
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 00, Number 0, Pages 000–000
S 0002-9947(XX)0000-0

ON KIERSTEAD’S CONJECTURE

KENG MENG NG AND MAXIM ZUBKOV

Abstract. We settle the longstanding Kierstead’s Conjecture in the nega-

tive. We do this by constructing a computable linear order with no rational

subintervals, where every block has order type finite or ζ, and where every
computable copy has a strongly nontrivial Π0

1 automorphism. We also con-

struct a strongly η-like linear order where every block has size at most 4 with

no rational subinterval such that every ∆0
2 isomorphic computable copy has a

nontrivial Π0
1 automorphism.

1. Introduction

This paper is concerned with the longstanding Kierstead’s conjecture. In this pa-
per, we settle the conjecture by showing that the conjecture is false. This conjecture
is about the problem of characterizing the order types of Π0

1-rigid computable linear
orders. Downey’s survey paper [1] provides an extensive exposition and describes
the motivation for this problem. As usual, we let ω, ζ, η denote the order types of
the natural numbers, the integers and the rational numbers respectively. We write
N,Q for the set of natural numbers and the set of rational numbers respectively.

L. Hay and J. Rosenstein proved that the effective version of the well-known
Dushnik-Miller theorem ([4]), which says that an infinite countable linear order has
a nontrivial self-embedding is false:

Theorem 1.1 (L. Hay, J. Rosenstein (in [11])). There is a computable copy of ω
with no nontrivial computable self-embedding.

By using a standard back-and-forth argument, it is easy to see that if a linear
order L has a subinterval of type η then every computable copy of L has a nontrivial
computable automorphism. S. Schwarz gave a characterization of linear orders with
nontrivial computable automorphisms.

Theorem 1.2 (S. Schwarz [12, 13]). Let L be a non-rigid computable linear order.
Then L has a computably rigid computable copy if and only if it contains no interval
of order type η. Here a linear order is computably rigid if it has no nontrivial
computable automorphism.

The investigation into η-like linear orders was initiated by H. Kierstead in his
paper [10]. Recall that a linear order L is η-like if L is isomorphic to

∑
q∈Q

F (q)

Received by the editors March 29, 2019.
2010 Mathematics Subject Classification. Primary 03C57, 03D45.

Key words and phrases. Computable linear order, automorphism, Kierstead’s Conjecture .
The first author is partially supported by the grants MOE-RG131/17 and MOE2015-T2-2-055.
The second author is supported by the RSF grant (project No. 18-11-00028).

c©XXXX American Mathematical Society

1

2 KENG MENG NG AND MAXIM ZUBKOV

for some function F : Q → N, and we say that the order type of L is defined
by function F , and L is strongly η-like if F is bounded. Kierstead considered
2 · η, the simplest nontrivial instance of an η-like computable linear order, where
he used an infinite injury argument to construct a computable copy of 2 · η with no
nontrivial Π0

1 automorphism. A total function f is called Π0
1 if Graph(f) = {(x, y) |

f(x) = y} is Π0
1. Note that a total function having a c.e. graph is equivalent to

being computable, so Π0
1-rigidity is the next level of effective rigidity for which the

classification of rigid computable linear orders is open.

Theorem 1.3 (H. Kierstead [10]). There is a computable linear order of order type
2 · η which has no nontrivial Π0

1 automorphism.

Kierstead [10] called an automorphism f is fairly trivial if for all x ∈ L, there
are only finitely many elements between x and f(x). A nontrivial automorphism
f is called strongly nontrivial, if it is not fairly trivial, i.e. there exists some x ∈ L
where x and f(x) are in different blocks. H. Kierstead’s paper [10] concluded with
three conjectures, with the main one as follows.

Conjecture 1.4 (H. Kierstead [10]). Every computable copy of a linear order L
has a strongly nontrivial Π0

1 automorphism if and only if L contains an interval of
order type η.

By Theorem 1.3, this conjecture is true for the order type 2 · η. Later, R.
Downey and M. Moses proved that Kierstead’s conjecture also holds for discrete
linear orders. Recall that a linear order is discrete if every element has an immediate
predecessor and an immediate successor, except for possibly the greatest and least
elements.

Theorem 1.5 (R. Downey, M. Moses [3]). Every computable discrete linear order
has a computable copy with no strongly nontrivial Π0

1 self-embedding.

C. Harris, K. Lee and S. B. Cooper has in recent work [8] extended Kierstead’s
result, where they proved that Kierstead’s conjecture is true for a rather large
subclass of the η-like computable linear orders. Recall the following definition:

Definition 1.6. A function F is called X-limitwise monotonic, abbreviated as
X-l.m.f., if there is an X-computable function f(x, s) such that

(1) (∀x)(∀s)[f(x, s) ≤ f(x, s+ 1)];
(2) (∀x)[F (x) = lim

s→∞
f(x, s)].

C. Harris, K. Lee and S. B. Cooper [8] proved that every η-like linear order with
no η-interval and whose order type is defined by a 0′-l.m.f function has a Π0

1-rigid
computable copy. Obviously, for η-like linear orders, an automorphism is nontrivial
if and only if it is strongly nontrivial.

Theorem 1.7 (C. Harris, K. Lee, S. B. Cooper [8]). Suppose that F : Q → N

is a 0′-limitwise monotonic function and the linear order L ∼=
∑
q∈Q

F (q) has no

η-interval. Then L has a Π0
1-rigid computable copy.

Later, G. Wu and M. Zubkov considered non-η-like linear orders by generalizing
this concept. They allowed F (x) = lim

s→∞
f(x, s) to take value ζ, but still required

that lim
s→∞

f(x, s) exists for all x.

ON KIERSTEAD’S CONJECTURE 3

Theorem 1.8 (G. Wu, M. Zubkov [14]). Kierstead’s conjecture holds for all linear
orders L of the form

∑
q∈Q

F (q), where F : Q→ N∪{ζ} satisfies the following. There

is a 0′-computable function f : Q×N→ N ∪ {ζ} such that:

(1) for all q ∈ Q, lim
s→∞

f(q, s) = F (q);

(2) for all q ∈ Q, s ∈ N, f(q, s) ≤ f(q, s+ 1);
(3) if lim

s→∞
f(q, s) = ζ then there is s0 such that for all s ≥ s0, f(q, s) = ζ.

Here we consider ζ as a formal symbol and order ζ > n for all n ∈ N.

We remark that condition (3) in Theorem 1.8 appears to be very strong. How-
ever, our first main theorem show that it is in fact necessary and that Theorem 1.8
fails if condition (3) is removed.

The following proposition is easy to check:

Proposition 1.9. Let F : Q→ N ∪ {ζ} be a function. Then the following condi-
tions are equivalent.

(1) There is a 0′-computable function f(q, s) such that
• for all q ∈ Q, lim

s→∞
f(q, s) = F (q).

• for all q ∈ Q, s ∈ N, f(q, s) ≤ f(q, s+ 1).
(2) There is a computable function g(q, s) such that:

• for all q ∈ Q, F (q) = lim inf
s→∞

g(q, s).

In the above we identify ζ with∞. If F (q) = ζ then the lim and lim inf are
both infinite.

The difference between F in Proposition 1.9 and Theorem 1.8 is that in the case
F (q) = ζ we allow lim

s→∞
f(x, s) and lim inf

s→∞
g(x, s) to be ∞ in Proposition 1.9, while

in Theorem 1.8 lim
s→∞

f(x, s) must actually exist. We remark that Proposition 1.9

can also be phrased in terms of functions that are limitwise monotonic relative to
the Kleene’s Ordinal Notation System O studied by A. Frolov and M. Zubkov [6],
and is thus a very natural extension of 0′-l.m.f. functions. We call the functions F
in Proposition 1.9 generalized 0′-l.m.f. functions.

Kierstead’s conjecture has been verified for a large class of linear orders, and
for a long time many have believed it to be true. The remaining cases appear to
be intractable and the usual tools of computability theory do not seem to help
in proving Kierstead’s conjecture for these remaining cases. For this reason, the
conjecture has remained open for thirty years. Our first main theorem in this paper
proves the astonishing result that Kierstead’s conjecture is in fact false:

First Main Theorem. There exists a generalized 0′-l.m.f. function G : Q →
N ∪ {ζ} such that the linear order L ∼=

∑
q∈Q

G(q) has no subinterval of type η and

every computable copy of L has a strongly nontrivial Π0
1-automorphism.

Our first main theorem builds an order type of the form
∑
q∈Q

lim inf
s→∞

g(q, s) for

some computable g. We now compare and contrast our construction with that of
an η-like linear order with a 0′-l.m.f. block function, where Kierstead’s conjecture
has been verified. That is, we wish to point out how allowing ζ as the order type
of a block in our construction overcomes the difficulties present in the case when
all blocks have finite size. Imagine that we are building L and we are watching an

4 KENG MENG NG AND MAXIM ZUBKOV

isomorphic copy Le. In Le perhaps we have identified x0 < x1 < x2 < · · · < xn to
be adjacent elements in the same Le-block, and similarly y0 < y1 < y2 < · · · < yn.
We of course would like to build a Π0

1 automorphism f taking xi to yi. Now suppose
we had to make each block finite, for example, we wish to make both blocks have
size n+ 1. If a new element shows up between x0 and xn, then Le will change its
interpretation of a maximal block, and perhaps now make x1 < x2 < · · · < xn <
xn+1 a new maximal block of size n + 1. Now as both blocks are finite, we have
to map the endpoints x1 and xn+1 of one block to the corresponding endpoints
y0 and yn of the other block. Since f is Π0

1 we might have already excluded this
definition of f and thus we cannot correct f . This difficulty is precisely what is
used to verify Kierstead’s Conjecture for η-like linear orders with a 0′-l.m.f. block
function. However, in our construction, we make our blocks have order type ζ.
The discrete nature of each block means that any definition of f cannot go wrong
simply because we were not matching up limit points correctly. The only threat
to the correctness of f is when adjacent elements on which f or f−1 have already
been defined are no longer adjacent. In the proof, we shall describe how we can
correct f in this situation.

As we have seen, having blocks of discrete order type helps in reducing the
number of situations in which we have to correct an automorphism f . Thus, we do
not know if Kierstead’s conjecture holds in the case where blocks might have order
type ω or ω∗.

Open Question 1.10. Does Kierstead’s Conjecture hold for computable linear
orders with no maximal blocks of type ζ in which some (or all) maximal blocks
have order type ω or ω∗, and no rational subintervals?

As we have pointed out, our counterexample to Kierstead’s Conjecture is a non-
η-like linear order. We do not know if Kierstead’s Conjecture holds for all η-like
linear orders.

Open Question 1.11. Does Kierstead’s Conjecture hold for all computable η-like
linear orders with no rational subintervals?

Question 1.11 seems extremely difficult, especially in the case where L is a given
computable η-like linear order with no 0′-l.m.f. block function. (See [2, 15] for
more discussions on these). Since guessing at the block sizes is unfeasible (the
block function is ∆0

3 in general), one would expect that in order to verify Kier-
stead’s conjecture for such L, we would have to construct a computable copy Le
directly. However, making Le ∆0

2 isomorphic to L will not work if we want to verify
Kierstead’s conjecture this way. We prove this in the second main theorem of the
paper:

Second Main Theorem. There exists a strongly η-like computable linear order
L with no η subinterval such that every computable linear order L′ which is ∆0

2

isomorphic to L has a strongly nontrivial Π0
1-automorphism. Furthermore, every

block of L has size at most 4.

The second main theorem says that even for strongly η-like linear orders, we
cannot verify Kierstead’s conjecture by constructing a Π0

1-rigid copy which is ∆0
2-

isomorphic to a given computable copy. Thus, it tells us that in order to solve
Question 1.11, we will have to construct at least Π0

2 isomorphic copies which are
Π0

1-rigid, but this is beyond the reach of current technology.

ON KIERSTEAD’S CONJECTURE 5

The remainder of this paper is devoted to the proof of the two main theorems.
In §2 we prove the first main theorem, and in §3 we prove the second main theorem.

2. The proof of the first main theorem

In this section we will prove our first main theorem. The proof in this section
is organized as follows. In Section 2.1 we provide an informal description of the
strategy. In Section 2.2 we give the formal construction for meeting a single re-
quirement. In Section 2.3 we verify that the construction for a single requirement
works. Finally in Section 2.4 we apply the uniformity of the construction in Section
2.2 to provide a solution to the first main theorem.

2.1. An informal description of the strategy.

2.1.1. Requirements. We fix {Le}e∈ω to be the family of r.e. subsets of Q. We
write Le = 〈Le, <Q〉 and let Le,s be the enumeration of Le at stage s. To prove
the theorem we will construct a computable linear order L and satisfy the following
requirements:

Re : L ∼= Le ⇒ (∃f : Le → Le)
[
f is a strongly nontrivial Π0

1-automorphism
]
.

The fact that L corresponds to a generalized 0′-l.m.f. function will be verified later.
We note that the requirements do indeed prove the theorem: Suppose that M

is a computable linear order such that there are no strongly nontrivial Π0
1 auto-

morphisms of M = 〈M ;<M〉. It is well-known that every computable linear order
can be represented as an r.e. subset of the rationals preserving all effective prop-
erties. Hence, there is e such that M ∼= Le and Le has no strongly nontrivial Π0

1

automorphism.
The main complexity in our proof lies in the strategy for a single requirement.

For this reason we will first describe the strategy to meet a single requirement
in isolation and prove that this strategy works. We will then observe that the
strategy is uniform (in an index for Le) and then take L to be the disjoint union
of the different orderings built to satisfy each Re, using appropriate separators
to distinguish between the different locations. Unfortunately as we also have to
recognize within each Le the appropriate interval in which we are meeting Re, the
global construction will introduce some feedback to the basic strategy. We will
address this when discussing the global construction.

The construction of the linear order L = 〈L;<L〉 uses ideas from the work of A.
Frolov and M. Zubkov [5] and [6]. We give the formal construction in §2.2.1.

2.1.2. Overview of a single requirement. Fix e and we now describe the strategy to
meet Re in isolation. We will construct a linear order L such that either:

• L ∼= ζ · η or L ∼= m · η for some m ∈ ω.
• L ∼= Le implies that L ∼= ζ · η and Le has a strongly nontrivial Π0

1 auto-
morphism fe.

Clearly not every computable copy of ζ · η will have a strongly nontrivial Π0
1 au-

tomorphism, since it is discrete, so it is not enough to simply take L to be ζ · η.
Similarly we cannot always take L to be m ·η since Kierstead’s conjecture holds for
strongly η-like linear orders. We have to observe how Le responds to our actions,
build fe as we go along, and only decide on the isomorphism type of L in the limit.
To simplify notations we will refer to fe as f . At the end when we consider all
requirements, we will put the outputs corresponding to the different requirements

6 KENG MENG NG AND MAXIM ZUBKOV

into different subintervals, so our final linear order will be neither discrete nor η-like,
and it will not be effective to figure out the isomorphism type in each subinterval.
In fact, the oracle needed to compute the isomorphism type of each subinterval is
at least as much as an oracle needed to compute an isomorphism between any two
computable copies of L. Thus there are no contradictions in allowing each Re to
produce either m · η or ζ · η, even though Kierstead’s conjecture has been verified
for both strongly η-like and discrete linear orders.

Suppose that f is an automorphism of a linear order Le. Let fn(x), n ∈ Z, be
given by the following inductive definition: f0(x) = x, fn+1 = f(fn(x)), fn−1 =
f−1(fn(x)). The orbit of an element x (relative to f) is the set Orb(x) = {y =
fn(x) | n ∈ Z}. It easy to see that for all x and y either Orb(x) = Orb(y) or
Orb(x) ∩Orb(y) = ∅. Thus, L =

⋃
i∈N

Orb(xi), where the xi’s are representatives of

each distinct orbit. To assist us in constructing a strongly nontrivial automorphism
f of Le, we will construct a family of sets {Orbi}i∈ω which satisfy the following
conditions.

