m & n(x) = n}

14 R. DOWNEY, N. GREENBERG, A. MELNIKOV, K.M. NG, AND D.TURETSKY

are all finite. Fix a z ∈ A \ B. Then for n = n(z) and m = m(z), Dn,m ∩ B is smaller than Dn,m, and
so B 6∼= A. �

Lemma 4.7. Suppose A is an infinite punctually categorical structure with only one unary function
symbol f , and A is not almost equal to an infinite star or a union of infinitely many loops of a fixed
size. Then for almost every x ∈ A, there is a y ∈ A with f(y) = x.

Proof. We construct punctual B ∼= A while attempting to diagonalize against bi-primitive recursive
isomorphism. We again build a computable isomorphism ϕ : B → A and let B be defined via pullback.
Our strategy for defeating a pair (p, q) of primitive recursive functions is to only copy the even elements
of A. That is, assuming we begin working to defeat (p, q) at stage s0, we let C ⊆ A be the substructure
generated by rangeϕs0 ∪ 2N, and we extend ϕ such that rangeϕ = C until we have defeated (p, q).
Since s 7→ 2s is primitive recursive, this keeps B punctual. Once we have defeated (p, q) at some stage
s1, we define ϕs1+1 by extending ϕs1 such that the range contains all the odd elements of A below s1
and then begin to work against the next pair.

Since A is punctually categorical, consider the first pair (p, q) which we are not able to defeat by
the above strategy, and let s0 be the stage we begin working for this pair. Then we forever copy C, so
B ∼= C. So it must be that A ∼= C. By Lemma 4.6, A = C, and in particular every odd element of A is
an element of C. So for every odd element x ∈ A outside of rangeϕ, there must be a y with f(y) = x.

By repeating the same construction with the roles of even and odd interchanged, the result follows.
�

Proof of Theorem 4.1. That an A of either of the two isomorphism types is punctually categorical is a
simple back-and-forth argument.

For the converse, suppose A is punctually categorical but not of one of the listed isomorphism types.
By Lemma 4.7, there are only finitely many elements x ∈ A for which there does not exist a y ∈ A
with f(y) = x. Let C be the substructure generated by these finitely many elements. By Lemma 4.2,
C is finite. By Lemma 4.5, there are infinitely many elements which are not part of a loop, so fix
z ∈ A \ C which is not part of a loop. Then z is the head of an infinite backwards-chain – there are
z0 = z, z1, z2, z3, . . . with f(zi+1) = zi for all i. Further, by z 6∈ C, for any y with fk(y) = z for some
k, y is the head of its own infinite backwards-chain. We again assume that z = 0.

We will build punctual B ∼= A contradicting punctual categoricity. We again build a computable
isomorphism ϕ : B → A, beginning with ϕ(0) = 0. Suppose we begin working to defeat the pair
(p, q) at stage s0. Our strategy is to only put into rangeϕs those elements generated by rangeϕs0 .
Meanwhile, we construct a forward chain 〈x0, x1, x2, . . .〉 with g(xi) = xi+1 for all i, and Bs will be the
disjoint union of domϕs and the chain. In this fashion we are generating a structure which is almost
equal to an infinite chain, and so by Lemma 4.2, we must eventually defeat the pair (p, q).

We continue in this fashion until some stage s1 at which we have both defeated (p, q), and the range
of ϕs1 is closed under f . Let xk be the last element of the forward-chain which has been built by stage
s1. We choose a y ∈ domϕs1 with gk(y) = 0 but such that there is no w ∈ domϕs1 with g(w) = y
(such a y exists as ϕs1 is finite and contains 0, and we allow k = 0), and we define g(xk) = y (and thus
we stop building this chain). We then begin building a new forward chain while we wait for a stage at
which we can extend ϕs1 to the previous forward chain. By the above discussion, there will be such
a stage. Once we can, we extend ϕs1 to include the old chain and such that the range also contains
all elements of A below s1, and then we begin working to defeat the next pair, using the already in
progress forward chain. �

5. Proof of Theorem 1.4

Recall that Theorem 1.4 states that every punctually categorical structure with only unary function
symbols and relation symbols is PA(0′)-categorical.

Note that every finitely generated structure is computably categorical, and thus PA(0′)-categorical,
so we may consider only structures which are not finitely generated. Note also that, as we are consid-
ering structures with only unary function symbols, the substructure generated by a set F is the union
of the substructures generated by individual elements x ∈ F . In particular, if a finite F generates an
infinite substructure, then some element of F generates an infinite substructure.

PUNCTUAL CATEGORICITY AND UNIVERSALITY 15

Lemma 5.1. Suppose A is punctually categorical with only unary function and relation symbols, and
A is not finitely generated. Then every finite subset of A generates a finite substructure.

Proof. Suppose not, and fix an element x generating an infinite substructure C. We construct a
punctual B ∼= A using the general framework from section 2. We also build a computable isomorphism
ϕ : B → A, and we begin with ϕ0(0) = x.

If we begin a diagonalization phase at stage s0, our strategy for the diagonalization is to only add
the elements required by rangeϕs0 . That is, if C0 is the substructure generated by rangeϕs0 , we keep
Bs = domϕs and rangeϕs ⊂ C0. As C0 contains x and is thus infinite, this keeps B punctual. If the
diagonalization phase never ends, then B ∼= C0, and C0 6∼= A, as C0 is finite generated, so B 6∼= A, as
required.

The recovery phase consists of a single stage at which we extend ϕs+1 to contain all elements of A
below s, and define Bs+1 = domϕs+1 by pull-back. Thus if we have infinitely many recovery stages,
rangeϕ = A, and so B ∼= A. �

For a structure A with only unary function and relation symbols, and x ∈ A, we will adopt the
notation 〈x〉A for the substructure of A generated by x.

Lemma 5.2. Suppose A is punctually categorical with only unary function symbols and relations, and
there is a finite isomorphism type which occurs as a substructure of A infinitely often. Then A is
computably categorical.

Proof. Fix an x ∈ A generating a finite substructure such that the isomorphism type of 〈x〉A occurs
infinitely many times in A. Assume that |〈x〉A| is minimal with this property: there is no y such that
the isomorphism type of 〈y〉A occurs infinitely many times in A and |〈y〉A| < |〈x〉A|. So by pigeon
hole, there are only finitely many y such that 〈y〉A is isomorphic to a proper substructure of 〈x〉A.

We next form a sort of ∆-system of copies of 〈x〉A. First, consider the set

F = {y ∈ A : ∃x1, x2 [〈x1〉A ∼= 〈x2〉A ∼= 〈x〉A & x2 6∈ 〈x1〉A & y ∈ 〈x1〉A ∩ 〈x2〉A]}.
Note that for 〈x1〉A ∼= 〈x2〉A ∼= 〈x〉A, x2 6∈ 〈x1〉A is equivalent to stating that 〈x1〉A and 〈x2〉A are not
identical as sets. For such a y, since x1 and x2 both generate y, but neither generates the other, y
cannot generate either. So 〈y〉A is a proper substructure of 〈x1〉A, and is thus isomorphic to a proper
substructure of 〈x〉A. It follows that F is finite.

By pigeon hole, we may fix a D ⊆ F such that there are infinitely many x′ with 〈x′〉A ∼= 〈x〉A and
〈x′〉A ∩ F = D. Without loss of generality, we may assume that 〈x〉A ∩ F = D. Now consider the
collection of all z such that x 7→ z induces an isomorphism 〈x〉A → 〈z〉A, and such that 〈z〉A ∩F = D.
Note that this is a stronger condition than merely that 〈x〉A ∼= 〈z〉A, but it is still an infinite collection.

For each such z, let Dz ⊂ 〈x〉A be the preimage of D under the map induced by x 7→ z. By
pigeon hole, there is a set D0 such that D0 = Dz for infinitely many z in our collection. Pass to the
subcollection of all z with D0 = Dz, and without loss of generality assume that x is in this subcollection.
Thus D0 = D, and so the maps x 7→ z fix D as a set.

For each z in our collection, let σz be the permutation of D induced by x 7→ z. By pigeon hole
again, there is a permutation σ of D such that σ = σz for infinitely many z in our collection. Pass to
the subcollection of z with σ = σz, and without loss of generality assume that x is in this subcollection.
Then σ = idD, and so the maps x 7→ z fix D pointwise. Call our final collection C.