The orbit condition: Every set in the family is infinite, and has order type
ζ.

The order-preserving condition: Every pair of sets is consistent, i.e. if
x, y ∈ Orbi, z ∈ Orbj such that x <Le z <Le y and there are no elements
from Orbi between x and y then there are x′, y′ ∈ Orbj such that x′ <Le
x <Le z <Le y <Le y

′ and there are no elements from Orbj between x′ and
z and between z and y′ (see Figure 1).

The totality condition: From every block of Le there is the unique pair i
and x such that x ∈ Orbi and x is in the block.

f(e, ·, s) f(e, ·, s)

^ R R
q

U R R
j

◦ • ◦ • ◦ •

Figure 1. Two consistent orbits

Notice that the totality condition is rather strong, as it not only implies that the
family of sets is pairwise disjoint, but that Orbi and Orbj cannot even contain
elements from the same block, unless i = j. It also implies that each Orbi contains
at most one element from each block. Note that {Orbi}i∈ω is not required to cover
every f -orbit, but the totality condition ensures that every block is covered by some
orbit and so f can be uniquely extended to elements outside Orb = ∪iOrbi. (See
Lemma 2.1 below).

Lemma 2.1. Suppose that Le ∼= ζ · η and {Orbi}i∈ω is a family of sets satisfying
the three conditions above. Then there is a unique f : Le → Le such that f is a
strongly nontrivial automorphism such that for any x ∈ Orbi f(x) is a successor of
x inside Orbi.

ON KIERSTEAD’S CONJECTURE 7

Proof. We first define f on the elements of each Orbi: By the orbit condition, Orbi
has order type ζ, and so we will obviously take f(x) to be the successor of x inside
Orbi. Now we extend f to elements outside Orb = ∪iOrbi. If x 6∈ Orb we find some
y and i such that x and y are in the same block and y ∈ Orbi. We find y′ <Le f(y)
if x <Le y or y′ >Le f(y) if x >Le y such that the number of elements between x
and y is equal to the number of elements between y′ and f(y) and define f(x) = y′

(see Figure 2). The totality condition guarantees that y and i can always be found
(and will be unique) for each x, and the fact that each block of Le is of order type
ζ means that y′ can be found. Therefore f is total. The second (order-preserving)
condition imply that f is order-preserving on Orb. The third (totality) condition
imply that a single block cannot contain elements from distinct orbits, hence f is in
fact order-preserving on Le. The fact that f is surjective also follows from the third
condition. Finally, f is strongly nontrivial because each Orbi contains at most one
element of each block. �

RR
. ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦

x y f(x) f(y)
 	
 	
blocks of type ζ containing adjacent elements of an orbit

Figure 2. A reconstruction of an automorphism by orbits

We remark that simply constructing the orbits to have the desired properties
is not quite enough, as we need both Orb and f to be effective in some way.
The construction of the family {Orbi} will be by stages and we use the notation
Orbi(s) for the effective approximation of Orbi at stage s. Obviously we will take
lim
s→∞

Orbi(s) = Orbi. However, we don’t want {Orbi} to be just any ∆0
2 family

of sets, since the induced automorphism f might not necessarily be Π0
1. We need

to restrict how we approximate {Orbi}. To do this we will add new elements to
each Orbi only to the left of the leftmost element, or to the right of the rightmost
element of Orbi(s), but never on the inside of Orbi(s). Furthermore each Orbi will
have elements leaving (the approximation is ∆0

2), but we always do this by splitting
Orbi at some point x ∈ Orbi, and in two halves.

Even with a nice approximation to the family {Orbi}, it is still not immediate
that we can define a Π0

1 approximation to f (like in lemma 2.1). We shall need to
force f to have a Π0

1 approximation, and this will be the main problem the basic
strategy has to address. The entire construction will be devoted to ensuring that we
can force Le to grow in a certain way so as to allow us to define a Π0

1 approximation
to f . This approximation to f will be defined explicitly in the construction.

2.1.3. Ensuring the properties for the orbits. As mentioned earlier, the construction
defines a computable approximation to the family {Orbi} during the construction.

8 KENG MENG NG AND MAXIM ZUBKOV

We must ensure that at the end the constructed family satisfies the three conditions
for orbits; this will be described soon. But there is a more basic requirement the
family {Orbi} has to satisfy, namely, that every pair of elements x, y ∈ Orb have to
be in different Le blocks. Since we do not control Le, how do we force the distance
between each pair of elements in Orb to be infinite?

We define the distance between x, y ∈ Le to be d(x, y) = 1 + |{z ∈ Le : z lies
strictly between x and y}|. We agree that d(x, x) = 0 and d(x, y) = 1 if x and y
are adjacent. d(x, y) =∞ if they are in different blocks. A similar definition holds
for distance in L, and d(x, y, s) is the distance measured at stage s. Often when
the context is clear we write d(x, y) instead of d(x, y, s).

At stage s suppose we see that x, y ∈ Orb(s) and d(x, y, s) = j. To ensure that
d(x, y) = ∞ at the end, we might want to make our copy L ∼= j · η. Since L does
not have a block of size ≥ j + 1, either Le � L or d(x, y) > j, which in the latter
case means that d(x, y) = ∞. Therefore, the only mechanism we have to force
d(x, y) = ∞ for a pair of elements x, y ∈ Le is for us to play a certain block size
in L. We have to be a little careful with this approach, since we cannot always
promise to make L strongly η-like. In the case where Le ∼= L, we actually wish
to make L ∼= ζ · η. Therefore, we have to continuously monitor d(x, y, s). We will
build L ∼= j · η until d(x, y, s) increases to a new value j′ > j. At that point we
increase the size of blocks in L and switch to making L ∼= j′ ·η, and wait for d(x, y)
to further increase, and so on. At the end if d(x, y) = m < ∞ then we end up
with L ∼= m · η � Le; otherwise we will succeed in forcing d(x, y) =∞ and with no
obstructions to making L ∼= ζ · η.

To implement the above mentioned, we will control the construction of L and Orb
using two important parameters: g(s) and h1(s). The parameter g(s) represents
the size of blocks we currently wish for L to have; as long as g(s) = m is stable
we will proceed to build L ∼= m · η. The parameter h1(s) is a number such that
if d(x, y, s) < h1(s) then we currently believe that x and y are in the same Le
block. We also demand that min{d(x, y, s) | x 6= y ∈ Orb(s)} > 2h1(s) and we
will obviously have to keep g(s) ≤ 2h1(s) in order for the above mentioned to
work. We will increase h1(s) only if min{d(x, y, s) | x 6= y ∈ Orb(s)} grows beyond
16h1(s). As long as we increase g(s) together with h1(s), we have that L ∼= Le
iff lim infs g(s) = ∞ iff lim infs h1(s) = ∞. Note that the fact that the quantities
h1(s), 2h1(s) and 16h1(s) are all used are due to mere technicalities, which we will
not explain at this time.

Now that we have seen the basic mechanism of how we can force two distinct
points x, y ∈ Le to increase their distance, we are now ready to describe how we
intend to satisfy the three conditions for orbits. The orbits will be extended by one
of two modules during the construction:

The first extension of orbits: The primary purpose of this module is to
add elements to an existing orbit, and to ensure that the orbit and order-
preserving conditions hold.

The second extension of orbits: The main purpose of this module is to
start a new orbit and to make sure that the totality condition holds.

In order to carefully control the growth of L, we will not allow the first extension
module to work at every stage, but only when triggered by the parameters h1
and ws. In particular, the first extension module will work on stages such that
h1(s+ 1) 6= h1(s) and ws ↑. We now elaborate on this.

ON KIERSTEAD’S CONJECTURE 9

A typical scenario will see the second extension module wait for h1 to increase
and then pick an element x which is currently sufficiently far from all elements in
Orb(s); i.e. d(x,Orb(s)) > h1(s). The second extension module would of course
like to add x to a new fresh Orbi, but obviously cannot do so until d(x,Orb) > 2h1.
So the second extension module will set ws = x, recording the fact that it is now
waiting for the element x to further separate from Orb(s). While waiting we keep
g = h1(s) + 1 and do nothing else. Unless L � Le, we must later discover that
d(x,Orb) > 2h1; at this point, the second extension module is happy to add x to a
fresh Orbi and declare the current ws ↑.

Only when the second extension module has successfully added a new Orbi will
we allow the first extension module to act. The first extension module will pick the
index of an existing orbit which needs to be extended and add a new element to
it. Each orbit Orbm will have a distinguished “central” element x0m, and a number
of elements to the left and to the right of x0m. The central element x0m stipulates
the priority of the orbit Orbm, and will be used to determine how the orbit Orbm
is split (under the splitting module). Basically the first extension module tries to
keep the number of elements on each side of x0m balanced, and adds a new element
to Orbm on the deficient side. In the actual construction we shall also have another
parameter, Cand(s), which is a finite set of elements that are supposed to be placed
into different fresh orbits. For this reason, the first extension module will also make
sure that the new element it picks to add to the existing orbit Orbm is far from
Orb(s)∪Cand(s). The second extension module will of course ignore Cand(s). Note
that the set Cand records the set of elements on which f or f−1 has previously
been defined and is now re-defined. We need to stream these elements into different
new orbits in order to keep f Π0

1.

2.1.4. The x-module, simplified. With the functions g(s) and h1(s) we can establish
some control over the distance of points in Le. We have just discussed how this
can be used to define the family {Orbi} of points in Le with the desired properties.
Unfortunately, this is not quite enough to ensure that f is Π0

1. Suppose that the
opponent was defining Le and of course would like to keep Le ∼= L. Now the cunning
opponent knew that if he made his copy Le isomorphic to our copy L, we must end
up making L ∼= ζ · η. Armed with this knowledge, the opponent could attempt
some sort of strategy similar to that for a general discrete linear order to defeat our
definition of f . Our solution to this is to observe that we are not obliged to always
produce L ∼= ζ · η; we only have to ensure this in the limit and only if Le ∼= L.
Thus, we could, at every stage of the construction, make L appear to be strongly
η-like. The opponent must reduce the block size of every block in Le, otherwise he
risks allowing Le � L. All we have to do is to ensure that lim infs g(s) = ∞, but
we will interrupt the opponent’s strategy infinitely often and make it impossible
for him to keep Le ∼= L while simultaneously running the strategy to defeat f in a
discrete linear order.

We now provide more details of the strategy above. Suppose that we have defined
x < y to be in Orbi for some i, such that no z in Orbi is between x and y. Then
according to our choice of f in Lemma 2.1 we will send f(x) = y. Suppose that
x0 < x < x1 are currently adjacent and y0 < y < y1 are also currently adjacent in
Le. Suppose also that h1(s) > 4 so that we currently believe that {x0, x, x1} are
in the same block, and similarly for {y0, y, y1}. (Note that d(x, y) > 2h1(s)). Thus
we currently have no choice but to define f(x0) = y0 and f(x1) = y1.

10 KENG MENG NG AND MAXIM ZUBKOV

The strategy the opponent would use to defeat f is the following. The opponent
first enumerates a new point y2 such that y0 < y2 < y < y1. Suppose Orbi is already
stable and we have now fixed f(x) = y; this means that f(x0) must be updated to
y2. If the opponent now enumerates a new point x2 in the corresponding position,
x0 < x2 < x < x1, then we are in a bind; since f ∈ Π0

1 we cannot return f(x0) to
y0, and the other alternative is to split the orbit Orbi at x and redefine f(x). The
latter alternative is not desirable, since the opponent has not yet done anything
that might cause Le � L, therefore we can only redefine f(x) finitely often.

As mentioned above, our response to this is to play a strongly η-like linear order
at every stage and force the opponent to reduce the size of every block in Le.
Once the opponent enumerates the first point y2 and we redefine f(x0) = y2, we
note that it is dangerous to allow y0 to be adjacent to, or even to remain in the
same block as y2. Therefore we will attempt to force d(y0, y) to increase enough
so that we can put y0 into a new orbit. We achieve this by first waiting for a new
point to appear on the right of y; let’s say that the point y3 is enumerated so that
y0 < y2 < y < y3 < y1. Symmetrically we redefine f(x1) = y3 and we now wish to
increase d(y1, y). We now set g(s) = 2 and play L ∼= 2 · η. Now notice that d(y0, y)
and d(y1, y) have to both increase, unless Le contains a block of size at least 3, and
thus Le � L. Once they have both increased sufficiently, we can put y0, y1 and y
into three different orbits, and thus we will never have to worry about having to
return f(x0) to y0, or f(x1) to y1.

2.1.5. The x-module, in full. The above section describes the problem that the
x-module is designed to overcome, as well as the working of an x-module in a
simplified situation, where we play g(s) = 2. The full x-module will have several
other features which we will describe now.

The x-module defines a function g(x, s); the function g(s) will be taken to be
the minimum of all g(x, s). We will have an x-module for each x ∈ Orb(s). We
also keep a parameter Ws to record the progress of each x-module. The elements
of Ws are 5-tuples of the form 〈x, dl, dr, zl, zr〉. For every x there is at most one
such tuple in Ws.

There are two possible cases at stage s+ 1 for the x-module.

Case 1. 〈x, dl, dr, zl, zr〉 6∈Ws for any dl, dr, zl, zr: This represents the sit-
uation where the x-module has been previously concluded successfully, and
f corrected. We now wait for a new element to be enumerated close to x.

Suppose we find a new element y > x enumerated into Le such that
d(x, y) < h1(s). We define zr to be the element immediately to the right of
y. Therefore we would like to increase d(zr, x) and force zr to be put into a
new orbit. We call the elements strictly between x and y interior elements.
We next wait for a new element y′ < x to be enumerated into Le (this must
exist, otherwise Le � L). We then define zl to be the element immediately
to the left of y′, and also call the elements strictly between y′ and x interior
elements (see Figure 3). We enumerate 〈x, d(y′, x), d(x, y), zl, zr〉 into W .
Note that the number of interior elements is equal to d(y′, x) + d(x, y)− 2.
We now set g(x) = d(y′, y); for now we assume that no new element is
enumerated between x and y while waiting for y′, so that d(y′, y) equals to
2 + the number of interior elements.

ON KIERSTEAD’S CONJECTURE 11

. . . ◦ ◦ • ◦ ◦ ∗ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ . . .
zry′ xzl y

new
 	
 	new

interior elements

Figure 3. Case 1

Case 2. 〈x, dl, dr, zl, zr〉 ∈Ws for some dl, dr, zl, zr: This means that we are
now trying to force zl, x and zr into different orbits. In this situation we
set g(x) = 2 + the number of interior elements. Notice that one of the
three alternatives must hold: Either Le � L, or d(zl, x) and d(x, zr) must
both increase, or we will find a new element enumerated into Le between
two interior elements. In the first alternative we win the entire require-
ment. In the second alternative we will eventually see d(zl, x) > 2h1 and
d(x, zr) > 2h1 so we can now add zl and zr to the set Cand. Recall that
the set Cand contains elements that we do not wish to add to existing
orbits, hence putting zl and zr into Cand ensures that they will eventually
be placed into new orbits. We can remove 〈x, dl, dr, zl, zr〉 from Ws and
declare a successful completion of the x-module.

The third alternative requires further elaboration. Suppose we discover
a new element y′′ > x enumerated between two interior elements. Let z
be the interior element immediately to the right of the new point y′′ (see
Figure 4). In this case it is possible that d(zl, x) remains unchanged. We
will set z as our new zr and update 〈x, dl, d(x, y′′), zl, z〉 in Ws. We also
adjust the set of interior elements as being only those which are ≤ y′′. We
now decrease g(x) to dl + d(x, y′′), and wait again.