Claim 5.3. A is almost isomorphic to
⋃
z∈C 〈z〉A.

Proof. This is as the proof of Lemma 4.3. Suppose not. We construct a punctual structure B ∼= A
witnessing the failure of punctual categoricity. We begin with a single copy of 〈x〉A. During the
diagonalization phase, we place more 〈z〉A such that x 7→ z is an isomorphism fixing D pointwise. If a
diagonalization phase never ends, then we produce B ∼=

⋃
z∈C 〈z〉A 6∼= A, as required. During a recovery

phase we add in the missing elements and extend the isomorphism to include a new 〈z〉A, so if there
are infinitely many recovery phases, B ∼= A, as required. �

It now follows that A is computably categorical by a simple back-and-forth construction, completing
the proof of Lemma 5.2. �

16 R. DOWNEY, N. GREENBERG, A. MELNIKOV, K.M. NG, AND D.TURETSKY

Proof of Theorem 1.4. Suppose A has only unary function symbols and relations and is punctually
categorical. By our previous results and discussion, we need only consider the case where every element
of A generates a finite substructure, and no finite isomorphism type occurs as a substructure of A
infinitely often.

Suppose B ∼= A is computable. Of course, given x ∈ A and y ∈ B, for x 7→ y to be extendible to an
isomorphism, a necessary condition is that 〈x〉A ∼= 〈y〉B. By assumption, there are only finitely many
y ∈ B with 〈y〉B ∼= 〈x〉A. So consider the tree of pairs

T = {(σ, τ) ∈ ω<ω : |σ| = |τ |
& σ : A → B preserves all atomic formula

& ∀x < |σ| [〈x〉A ∼= 〈σ(x)〉B]

& ∀y < |τ | [τ(y) < |σ|]→ σ(τ(y)) = y}.

Then T is a computable, finitely branching tree such that [T] is the space of isomorphisms from A
to B. We do not know that there is a computable bound on the branching factor of T , but there is
necessarily a 0′-computable bound, and thus every degree in PA(0′) computes an element of [T]. �

6. Proof of Theorem 1.6

6.1. A plan of the proof. We will construct a punctually categorical A and a computable B ∼= A
such that every isomorphism between A and B computes 0′′.

Fix a Π0
2-complete predicate P . It is straightforward to construct a primitive recursive function h

satisfying the following:

• For all i and s, 1 ≤ h(i, s) ≤ h(i, s+ 1);
• There are infinitely many i with lims h(i, s) =∞;
• For each n with 0 < n < ω, there is exactly one i with lims h(i, s) = n; and
• lims h(2i, s) =∞ iff i ∈ P .

We define h(i) = lims h(i, s).
We will have a sequence (ri)i∈ω of points in A, and a sequence of isomorphism types (Cj)j∈ω. Each

ri will have an attached copy of Cj , for every j with j − 1 < h(i). So the (unique) i with h(i) = 1 will
have attached copies of C0 and C1, the (unique) i with h(i) = 2 will have attached copies of C0, C1

and C2, etc, and each of the (infinitely many) i with h(i) = ∞ will have an attached copy of each of
the Cj . Each i have its own copy of the relevant Cj .

The map ri 7→ i will be primitive recursive, although its inverse will not be, as we will be very slow
in placing the points ri. Although we defer the full description of the Cj for the moment, and they
will be determined dynamically over the course of the construction, we mention now that it will be
unambiguous when a point belongs to a copy of Cj ; we will place that point with the intention of it
being part of Cj (and with the intention of which ri that Cj is attached to), and we will never change
our mind.

Supposing we have built A according to the above plan, we now describe how to build computable
B. We construct B as A, again with a computable sequence (ri)i∈ω, except that in B, r2i has attached
copies of Cj for j ≤ i+1, and r2i+1 has attached copies of Cj for all j < ω. Constructing B computably
is straightforward: to determine how Cj should look, we simply wait until we find some i and s with
h(i, s) ≥ j, and then we look at the copy of Cj attached to ri in A.

Observe that B is isomorphic to A, but for any isomorphism ι : A → B, if ι(rA2i) = rBk , then k is odd
iff i ∈ P . Thus any isomorphism between B and A will compute 0′′; it should also be clear from the
informal description that 0′′ will be able to compute an isomorphism isomorphism between B and A

It remains to construct A according to this general plan while making A punctually categorical. We
must have a way of meeting the requirements:

A ∼= Pe =⇒ A ∼=fpr Pe,

where (Pe)e∈ω is the natural uniformly computable listing of all punctual structures and A ∼=fpr Pe
means that there exists a punctual isomorphism between A and Pe.

PUNCTUAL CATEGORICITY AND UNIVERSALITY 17

Clearly, the list itself is not primitive recursive, for otherwise we would be able to produce a punctual
structure which is not in the list. The reader should think of Pe as of being “increasingly slow” in e.
However, we will argue that for each fixed e there is a primitive recursive time-function, i.e., a function
that bounds the speed of approximation of Pe =

⋃
s Pe,s within the overall uniform primitive recursive

approximation (Pe,s)e,s∈ω. We take this property for granted throughout the proof; see the Appendix
of [BDKM19] for a formal clarification.

6.2. The first part of our language. We will introduce our construction in several parts. These
parts will require various symbols in the language (mostly unary and binary function symbols), and so
we will describe our language in pieces, introducing in each part the symbols necessary for that part
of the construction.

We begin with a constant d. The purpose of this constant is to be a “dump” for unimportant
function values. That is, whenever we fail to define a function on a given tuple, our intention is that
the function takes value d for that tuple.

6.3. Chains. We will use the method of chains first introduced in [KMN17]. This is a method for
building components consisting of long chains with attached loops while preserving punctual categoric-
ity. This technique makes use of three unary function symbols (s, p, c in the notation of [KMN17]).
Although we refer the reader to the earlier paper for a full description, we summarize the salient points
of the technique here:

(1) A chain is generated by any single element from the chain.
(2) There is a unary function mapping every point of the chain to its first element, so in a punctual

structure, the first element of a chain can be quickly obtained from any element.
(3) There is a distinguished last element of each chain, which is immediately recognizable. Once

this last element is placed, the chain is complete, and no more elements can be added to it.
The decision to finish a chain is not reversible.

(4) In order to employ this technique, once we begin a chain, we must build that chain to the
exclusion of all else. We may not place any points in the structure outside of the chain until
have we placed the last element of the chain.

(5) In order to employ this technique, each chain must be very large relative to the stage at which
it was begun. That is, the function s 7→ (the number of elements in the next chain begun
after stage s) will dominate any primitive recursive function. However, there is no upper limit
on how large we may choose to make a chain; if we wish to waste time, we may continue
constructing a given chain indefinitely.

(6) When we begin a chain, we may name any finite number of punctual structures Pe. For each of
these Pe, the construction will either isomorphically map our chain to a copy of itself in Pe or
prove that Pe is not isomorphic to our structure. Further, the isomorphism type of the chain
(as determined by the sizes of the attached loops) will be distinct from that of any chain which
occurred in Pe prior to us beginning our chain, up to a primitive recursive tolerance.3

We will use chains in three contexts. We will use them as labels, we will use them to delay, and we
will also string together infinitely many of them to construct each Ci.

6.4. Placing the ri. Our intention is to place an infinite sequence (ri)i∈ω of points which are all
potentially in the same orbit. We will be placing these slowly, but our opponent (constructing a
punctual copy of A) might place their own points quickly, simply by repeatedly copying r0. If this were
to happen, we would be unable to construct a primitive recursive isomorphism from our opponent’s
copy to A, as we would be unable to quickly map these additional ri. So we must have a strategy to
prevent our opponent from doing this.

3That is, there is a primitive recursive function p depending on e such that any chain which includes even a single
element of Pe prior to stage s will be distinct from any chain we construct beginning after stage p(s).