. . . ◦ ◦ • ◦ ◦ ∗ ◦ ◦ ◦ ◦ • ◦ • ◦ . . .
y′zl zrzx y′′ y
 	
 	

adjusted interior elements

new

Figure 4. Case 2, third alternative

We do have to be careful about allowing g(x) to be too small. If lim infs g(x, s) <
∞ for some fixed x, then as we will soon see in §2.1.6, this will imply that Le � L.
However we have to avoid the situation where lim infs g(s) <∞ but lim infs g(x, s) =
∞ for every x. In order to do this we impose a minimum threshold for each x-
module; a reasonable choice would be to insist that g(x) ≥ x for every x. Due to
global considerations, this particular requirement for defeating Le will also have a
parameter k, which we can think of as being constant for the requirement. We will
run the above strategy for the x-module as long as the strategy does not request for
g(x) < max{k, x}. If ever the x-module discovers that dl + dr < max{k, x}, it will
not proceed to request for g(s) ≤ dl + dr; instead it will split the orbit at the point
x: What this means is to take all elements of Orbi which are ≤ x in one orbit, and

12 KENG MENG NG AND MAXIM ZUBKOV

take all elements of Orbi which are > x in a different orbit. As observed in §2.1.4
this will automatically allow f to be corrected; more details are given in §2.1.7.

2.1.6. Analyzing the outcomes of the x-module. We now analyze the outcomes of the
x-module. We have to ensure the global requirement lim infs g(s) <∞⇒ Le � L.
Since each x-module adopts the threshold max{k, x}, we see that lim infs g(s) <
∞ ⇒ lim infs g(x, s) < ∞ for some x. Therefore we have to check that if an
x-module infinitely often requests for g(x) = m then Le � L.

Suppose that an x-module infinitely often requests for g(x) = m and it is not
stuck in any subcases. We claim that the size of the Le-block containing x is at
most m − 1. Otherwise consider a stage after which at least m many elements of
the block containing x are stable. After such a stage all new elements of Le are
added outside of this interval of m many elements; which means that the x-module
must have at least m− 1 many interior elements. Hence the x-module will always
request for g(x) ≥ 2 + (m − 1) > m, a contradiction. Therefore Le will contain a
block of size at most m−1, while L ∼= m ·η, which means that Le � L. If x-module
infinitely often requests for g(x) = m and it is stuck somewhere. In this case we
will have two points in Le such that the distance between of them is greater that
m and stabilized. Hence, this two points in the same block and Le has a block of
size bigger than m, while L ∼= m · η, which means that Le � L.

There is one other outcome of an x-module to consider, which is the case where
the module infinitely often requests for g(x) < max{k, x}. (Notice that this outcome
has no bearing on lim infs g(s), so the global requirement is met independently of
this outcome). In this case we will split the orbit at x infinitely often, which must
be avoided unless Le � L, as this case violates the first orbit condition. If this is
the case then Le contains a block of size less than max{k, x}. If Le ∼= L then by
the global requirement, L ∼= ζ · η, which is a contradiction.

2.1.7. Correcting f . During the formal construction we will define an approxima-
tion to f , which has to be correct only if Le ∼= L ∼= ζ · η. We do so by enumerating
a c.e. set G which is intended to be Cograph(f). At the end, we will verify that for
every pair of elements x, y, f(x) = y if and only if (x, y) 6∈ G, and thus f is Π0

1. First
of all, notice that we always extend an orbit by adding an element which is (and
never was) part of an orbit; therefore, the approximation to f is total. Suppose x0
is currently near to x ∈ Orb (i.e. 0 < d(x0, x) ≤ h1(s)) and we have defined f(x0)
such that d (f(x0), f(x)) = d(x0, x). Now notice that the Π0

1 requirement on f(x0)
isn’t in danger unless d(x0, x) increases, but if a new point is enumerated in Le
between x0 and x, then the x-module would act to force x0 to be far from x. This
means that the element z that we next find such that z ∈ Orb and d(x0, z) ≤ h1
will be in an orbit distinct from any element having anything to do with x or the
previous values of f(x0). Hence we can arrange for the approximation of f to be
consistent with G.

We describe one more problem which we have to overcome. In the above dis-
cussion we had implied that for each x ∈ Orbi we will always define f(x) to be the
least element of Orbi larger than x. Using the definition of f on the elements of
Orb we can extend the definition of f to all elements of Le. However, requiring that
f (Orbi) = Orbi is a little too much. Consider the following situation. Suppose
that we have defined f(x) = y where x < y are successive elements in some Orbi.
Suppose that x0 < x1 < x and y0 < y1 < y are currently adjacent, and we have

ON KIERSTEAD’S CONJECTURE 13

defined f(x0) = y0 and f(x1) = y1. Now we must also enumerate (x0, y1) into
G. However, suppose after we do this we see a new point y2 show up such that
y0 < y1 < y2 < y. Notice that we have already enumerated (x0, y1) into G and
thus we cannot update f(x0) to be y1. Our mechanism for dealing with this was
to rely on the actions of the y-module and hope that we will be able to force y1
to be in a different block from y; if the y-module is able to do this successfully,
then we can rescue f by redefining f(x0) to be one of the new elements appearing
before y2. Unfortunately, it could be that the y-module finishes unsuccessfully by
splitting the orbit at y, and having no new elements show up between y1 and y2.

What are our options in this case? We certainly do not wish to split x and y
into different orbits, since no new element might have appeared close to x. We wish
to ensure the orbit condition for x and that the orbit containing x is of type ζ. In
particular, x should not be allowed to lose its Orb-successor unless the orbit is also
split at x. Therefore we have to keep x and y in the same orbit. However, if we
also demand that f(x) = y then we cannot consistently have f(x0) = y1, as this
violates G. Our solution is to pick some number q > 0 large enough and redefine
f(x) = y′ such that y′ > y and d(y, y′) = q. Obviously we have to wait until h1 > q
before we can do this, otherwise y and y′ are not yet believed to be in the same
block, but we can certainly stop enumerating into G until we see this. Now q is
chosen large enough such that f(x0) and f(x1) can be consistently defined together
with f(x) = y′ (notice that we need to freeze G until we are able to redefine f).
Thus we have to allow f(x) to be not necessarily the Orb-successor y of x, but still
require f(x) to be in the same block as y. In this way, f(x) is redefined if the orbit
is split at y, but if L ∼= Le then the orbit is split at y only finitely often, and so
f(x) is redefined this way only finitely often. All other definitions of f(x′) where
x′ and x are in the same block can then reference f(x).

We remark here that it seems rather critical in our proof that L ∼= ζ ·η in order for
f to be built successfully. This is because our definition of f(x0) for an arbitrary
element x0 depends on the definition of f(x) where x is the unique element in
Orb in the same block as x0. In turn, our choice of f(x) was dependent on our
implementation of the totality condition for orbits, which, in our construction was
rather arbitrary. In other words, we are exploiting the fact that in ζ, any element is
automorphic to any other element. If our constructed linear order L contains blocks
of rigid order types, then our strategy will not work: For instance, if we wanted
to anchor our definition of f at the leftmost point of each block, then we would
have to redefine f whenever the leftmost point of a block appears to shift, and we
would be stuck if the leftmost point of a block shifts back to a previous point. For
example, our strategy will not be able to define f correctly if we instead promise
to make L η-like if Le ∼= L. We do not know if a counter example to Kierstead’s
conjecture is possible if we replace ζ · η with, say, ω · η.

2.2. The formal construction for a single requirement. In this section we
fix a single requirement Re and we describe the formal construction to meet Re.
We fix the associated given Le. As explained in the previous section, §2.1, the
construction will consist of several modules and parts, and are controlled by the
main module (§2.2.8). These will be presented over the different subsections of
2.2. As mentioned before, the number k > 1 will be assumed to be fixed for this
requirement Re, and is used by the global construction to exert control over each
requirement.

14 KENG MENG NG AND MAXIM ZUBKOV

2.2.1. Construction of the linear order L. We construct a uniformly computable
sequence {Is(q)}s∈ω, q∈Q of finite linear orders such that I(q) = lim

s→∞
Is(q) is a

computable linear order, and L =
∑
q∈Q

I(q) is a computable linear order. Every

interval Is(q) has a special element U(q), which gives the interval I(q) its identity.
We have the following properties: U(q) is defined at the least stage s0 when the
approximation of I(q) is nonempty; for every s > s0 we have U(q) ∈ Is(q). All
other elements of Is(q) may leave the interval, but will not be allowed to rejoin.

At stage s = 0, I0(q) = ∅ for all q ∈ Q. At stage s+ 1, we do the following. For
all q ∈ Q such that the Gödel number of q is ≤ s, we modify Is+1(q), according to
the following two cases.

Case 1. Is(q) is not empty: We write Is(q) = Ls(q) + {U(q)} + Rs(q) =
{lil(q, s) < . . . < l1 < U(q) < r1 < . . . < rir(q, s)}. We note that we will
always either have il(q, s) = ir(q, s) or il(q, s) = ir(q, s) − 1. Our actions
for the block I(q) will obviously depend on the current value of g(s+ 1).

Subcase g(s+ 1) = ir(q, s) + il(q, s) + 1: The requested block size is ex-
actly right, so we leave the parameters Ls+1(q) andRs+1(q) unchanged.

Subcase g(s+ 1) > ir(q, s) + il(q, s) + 1: We need to add g(s + 1) −
(il(q, s) + ir(q, s) + 1) many new elements. We add the new elements
on the outside, i.e. we add the new elements to the right of rir(q, s)
and to the left of lil(q, s). The g(s+ 1)− (il(q, s) + ir(q, s) + 1) many
new elements are distributed in a way to keep both sides balanced, i.e.
we keep il(q, s+ 1) = ir(q, s+ 1) or il(q, s+ 1) = ir(q, s+ 1)− 1.

Subcase g(s+ 1) < ir(q, s) + il(q, s) + 1: Then we need to trim the
block Is(q). If g(s+ 1) = 2k then take Rs+1(q) = {r1 < . . . < rk} and
Ls+1(q) = {lk−1 < . . . < l1}. Otherwise if g(s+ 1) = 2k + 1 then take
Rs+1(q) = {r1 < . . . < rk} and Ls+1(q) = {lk < . . . < l1}. In either
subcase define Is+1(q) = Ls+1+U(q)+Rs+1 and call all elements from
the set Is(q) − Is+1(q) free. These free elements are already in L but
are now not associated with any block I(q), so we have to find a new
block for each free element.

Case 2. Is(q) is empty: For uniformity we add a new point at ∞ and a
new point at −∞ and agree that I(±∞) = {±∞}. Now search for q1, q2 ∈
Q
⋃
{−∞,+∞} such that q1 <Q q <Q q2, Is(q1) and Is(q2) are not empty

and there is no q3 such that q1 <Q q3 <Q q2 and Is(q3) is not empty. Find
the least x (in the standard order on N) such that x is free and lies between
Is(q1) and Is(q2). If there is no such x then we add a new free element x
between Is(q1) and Is(q2). Define U(q) = x. Populate the rest of Is+1(q)
according to Case 1.

Clearly |I(q)| = lim infs |Is(q)|. Therefore, L ∼=
∑
q∈Q

lim infs |Is(q)|. It has no

subinterval of type η since |I(q)| ≥ lim infs g(s) ≥ k > 1 for every q. Hence L
is of the desired type. The inequality lim infs g(s) ≥ k directly follows from the
construction of g.

ON KIERSTEAD’S CONJECTURE 15

2.2.2. The x-module. Formally we define, for x, y ∈ Le and s ∈ ω,

de(x, y, s) =


|{z ∈ Le | z < s ∧ x <Le z <Le y}|+ 1, if x <Le y,

|{z ∈ Le | z < s ∧ y <Le z <Le x}|+ 1, if y <Le x,

0, if x = y.

We will simply write < instead of <Le when the context is clear. The x-module will
work only if x ∈ Orb(s). We assume that at every stage at most one new element
is enumerated into Le.

First of all, if h1(s) ≤ max{k, x} + 1, we keep g(x, s + 1) ↑ and say that the
x-module is inactive. Otherwise we declare the x-module active and consider the
following cases.

Case 1. 〈x, dl, dr, zl, zr〉 /∈Ws for any dl, dr, zl, zr: This means that the x-
module is currently not attending to any instructions and is ready to start
again. There are three subcases.

Case 1.1: There is y ∈ Le,s+1 − Le,s such that y > x and h1(s) >
d(x, y, s + 1) and there is some least z > x such that d(x, z, s + 1) >
d(x, z, s). We put 〈x,−∞, d(x, y, s + 1),−∞, z〉 in Ws+1, and define
g(x, s+ 1) = h1(s) + d(x, y, s+ 1)− 2.

Case 1.2: There is y ∈ Le,s+1 − Le,s such that y < x and h1(s) >
d(x, y, s+1) and there is some greatest z < x such that d(x, z, s+1) >
d(x, z, s). We put 〈x, d(x, y, s + 1),+∞, z, +∞〉 in Ws+1, and define
g(x, s+ 1) = h1(s) + d(x, y, s+ 1)− 2.

Case 1.3: Otherwise, define g(x, s+ 1) = 2h1(s) + 1.
Case 2. 〈x, dl, dr, zl, zr〉 ∈Ws and dl = −∞ or dr = +∞: This means that

the x-module has found either zr > x or zl < x (but not both) that needs
to be forced to be in a different block as x.

Case 2.1: dl = −∞ and there is y ∈ Le,s+1 − Le,s such that y < x and
d(x, y, s+ 1) < h1(s).

(i) If y < z for all z ∈ Le,s then set g(x, s+ 1) = h1(s) + dr − 2.
(ii) If there is some greatest z ∈ Le,s such that z < y and dr +

d(x, y, s+1) ≥ max{k, x} then set g(x, s+1) = d(x, y, s+1)+dr
and update 〈x, d(x, y, s+ 1), dr, z, zr〉 in Ws+1.

(iii) Otherwise, i.e. the new element y ∈ Le,s is not added to the
extreme left of Le,s and dr + d(x, y, s + 1) < max{k, x}. Set
g(x, s + 1) = max{k, x} + 1 and update 〈x, 0, 0, 0, 0〉 in Ws+1.
Additionally we split the orbit at point x.

Case 2.2: dl = −∞ and there is y ∈ Le,s+1 − Le,s such that y > x and
d(x, y, s + 1) < dr. Hence there has now appeared a new element y
between x and an interior element, and we need to update zr. Let
z > x be the least such that d(x, z, s + 1) > d(x, z, s). We define
g(x, s+ 1) = h1(s) + d(x, y, s+ 1)− 2 and replace 〈x,−∞, dr,−∞, zr〉
by 〈x,−∞, d(x, y, s+ 1),−∞, z〉 in Ws+1.

Case 2.3: dr = +∞ and there is y ∈ Le,s+1 − Le,s such that y > x and
d(x, y, s+ 1) < h1(s). This case is symmetric with Case 2.1.

(i) If y > z for all z ∈ Le,s then set g(x, s+ 1) = h1(s) + dl − 2.
(ii) If there is some least z ∈ Le,s such that z > y and dl+d(x, y, s+

1) ≥ max{k, x} then set g(x, s+1) = d(x, y, s+1)+dl and update
〈x, dl, d(x, y, s+ 1), zl, z〉 in Ws+1.

16 KENG MENG NG AND MAXIM ZUBKOV

(iii) Otherwise, i.e. the new element y ∈ Le,s is not added to the
extreme right of Le,s and dl + d(x, y, s + 1) < max{k, x}. Set
g(x, s + 1) = max{k, x} + 1 and update 〈x, 0, 0, 0, 0〉 in Ws+1.
Additionally we split the orbit at point x.

Case 2.4: dr = +∞ and there is y ∈ Le,s+1 − Le,s such that y < x and
d(x, y, s + 1) < dl. This case is symmetric with Case 2.2. There is
now a new element y between an interior element and x, and we need
to update zl. Let z < x be the greatest such that d(x, z, s + 1) >
d(x, z, s). We define g(x, s+ 1) = h1(s) + d(x, y, s+ 1)− 2 and replace
〈x, dl,+∞, zl,+∞〉 by 〈x, d(x, y, s+ 1),+∞, z,+∞〉 in Ws+1.

Case 2.5: Otherwise, do nothing and leave all parameters relating to
the x-module unchanged.

Case 3. 〈x, dl, dr, zl, zr〉 ∈Ws and dl 6= −∞, dr 6= +∞: This means that the
x-module has found both zr > x and zl < x, and now wants to force both
to leave the block containing x. If 〈x, 0, 0, 0, 0〉 ∈ Ws then we say that the
x-module is split.

Case 3.1: There is y ∈ Le,s+1−Le,s such that y > x and dr > d(x, y, s+
1), and the x-module is not yet split. This means that a new element
has appeared between x and an interior element, and we need to update
zr if we can.

(i) If dl+d(x, y, s+1) ≥ max{k, x}, set g(x, s+1) = dl+d(x, y, s+1).
Let z > x be the least such that d(x, z, s + 1) > d(x, z, s). We
update 〈x, dl, dr, zl, zr〉 with 〈x, dl, d(x, y, s+ 1), zl, z〉 in Ws+1.

(ii) If dl +d(x, y, s+ 1) < max{k, x}, set g(x, s+ 1) = max{k, x}+ 1
and update 〈x, 0, 0, 0, 0〉 in Ws+1. Additionally we split the orbit
at point x.

Case 3.2: There is y ∈ Le,s+1−Le,s such that y < x and dl > d(x, y, s+
1), and the x-module is not yet split. This means that a new element
has appeared between an interior element and x, and we need to update
zl if we can.

(i) If dr+d(x, y, s+1) ≥ max{k, x}, set g(x, s+1) = dr+d(x, y, s+
1). Let z < x be the greatest such that d(x, z, s+1) > d(x, z, s).
We update 〈x, dl, dr, zl, zr〉 with 〈x, d(x, y, s + 1), dr, z, zr〉 in
Ws+1.

(ii) If dr +d(x, y, s+1) < max{k, x}, set g(x, s+1) = max{k, x}+1
and update 〈x, 0, 0, 0, 0〉 in Ws+1. Additionally we split the orbit
at point x.

Case 3.3: No such y ∈ Le,s+1 − Le,s exists, or the x-module is split.
Then no updates of zl or zr are necessary. If d (Orb(s+ 1), z, s+ 1) >
16h1(s) for every old element z, we set g(x, s + 1) = 2h1(s) + 1. If
we find that some old element does not satisfy the above inequality
and the x-module is already split, we set g(x, s+ 1) = max{k, x}+ 1.
Otherwise we do nothing and leave all parameters relating to the x-
module unchanged.
Let t be the first stage where the current x-cycle entered case 2. We
define an old element z to be one where z ∈ Le[t], d(z, x, t+1) ≤ h1(t),
and where either (i) the x-module is not split and either z ≤ zl or z ≥
zr holds, or (ii) the x-module is split and d(z, x, s+1) > max{k, x}+1.

ON KIERSTEAD’S CONJECTURE 17

If 〈x,−〉 is removed from W , then we say that the x-module completes a
x-cycle.

2.2.3. Splitting the orbit at the point x. Suppose that x is currently in Orbm(s) =
{x−lsm < . . . < x0m < . . . < xrsm}. There are three cases, depending on the position
of x relative to the center x0m. Suppose that x = xjm.

j = −ls or rs: Then we do nothing.
0 < j < rs: Then we find the least k such that Orbk(s) = ∅ and define

Orbm(s+ 1) = {x−lsm < . . . < x0m < . . . < xjm}, and

Orbk(s+ 1) = {xj+1
m < . . . < xrsm} = {x0k < . . . < xrs−j−1k }.

−ls < j < 0: Then we find the least k such that Orbk(s) = ∅ and define
Orbm(s+ 1) = {xjm < . . . < x0m < . . . < xrsm}.
Orbk(s+ 1) = {x−lsm < . . . < xj−1m } = {x−ls−j+1

k < . . . < x0k}.
j = 0: Then we find the least k, k′ such that Orbk(s) = Orbk′(s) = ∅ and

define
Orbm(s+ 1) = {x0m}.
Orbk(s+ 1) = {x−lsm < . . . < x−1m } = {x−ls+1

k < . . . < x0k}.
Orbk′(s+ 1) = {x1m < . . . < xrsm} = {x0k′ < . . . < xrs−1k′ }.

2.2.4. The definition of h1. We use h2 as a local parameter to help us define h1.
At stage s = 0, set h1(0) = h2(0) = k. At stage s+ 1, we define the quantity

h2(s+ 1) = min

{
d(x, y, s+ 1)

16
: x ∈ Orb(s+ 1) ∪ {−∞,∞},

y ∈ Orb(s+ 1) ∪ Cand∗(s+ 1) ∪ {−∞,∞}, x 6= y

}
.

Here, Cand∗(s) = {x ∈ Cand(s) : d(x,Orb(s)) > 2h1(s)}. Notice that Cand is a
c.e. set while Cand∗ is ∆0

2. We check if the following conditions hold:

(i) h2(s+ 1) > h1(s).
(ii) For each active x-module, either it is still in case 1 and 〈x,−〉 6∈Ws, or else

it is in case 3 and d (Orb(s+ 1), z, s+ 1) > 16h1(s) for every old element
z.

(iii) If ws ↓= x then d(x,Orb(s+ 1), s+ 1) > 16h1(s).

If all three conditions hold, we call s+1 a h1-expansionary stage and take following
actions:

(i) Set h1(s+ 1) = h1(s) + 1.
(ii) For each active x-module in case 3, define g(x, s+1) = 2h1(s)+1, Cand(s+

1) = Cand(s)∪ {all old elements}, and remove 〈x, dl, dr, zl, zr〉 from Ws+1.
(iii) If ws ↓= x find the least m such that Orbm(s) = ∅ and define x0m = x and

ws+1 ↑.
Otherwise, if s+ 1 is not h1-expansionary take h1(s+ 1) = h1(s).

2.2.5. The first extension of orbits. The primary aim of this module is to extend
an existing orbit. We use a local parameter l for this module, which records the
number of times this module has acted. At stage s = 0, define l(0) = 0. If s is not
h1-expansionary we simply define l(s + 1) = l(s) and do nothing else. Otherwise,

18 KENG MENG NG AND MAXIM ZUBKOV

we assume that s is h1-expansionary. Fix m and j such that l(s) = 〈m, j〉 and we
increment l(s+ 1) = l(s) + 1.

Case 1. Orbm(s) = ∅: Do nothing.
Case 2. Orbm(s) = {x−lsm <Le . . . <Le x

0
m <Le . . . <Le x

rs
m}: If either x−lsm or

xrsm has not been defined for at least two h1-expansionary stages, we do noth-
ing. Otherwise we assume that they had both received their definitions at
least two expansionary stages ago.

If ls < rs then we extend to the left. We find the least x such that
x < x−lsm , x /∈ Orb(s), d(x,Orb(s) ∪ Cand(s), s) > 2h1(s) and consistent
with Orbp(s) for all p 6= m such that Orbp(s) 6= ∅. This means that if
x0 < x < x1 for x0, x1 ∈ Orbp(s) then f(x0, s) < x−lsm < f(x1, s). We
define x−ls−1m = x.

If ls ≥ rs, then we extend to the right, in a similar way. We find the least
x such that x > xrsm , x /∈ Orb(s), d(x,Orb(s) ∪ Cand(s), s) > 2h1(s) and
consistent with Orbp(s) for all p 6= m such that Orbp(s) 6= ∅. This means
that if x0 < xrsm < x1 for x0, x1 ∈ Orbp(s), then f(x0, s) < x < f(x1, s).
We define xrs+1

m = x.

We remark here that if s is h1-expansionary, we can always find the required x
by Lemma 2.3.

2.2.6. The second extension of orbits. The primary aim of this module is to grow
a new orbit. We search for the N-least x such that d(x,Orb(s), s + 1) > h1(s). If
x exists and if ws ↑ or ws ↓ >N x, we define ws+1 = x.

2.2.7. The definition of f . Let xim ∈ Orbm(s). We will use the following notation.
Let xi,0m = xim, and if xim < y and d(xim, y, s) = j then xi,jm = y. If y < xim and
d(xim, y, s) = j then xi,−jm = y. We also enumerate a c.e. set G with the intention
that G is the complement of Graph(f).

Let x = xim. If i < 0, the xim-module is active and s is a h1-expansionary
stage, we wish to act for x. If this is the first time that x is put in Orb, we set
f(xi,jm , s+ 1) = xi+1,j

m for −h1(s+ 1) < j < h1(s+ 1), provided that none of these
definitions are already in G. Otherwise, let t < s be the previous time we were able
to act for x. There are two cases.

Case 1: Suppose that between t and s we did not split the x-module. Let

q =

{
d
(
f(xim), xi+1

m

)
[t], if d

(
f(xim), xi+1

m

)
[t] < h1(s+ 1),

0, if d
(
f(xim), xi+1

m

)
[t] ≥ h1(s+ 1).

For every j such that−h1(s+1) < j < h1(s+1)−q we set f(xi,jm) = xi+1,q+j
m ,

provided that none of these definitions are already in G. (In particular, it
might be the case that d

(
f(xim, t), x

i+1
m , t

)
6= d

(
f(xim, t), x

i+1
m , s

)
, but we

will keep the position relative to xi+1
m). If some of these definitions are in

G, do nothing else for x.
For every m′, i′, j and j′, if −h1(s+1) < j < h1(s+1)−q, −h1(s+1) <

j′ < h1(s+ 1) and xi
′

m′ ↓ 6= xi+1
m , we enumerate

(
xi,jm , x

i′,j′

m′

)
in G. For each

j satisfying −h1(s+ 1) < j < h1(s+ 1)− q and each j′ satisfying j′ 6= q+ j

and −h1(s+ 1) < j′ < h1(s+ 1) we enumerate
(
xi,jm , x

i+1,j′

m

)
into G.

ON KIERSTEAD’S CONJECTURE 19

Case 2: Between t and s we had split the x-module. Find the least number
q > 0 such that 2h1(t + 1) < q < h1(s + 1) and for every j satisfying
−h1(s+ 1) < j < h1(s+ 1)− q, the pair

(
xi,jm , x

i+1,q+j
m

)
6∈ G. If we can find

q, we set f(xi,jm) = xi+1,q+j
m for all j satisfying −h1(s+1) < j < h1(s+1)−q.

If we cannot find q, do nothing for x and consider the current stage as not
having acted for x.

Now suppose that i ≥ 0, the x-module is active and s is a h1-expansionary stage.
If xi+1

m is not defined, do nothing for xim. Otherwise if this is the first time xi+1
m is

put in Orb, we set f(xi,jm , s+ 1) = xi+1,j
m for −h1(s+ 1) < j < h1(s+ 1), provided

that none of these definitions are already in G. Otherwise let t < s be the previous
time we were able to act for x. There are two cases.

Case 1: Suppose that between t and s we did not split the xi+1
m -module.

Then the actions for xim are exactly the same as Case 1 above, for i < 0.
Case 2: Between t and s we had split the xi+1

m -module. Then the actions for
xim are exactly the same as Case 2 above, for i < 0.

2.2.8. The main module for Re. At stage s + 1 the main module consists of the
following steps.

(1) Do stage s+ 1 of the second extension of orbits (§2.2.6).
(2) Do stage s+ 1 of the first extension of orbits (§2.2.5).
(3) Do stage s+ 1 of each active x-module, for x ∈ Orb(s+ 1) (§2.2.2).
(4) Take g(s+ 1) = min {h1(s) + 1, g(x, s) | x ≤ s+ 1}.
(5) Do stage s+ 1 of the L-construction (§2.2.1).
(6) Update h1 (§2.2.4).
(7) Do stage s+ 1 of the definition of f (§2.2.7).

The module in §2.2.3 is not directly called upon by the main module, because it
is called by the x-module (§2.2.2) as a subroutine. We also assume that a new
element is enumerated into Le at the beginning of every stage (before any step of
the main module is considered).

2.3. The formal verification for a single requirement. Throughout the rest
of this proof, when we refer to a parameter, we mean the value or status of the
parameter when it is mentioned. For instance, a stage is h1-expansionary if h1
is increased the previous time we updated h1. Whenever we refer to a stage, we
mean a particular instance or “sub-stage” within that stage. Also we assume that
h1(s) > 16 for every s. We also adopt the “Lachlan notation”, by appending [s] to
an expression to mean the value of the expression evaluated at s.

Lemma 2.2. If h1 is incremented at s, then immediately after this step, d(x, y, s+
1) > 15h1(s+1) for every distinct x ∈ Orb(s+1) and y ∈ Orb(s+1)∪Cand∗(s+1),
unless x is added during this step and y ∈ Cand∗(s+ 1).

Proof. Note that if y ∈ Cand∗(s+1)∩Cand(s) then y ∈ Cand∗(s). Hence if neither
x nor y is added during this step, then d(x, y, s+ 1) ≥ 16h2(s+ 1) > 16h1(s). Since
h1(s + 1) = h1(s) + 1, we have d(x, y, s + 1) > 15h1(s + 1). If x is added during
this step, then y ∈ Orb(s + 1), and as x 6= y, y ∈ Orb(s). We can then apply
the condition §2.2.4(iii) (for an expansionary stage). The same goes if y is added
during this step and y ∈ Orb(s + 1). Finally if y is added during this step and
y ∈ Cand∗(s + 1) then x ∈ Orb(s) and we can apply condition §2.2.4(ii) (for an
expansionary stage). �

20 KENG MENG NG AND MAXIM ZUBKOV

Lemma 2.3. At each h1-expansionary stage we are able to find the element x in
§2.2.5.

Proof. Let s + 1 be h1-expansionary. Consider case 2 of §2.2.5. Fix an element
xm ∈ Orb(s + 1), and assume that xm was added to Orb before the previous
expansionary stage. (If this is not true then we force the first extension module to
wait for one more expansionary stage before considering this orbit again). Suppose
we wish to find an element x < xm with the desired property, namely, we need
to find a x such that d(x,Orb(s + 1) ∪ Cand(s + 1)) > 2h1(s + 1). Let y < xm
be the rightmost element such that y ∈ Orb(s + 1) ∪ Cand∗(s + 1). If y does not
exist then clearly any x < xm such that d(x, xm) > 4h1(s+ 1) will have the desired
property, so x can be found as long as there are sufficiently many elements to the
left of xm (which we always assume we have by speeding up the enumeration of Le,
if necessary).

Otherwise fix the rightmost such y. Then any z ∈ Cand(s+ 1) such y < z < xm
must have distance at most 2h1(s + 1) from y or from xm. At the last increment
of h1, since xm was already in Orb(s), we apply Lemma 2.2 to conclude that
d(xm, y) > 15h1. (Note that extensions of orbits are always done at the beginning
of a stage). Therefore, x can always be found between y and xm. �

Lemma 2.4. At every stage s and every x ∈ Orb(s) and every y ∈ Orb(s) ∪
Cand∗(s), if x 6= y then d(x, y, s) > 2h1(s).

Proof. We proceed by induction on s. If y ∈ Cand∗(s) then by definition we
already have d(x, y, s) > 2h1(s). So we may assume that y ∈ Orb(s). At each stage
s, h1 is increased (see §2.2.4) only if d(x, y, s + 1) ≥ 16h2(s + 1) > 15h1(s + 1).
If a new element x is added to Orb(s) then (by §2.2.4 and §2.2.5) we must have
d(x, y, s+ 1) > 2h1(s+ 1). �

Lemma 2.5. If lim inf
s→∞

g(s) = m <∞, then L ∼= m · η.