18 R. DOWNEY, N. GREENBERG, A. MELNIKOV, K.M. NG, AND D.TURETSKY

6.4.1. Idea. We will give each nonempty finite set of ri a label, which will be a chain created for this
purpose. As we must not interfere with the possibility of the ri being in the same orbit, we will give the
same label to every set of the same size. Here we do not mean separate labels of the same isomorphism
type; for a given k, each set of k distinct ri will point to the same element, and that element will be
the first element of our chain. Creating the label for sets of size k+ 1 will be the first thing we do after
placing the element rk, and we will map the set {r0, . . . , rk} to it.

If our opponent shows us k+ 1 distinct ri in Pe much before we have placed rk, then they will have
shown us at least some of a label attached to a set of size k+1. When we eventually place rk and build
the label for sets of size k + 1, as we will be using the chain method to construct this label, it will be
of a different isomorphism type to the label occurring in Pe, and so we will have ensured that A 6∼= Pe.

Of course, we are only permitted a finite signature, and each is of a fixed arity, so we cannot directly
map arbitrary finite sets to labels. We will instead use a binary function to build sequences via pairing.

6.4.2. The language needed. The sublanguage of A we will need for this strategy consists of:

• A binary function symbol f .
• Two unary function symbols b1, b2.
• A unary function symbol l.

6.4.3. The strategy. We will have elements xσ for every nonempty, nonrepeating sequence σ of the ri.
For σ = 〈ri〉, xσ = ri. Otherwise, each xσ will be distinct from all other elements mentioned in the
construction.

For any such sequence σ, and any ri not occurring in σ, f(xσ, ri) = xσ̂ri .
For any such sequence σ = τ̂ri, b1(xσ) = xτ and b2(xσ) = ri. If τ is empty, b1(xσ) = d.
For any such sequence σ, l(xσ) is the first element of the label for sets of size |σ|. If σ and τ are

both such sequences with |σ| = |τ |, then l(xσ) = l(xτ).
Observe that the xσ are distinguished as the unique elements y with b2(y) 6= d, while the ri are

distinguished as the unique elements y with b2(y) = y and y 6= d.
When we place the point rk, we will immediately place xσ for every nonrepeating sequence σ from

{r0, . . . , rk} that includes rk (xσ for nonempty sequences omitting rk having already been placed), and
we will define f , b1 and b2 appropriately. Since we are only considering nonrepeating sequences, there
are only a finite number of such sequences, and indeed the number is given by a primitive recursive
function in k. As we will be placing rk at some stage s ≥ k, this is only a small number of points being
placed at this stage.

For every σ containing rk with |σ| < k + 1, the label for sets of size |σ| will have already been
created, so we define l(xσ) appropriately. We then begin creating the label for sets of size k + 1 and
define l(xσ) to map to the first element of this label, for |σ| = k + 1.

6.4.4. Why it works. Suppose that a Pe we are watching shows us some element y with b2(y) 6= d, and
we have so far placed r0, . . . , rk. As we will later argue, we will be able to isomorphically map the ri of
A into Pe punctually, and from that we will be able to map all the xσ generated by r0, . . . , rk (using
that the number of such σ, and the number of steps in their generation, is small relative to the current
stage).

If y is not in the image of the map we have so far constructed, then we avoid placing rk+1 for the
time being while we perform certain calculations in Pe. However, we must continue adding elements
of A in order to make A punctual. If we are in the midst of constructing some chain, we can simply
continue growing that chain indefinitely while we wait. If we have just finished a chain, we can instead
begin a new chain for no purpose other than to keep the construction occupied, and again continue that
indefinitely while we wait. This second situation is what we meant earlier when we said that chains
would be used for delaying.

In the meantime, we consider b2(y), b2(b1(y)), b2(b21(y)), . . . , b2(bk+1
1 (y)) in Pe. Either this list con-

tains an element z with Pe |= b2(z) = z ∧ z 6= d and with z not in the image of our map (that is, some
new point of ri-type), or Pe will have proven itself not to be isomorphic to A. In the former case, we
can use f in Pe to generate an xσ with |σ| = k + 2, and then we can calculate l(xσ). Once we have
found this element, we no longer avoid placing rk+1 (so we finish the current chain whenever the chain

PUNCTUAL CATEGORICITY AND UNIVERSALITY 19

technique permits us to, and then we proceed with the construction). When rk+1 is eventually placed,
the label for sets of size k + 2 will only then be constructed, and it will be different from the label
which l(xσ) is a part of in Pe, by 6.3(6), and thus we will have ensured that A 6∼= Pe.

So if A ∼= Pe, then no element of type xσ can occur in Pe before we place it in A, as desired.

6.5. Building the Cj. Each Cj will have the form

xj,0 ← xj,1 ← xj,2 ← . . .

where each xj,k is a chain, and the arrow indicates an unnamed unary function mapping the terminal
element of chain xj,k+1 to the initial element of chain xj,k. This same function will map the terminal
element of xj,0 to ri, for whichever ri this copy of Cj is attached to.

Suppose h(i) = 1. Then the picture for ri will be

ri

x0,0 x0,1 x0,2 . . .

x1,0 x1,1 x1,2 . . .

Similarly, if h(i′) = 2, then the picture for ri′ will be

ri′

x0,0 x0,1 x0,2 . . .

x1,0 x1,1 x1,2 . . .

x2,0 x2,1 x2,2 . . .

In general, if j − 1 < min{h(i), h(i′)}, then in the final structure, the copy of Cj attached to ri will
be identical (but disjoint) to the copy attached to ri′ . At every stage of the construction, however, the
two copies will look distinct. At some stage s after we have placed ri and ri′ , we will have the following
picture (other Cj′ have been omitted for clarity):

ri xj,0 xj,1 . . . xj,k

ri′ xj,0 xj,1 . . . xj,k′

Here k 6= k′, so the two copies of Cj will be of different lengths. Throughout the construction we
will extend the lengths of one or the other, and the lengths will “leapfrog” past each other.

6.5.1. Placing xj,n. When we place the first copy of xj,n, inside the Cj attached to some ri, we construct
it via the chain technique, and this determines its isomorphism type. We will later place other copies
of the same xj,n within other copies of Cj . When we do, the size of xj,n will be small relative to the
current stage, and so we will not be able to create it via the chain technique. Also, the chain technique
produces a dynamically determined isomorphism type, and we have an intended isomorphism type
in mind. So we need a different strategy to place these copies of xj,n while maintaining punctual
categoricity.

Our approach is to instead construct xj,n+1 via the chain technique. As we place the terminal
element of this first copy of xj,n+1, we will simultaneously place the entirety of the new copy of xj,n
(recalling that this is a small number of points relative to the current stage) and have the terminal
point of xj,n+1 point to the initial point of this new xj,n.

For any Pe we are watching, our chain technique will have isomorphically mapped xj,n+1 into Pe,
and in particular will have mapped the terminal element. We can then follow the function from the
terminal element in Pe to Pe’s copy of the new xj,n. Since this new copy is small, we can quickly
generate the entire xj,n in Pe (or see that Pe 6∼= A) and then map the entirety of our new xj,n to Pe’s
copy, in an appropriate fashion.

We illustrate the steps of this process, with n = 2. We place the original copy of xj,n in the Cj
attached to ri, via the chain technique. During the intermediate steps of the chain technique, xj,2 is

20 R. DOWNEY, N. GREENBERG, A. MELNIKOV, K.M. NG, AND D.TURETSKY

partially constructed and does not yet point to xj,1, as it is the terminal element of a chain which
points.

ri xj,0 xj,1

ri xj,0 xj,1 xj,2

ri xj,0 xj,1 xj,2

Then, when we wish to attach a copy of xj,2 to the Cj of some ri′ , we build xj,3. During the
intermediate steps of the chain construction, xj,3 is partially constructed and does not yet point to
xj,2, and indeed the xj,2 is not yet built. We place the entire xj,2 in a single step at the end:

r′i xj,0 xj,1

r′i xj,0 xj,1 xj,3

r′i xj,0 xj,1 xj,2 xj,3

6.5.2. Full extension. The above was a slight simplification, because when we wish to place a subsequent
copy of xj,n for some ri, it may be that a copy of xj,n+1 already exists, and so we cannot build it now
via the chain method. Instead, we will have to choose the least k such that xj,k does not yet exist
anywhere in the structure, and build xj,k. When it is completed, we will simultaneously place the
entire copy of

xj,n ← xj,n+1 ← · · · ← xj,k−1,

and have the terminal element of the new xj,k point to the first element of xj,k−1. We can extend the
construction of xj,k so as to bide our time until this is a small number of points to place all at once.
We refer to this process as extending Cj for ri.

6.5.3. Placing an rk by extending C0. For C0 only, we will allow ourselves to extend C0 for rk before
we have placed rk. In fact, this will be the method by which rk is placed in the structure. This means
that we choose the least k such that x0,k does not yet exist anywhere in the structure, and we build
x0,k. When it is completed, we will simultaneously place the entire copy of

rk ← x0,0 ← x0,1 ← · · · ← x0,k−1,

and have the terminal element of the new x0,k point to the first element of x0,k−1. If k = 0, we instead
have the terminal element of the new x0,0 point to rk.

6.6. Ensuring new chains attach to the correct ri. Suppose we wish to extend Cj for some ri,
as described above, in the process using the chain technique to construct some xj,n. If Pe is one of
the punctual structures we are watching, then when we have completed construction of xj,n, the chain
machinery will have mapped xj,n punctually isomorphically into Pe. From the terminal element of the
chain in Pe we can obtain the initial element of a copy of xj,n−1, from which we can quickly generate
the entire copy of xj,n−1 in Pe, including its terminal element. In this fashion, we can either quickly
reach the element q ∈ Pe of ri-type to which this copy of xj,n is attached, or we will see that Pe 6∼= A.

PUNCTUAL CATEGORICITY AND UNIVERSALITY 21

As we are building a punctual isomorphism from A to Pe, we may have already mapped ri to some
point q′ in Pe. If q 6= q′, then our isomorphism will have failed. So we must have a strategy to ensure
that this cannot occur if Pe ∼= A.

Another concern is what if our opponent shows some other copy of xj,n before we are ready for it.
That is, we know that a copy of xj,n will eventually appear attached to almost every ri, but what if
our opponent shows a copy attached to their version of some ri before we are ready to attach our own
copy to that ri? The same strategy will handle this concern.

6.6.1. Leading chains. For each ri we have placed, we will define a leading chain, which is a completed
chain in one of the components attached to ri. The leading chain of an ri will shift from stage to stage,
but it will always have the following property:

If xj,n is the leading chain for ri at stage s, then it is the only copy of xj,n in the
structure at stage s. That is, there is an xj,n attached to ri, but not to any ri′ 6= ri,
and the xj,n attached to ri was necessarily constructed by the chain method.

If xj,n is the leading chain for ri at stage s, we say that Cj is leading for ri at stage s. It follows
that the copy of Cj attached to ri at stage s is strictly longer than the copy attached to any other ri′ .
Also, if Cj′ is leading for some ri′ with i 6= i′, then j 6= j′.

We will obey the following rule with regards to leading chains and extending:

When we extend a Cj attached to some ri by adding new chains, we will only do this
if Cj is not currently leading for any ri′ 6= ri.

6.6.2. The function K. We will need an additional binary function K. This function will be symmetric
and will only be nontrivially defined (that is, taking a value other than d) on pairs (y, z), where y is
the initial element of some xj,n, z is the initial element of some xj′,n′ , j 6= j′, and y and z are both
from components attached to the same ri.

If y, z are initial elements from some chains attached to some ri, and y′, z′ are the initial elements
of the matching chains attached to some ri′ , then we will have K(y, z) = K(y′, z′). We will thus abuse
notation and write K(xj,n, xj′,n′), where this is understood to mean the value of K on a pair of initial
points of some copies of xj,n and xj′,n′ attached to the same ri. When the value of K(y, z) is not d, it
will be the initial point of some label, constructed by the chain method.

6.6.3. The strategy. Suppose we are extending the copy of Cj attached to the same ri as described in
6.5, and so j is not leading for any ri′ . At the stage we finish this extension, we will have added one
or more chains to Cj , the largest having been built by the chain method, and the rest being copies of
previously existing chains and added all at once. There may be some pairs of chains (xj,n, xj′,n′) with
j 6= j′ which now occur together attached to ri, but which have never previously occurred attached
to the some ri′ (in particular, if ri has a leading chain of type xj′,n′ with j′ 6= j, then since the
leading chain does not occur anywhere else in the structure, none of the newly added chains have
previously occurred paired with it). For each of these pairs, K(xj,n, xj′,n′) is not yet defined. We will
immediately begin construction of a new label via the chain method, and for each of these pairs, we
will define K(xj,n, xj′,n′) to be the initial point of this new label (note that all the new pairs share the
same label).

6.6.4. Why it works. Let us return to the situation where some xj,n has appeared in Pe, and we have
located the point q ∈ Pe of ri-type to which it is attached. As our earlier strategy (6.4) will handle
the case when q is a new point of r-type, we consider the situation where q is the image of some ri′ ,
but we have not yet attached a copy of xj,n to ri′ . Note that this encompasses both of the motivating
concerns.

Let Cj′ be leading for ri′ . Since the copy of Cj′ attached to ri′ is longer than any other copy of
Cj′ , and xj,n does not occur in it, it must be that j 6= j′. Fix xj′,n′ the leading chain of ri′ . We have
already mapped xj′,n′ isomorphically into Pe, and its image is attached to q. Thus, in Pe, xj,n and
xj′,n′ occur attached to the same element q, and so K(xj,n, xj′,n′) must be defined in Pe (or we see
that Pe 6∼= A). But the pair (xj,n, xj′,n′) do not yet occur attached to the same element in A, and so
K(xj,n, xj′,n′) is not yet defined in A. When we eventually place copies of them together and define

22 R. DOWNEY, N. GREENBERG, A. MELNIKOV, K.M. NG, AND D.TURETSKY

K(xj,n, xj′,n′), the label it points to will be different from the label in Pe, by 6.3(6), and so we will
have Pe 6∼= A.

6.6.5. An important observation. Note that when we have just placed an rk by extending C0, as
described in 6.5.3, the only chains attached to rk are of the form x0,n. Thus there are no new pairs
requiring the definition of K, and so we may skip creating a new label for this strategy when we do
this.

6.7. Shifting leading chains. As we intend to grow each Cj to be infinite, but we are forbidden
from extending Cj for ri if Cj is leading for some ri′ 6= ri, we must have a means of adjusting leading
chains to make any given Cj no longer leading for any ri. To help us achieve this, we will maintain the
following at every stage s:

For every n > 0, there are at most n numbers i such that we have placed ri and
h(i, s) ≤ n.

Assuming the above promise holds at stage s, let j0 be least such that Cj0 is not leading for any ri.
If j0 > 0, then fix i0, i1, . . . , ij0−1 such that Ck is leading for rik , for all k < j0. By our promise, there
must be a k < j0 with h(ik, s) ≥ j0. By our initial description for A, rik is intended to have a copy of
Cj0 attached to it.

We extend Cj0 for rik as described in 6.5, and we build the label and define K as required in 6.6.
As part of this process, we will have built some xj0,n via the chain technique; we declare xj0,n to be
the new leading chain for rik . We have now arranged that Ck is not leading for any ri, and k < j0. By
repeating this, we will eventually reach a stage when C0 is not leading for any ri.

Having done this, if we wish to make Cj no longer leading for any ri, fix the ri for which Cj is
currently leading. Since ri is intended to have a copy of C0 attached to it, we extend C0 for ri and
build the required label, as described in 6.5 and 6.6, respectively. We then declare the x0,n which
was just constructed via the chain method to be leading for ri. We have now arranged that Cj is not
leading for any ri.

6.8. The full construction. Our construction proceeds by cycling between the following three phases:

(1) Placing the next r:
(a) Let k be least such that we have not yet placed rk.
(b) We shift leading chains about (as described in 6.7) such that C0 is not leading for any

placed ri.
(c) We wait until a stage s when placing rk would not violate the promise of 6.7. While we

wait, we delay by building a chain not connected to any other part of the structure.
(d) We place rk by extending C0, as described in 6.5.3. We declare x0,n to be the leading

chain for rk, where x0,n is the chain just constructed by the chain technique.
(e) For each Pe that we are watching, this process will have mapped x0,n punctually isomor-

phically into Pe (or Pe will have proven itself not isomorphic to A). From this we quickly
obtain the element in Pe of r-type to which it is attached, and we declare that rk maps
to this element of Pe.