Proof. There is a stage s0 such that for all s ≥ s0 we have g(s) ≥ m. Fix q ∈ Q,
and examine §2.2.1. Since we always grow and trim Is(q) symmetrically about
the center point U(q), and U(q) is never changed, we always have il(q) = ir(q)
or ir(q) − 1, this means that there must be elements x−l, . . . , x0, . . . , xr (where
l + r + 1 = m and x0 = U(q)) which are permanently in I(q). At the infinitely
many stages where g(s+ 1) = m we will remove all other elements from the block
I(q). Therefore, I(q) ∼= m.

Now we wish to argue that every element x enumerated into L is permanently in
some block I(q). The only way for x to not belong to any block is for it to become
free during the construction of L. Suppose x is the least (in the standard order
of N) free element. Then the construction must move to set x = U(q) for some
yet unused q. Once x is picked as U(q) for some q, then it stays in I(q). Thus
L ∼= m · η. �

Lemma 2.6. Suppose that lim inf
s→∞

g(s) = m < ∞ and that lim
s→∞

h1(s) + 1 > m,

then there is x such that lim inf
s→∞

g(x, s) = m.

Proof. Notice that h1 is a non-decreasing function. Since each x-module is only
active if h1(s) > max{k, x} + 1, it is easy to check the construction to see that
g(x, s) ≥ max{k, x} for every x and s. By definition, if lim inf

s→∞
g(s) < lim

s→∞
h1(s)+1,

ON KIERSTEAD’S CONJECTURE 21

then there are infinitely many stages si such that g(si) = min{g(x, si) | x ≤ si} =
m. Since g(x, si) ≥ max{k, x} for each of these x, thus min{g(x, si) | x ≤ si} =
min{g(x, si) | x ≤ m}, and so the minimum must be attained infinitely often by a
single x. This means there is some x0 such that lim inf

s→∞
g(x0, s) ≤ m. Clearly we

must in fact have lim inf
s→∞

g(x0, s) = m. �

Lemma 2.7. Let x be an active module and assume that the orbit is split at x
infinitely often. Then Le has a block of size strictly less than max{k, x}.
Proof. The orbit can be split at x only in cases 2.1(iii), 2.3(iii), 3.1(ii) and 3.2(ii) of
the x-module. Suppose case 2.1(iii) happens infinitely often. Then infinitely often
we have dr + d(x, y, s + 1) < max{k, x} for some new element y < x. However
the value of dr was earlier (at stage s′) assigned under case 1.1 (or 2.2) where we
discovered a new element y′ such that y′ > x and dr = d(x, y′, s′). This means that
there are infinitely many pairs of distinct elements of the form y, y′ and s′ < s where
y < x < y′ and where d(x, y′, s′) + d(x, y, s) < max{k, x}. This means that the
block containing x cannot have size max{k, x} or greater; otherwise after max{k, x}
many elements around x are stable, the new elements y, y′ must appear outside these
elements, and so d(x, y′, s′) + d(x, y, s) cannot possibly be < max{k, x}. Thus, x is
in an Le-block of size strictly less than max{k, x}.

A similar argument holds for cases 2.3(iii), 3.1(ii) and 3.2(ii). �

Here we list a fact that is important, but easy to verify:

Fact 2.8. Suppose that there are only finitely many h1-expansionary stages. Then
the parameters h1, Orb, Cand and Cand∗ are all eventually stable.

Proof. Trivial by the construction. �

Lemma 2.9. Suppose that lim
s→∞

g(x, s) does not exist and lim inf
s→∞

g(x, s) = m <∞,

then x is in a Le-block of size strictly less than m.

Proof. Suppose that the x-module completes only finitely many cycles and is even-
tually stuck waiting at some step. Examining the x-module reveals that it can only
be stuck mid-cycle in cases 1.3, 2.1(i), 2.3(i), 2.5 or 3.3. In case 2.5, g is eventually
never redefined and so lim

s→∞
g(x, s) exists, contrary to our assumptions. In the first

three cases, since lim
s→∞

g(x, s) does not exist, this means that lim
s→∞

h1(s) =∞, which

means that lim inf
s→∞

g(x, s) =∞, again contrary to our assumptions. Suppose we get

stuck in case 3.3, then it must be the case that we switch between g(x) = 2h1 + 1
and g(x) = max{k, x} + 1 infinitely often. As the x-module is never completed,
there are only finitely many expansionary stages and by Fact 2.8, h1 and Orb are
eventually stable. There are only finitely many elements which can be labeled “old”
(specifically, only those elements which are around and close to x at stage t can
qualify). Of these finitely many elements, if any one, say z, is labeled “old”, then
the label remains forever on z (with only at most one exception when the module
is split) and the inequality d (Orb, z) > 16h1 is eventually forever satisfied (as the
parameters h1 and Orb are eventually stable). Thus we cannot possibly switch
between g(x) = 2h1 + 1 and g(x) = max{k, x}+ 1 infinitely often, a contradiction.
Thus we may assume that the x-module completes infinitely many cycles.

Since infinitely many x-cycles are completed, there are infinitely many h1-expan-
sionary stages. If the orbit is split at x infinitely often, we apply Lemma 2.7

22 KENG MENG NG AND MAXIM ZUBKOV

to conclude that x is in a block of size less than max{k, x} ≤ m. (Recall that
g(x, s) ≥ max{k, x} for every x and s). Therefore we assume that the orbit is split
at x finitely often.

Whenever we finish an x-cycle at an expansionary stage, we must have last
updated zl or zr for the x-module in cases 2.1(ii), 2.3(ii), 3.1(i) or 3.2(i). In any case,
we must have defined g(x, s) = d(x, y) + d(x, y′) for some new elements y < x < y′.
A reasoning similar to the one in the proof of Lemma 2.7 shows that the size of the
block containing x must be ≤ lim infy,y′ d(x, y) + d(x, y′) − 1. (The crucial point
here is that as infinitely many x-cycles are completed, this lim inf is taken over an
infinite collection of pairs y, y′).

Now our case assumption is that the orbit is split at x finitely often and that
lim
s→∞

h1(s) =∞. Hence there are only four possibilities for the definition of g(x, s)

at a stage s; either g(x, s+ 1) = h1(s) + dl − 2, or g(x, s+ 1) = h1(s) + dr − 2, or
2h1(s)+1 or dl+dr. Definitions of the first three kinds do not affect lim infs g(x, s)
since lim

x→∞
h1(s) = ∞. Since dl and dr must be attained by d(x, y) and d(x, y′)

for some y, y′, this means that m = lim infs g(x, s) = lim infy,y′ d(x, y) + d(x, y′).
Hence the size of the block containing x has size ≤ m− 1 < m. �

Lemma 2.10. If there is some active x-module such that lim
s→∞

g(x, s) = m < ∞
and lim inf

s→∞
g(y, s) ≥ m for all active y, then either Le � L or Le has a block of size

strictly larger than m.

Proof. Fix x such that lim
s→∞

g(x, s) = m < ∞. We first suppose that there are

infinitely many h1-expansionary stages; therefore, lim
s→∞

h1(s) = ∞. If infinitely

many x-cycles are ended, then g(x, s + 1) = 2h1(s) + 1 for infinitely many s,
contrary to our assumption that lim

s→∞
g(x, s) = m <∞. Therefore the x-module is

eventually stuck in a final cycle. If it is stuck in case 1 then g(x, s+ 1) = 2h1(s) + 1
for almost all s, which is impossible. If it is stuck in case 2 then condition (ii)
of §2.2.4 will never hold and so there cannot be infinitely many h1-expansionary
stages. If it is stuck in case 3 then at the next h1-expansionary stage we will end
the “final” x-cycle, which is impossible.

Therefore for the remainder of this proof we will assume that there are only
finitely many h1-expansionary stages, i.e. lim

s→∞
h1(s) exists. We first prove two

claims:

Claim 2.11. If there is some y0 such that the y0-module is forever stuck waiting
in Case 2, then Le has a block of size strictly larger than m.

Proof of claim. Fix such a y0. Suppose the y0-module is stuck waiting in case 2.
Cases 2.2 and 2.4 can only apply finitely many times before we have to leave case
2. Cases 2.1(i) and 2.3(i) can only apply finitely often, because lim

s→∞
h1(s) exists.

Therefore we may assume that the y0-module is forever waiting in case 2.5.
Without loss of generality, assume dl = −∞; we argue symmetrically if dr = +∞.

Let t be the least stage after which the y0-module is forever waiting in case 2.5.
By §2.2.4 as 〈y0,−〉 ∈ Ws, we have h1(s) = h1(t) for all s > t. Furthermore
g(y0, s) = g(y0, t + 1) for all s > t, where at stage t we had defined g(y0, t + 1) =
h1(t) + dr − 2 ≥ m. Since case 2.1 does not hold after stage t, every element
enumerated into Le to the left of y0 must have a distance of at least h1(s) to y0.

ON KIERSTEAD’S CONJECTURE 23

Also as case 2.2 does not hold after stage t, every element enumerated into Le to
the right of y0 must have a distance of at least dr to y0. As we assume that Le
has no greatest or least element, at stage t there must already be at least h1(t)− 1
many elements to the left and dr − 1 many elements to the right of y0. These
elements must be in the same block as y0, hence, Le has a block of size at least
(h1(t)− 1) + (dr − 1) + 1 > m. �

Let s0 be the final h1-expansionary stage, then (by examining Fact 2.8) the
values of h1, Orb and Cand are stable after s0.

Claim 2.12. Suppose there is some y0 such that after s0, the y0-module is forever
stuck waiting in Case 3, and there is some old element z such that d(Orb(s +
1), z, s+ 1) ≤ 16h1(s0) for almost all s > s0. Then Le � L or Le has a block of size
strictly larger than m.

Proof of claim. Fix such a y0. Suppose the y0-module is stuck waiting in case 3.
Note that cases 3.1 and 3.2 can apply only finitely many times, therefore we assume
that the y0-module forever waiting in case 3.3, say after stage t0. Let t1 be the
stage where this final y0-cycle first enters case 2; notice that after we begin case 2
of this final y0-cycle, there cannot be any more h1-expansionary stages (otherwise
the “final” y0-cycle has to end). Therefore, t0 > t1 > s0. Let z be the old element
in the statement of the claim.

There are two possibilities, either the final y0-cycle is split before getting stuck in
case 3.3, or it is never split. We first assume that the final y0-cycle is never split. As
the cycle is never split, z must already be labeled old at the point the module began
getting stuck (at t0). Since our assumption is that d(Orb(s+1), z, s+1) ≤ 16h1(s0)
for almost all s > s0, we must in fact have d(Orb(s + 1), z, s + 1) ≤ 16h1(s0) for
all s ≥ t0. Together with the fact that z was already labeled old at t0, this means
that g(y0, s) = dl + dr for all s > t0 where 〈y0, dl, dr, zl, zr〉 ∈ Wt0 (and never gets
redefined under case 3.3). Therefore m ≤ lim inf

s→∞
g(y0, s) = dl + dr.

Without loss of generality assume that z < y0. Let y1 < y0 be the rightmost such
element in Orb(s0) (an easier argument follows if y1 does not exist). By Lemma
2.4 we have d(y0, y1, s + 1) > 2h1(s0) for all s > s0. Since z is declared old, by
definition, we have d(z, y0, t1) ≤ h1(s0), and so d(z, y1, t1) > h1(s0). We wish to
now argue that z and y1 are in different Le-blocks; suppose not, then the block
containing z and y1 will have size at least h1(s0) + 2. However from step 4 of the
main module we see that lim inf

s→∞
g(s) ≤ h1(s0) + 1 and by Lemma 2.5 L does not

have a block of size larger than h1(s0) + 1, while Le does, hence Le � L.
So we may assume that z and y1 are in different blocks, in particular, that

d(z, y1) is eventually > 16h1(s0). As d(Orb(s+ 1), z, s+ 1) ≤ 16h1(s0) for all large
s, it must mean that d(y0, z, s+ 1) ≤ 16h1(s0) for all large s. This means that that
z and y0 are in the same block. But checking the construction reveals that when z
was first declared old we had d(z, y0, stage where z declared old) ≥ dl+1. Furthermore
every new Le-element to the right of y0 must have distance ≥ dr to y0, as Case 3.1
no longer holds after t0. This means that the block containing y0 has size strictly
greater than dl + dr ≥ m.

Now we assume the second possibility, where the final y0-cycle is split before t0.
Since z is an old element for which d(Orb(s+ 1), z, s+ 1) ≤ 16h1(s0) for almost all
s > s0, case 3.3 will ensure that m ≤ lim inf

s→∞
g(y0, s) = max{k, y0} + 1. However

24 KENG MENG NG AND MAXIM ZUBKOV

as z is eventually labeled old we must have, by definition, d(z, y0, t1) ≤ h1(s0).
Define y1 as above, and we see that we also have d(z, y1, t1) > h1(s0). The same
argument above shows that z and y1 are in different blocks (unless already Le � L).
In particular, as above we can conclude that z and y0 are in the same block. But
as we are in the case where y0 is split and z is old, this means that d(z, y0) >
max{k, y0} + 1 ≥ m. Hence, the block containing y0 has size strictly greater than
m. �

Now back to the proof of Lemma 2.10. There are three possible reasons why
there are no more expansionary stages after s0: (1) There is some active y0-module
which fails condition (ii) in §2.2.4. (2) ws ↓= y1 is eventually always defined, but
d(y1, Orb(s), s+ 1) ≤ 16h1(s0) for all s > s0. (3) h2(s+ 1) ≤ h1(s0) for all s > s0.
We show below that in each case either Le � L or Le has a block of size strictly
larger than m.

(1) There is some active y0-module which fails condition (ii): Consi-
der an active y0 which fails condition (ii). We cannot complete infinitely
many y0-cycles because there are only finitely many expansionary stages.
Therefore there is a final y0-cycle. It cannot be stuck in case 1, as it fails
condition (ii). If the y0-module is stuck in case 2 we apply Claim 2.11. If
the y0-module is stuck in case 3, then as it fails condition (ii) we apply
Claim 2.12.

(2) d(y1, Orb(s), s+ 1) ≤ 16h1(s0) for almost all s: Assume that for almost
every s > s0 we have ws ↓= y1 and d(y1, Orb(s0), s + 1) ≤ 16h1(s0). Sup-
pose that ws ↓= y1 received its stable definition ws = y1 at some stage
after s0. At that point we must have d(y1, Orb(s0)) > h1(s0). Furthermore
we have d(y1, Orb(s0), s + 1) ≤ 16h1(s0) for every s > s0. This implies
that for some y2 ∈ Orb(s0) we have h1(s0) < d(y1, y2, s+ 1) ≤ 16h1(s0) for
every s > s0, and thus Le contains a block of size larger than h1(s0) + 1.
However by step 4 of the main module, lim inf

s→∞
g(s) ≤ h1(s0) + 1 which by

Lemma 2.5 implies that Le � L.
(3) h2(s+ 1) ≤ h1(s0) for all s > s0: As Orb, Cand and h1 are stable after
s0, it is obvious that Cand∗ is also eventually stable after s0. Thus we
have some x ∈ Orb(s0)∪{−∞,∞} and some y ∈ Orb(s0)∪Cand∗(s+ 1)∪
{−∞,∞} such that x 6= y and d(x, y, s+1) ≤ 16h1(s0) for almost all s, and
thus x and y are in the same block. However by Lemma 2.4, d(x, y, s) >
2h1(s0) and thus Le contains a block of size larger than 2h1(s0) + 1. As
lim inf
s→∞

g(s) ≤ h1(s0) + 1 we have that Le � L by Lemma 2.5.

This ends the proof of Lemma 2.10. �

Lemma 2.13. If lim inf
s→∞

g(s) =∞, then L ∼= ζ · η.

Proof. For every m there is a stage s0 such that for all s ≥ s0 we have g(s) ≥ m.
We always pad each I(q) up to g(s) ≥ m many elements, and we always trim I(q)
symmetrically, it follows that the block I(q) has at least m many elements. Each
element x enumerated into L is permanently in some block I(q); this follows from
the same argument as in Lemma 2.5. �

Lemma 2.14. If L ∼= Le, then L ∼= ζ · η.

ON KIERSTEAD’S CONJECTURE 25

Proof. If L � ζ · η then by Lemmas 2.5 and 2.13, lim inf
s→∞

g(s) = m < ∞ and

L ∼= m · η. Suppose that lim
s→∞

h1(s) + 1 > m, then we can apply Lemma 2.6 to get

some x such that lim inf
s→∞

g(x, s) = m. By Lemmas 2.9 and 2.10 we get an Le-block

of size different from m, or Le � L. In either case, Le � L.
Now suppose that lim

s→∞
h1(s)+1 = m. In particular, there are only finitely many

h1-expansionary stages. Then h1, Orb, Cand and Cand∗ are all eventually stable.
If no x-module eventually becomes active, then the reason there are only finitely
many h1-expansionary stages must be due to conditions (i) or (iii) of §2.2.4 failing
to hold, and by the same argument as in Lemma 2.10 (note items (2) and (3) in
the proof of Lemma 2.10), we conclude that Le � L. So we may assume that some
x-module is eventually active. In that case each active x-module gets stuck at a
final x-cycle. It is easy to check that as lim

s→∞
h1(s) exists, we also have lim

s→∞
g(x, s)

exists. Since this conclusion holds for any active module, we apply Lemma 2.10 to
an active x-module with the smallest lim

s→∞
g(x, s). Thus either Le � L or Le has a

block of size larger than lim
s→∞

g(x, s) ≥ lim inf
s→∞

g(s). In any case we have Le � L. �

Lemma 2.15. If lim inf
s→∞

g(s) = ∞ then every x 6= y ∈ Orb are in different blocks

of Le.

Proof. This follows directly from Lemma 2.4. �

Lemma 2.16. If L ∼= Le then Orbm has order type ζ for every m.

Proof. Since L ∼= Le, by Lemmas 2.5 and 2.14 we know that lim inf
s→∞

g(s) = ∞.

Since g(s) ≤ h1(s) + 1, this means that there are infinitely many h1-expansionary
stages.

By Lemma 2.2, d(z, z′) > 15h1 for every distinct z, z′ ∈ Orb just immediately
after each time h1 is incremented. The next action performed by the main module
is the second extension of orbits, which means that there are infinitely many stages
where the second extension of orbits is able to define ws. Hence, every orbit is non-
empty. (Notice that x0m is never removed from Orbm, so the condition Orbm 6= ∅
is equivalent to x0m ↓).

Now fix m and we know that x0m exists. We shall now argue that Orbm has order
type ζ. By §2.2.5, rng(l) = ω and so there are infinitely many h1-expansionary
stages s such that l(s) = 〈m,n〉 for some n, where we attend to Orbm. At each
stage we extend Orbm, we grow Orbm from the outside, and (eventually) in both
directions. Also Lemma 2.3 ensures we are always able to find an element to put
in Orbm. Thus Orbm will have order type ζ unless the splitting module (§2.2.3)
causes Orbm to have a greatest or a least element.

Now we assume that Orbm has a greatest or a least element x. By Lemma 2.7 the
orbit can only be split at x finitely many times since we assume that Le ∼= L ∼= ζ ·η.
Suppose that x is the greatest element of Orbm. Let x = xjm. As x0m is always in
Orbm, we must have j ≥ 0. Each time xj+1

m ↑ we must extend Orbm on the right

and find a new value for xj+1
m , unless x−j

′

m is the least element of Orbm for some

j′ < j, in which case we consider x−j
′

m instead. But as xjm is the largest element of
Orbm, we have to split the module at x = xjm. This means that we will split the
module at x infinitely often, which is impossible, by what we just observed at the
beginning of this paragraph.

26 KENG MENG NG AND MAXIM ZUBKOV

A similar argument holds if x is the least element of Orbm. �

The following is an easy, but very crucial fact about the construction. Informally,
it says that whenever a new element enters Le between z and some x ∈ Orb which
we currently think are in the same block, then the construction will force z to be
in a different block from x, unless z is already too close to x.

Lemma 2.17. Suppose x ∈ Orb and z is an element such that d(x, z) < h1(s) and
the x-module is active at s, where s is an expansionary stage. Suppose that a new
element is later enumerated between x and z. Then at the next expansionary stage
(if there is one), either z is labeled old or d(x, z) ≤ max{k, x} + 1. In the latter
case the x-module must be split.

Proof. We check §2.2.2. Let t be the first stage after s where the x-module enters
case 2; then obviously z ∈ Le[t] and d(z, x, t+1) ≤ h1(t). At the next expansionary
stage, if the x-module is split and d(x, z) > max{k, x}+ 1, then z is old. Otherwise
if d(x, z) ≤ max{k, x} + 1 then we are in the second alternative in the statement
of the lemma. So we can suppose that the x-module is not split before the next
expansionary stage. Consider the first time an element is enumerated between x
and z. It is easy to see that this must cause an element between z and x (possibly
z itself) to be defined as zl or zr. At the next expansionary stage, z is old. �

The rest of the proof will be devoted to showing that f is a strongly nontrivial
Π0

1 automorphism. We will do this over several lemmas.

Lemma 2.18. If L ∼= Le then for every block B ⊂ Le there is an x ∈ Orb such
that x ∈ B.

Proof. Suppose that x is the N-least number such that the block containing x has
no elements from Orb. As we assume that L ∼= Le, by Lemmas 2.5 and 2.14 we
know that lim inf

s→∞
g(s) =∞. Hence we must have lim

s→∞
h1(s) =∞. Then there is a

stage s0 such that h1(s) > max{x, k} for all s ≥ s0.
We first claim that ws ↓→ ws ≥ x for every s > s0. Suppose not. Then at the

next expansionary stage (after the counterexample stage) we will put ws < x into
Orb (or something even N-smaller), and we may assume s0 is large enough so this
does not happen (notice that Orb is a c.e. set).

Now if there is a stage s > s0 such that d(x,Orb(s), s+ 1) > h1(s), then at the
beginning of stage s we will set ws+1 = x. (Notice that the second extension of
orbits is always done at the beginning of a stage). Thus x will be added to Orb at
the next expansionary stage after that.

Thus we may assume that at (the beginning of) every stage s > s0, we have
d(x,Orb(s), s + 1) ≤ h1(s). We fix some (in fact, any) y and some expansionary
stage s1 > s0 such that y ∈ Orb(s1) and d(x, y, s1 + 1) ≤ h1(s1). We claim that
d(x, y, s + 1) ≤ h1(s) at the beginning of every s > s1. Suppose instead we have
d(x, y, s+ 1) > h1(s) at the beginning of some least stage s > s1. Note that s− 1
cannot be an expansionary stage as d(x, y, s) ≤ h1(s − 1) and we assume that at
every stage only at most one element is enumerated into Le. (Note that this is
unaffected by any assumptions on speeding up the enumeration of Le; in speeding
up we only ask for evidence that Le has no greatest or least element and so the
distance between two points are unaffected by the speedup). Thus h1(s−1) = h1(s)
and Orb(s− 1) = Orb(s). Furthermore as d(x, y, s) ≤ h1(s− 1), by Lemma 2.4 we

ON KIERSTEAD’S CONJECTURE 27

can see that d(x, y′, s) > h1(s− 1) for every y′ 6= x, y, y′ ∈ Orb(s− 1). This means
that at stage s, we must have d(x,Orb(s), s + 1) > h1(s), a contradiction. Thus
d(x, y, s+ 1) ≤ h1(s) at the beginning of every s > s1.

Let s2 > s1 be large enough such that the y-module is active, the orbit is never
again split at y (by Lemmas 2.7 and 2.14), d(x, y, s2 + 1) ≤ h1(s2) and some new
element p is enumerated into Le between x and y where d(p, y) < h1(s2) (at the
beginning of s2). This stage exists because we assumed that no element in the
same block as x is in Orb. By Lemma 2.17 we have d(x, y) > 16h1 at the next
expansionary stage, contrary to our assumption that d(x, y) ≤ h1. �

Lemma 2.19. For every x ∈ Orb there is m such that x ∈ Orbm stably.

Proof. Suppose that x ∈ Orbm(s) and x ∈ Orbn(s+1), then x = xim at stage s and
x = xjn at stage s + 1. Examining the steps in §2.2.3 shows that |j| < |i|. Notice
that x0m will never leave Orbm. �

Lemma 2.20. At every stage s and for every x ∈ Cand(s), there is at most one y
such that y ∈ Orb(s) and d(x, y) ≤ 2h1(s).

Proof. We proceed by induction on s; note that Cand is a c.e. set. Initially, Cand
is empty. If an action in the construction does not increase Cand, Orb or h1, then
it will not cause a problem. Let’s first consider an action which adds elements to
Cand. This is done in §2.2.4(ii), but the condition for performing this action is
that d(Orb, z) > 16h1 for every z added to Cand. If an element y is added to
Orb then d(y, y′) > 16h1 for every existing y′ ∈ Orb if this is done in §2.2.4(iii),
and d(y, x) > 2h1 for every x ∈ Cand if y is added in §2.2.5. In either case the
statement still holds after the action.

Finally consider the action §2.2.4 which increases h1. Apply Lemma 2.2 to see
that d(y, y′) > 15h1 for every pair of distinct y, y′ ∈ Orb immediately after the
action, which means of course that no x ∈ Cand can be close to two elements of
Orb. �

Lemma 2.21. At every stage s and for every x ∈ Cand(s), y ∈ Orb(s) such that
d(x, y) ≤ 2h1(s), we have y = x0m for some m such that y is added to Orb at some
stage t ≤ s where d(x, y) ≤ 2h1 holds at every point between t and s.

Proof. We fix x and suppose that x is added to Cand under step 2.2.4(ii) at stage
s0. Just before this step we had d(Orb, x) > 16h1. Suppose after this step we have
d(x, y) ≤ 2h1 for some y ∈ Orb. If y was also added at this step, then y was defined
to be x0m for some Orbm = ∅, so the statement holds after this step. If y was not
added at this step, then d(x, y) > 16h1 before the step, so after incrementing h1 we
have d(x, y) > 15h1, which is impossible.

Now we consider some step at s performed after the initial step at s0, and assume
the statement holds just before performing the step. We want to argue that the
statement still holds after performing the step at s. If the step at s did not increase
Orb or h1, then the inductive step is trivial. Suppose the action at s enumerated y
into Orb. If this action was done under §2.2.5 then note that d(y, Cand) > 2h1, so
y cannot be close to x. Suppose y was enumerated by §2.2.4(iii), then as above, y
was defined to be x0m for some Orbm = ∅, so the statement holds after this step.

Now we assume that the step at s increased h1. Since we assumed that this
is not the initial step, s > s0, thus x was already in Cand before taking this
step at s. If x ∈ Cand∗ before this step then condition §2.2.4(i) implies that

28 KENG MENG NG AND MAXIM ZUBKOV

d(x,Orb) ≥ h2 > 16h1 just before the increment, and thus the argument in the
first paragraph above can be applied. Thus we assume that x 6∈ Cand∗ before
this step. As x ∈ Cand, this means that d(x, y0) ≤ 2h1 for some y0 ∈ Orb just
before the step, and by induction hypothesis, y0 = x0m is of the desired type. But
after the increment to h1, due to Lemma 2.20, there cannot be y1 6= y0 such that
d(x, y1) ≤ 2h1 and y1 ∈ Orb. Thus the statement holds after the step. �

The following lemma will help us show that whenever we wish to make a defini-
tion of f(x) under §2.2.7 we will not be blocked from doing so.

Lemma 2.22. Suppose that s is an expansionary stage and there are some i,m, j, j′

such that −h1(s + 1) < j, j′ < h1(s + 1) such that
(
xi,jm [s], xi+1,j′

m [s]
)

is already in

G. Then both xim[s] and xi+1
m [s] are in Orb at the previous expansionary stage.

Suppose t < s is the previous stage where we acted for xim[s] and between t and s
we did not split the xim[s]-module nor the xi+1

m [s]-module. Then j′ 6= q + j, where

q =

{
d
(
f(xim), xi+1

m

)
[t], if d

(
f(xim), xi+1

m

)
[t] < h1(s+ 1),

0, if d
(
f(xim), xi+1

m

)
[t] ≥ h1(s+ 1).

Proof. Let a = xi,jm [s] and b = xi+1,j′

m [s] and let s0 < s be an expansionary stage

where we had enumerated (a, b) into G. Then a = xi0,j0m0
[s0] and b = x

i′0,j
′
0

m′
0

[s0]

for some i0, i
′
0, j0, j

′
0,m0 and m′0 such that |j0|, |j′0| < h1(s0 + 1). Note that the

xi0m0
-module and the x

i′0
m′

0
-module have to be active at s0.

If xi0m0
[s0] 6= xim[s] then this is a pair of distinct elements of Orb. By Lemma

2.4, d
(
a, xi0m0

[s0]
)
≥ h1 between s0 and s, and since h1 > max

{
k, xi0m0

[s0]
}

+ 1,
we can apply Lemma 2.17 to conclude that a ∈ Cand(s). By Lemma 2.21 i = 0
and x0m[s] must be added to Orb after stage s0; this last fact follows by applying
Lemma 2.2 to see that at each expansionary stage, d

(
x0m, x

i0
m0

)
> 15h1. Similarly,

if x
i′0
m′

0
[s0] 6= xi+1

m [s], then the same argument above shows that i+ 1 = 0 and x0m[s]

is added to Orb after s0.

Now we claim that we must have xi0m0
[s0] = xim[s] and x

i′0
m′

0
[s0] = xi+1

m [s]. Suppose

xi0m0
[s0] 6= xim[s]. Then the preceding paragraph tells us that i = 0 and x0m is added

to Orb after s0. In other words, x0m is first defined after s0. This also means that

the element x1m[s] is added to Orb after s0, which means that x
i′0
m′

0
[s0] 6= xi+1

m [s].

By the preceding paragraph, i + 1 = 0, contradicting the fact that i = 0. A

similar argument applies if x
i′0
m′

0
[s0] 6= xi+1

m [s]. Let us call a∗ = xi0m0
[s0] = xim[s] and

b∗ = x
i′0
m′

0
[s0] = xi+1

m [s].

It is clear that m0 = m′0, otherwise a∗ = xi0m0
[s0] and b∗ = x

i′0
m′

0
[s0] are in different

orbits at s0, but have to end up in the same orbit at the later stage s, which is
impossible. Thus m0 = m′0. In this case it is also easy to see that we must have
i′0 = i0 + 1, because a∗ and b∗ have to end up as successive elements of the same
orbit at the later stage s.

Summarizing, we are now able to assume that a∗ = xim[s] = xi0m0
[s0] and b∗ =

xi+1
m [s] = x

i′0
m′

0
[s0] = xi0+1

m0
[s0]. Let t < s be the largest stage where we were able to

act for a∗. We first make a couple of observations.

(i) Clearly t exists and in fact, s0 ≤ t.

ON KIERSTEAD’S CONJECTURE 29

(ii) At stage t, both a∗ = xim[s] and b∗ = xi+1
m [s] are already in Orb, and

are successive elements of the same orbit, although their Orb-indices might
change.

(iii) If i0 ≥ 0 then for every stage ŝ between s0 and s, if a∗ = xîm̂[ŝ] then î ≥ 0.

Similarly if i0 +1 ≤ 0 then for every stage ŝ between s0 and s, if b∗ = xîm̂[ŝ]

then î ≤ 0.
(iv) For every stage ŝ between s0 and s, d(a, a∗, ŝ) < h1(ŝ) and d(b, b∗, ŝ) <

h1(ŝ). This follows by the previous part of the proof of the current lemma.
(v) Either d(a, a∗, s0) = d(a, a∗, s) and d(b, b∗, s0) = d(b, b∗, s), or else j′ 6= q+j.