(f) Meanwhile, we build the label for sets of size k + 1, as required for 6.4.
(2) Extending all necessary Cj :

(a) Let s0 be the stage at which we enter this phase.
(b) For each placed ri and each j with j ≤ h(i, s0), we do the following (one at a time):

(i) We shift leading chains about (as described in 6.7) such that Cj is not leading for
any placed ri.

(ii) We extend Cj for ri (as described in 6.5).
(iii) We build the label and define K as required for 6.6.

(3) Watching new Pe:
(a) Let e be least such that we are not yet watching Pe. We declare that we are now also

watching Pe.
(b) For each placed ri, we do the following (one at a time):

(i) Let Cj be leading for ri. We extend Cj for ri (as described in 6.5).

PUNCTUAL CATEGORICITY AND UNIVERSALITY 23

(ii) This process will have mapped some xj,n constructed by the chain technique punc-
tually isomorphically into Pe (or Pe will have proven itself not isomorphic to A).
We obtain the element of r-type to which it is attached, and we declare that ri maps
to this element of Pe.

(iii) Meanwhile, we build the label and define K as required for 6.6.

6.9. Verification. We must justify that the construction can proceed.

Claim 6.1. Suppose we have placed r0, . . . , rk−1. There is eventually a stage when placing rk would
not violate the promise of 6.7.

Proof. Fix an s0 sufficiently large such that for all i ≤ k, if lims h(i, s) <∞, then h(i, s0) = lims h(i, s),
and such that if lims h(i, s) =∞, then h(i, s0) ≥ k + 1. We claim that s0 is such a stage as we desire.

For n ≥ k + 1, the promise is kept, as there are only k + 1 numbers i ≤ k.
For n < k + 1, we know that there is at most one i ≤ k with h(i, s0) = m, for each 1 ≤ m ≤ n, and

there is no number i with h(i, s0) = 0. Thus there are at most n numbers i ≤ k with h(i, s0) ≤ n. �

Observe that since h(i, s) ≤ h(i, s+ 1) for all i and s, if the promise of 6.7 holds at stage s0 and we
have not placed any new points ri between stages s0 and s, then the promise must also hold at stage
s. It follows that the promise is kept at every stage. Thus the construction can proceed.

That A is punctual follows from construction. We are always placing new points in the structure,
and we always define each function on each tuple as soon as that tuple occurs in the structure.

We have already argued throughout the construction why A is punctually categorical, modulo the
black box of the chain technique. Once we go through the phase for declaring Pe watched, we will have
mapped each of the existing ri and each of their leading chains. Henceforth we will always maintain
that the leading chain of each ri is mapped into Pe, which lets us apply the arguments of 6.6 and 6.4.

Note that a finite fragment of A will never be mapped to Pe by our construction, namely any
delaying chains created before we have begun watching Pe. Also, any of the finitely many instances of
an xj,n which were created before we began watching Pe will not be mapped until their corresponding
copy of Cj is extended, which may not happen for a long time. The former is corrected nonuniformly,
while the latter can be accommodated by adding a sufficiently large constant to our primitive recursive
time bound for the convergence of the punctual isomorphism.

The construction of B is as initially described, with the obvious changes to incorporate the additional
elements of the structure we subsequently introduced.

This completes the proof.

7. Proof of Theorem 1.5

In light of Theorem 1.4, it suffices to construct a punctually categorical structure A in a unary
language and a computable B ∼= A such that every isomorphism between A and B is of PA(0′) degree.
Fix X0 and X1 disjoint Σ0

2 sets such that every separator is of PA(0′) degree. We shall arrange A and
B such that every isomorphism between them computes a separator.

Fix primitive recursive predicates ϕ0, ϕ1 such that for all n < ω and each i ∈ {0, 1}, n ∈ Xi ⇐⇒
∃<∞sϕi(n, s).

As in the construction from the previous section, we will use a special element d to “dump” all
otherwise unspecified function values. As we do not have constants in our language, we will instead
have a unary function d such that d(x) = d for all x ∈ A.

We will also make use of the chain construction described in 6.3. Recall that this technique uses
only unary functions. We will again use chains to delay, among other uses.

7.1. The näıve coding strategy. We must code X0 and X1’s behavior on n. In the notation of the
previous theorem, the coding module will consist of two fragments of Cn. For example, at a stage s,
our fragments could look as follows:

24 R. DOWNEY, N. GREENBERG, A. MELNIKOV, K.M. NG, AND D.TURETSKY

xn,0 xn,1 xn,2

xn,0 xn,1

We wait until a stage s1 when ϕ1(n, s1) holds, and then we extend the lower fragment:

xn,0 xn,1 xn,2

xn,0 xn,1 xn,2 xn,3

We then wait until a later stage s2 when ϕ0(n, s2) holds, and we extend the upper fragment:

xn,0 xn,1 xn,2 xn,3 xn,4

xn,0 xn,1 xn,2 xn,3

We continue in this fashion, always extending the shorter fragment, and only extending the upper
fragment when ϕ0(n, s) holds, and only extending the lower when ϕ1(n, s) holds.

In B, the respective location will be isomorphic, but we will always keep the lower fragment the
longer of the two. If n ∈ X0, and thus n 6∈ X1, then there will be only finitely many s for which
ϕ0(n, s) holds, but there will be infinitely many s with ϕ1(n, s) holding. Thus there will come a point
where we extend the lower fragment in A and then never again extend, so at the end of the construction,
the lower fragment in A is the longer of the two. So any isomorphism from A to B must map the upper
fragment in A to the upper fragment in B. Similarly, if n ∈ X1 and thus not in X0, then at the end of
the construction, the upper fragment in A is the longer of the two, and so any isomorphism from A to
B must map the upper fragment to the lower fragment. If n 6∈ X0 ∪X1, then there will be infinitely
many s with ϕ0(n, s) and infinitely many s with ϕ1(n, s), so we will extend both fragments infinitely
and create two copies of Cn. So either mapping will be correct in this case. Thus we will be able to
read the value of a separator at n from whether an isomorphism sends the top fragment of A to the
top or bottom fragment in B.

The technique for making B computable is as follows: whenever A begins the extension process for
one of the fragments, B simply observes without matching A until the process is complete, including
the construction of the auxiliary labels we will describe shortly. Then B extends its bottom fragment
to match the longer of A’s two fragments, and it extends its top fragment to match the lower of the
two.

Remark 7.1. Our coding location does not have a point ri at the base of the Cn, as was done in the
previous proof. This is crucial, as if we placed a sequence (ri)i∈ω like that, we would not have access
to the binary function f from 6.4 to use to prevent our opponent from placing the sequence faster than
we do.

7.2. The two dangers. Since we are restricted to unary functions, we do not have the function K
from 6.6. We must find a different way to address the dangers K was previously used to prevent. There
are two such dangers, and they must be treated separately, albeit similarly. We explain them both
first, and then we will go on to explain our strategies for handling them. Suppose Pe is a punctual
structure we are watching, and we are attempting to build a punctual isomorphism from A to Pe.

To illustrate the first danger, suppose again that our coding location for n currently looks like this:

xn,0 xn,1 xn,2

xn,0 xn,1

Let us suppose that we have mapped this punctually isomorphically into Pe. Since it is possible that
we will eventually extend the lower fragment, adding (among other things) a copy of xn,2, Pe may grow
impatient and place a copy of xn,2 in the lower fragment before we do so, so that in Pe the coding
location looks like this:

PUNCTUAL CATEGORICITY AND UNIVERSALITY 25

xn,0 xn,1 xn,2

xn,0 xn,1 xn,2

We have nowhere inA to map to this new copy of xn,2, so we cannot extend our isomorphism punctually.
We would like instead to punish Pe for its audacity by ensuring that Pe 6∼= A. One way to do this would
be to never again extend the lower fragment, but that would kill our attempt at coding.

To illustrate the second danger, suppose we are extending one of the fragments of the coding loca-
tion. Again, we have mapped the already existing fragments punctually isomorphically into Pe. Our
extension procedure is to extend the shorter fragment by two chains. Pe might decide to take this
opportunity to break our isomorphism by instead extending both fragments by one chain:

A

xn,0 xn,1 xn,2

xn,0 xn,1

xn,0 xn,1 xn,2

xn,0 xn,1 xn,3

xn,0 xn,1 xn,2

xn,0 xn,1 xn,2 xn,3

Pe

xn,0 xn,1 xn,2

xn,0 xn,1

xn,0 xn,1 xn,2 xn,3

xn,0 xn,1

xn,0 xn,1 xn,2 xn,3

xn,0 xn,1 xn,2

Again, if Pe does this, we wish to ensure that Pe 6∼= A.

7.3. Solving the first danger. Each chain xn,j will point (via some unary function) from its terminal
node to some label. This label will be a chain, and the first copy of it will be created by the chain
technique immediately after the first copy of xn,j is placed. If the coding strategy acts enough that
both fragments of Cn have a copy of xn,j , then the labels to which the two xn,j point will isomorphic,
and they may even be the same label. We will make that decision when we place the second copy of
xn,j , and our default will be to make them point to the same label.

However, if Pe were to show us part of a second xn,j before we have placed it, we can delay ourselves
(extend the current chain construction, or begin a new delaying chain if necessary) until Pe shows us
the entirety of this xn,j (or proves itself non isomorphic to A). When Pe finishes this second xn,j , it
must decide whether to map the terminal element of it to the same label as its first copy of xn,j , or
whether to map it to a separate copy. Whichever choice it makes, we will make the opposite if and
when we ever place our second xn,j .

Note that if our coding strategy never calls upon us to place a second copy of xn,j , then Pe is still
non-isomorphic, because it has two copies and we only one. Also, if we are called upon to place a
second copy of the label, we delay the extension until a stage where this is a small number of points,
and then we will place the entire label at once, just as we simultaneously place the entire copy of xn,j
at once.

For some other Pe′ , we are able to map this second copy of the label punctually for the same reason
we are able to map the second copy of xn,j punctually: we first build the first copy of xn,j+1, according

26 R. DOWNEY, N. GREENBERG, A. MELNIKOV, K.M. NG, AND D.TURETSKY

to the chain method, which maps it punctually into Pe′ , and then from the terminal element of xn,j+1

in Pe′ we are able to quickly generate the entire copy of xn,j and the label (since the number of points
involved is small relative to the current stage).

7.3.1. Handling multiple Pe. The above discussion is sufficient if we are only concerned with a single
Pe, but we will be considering several punctual structures at once. It may be that several of them have
rushed the placement of the second xn,j , and some of them decided to make it point to the same copy
of the label, while others decided to make it point to a separate copy. We obviously cannot make the
opposite choice as all of them.

We instead defeat the highest priority Pe which has not already been proven non-isomorphic, and
for all lower priority structures which rushed the placement but made the other choice, we will restart
the construction of their punctual isomorphism. Our construction of the isomorphism for a given Pe
can only be injured in this fashion at most e times (as each Pe′ with e′ < e which causes such an injury
is henceforth known to be non-isomorphic), and so the isomorphism to Pe is only restarted finitely
many times, after which Pe can never rush the placement of xn,j without being proven non-isomorphic
itself.

7.4. Solving the second danger. For the moment pretend we are not implementing our solution to
the first danger. We will see how to integrate the two solutions later.

Each chain xn,j will point (via some unary function) from its terminal node to some label. This
label will be a chain, and the first copy of it will be created by the chain technique immediately after
the first copy of xn,j is placed. If there are two copies of xn,j , they will point to separate by isomorphic
copies of the same label. Each chain xn,j+1 will also point (via some unary function) from its initial
node to some label. This label will be isomorphic to the label which xn,j points to with its terminal
node, and the xn,j and xn,j+1 from the same fragment may even point to the same label (the first with
its terminal node and the second with its initial node). Whichever choice we make for one fragment,
we will make the same choice for the other fragment (if and when the other fragment gains its own
copy of xn,j+1).

Note that we do not need to make this choice until we finish the construction of xn,j+1. This is
because until xn,j+1 is complete, we have not created the second copy of xn,j which is to go in the
same fragment as it. On the other hand, if our opponent is attempting to diagonalize against us as
described for the second danger, they must make this choice as soon as they begin their copy of xn,j+1.
This is because they will have placed the initial node of xn,j+1, and the fragment they intend it for
already has a copy of xn,j . Whichever choice they make, we will make the opposite.

More precisely, while we are building xn,j+1 via the chain technique, we are simultaneously mapping
it punctually into Pe. We have already mapped our (currently solitary) copy of xn,j into Pe. In Pe, we
check whether the initial node of xn,j+1 maps to the same element as the terminal node of xn,j . If so,
when we finish the chain construction, we make xn,j and xn,j+1 point to different copies of the label.
If not, we make them point to the same copy. Then if Pe does attempt the diagonalization described
for the second danger, we will have proven Pe 6∼= A.

7.4.1. Handling multiple Pe. Since Pe will in general be slower than A (by a primitive recursive factor),
we can expect to complete xn,j+1 before Pe does, and thus we will make the appropriate choice about
the labels before Pe finishes its copy of xn,j+1. Fortunately, we only needed to see the first element of
Pe’s copy in order to make our decision. However, this means that we may make our choice before we
know if Pe intends to diagonalize in the manner we fear.

If in Pe the two chains point to the same label, then the situation is unambiguous: Pe must intend to
diagonalize, and our action has turned the tables and proven that Pe 6∼= A. If, however, Pe had the two
chains point to separate copies of the label, then it may be because Pe intends to follow us faithfully
and put the chains in separate fragments. This is good for our construction of an isomorphism, but it
means we will not have proven Pe non-isomorphic. In this situation, we cannot restart the isomorphism
construction for lower priority structures—it might lead to P0 injuring lower priority constructions
infinitely many times.

We solve this by using a sequence of labels `n+j , . . . , `0. The terminal node of xn,j will point to
the initial node `n+j , and the terminal node of each `i+1 will point to the initial node of `i, until `0

PUNCTUAL CATEGORICITY AND UNIVERSALITY 27

is reached. As soon as we finish building the first copy of xn,j , we will begin building these labels in
order of decreasing subscript, using the chain technique for each.

The initial node of xn,j+1 will point to an isomorphic sequence. This sequence will merge with the
sequence attached to the xn,j from the same fragment. That is, there will be a k ∈ [0, n+ j] such that
for all i > k, the `i label reached from the terminal node of xn,j is separate from the copy of the `i
label reached from the initial node of xn,j+1, and for all i ≤ k, the `i label reached from the terminal
node of xn,j is the same as the `i label reached from the initial node of xn,j+1. Note that achieving this
simply requires placing copies of `i for i > k as we place the initial node of xn,j+1, and then making
the terminal node of `k+1 (or the initial node of xn,j+1 for k = n+ j) point to the initial node of the
already existing `k.

`0

...

`k

`k+1

...

`n+j

xn,j

`k+1 . . . `n+j xn,j+1

Again, we must choose k when we finish the construction of the first copy of xn,j+1.
By the time we begin building the first copy xn,j+1, this entire sequence of labels will be small

relative to the current stage (as usual, we can delay until this is so). For each e < n+ j which we are
watching and for which we have not already proven Pe 6∼= A, as we build the first copy of xn,j+1, we
will map it punctually isomorphically into Pe, and so we will have its initial node to hand. We will
check whether the `e+1 label reached from the terminal node of Pe’s copy of xn,j is the same as the
`e+1 label reached from the initial node of xn,j+1. We let k = e for the least such e which makes the
`e+1 labels the same, or k = n+ j if there is no such e.

Now, suppose some Pe attempts to diagonalize in the described fashion. If e ≥ n + j, we simply
restart the construction of the punctual isomorphism for Pe; this sort of injury can happen at most
finitely many times. If it gives its xn,j and xn,j+1 the same copy of `e+1, then k ≤ e, and so Pe made
the wrong choice (and is now proven non-isomorphic). If it gives its xn,j and xn,j+1 separate copies,
then either k > e, or some e′ < e is being proven non-isomorphic. In the former case, Pe proves itself
non-isomorphic. In the latter case, we restart the construction of the isomorphism for Pe; since the
particular e′ will never be considered again, this sort of injury can happen at most finitely many times.