We now show this. Suppose i0 ≥ 0. If some new element enters Le between
a and a∗, by Lemma 2.17, then either the a∗ module is split, or d(a, a∗) is
increased large. By item (iv) above, the second alternative is impossible.
However, if the a∗ module is split, as i0 ≥ 0, by item (iii) above, we must
put a∗ and b∗ into different orbits, and they cannot end up in the same
orbit at s. Therefore, d(a, a∗, s0) = d(a, a∗, s) and thus j0 = j.

Now we suppose that some new element enters Le between b and b∗.
Similarly, we can conclude that the b∗-module must be split, and in fact
d(b, b∗) < max{k, b∗}+ 1. This must take place before t, as the b∗-module
is assumed not to split between t and s. Repeating this each time a new
element enters b and b∗, we see that by the time we get to stage s, we must
still have d(b, b∗, s) < max{k, b∗}+ 1.

Consider the final time the b∗-module is split before t. At the next time
we manage to act for a∗ (which has to be at t or before, call it t′ ≤ t),
we must be in case 2 of §2.2.7, and we would define f(a∗, t′) such that
2h1(s0) < d (f(a∗), b∗) [t′] < h1(t′). By item (iii) above, a∗ and b∗ are
always successive elements of the same orbit, and so at every expansionary
stage after t′, the value of q is always non-zero. Thus value of q stays
constant between t′ and s, and therefore, the value of q at s is larger than
2h1(s0) > |j0| + (max{k, b∗} + 1) > |j| + d(b, b∗, s) = |j| + |j′|. Thus,
j′ 6= q + j.

Finally, if i0 < 0 we argue similarly. We can easily show that d(b, b∗, s0) =
d(b, b∗, s), because splitting the b∗-module causes a∗ and b∗ to be put into
different orbits. Now to argue that d(a, a∗, s0) = d(a, a∗, s), we observe
that if the a∗-module is split then q will be redefined large, and proceed
similarly to above.

Now we want to conclude the proof of the lemma. Let u0 < u1 be two consecutive
stages where we had acted for a∗, such that s0 ≤ u0 < u1 ≤ t. (If s0 = t then
we immediately get the conclusion at the end of this paragraph). At u0 since we
had acted for a∗ and since u0 ≥ s0, we had to be in case 1 or case 2, which means
that we were able to define f(a∗) such that d (f(a∗), b∗) [u0] < h1(u0). If case 1
applies at u1, then at stage u1, we must have evaluated q[u1] = d (f(a∗), b∗) [u0] and
thus we would have kept d (f(a∗), b∗) [u0] = d (f(a∗), b∗) [u1]. If case 2 applies we
would have redefined f(a∗) such that d (f(a∗), b∗) [u1] > 2h1(u0+1) > d(a, a∗, u0)+
d(b, b∗, u0) = d(a, a∗, s) + d(b, b∗, s) = |j|+ |j′|, due to item (v) above. This means
that at stage t, either d (f(a∗), b∗) [s0] = d (f(a∗), b∗) [t], or d (f(a∗), b∗) [t] > |j| +
|j′|. We also have q = d (f(a∗), b∗) [t], since at stage t we had acted for a∗. If
the second alternative holds, then q = d (f(a∗), b∗) [t] > |j| + |j′| and so j′ 6=
q + j. If the first alternative holds, then q = d (f(a∗), b∗) [s0], and at stage s0

30 KENG MENG NG AND MAXIM ZUBKOV

when we enumerated (a, b) into G, the condition for doing so implies that j′0 6=
d (f(a∗), b∗) [s0] + j0. Again by item (v) above, we conclude that j′ 6= q + j. �

Lemma 2.23. If L ∼= Le then for each m and i there are infinitely many stages
where we are able to act for xim in §2.2.7.

Proof. First of all, observe that when considering some xim[s] ∈ Orb in §2.2.7 and
i < 0, if it is the first time xim[s] is put in Orb, we will be able to act for it; for this
we apply the first part of Lemma 2.22. Similarly if i ≥ 0 and if xi+1

m [s] is first put
into Orb, we will be able to act for xim[s]. Therefore, the only way for any xim to
be stuck is under case 1 or case 2.

As we assume that L ∼= Le we have lim
s→∞

g(s) = lim
s→∞

h1(s) =∞. Fix m and i. By

Lemma 2.16, xim and xi+1
m are eventually defined and stable, and as lim

s→∞
h1(s) =∞,

there are infinitely many expansionary stages and the xim-module and xi+1
m -module

are eventually active. Let a∗ and b∗ be the final values of xim and xi+1
m respectively.

If we get stuck after xim = a∗ and xi+1
m have received their final values, then we

have to be stuck in either case 1 or case 2, and in particular, the final stage t where
we were able to act for a∗ exists.

Suppose after t we never split the a∗-module or the b∗-module. Then we are
stuck in case 1 after t. We apply Lemma 2.22 to see that this case is impossible.

Suppose after t we split one of the two modules. It is straightforward to see that
we are eventually stuck in case 2 (note that b∗ must already be in Orb(t) and be the
Orb-successor of a∗ at stage t). But as lim

s→∞
h1(s+ 1) =∞, we fix some s and some

q such that 2h1(t+1) < q < h1(s+1) and argue that we must be able to act at stage
s with q. Suppose not. Fix some j such that −h1(s + 1) < j < h1(s + 1) − q and(
xi,jm [s], xi+1,q+j

m [s]
)
∈ G. Let a = xi,jm [s] and b = xi+1,q+j

m [s], and let s0 be the stage
where we enumerated (a, b) into G. Following the proof of the first part of Lemma

2.22, we can fix i0, j0, j
′
0 and m0 such that a = xi0,j0m0

[s0] and b = x
i0+1,j′0
m0 [s0], and

|j0|, |j′0| < h1(s0 + 1). We also have a∗ = xi0m0
[s0] and b∗ = xi0+1

m0
[s0]. Thus, s0 ≤ t.

By Lemmas 2.17 and 2.21, either d(a, a∗, s) = d(a, a∗, s0) or d(a, a∗, s) <
max{k, a∗}+ 1. (We argued similarly in Lemma 2.22). Since d(a, a∗, s0) < h1(s0 +
1), this means that d(a, a∗, s) < h1(t+ 1). The same holds for b and b∗. Thus, we
have |j| = d(a, a∗, s) < h1(t+ 1) and |q + j| = d(b, b∗, s) < h1(t+ 1), which means
that q < 2h1(t+ 1), contradicting the choice of q. �

Lemma 2.24. If L ∼= Le then f(x) = lim
s→∞

f(x, s) is a strongly nontrivial auto-

morphism of Le.
Proof. In this lemma we do not worry about the complexity of f ; this is taken care of
in Lemma 2.25. Since we assume that L ∼= Le we have lim

s→∞
g(s) = lim

s→∞
h1(s) =∞.

Thus for each x ∈ Orb, the x-module eventually becomes active. By Lemma
2.19, there is m and i such that x = xim eventually. By Lemma 2.16, xi+1

m is
eventually defined and stable. Eventually the cycle cannot be split at xim or xi+1

m .
By Lemma 2.23 we get to act infinitely often for x = xim. Since we never split
the cycle at xim or xi+1

m , we are always in case 1 of §2.2.7, and thus the value of
q = d

(
f(x), xi+1

m

)
is eventually stable. Let q be the final value of q = d

(
f(x), xi+1

m

)
.

Thus lim
s→∞

f(x, s) = xi+1,q
m exists, as the order type of each Le-block is ζ.

We write x ∼ y to denote that x and y are in the same Le-block. Now fix an
arbitrary element x and by Lemma 2.18 there is some y ∈ Orb such that x ∼ y.

ON KIERSTEAD’S CONJECTURE 31

Let y1 ∈ Orb and p > 0 be such that lim
s→∞

f(y, s) ∼ y1 with a distance of p away

from y1. Without loss of generality, assume that x > y. Since Le also has order
type ζ · η, the block containing y1 has order type ζ, and so we can certainly find
some x1 > y1 such that d(x1, y1) = d(x, y) + p, and hence lim

s→∞
f(x, s) = x1. This

shows that f(x) = lim
s→∞

f(x, s) exists for every x ∈ Le, and if x ∈ Le and y ∈ Orb
are in the same block, then f(x) ∼ f(y), and x < y if and only if f(x) < f(y). This
obviously generalizes to any pair of elements x, y ∈ Le in the same block.

The orbits satisfy the order-preserving condition, because the construction en-
sures that at every stage s, Orbm(s) and Orbn(s) are consistent for all m, n and s.
Now we claim that for any pair of elements x, y, if x < y then f(x) < f(y). If x ∼ y
then we have verified this above, so we assume that x and y are in different blocks.
By Lemma 2.18 there are x1, y1 ∈ Orb such that x1 ∼ x and y1 ∼ y. Obviously
x1 6= y1 as x � y. Since x < y we must have x1 < y1. By Lemma 2.19, there are m
and n such that x1 ∈ Orbm and y1 ∈ Orbn.

If n = m then as x1 < y1, there is t > 0 such that f t(x1) ∼ y1, and consequently,
f t+1(x1) ∼ f(y1) hence f(x1) < f(y1). As f(x) ∼ f(x1) and f(y) ∼ f(y1) and
f(x1) � f(y1), we have f(x) < f(y). So, we suppose that n 6= m, and in particular,
z0 � z1 for any pair of distinct elements from {x1, y1, f(x1), f(y1)}. If f(x1) <
y1 then we have f(x1) < y1 < f(y1), and since they are all in different blocks,
this means that f(x) < f(y). Finally we assume that f(x1) > y1. Then by the
consistency of Orbm and Orbn we have x1 < y1 < f(x1) < f(y1), and thus we
again have f(x) < f(y).

The fact that f is surjective follows easily from the fact that the order type of
each Le-block is ζ, and the order type of each orbit is ζ. Notice also that f(x) is
well-defined, as there is at most one z ∈ Orb such that d(x, z, s) < h1(s) at every
s, by Lemma 2.4. The fact that f is strongly nontrivial follows from Lemma 2.15.
Thus we have verified that f is a strongly nontrivial automorphism of Le. �

Lemma 2.25. If L ∼= Le then f has a Π0
1 graph.

Proof. Let f(x) = lim
s→∞

f(x, s) for each x ∈ Le. We show that f(x) = y if and only

if (x, y) 6∈ G. Suppose f(x) = y. Then fix a stage s0 such that we define f(x, s0) = y
under §2.2.7, and for every stage after s0, whenever we make a definition of f(x, s)
it is always equal to y. Suppose that (x, y) ∈ G, and x ∼ x∗ where x∗ ∈ Orb. Then
for a large enough stage s > s0 we will see (x, y) ∈ G[s] and act for x∗ under §2.2.7
(which is guaranteed by Lemma 2.23). We also assume h1(s+ 1) is large enough so
that d(x, x∗, s) < h1(s + 1) − q, where q is the parameter corresponding to f(x∗).
At this point we will define f(x, s) = y, but as (x, y) ∈ G[s], the instructions in
case 1 of §2.2.7 will prevent us from doing so, contradicting the fact that we will
act for x∗ at s.

Now suppose f(x) 6= y. Let x ∼ x∗ and y ∼ y∗ where x∗, y∗ ∈ Orb. By Lemma
2.23 we act for x∗ infinitely often under case 1. Eventually when s and h1(s + 1)
are large enough, we will put (x, y) in G. �

This ends the proof of a single requirement. In the next section, we will handle
all requirements by performing the construction in this section uniformly, so we
will now give some remarks about the effectiveness of the construction for a single
requirement.

32 KENG MENG NG AND MAXIM ZUBKOV

An important observation is that the index for L can be effectively computed
from an index for Le and the parameter k, and does not depend, for example, on
whether Le ∼= L. The order type of L will of course depend on whether or not
Le ∼= L, but not the index of L.

In fact, if we examine the construction in this section, we will see that §2.2.1
uses only g and does not refer to the other parameters Ws, h1, Orb, Cand,ws, f and
G defined in the rest of the sections §2.2.2 to §2.2.7. Similarly, sections §2.2.2 to
§2.2.7 refer only to Le and defines the parameters g,Ws, h1, Orb, Cand,ws, f using
only Le. Therefore, we could view the construction as consisting of two independent
parts. The first part produces the parameters g,Ws, h1, Orb, Cand,ws, f effectively
from an index for Le. The second part produces the computable linear order L
effectively from g.

Formally, the construction in this section produces total computable functions
µ0 and µ1 with the following properties. If g is (an index for) a total computable
function then Mµ1(g) is a computable linear ordering such that:

(i) If lim inf
s→∞

g(s) = m <∞ then Mµ1(g)
∼= m · η.

(ii) If lim inf
s→∞

g(s) =∞ then Mµ1(g)
∼= ζ · η.

This follows from Lemmas 2.5 and 2.13.
Furthermore, for any e and k, gµ0(e,k) is a total computable function with the

following properties:

(i) gµ0(e,k)(s) ≥ k for every s.
(ii) If lim inf

s→∞
gµ0(e,k)(s) <∞ then Mµ1(gµ0(e,k)) � Le.

(iii) If Mµ1(gµ0(e,k))
∼= Le then Le has a strongly nontrivial Π0

1-automorphism.

The first item follows from the fact that g(x, s) is either undefined, or g(x, s) ≥
max{k, x} for every x and s. The second item follows from Lemma 2.14, and the
third item follows from Lemmas 2.24 and 2.25.

During the construction we had made some assumptions about speeding up
the enumeration of Le to search for confirmation that Le has no greatest or least
element. It could be that Le does have a greatest or a least element, or could even
be finite. (For the sake of uniformity, we must explain what we do in these cases).
In this case the construction waits forever for the evidence it needs but never finds,
and we will never take another nontrivial step in the construction, and never update
the control parameters g and h1. In this case lim inf

s→∞
gµ0(e,k)(s) will end up being

finite, and obviously Mµ1(gµ0) � Le. Thus, the properties above still hold even if

Le is finite or has a greatest or a least element.

2.4. Handling all requirements. In this section we will complete the proof of
the first main theorem and construct a computable linear order Lfinal satisfying all
requirements. Lfinal will be of the form

1 + S1 + 1 +M1 + 1 +S2 + 1 +M2 + 1 +S3 + · · ·+ Se + 1 +Me + 1 +Se+1 + · · · ,
where Se ∼= (e + 1) · η and Me will be built using µ0 and µ1 from the previous
section. We will require that the blocks inMe have size at least e+3, which we can
ensure by the parameter k. Obviously, the intervals 1 + Se + 1 serve as separators.
As these separators are “static”, their locations can be found in any copy Le of
Lfinal in a Σ0

3 way. This will allow us to run the basic construction and guess for
the corresponding interval in Le.

ON KIERSTEAD’S CONJECTURE 33

We will satisfy the requirement corresponding to Le inside the interval Me of
Lfinal. However, if Le is a copy of Lfinal then it will also contain copies of Mk

for k 6= e. In order for us to meet the requirement we shall need to guess for the
interval corresponding to 1 +Me + 1 inside Le. Given any Le which is isomorphic
to Lfinal, let ae0 <Le a

e
1 <Le · · · be exactly all the elements of block size 1 in Le.

Obviously, any isomorphism between Lfinal and Le has to fix this sequence, and
consequently,

(
ae2i+1, a

e
2i+2

)
Le
∼= Mi+1 and

(
ae2i, a

e
2i+1

)
Le
∼= Si+1 for every i ≥ 0.

For convenience, for each e such that Le ∼= Lfinal, we denote
(
ae2i+1, a

e
2i+2

)
Le

by

M̂e
i+1 and

(
ae2i, a

e
2i+1

)
Le

by Ŝei+1. Note that if ϕ is any isomorphism from Lfinal
onto Le then ϕ (Mi+1) = M̂e

i+1 and ϕ (Si+1) = Ŝei+1.