7.5. Integrating the strategies for the two dangers. The final description above of our strategy
for handling the second danger requires no further modification. As described in that strategy, the
terminal node of each xn,j will point to a sequence of labels `n+j → `n+j−1 → · · · → `0. The reader
may notice that that earlier strategy did not make use of `0. We will use `0 to ward off the first danger,
by implementing the previously described strategy with it.

If both fragments of Cn contain a copy of xn,j , then the `n+j , . . . , `1 which their terminal nodes
point to will be distinct (though identical). The `0 which they point to may be the same, however.
The strategy for whether to make them the same or not is as described in 7.3.

7.6. Running the construction. The construction cycles through the following phases:

(1) Updating coding locations:
(a) Let s0 be the stage we begin this phase.

28 R. DOWNEY, N. GREENBERG, A. MELNIKOV, K.M. NG, AND D.TURETSKY

(b) For every n < s0 such that we have previously extended one of the Cn fragments:
(i) Let s1 < s0 be the last time we extended one of the Cn fragments.
(ii) Let i = 0 if we extended the lower Cn fragment at stage s1, and let i = 1 otherwise.

(iii) If there is a t ∈ [s, s0) with ϕi(n, t) holding, extend the shorter of the Cn fragments.
Build all appropriate labels according to the previously described strategies.

(c) For every n < s0 such that both Cn fragments are empty, extend the upper fragment (that
is, build xn,0 and all appropriate labels).

(2) Declaring new Pe watched.
(a) Let e be least such that we have not already declared Pe to be watched. Declare that we

are now watching Pe.

The verification that A is punctual and punctually categorical is routine. Note that again there
is finitely much of A on which our punctual isomorphism with Pe will never be defined, namely the
delaying chains constructed before the final time we began building the isomorphism, and also any
Cn fragments that never extended after the final time we began building the isomorphism. Also,
there is finitely much of A such that the map is only defined on it very late, as any Cn fragments
constructed before the final time we began building the isomorphism will not be mapped until they are
next extended. The former is handled nonuniformly, while the latter is handled by adding a sufficiently
large constant to the primitive recursive bound on our isomorphism’s convergence.

This completes the proof of Theorem 1.5.

8. Computable relational structures as automorphism bases

Theorem 8.1. For every computable structure C in a finite relational language L, there is a punctual,
punctually categorical structure A in a finite language L′ ⊃ L and a quantifier-free formula ϕ(y) in the
language L′ such that:

(1) The reduct of Aϕ = {y ∈ A : A |= ϕ(y)} to L is computably isomorphic to C; and
(2) The reduct of Aϕ to L is an automorphism base for A.

Further, for every computable D ∼= C, there is a computable B ∼= A such that the reduct of Bϕ to L
is computably isomorphic to D.

Proof. This is only a small modification of the proof of Theorem 1.6. We will also incorporate a
technique used in the proof Theorem 1.5.
L′ \ L will consist of all the symbols used in the proof of Theorem 1.6, as well as relation symbols

(SR)R∈L. Each SR will have the same arity as R. In place of a sequence of indiscernibles (ri)i∈ω, we
will have (ra)a∈C . In the notation of the proof of Theorem 1.6, each ra will have an attached copy
of Ci for every i < ω. For each R ∈ L and a0, . . . , an−1 ∈ C, we will have A |= R(ra0 , . . . , ran−1

) iff
C |= R(a0, . . . , an−1). The fact that C is only computable, rather than punctual, is not a concern for
this—our construction lets us delay placing the next ra for as long as we like, so we can delay until C
has converged on all tuples we need to know before placing ra.

Our default position will be that if we do not otherwise specify the value of a relation on a given
tuple, then it is false.

The set {ra : a ∈ C} is our Aϕ, its reduct to L is isomorphic to C via the computable isomorphism
a 7→ ra, and it is defined by the formula ϕ(y) : b2(y) = y∧y 6= d, as in 6.4.3. In general, the construction
proceeds as the proof for Theorem 1.6. There is only one new element required.

Suppose we are monitoring Pe, we have already placed elements ra0 , . . . , ran−1 , and we are about to
place ry. Thus, for each i < n, we have already mapped rai to some zi ∈ Pe, and we have also mapped
rai ’s leading chain xi to some chain wi in Pe. We assume also that for all R ∈ L and all i0, . . . , ik < n,

C |= R(ai0 , . . . , aik) ⇐⇒ A |= R(rai0 , . . . , raik) ⇐⇒ Pe |= R(zi0 , . . . , zik).

When we place ry (which we do by extending its C0, as explained in 6.5.3), we will punctually
isomorphically map its leading chain xy to some chain wy in Pe, which will point to some zy ∈ Pe of
r-type, and we will map ry to zy. Our concern is that Pe might not respect the language L on ry. That

PUNCTUAL CATEGORICITY AND UNIVERSALITY 29

is, there may be some R ∈ L and some i0, . . . , ik−1 < n such that

C |= R(ai0 , . . . , aik−1
, y) ⇐⇒ A |= R(rai0 , . . . , raik−1

, ry) ⇐⇒ Pe |= ¬R(zi0 , . . . , zik−1
, zy).

Without loss of generality, assume this occurs with Pe |= ¬R(zi0 , . . . , zik−1
, zy). Then notice that the

chains xi0 , . . . , xik−1
, xy, being leading, currently occur only once each in A, and the elements of r-type

to which they point (rai0 , . . . , raik−1
, ry) satisfy R. The isomorphic chains wi0 , . . . , wik−1

, wy, on the

other hand, point to elements of r-type which do not satisfy R. Thus this is a configuration which
occurs in Pe but not in A.

Let bi0 , . . . , bik−1
, by be the initial nodes of the chains wi0 , . . . , wik−1

, wy, respectively. We will check
if Pe |= SR(bi0 , . . . , bik−1

, by). Whichever choice Pe makes, when we eventually place copies of these
chains in A pointing to r-type elements which do not satisfy R, we will make the opposite choice. We
will maintain this rule: for any copies of xi0 , . . . , xik−1

, xy we place in A, when they point to r-type
elements which do not satisfy R, then the value of SR on their initial nodes will be the opposite of the
choice Pe originally made. Thus we will have proven that Pe 6∼= A.

Note that a rule introduced in this fashion at stage s0 will have no overlap with a rule introduced
in this fashion at stage s1 > s0, because at least one of the leading chains involved will be different,
namely the leading chain of the new ry. So they will not interfere with each other.

This becomes slightly more complicated when there are Pe. It may be that several punctual struc-
tures we are watching violate the same R with the same tuple of elements, but they do not all choose
the same value for SR. In this situation, we do as was done in 7.3, and we act to defeat the highest
priority Pe and restart the construction of the isomorphism for later Pe′ . Since Pe has now been proven
non-isomorphic, and so can never again cause injury, no isomorphism construction is restarted more
than finitely many times.

This describes the construction of A.

Now, suppose D ∼= C is computable. We will build B ∼= A with elements (rb)b∈D such that b 7→ rb is
an isomorphism from D to the reduct of Bϕ to L. To build B computably, fix a computable increasing
sequence of finite structures (Ds)s∈ω with D =

⋃
sDs and D0 = ∅. For each s+1, we can wait until we

see a substructure Cs+1 ⊂ C with Ds+1
∼= Cs+1, and then wait further until all of the ra for a ∈ Cs+1

have been placed in A. Then we can place rb for b ∈ Ds+1 \Ds, copying the appropriate ra. �

Corollary 8.2. There is a punctual, punctually categorical structure of Scott Rank ωck1 + 1.

Proof. Fix a computable structure C in a finite relational language which is of Scott Rank ωck1 + 1,
e.g. the Harrison ordering. By the Scott Analysis, the automorphism group of C has a non-empty
neighborhood with no ∆1

1 element. Let A be as in Theorem 8.1. Since the reduct of Aϕ to the
language of C is a computable structure computably isomorphic to C, and it is an automorphism base
for A, it follows that the the automorphism group of A has a non-empty neighborhood with no ∆1

1

element, and thus that A has Scott rank ωck1 + 1. �

Corollary 8.3. There is a punctual, punctually categorical structure which is not ∆1
1-categorical.

Proof. Fix computable structures C and D in a finite relational language which are isomorphic but
have no ∆1

1-isomorphism, e.g. two appropriate presentations of the Harrison ordering. Let A and B be
as in Theorem 8.1. Any ∆1

1 isomorphism from A to B would induce a ∆1
1 isomorphism from Aϕ to Bϕ,

and thus from C to D. �

Remark 8.4. Matthew Harrison-Trainor has suggested to view the proof above as an effective func-
tor from computable relational structures in a finite signature to punctually categorical structures.
Although the “functor” depends on the enumeration of C and the uniform total enumeration of all
punctual structures, the dependency is restricted only to the isomorphism types of the complex labels
that we use to code C within A and the values of the various relations SR.

References

[AK00] C. Ash and J. Knight. Computable structures and the hyperarithmetical hierarchy, volume 144 of Studies

in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 2000.

30 R. DOWNEY, N. GREENBERG, A. MELNIKOV, K.M. NG, AND D.TURETSKY

[BDKM19] Nikolay Bazhenov, Rod Downey, Iskander Kalimullin, and Alexander Melnikov. Foundations of online

structure theory. Bull. Symb. Log., 25(2):141–181, 2019.
[BFKMn17] N. A. Bazhenov, A. N. Frolov, I. Sh. Kalimullin, and A. G. Mel′ nikov. Computability of distributive

lattices. Sibirsk. Mat. Zh., 58(6):1236–1251, 2017.

[BHTK+19] Nikolay Bazhenov, Matthew Harrison-Trainor, Iskander Kalimullin, Alexander Melnikov, and Keng Meng
Ng. Automatic and polynomial-time algebraic structures. The Journal of Symbolic Logic, pages 1–32, 04

2019.

[CDRU09] Douglas Cenzer, Rodney G. Downey, Jeffrey B. Remmel, and Zia Uddin. Space complexity of abelian
groups. Arch. Math. Log., 48(1):115–140, 2009.

[CR92] Douglas A. Cenzer and Jeffrey B. Remmel. Polynomial-time abelian groups. Ann. Pure Appl. Logic, 56(1-
3):313–363, 1992.

[CR98] D. Cenzer and J. B. Remmel. Complexity theoretic model theory and algebra. In Yu. L. Ershov, S. S.

Goncharov, A. Nerode, and J. B. Remmel, editors, Handbook of recursive mathematics, Vol. 1, volume
138 of Stud. Logic Found. Math., pages 381–513. North-Holland, Amsterdam, 1998.

[DHK03] R. Downey, D. Hirschfeldt, and B. Khoussainov. Uniformity in the theory of computable structures. Algebra

Logika, 42(5):566–593, 637, 2003.
[DHTK+] R. Downey, M. Harrison-Trainor, I. Kalimullin, A. Melnikov, and D. Turetsky. Graphs are not universal

for online computability. Preprint.

[DKL+15] Rodney G. Downey, Asher M. Kach, Steffen Lempp, Andrew E. M. Lewis-Pye, Antonio Montalbán, and
Daniel D. Turetsky. The complexity of computable categoricity. Adv. Math., 268:423–466, 2015.

[DMN] Rod Downey, Alexander Melnikov, and Keng Meng Ng. Foundations of online structure theory ii: the

operator approach. Preprint.
[EG00] Y. Ershov and S. Goncharov. Constructive models. Siberian School of Algebra and Logic. Consultants

Bureau, New York, 2000.

[GMR89] S. S. Goncharov, A. V. Molokov, and N. S. Romanovskĭı. Nilpotent groups of finite algorithmic dimension.
Sibirsk. Mat. Zh., 30(1):82–88, 1989.

[Gon80] S. Goncharov. The problem of the number of nonautoequivalent constructivizations. Algebra i Logika,
19(6):621–639, 745, 1980.

[Gon81] S. Goncharov. Groups with a finite number of constructivizations. Dokl. Akad. Nauk SSSR, 256(2):269–272,

1981.
[Gri90] Serge Grigorieff. Every recursive linear ordering has a copy in DTIME-SPACE(n, log(n)). J. Symb. Log.,

55(1):260–276, 1990.

[Gro07] Misha Gromov. Metric structures for Riemannian and non-Riemannian spaces. Modern Birkhäuser Clas-
sics. Birkhäuser Boston Inc., Boston, MA, english edition, 2007. Based on the 1981 French original, With

appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates.

[Hir17] Denis R. Hirschfeldt. Some questions in computable mathematics. In Computability and complexity, volume
10010 of Lecture Notes in Comput. Sci., pages 22–55. Springer, Cham, 2017.

[HKSS02] D. Hirschfeldt, B. Khoussainov, R. Shore, and A. Slinko. Degree spectra and computable dimensions in

algebraic structures. Ann. Pure Appl. Logic, 115(1-3):71–113, 2002.
[HTMMM17] Matthew Harrison-Trainor, Alexander Melnikov, Russell Miller, and Antonio Montalbán. Computable

functors and effective interpretability. J. Symb. Log., 82(1):77–97, 2017.
[Kie98] H. A. Kierstead. Recursive and on-line graph coloring. In Yu. L. Ershov, S. S. Goncharov, A. Nerode,

and J. B. Remmel, editors, Handbook of recursive mathematics, Vol. 2, volume 139 of Stud. Logic Found.

Math., pages 1233–1269. North-Holland, Amsterdam, 1998.
[KM19] iskander Kalimullin and Russell Miller. Primitive recursive fields and categoricity. Alg.Log., 58(1):132–138,

2019.

[KMM19] Iskander Kalimullin, Alexander Melnikov, and Antonio Montalbán. Definability and punctual computabil-
ity. Preprint., 2019.

[KMN17] Iskander Kalimullin, Alexander Melnikov, and Keng Meng Ng. Algebraic structures computable without
delay. Theoret. Comput. Sci., 674:73–98, 2017.

[KN08] Bakhadyr Khoussainov and Anil Nerode. Open questions in the theory of automatic structures. Bull. Eur.

Assoc. Theor. Comput. Sci. EATCS, (94):181–204, 2008.

[KPT94] H. A. Kierstead, S. G. Penrice, and W. T. Trotter Jr. On-line coloring and recursive graph theory. SIAM
J. Discrete Math., 7:72–89, 1994.

[Mel17] Alexander G. Melnikov. Eliminating unbounded search in computable algebra. In Unveiling dynamics and
complexity, volume 10307 of Lecture Notes in Comput. Sci., pages 77–87. Springer, Cham, 2017.

[MN13] Alexander G. Melnikov and André Nies. The classification problem for compact computable metric spaces.

In Paola Bonizzoni, Vasco Brattka, and Benedikt Löwe, editors, The Nature of Computation. Logic,
Algorithms, Applications, pages 320–328, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[MPSS18] Russell Miller, Bjorn Poonen, Hans Schoutens, and Alexandra Shlapentokh. A computable functor from

graphs to fields. J. Symb. Log., 83(1):326–348, 2018.

PUNCTUAL CATEGORICITY AND UNIVERSALITY 31

School of Mathematics and Statistics, Victoria University of Wellington, PO Box 600, Wellington, New

Zealand.

Massey University Auckland, Private Bag 102904, North Shore, Auckland 0745, New Zealand

Email address: alexander.g.melnikov@gmail.com

School of Mathematics and Statistics, Victoria University of Wellington, PO Box 600, Wellington, New

Zealand.
Email address: dan.turetsky@vuw.ac.nz

	1. Introduction
	1.1. The punctual framework
	1.2. Categoricity and universality
	1.3. The results

	2. A general framework
	3. At most binary relations
	4. One unary function
	5. Proof of Theorem 1.4
	6. Proof of Theorem 1.6
	6.1. A plan of the proof
	6.2. The first part of our language
	6.3. Chains
	6.4. Placing the ri
	6.5. Building the Cj
	6.6. Ensuring new chains attach to the correct ri
	6.7. Shifting leading chains
	6.8. The full construction
	6.9. Verification

	7. Proof of Theorem 1.5
	7.1. The naïve coding strategy.
	7.2. The two dangers
	7.3. Solving the first danger
	7.4. Solving the second danger
	7.5. Integrating the strategies for the two dangers
	7.6. Running the construction

	8. Computable relational structures as automorphism bases
	References