Lemma 2.26. Suppose that Lfinal ∼= Le. Hence the sequence a1e <Le a
2
e <Le · · ·

exists. Then for any b0 <Le b1 ∈ Le, b0 = ae2e−1 and b1 = ae2e if and only if and

only if
∣∣[b0]Le

∣∣ =
∣∣[b1]Le

∣∣ = 1 and there is a sequence x1 <Le x2 <Le · · · <Le xe <Le
b0 <Le b1 <Le xe+1 such that

∣∣[xi]Le∣∣ = i+ 1 for all i = 1, · · · , e+ 1.

Proof. We prove the nontrivial direction. Suppose that
∣∣[b0]Le

∣∣ =
∣∣[b1]Le

∣∣ = 1 and
there is a sequence x1 <Le x2 <Le · · · <Le xe <Le b0 <Le b1 <Le xe+1 such that∣∣[xi]Le ∣∣ = i+ 1.

Recall that for every i if x ∈ M̂e
i we had required that |[x]Le | > i + 2. Conse-

quently, xe+1 /∈ M̂e
i for i ≥ e.

First of all, observe that x1 ∈ Ŝe1 , because |[x1]Le | = 2 and this is the only

interval which can contain a block of size 2. Similarly, |[x2]Le | = 3 and so x2 ∈ Ŝe2
because this is the only interval possible. Next |[x3]Le | = 4, and the only interval

to the right of x2 which can contain a block of size 4 is Ŝe3 . Continuing this way, we

see that xi ∈ Ŝei for i = 1, 2, · · · , e, e + 1. Since the only pair of elements between
xe and xe+1 with a block size of 1 are ae2e−1 and ae2e, we conclude that b0 = ae2e−1
and b1 = ae2e. �

It is easy to see that the condition in Lemma 2.26 “
∣∣[b0]Le

∣∣ =
∣∣[b1]Le

∣∣ = 1 and
there is a sequence x1 <Le x2 <Le · · · <Le xe <Le b0 <Le b1 <Le xe+1 such that∣∣[xi]Le ∣∣ = i+ 1 for all i = 1, · · · , e+ 1” is Σ0

3. Therefore, fix a Π0
2 predicate R such

that ∃wR (e, b0, b1, w) if and only if the condition above holds inside Le. Since R is
a Π0

2 predicate, fix a computable approximation of it such that R (e, b0, b1, w) holds
if and only if R (e, b0, b1, w) [s] = 1 for infinitely many s. Now let wte be a function
(wt for “witness”) such that wte(s) = min {〈b0, b1, w〉 | R(e, b0, b1, w)[s] = 1}. If
this is not defined we retain the previous value of wte. Now obviously for any e, if
Lfinal ∼= Le then lim inf

s→∞
wte(s) exists and outputs 〈ae2e−1, ae2e, w〉 for some w.

Fix an e. We now describe how to defineMe. Our description will be effective in
e and so we can use this to define the computable Lfinal. For each possible witness
σ = 〈b0, b1, w〉, we let ν (〈b0, b1, w〉) be an index for the subordering of Le restricted
to the interval (b0, b1).

Now we use wte to define the different values of k which we will later use to form
Me. Each possible witness σ will get a parameter kσ(s). At the beginning, let
kσ(0) = 〈σ〉+e+3. This ensures that the size of each block inMe is at least e+3. At
stage s > 0, and for each σ with 〈σ〉 > wte(s), we increase the value of kσ(s). Finally
we define the function g̃ by the following. Let g̃(s) = gµ0(ν(〈σ〉),kσ(s))(t+ 1), where
σ = wte(s), where t was the previous value of the input for gµ0(ν(〈σ〉),kσ(s)) we used

34 KENG MENG NG AND MAXIM ZUBKOV

to define g̃. Now we let Me =Mµ1(g̃). Now g̃(s) = gµ0(ν(〈σ〉),kσ(s))(t + 1) ≥ kσ(s)
by the first item in the list of properties of µ0. But kσ ≥ e+ 3, which means that
the size of each block in Me is at least e + 3, as required for Lemma 2.26 to be
applied.

Lemma 2.27. If Lfinal ∼= Le then Le has a strongly nontrivial Π0
1 automorphism.

Proof. Since Lfinal ∼= Le, then by our previous observation, lim inf
s→∞

wte(s) exists

and outputs
〈
ae2e−1, a

e
2e, w

〉
for some w. Let 〈σ〉 = lim inf

s→∞
wte(s). Then clearly

k = lim
s→∞

kσ(s) exists. Then ν(〈σ〉) is an index for a computable linear ordering

isomorphic to Me.
Now we claim that lim inf

s→∞
g̃(s) = lim inf

s→∞
gµ0(ν(〈σ〉),k)(s). Consider s0 large enough

such that kσ(s) = k and wte(s) ≥ 〈σ〉 for every s ≥ s0. Let τ be such that 〈τ〉
is the least with 〈τ〉 > 〈σ〉. Then as there are infinitely many stages such that
wte(s) = 〈σ〉, we know that lim

s→∞
kτ (s) =∞.

Let T0 be the set of s such that s ≥ s0 and wte(s) 6= 〈σ〉. Then for every
s ∈ T0, we see that wte(s) ≥ 〈τ〉 and so kwte(s)(s) ≥ kτ (s). By the first property
of µ0, we know that g̃(s) ≥ kwte(s)(s), and if s ∈ T0 then this quantity is ≥ kτ (s).
Thus, this tells us that lim inf

s∈T0

g̃(s) =∞. Therefore, this tells us that lim inf
s→∞

g̃(s) =

lim inf
s6∈T0

g̃(s) = lim inf
s→∞

gµ0(ν(〈σ〉),k)(s), as required.

This means that Mµ1(g̃)
∼= Mµ1(gµ0(ν(〈σ〉),k)), since the two functions have the

same lim inf. Now since ν(〈σ〉) codes a linear ordering isomorphic to Me =
Mµ1(g̃)

∼= Mµ1(gµ0(ν(〈σ〉),k)), by the third item in the list of properties of µ0, we

see that Le �
(
ae2e−1, a

e
2e

)
has a strongly nontrival Π0

1 automorphism. This clearly

extends to a strongly nontrivial Π0
1 automorphism of Le by fixing all points outside

the interval
(
ae2e−1, a

e
2e

)
. �

3. The proof of the second main theorem

3.1. Intuition and the organization of the construction. As before we use
the following notations: {Le}e∈ω is a family of c.e. subsets of Q, Le = 〈Le, <Q〉 and
Le,s is an enumeration of Le at stage s. We also fix a sequence of total computable
functions {ϕe}e∈ω such that if F is any ∆0

2 function, then there exists an e such
that for every x, lim

s→∞
ϕe(x, s) exists and is equal F (x).

To prove the theorem we shall satisfy the following requirements.

Re : If Fe(x) := lim
s→∞

ϕe(x, s) exists for every x,

and Fe : L→ Le is an isomorphism, then ∃f : Le → Le

such that f is a strongly nontrivial Π0
1 automorphism.

We shall ensure that L is strongly η-like with block size of at most 4. As in the
proof of the first main theorem, there are no interactions between the different
requirements. We will first describe how to satisfy each requirement in isolation.
As the requirements are satisfied in a uniform way, to meet all requirements we
simply put all the constructions together. However, unlike in the previous theorem
where we had to guess in a Σ0

3 way the corresponding interval of Le where we are
satisfying the requirement corresponding to Le, in this theorem we will not need

ON KIERSTEAD’S CONJECTURE 35

to do so. This is because the requirement Re assumes that Fe : L → Le is an
isomorphism, and therefore will tell us which part of Le to look at when meeting
Re, even though L contains lots of other intervals devoted to other requirements.

As in the previous construction, we will construct L =
∑
q∈Q

I(q) to be a com-

putable linear order. Each I(q) will eventually have size 2, 3 or 4, depending on
what Le does on rng(Fe). Again we approximate I(q) by a computable sequence
{Is(q)}s∈ω and take I(q) = lim

s→∞
Is(q). Every interval Is(q) has a special pair of ele-

ments U1(q) and U2(q) which gives the block I(q) its identity. This pair of elements
is enumerated into I(q) the very first time it becomes non-empty, and will never
leave I(q). All other elements of Is(q) may leave the interval but cannot rejoin.
Hence, every I(q) = lim

s→∞
Is(q) has at least two elements.

Let h(q) = q + 1. (Actually, any nontrivial computable automorphism of Q will
do). We call a rational number q even if bqc is even, and odd if bqc is odd. We let
Orbi = {n+ pi | n ∈ Z} where pi is the i-th rational number in the interval [0, 1).
Obviously, {Orbi}i∈ω satisfies all of the orbit conditions in §2.1.2 and is meant to
be the corresponding notion of Orb in the proof of the first main theorem. The
only difference is that the orbits in this proof is a computable set and is fixed right
at the start. Let Îs(q) = {ϕe(x, s) | x ∈ Is(q)}. Our automorphism f obviously

intended to map Îs(q) to Îs(q + 1). However, f will not obviously be computable

because the elements of Îs(q) will change. Our goal is to enumerate a c.e. set G
ensure that G is the Cograph(f).

We will also build the computable function g(q, s), which represents the current
size of Is(q) we wish to have. However, unlike the proof of the first main theorem,
we shall not need the function h1; the control of when to allow for an expansionary
stage is much simpler in the current proof.

The way we will build Is(q) is the following. The first time the construction looks
at Is(q) we will pick the two special elements U1(q) and U2(q) and enumerate them
into Is(q). Then depending on whether q is even or odd, we will add additional
elements to the left of U1(q) or to the right of U2(q). For example, if q is even and
g(q, s) = 4 then we let Is(q) be the set x0 < x1 < U1(q) < U2(q). Non-special
elements are always added to the left of U1(q). If q is odd and g(q, s) = 3 for
example, then we let Is(q) be U1(q) < U2(q) < x0. Non-special elements are always
added to the right of U2(q).

At every stage s we will grow L by updating each Is(q) according to g(q, s), and
growing a new Is(q

′). Let s− be the largest expansionary stage before s. Then s
may or may not be an expansionary stage depending on whether Le has recovered
on its diagram at stage s−. If s is not an expansionary stage, then we simply grow
L and do nothing else. If s is an expansionary stage then on top of growing L we
shall also need to take various other actions, such as updating f . Details are in the
formal construction.

In Figure 5, the special elements of Is(q − 1), Is(q) and Is(q + 1) are denoted
by •, while the non-special elements are denoted by ◦. f is always defined in a
way that matches up the elements of ϕe (Is(q)) with the corresponding elements
of ϕe (Is(q + 1)). Note that special elements will be mapped to non-special ones,
and vice versa. This design of “alternating special elements” is important for our
strategy to work.

36 KENG MENG NG AND MAXIM ZUBKOV

f(−, s) f(−, s)

R R R R
Le : . . . ◦ ◦ • • . . . • • ◦ ◦ . . . ◦ ◦ • • . . .

ϕe(−, s)
6 6 6 6 6 6 6 6 6 6 6 6

L : . . . ◦ ◦ • • . . . • • ◦ ◦ . . . ◦ ◦ • • . . .
 	
 	
 	
Is(q − 1) Is(q) Is(q + 1)

Figure 5. A diagram of mappings

We briefly describe the basic strategy at work here. The reader familiar with the
workings of the first main theorem will have no trouble here. The basic strategy
here is similar to the first main theorem, and much simpler. Refer to Figure 5.
Let’s call the elements of Is(q) (from left to right) x0 < x1 < x2 < x3, and the
elements of ϕe (Is(q)) y0 < y1 < y2 < y3. Currently, ϕe(xi, s) = yi and x0, x1 are
the special elements of I(q). Let’s denote the corresponding elements over in the
next block Is(q + 1) the same, with xi replaced by x′i and yi replaced by y′i. So we
have declared f(yi, s) = y′i and also declared that f(yi) 6= y′j for j 6= i. As with
the previous proof, the difficulty of the construction comes down to enforcing these
restrictions on f .

Suppose a new element y shows up between y2 and y3. This does not pose an
immediate threat to f , because y is new and we can readily declare f(y) = y′3, and
since y3 is now bumped out of the block ϕe(Is(q)), it will be easy to redefine f(y3).

Now suppose y shows up between y1 and y2. Now the redefinition of y2 is in
danger, because according to the current configuration, we have to map y2 to y′3,
but we have already forbidden this definition. Therefore, we simply reduce the
block size of I(q) down to 3 and put more elements between x2 and x3. Provided
that f(ϕe(x0)) = y0 and f(ϕe(x1)) = y1 and f(ϕe(x2)) = y do not change, we must
force y2 to leave the block, avoiding the need to redefine f(y2) = y′3.

Finally, suppose y shows up between y0 and y1. Then ϕe must change on a
special element of I(q). Everytime this happens, we will reduce the block size of
both I(q) and I(q+ 1) down to 2. (For symmetrical reasons, we also reduce the size
of I(q − 1), but this is irrelevant in this example). This will cause y′0 and y′1 to be
replaced by fresh elements (never seen before in Le) which we can then take to be
the new values of f(ϕe(x0)) and f (ϕe(x1)).

3.2. The formal construction for a single requirement. In this section we
fix a requirement Re and describe the formal construction to meet Re. We fix the
associated Le. As in the proof of the first main theorem, the construction consists
of several modules and are controlled by the main module. Since we fix e in this
section we will not mention e when referring to the parameters of the construction.

ON KIERSTEAD’S CONJECTURE 37

3.2.1. Construction of the linear order L. At stage s = 0, I0(q) = ∅ for all q ∈ Q.
At stage s+ 1, we do the following. For all q ∈ Q such that the Gödel number of q
is ≤ s, we modify Is+1(q), according to the following two cases.

Case 1. Is(q) is not empty: Our actions for the block I(q) will obviously
depend on the current value of g(q, s+ 1).

Subcase g(q, s+ 1) = |Is(q)|: Then |Is(q)| is just right, and we set
Is+1(q) = Is(q).

Subcase g(q, s+ 1) > |Is(q)|: Then we shall need to add elements to
Is(q). Pick one or two new elements, x1 or x1 < x2, depending on
the value of g(q, s + 1) − |Is(q)|. If q is even we add x1 and(or) x2
immediately to the left of all elements of Is(q). If q is odd we add
immediately to the right. After adding the new element(s) we have
Is+1(q) = g(q, s+ 1), consisting of consecutive elements of L.

Subcase g(q, s+ 1) < |Is(q)|: Then we shall need to remove one or two
elements depending on the value of |Is(q)| − g(q, s + 1). If q is even
we remove the least (or least two) elements of Is(q), and if q is odd we
remove the greatest (or greatest two) elements of Is(q). After removing
the new elements(s) we have Is+1(q) = g(q, s+1), and notice that this
does not remove U1(q) or U2(q). The elements of Is(q) \ Is+1(q) which
are removed are of course removed from I(q) but not from L; we declare
these elements free.

Case 2. Is(q) is empty: We would like to find a suitable pair of elements
for U1(q) and U2(q). Search for q1, q2 ∈ Q such that q1 <Q q <Q q2, Is(q1)
and Is(q2) are not empty and there is no q3 such that q1 <Q q3 <Q q2 and
Is(q3) is not empty. (Obviously, if q1 or q2 cannot be found we take it to
be a point at infinity). Find the least x (in the standard order on N) such
that x is free and lies strictly between Is(q1) and Is(q2). If there is no such
x then we add a new free element x between Is(q1) and Is(q2). Now add
a new free element x′ > x as the successor of x. Define U1(q) = x and
U2(q) = x′. Populate the rest of Is+1(q) according to the instructions in
Case 1.

Clearly, |I(q)| = lim inf
s→∞

|Is(q)| = lim inf
s→∞

g(q, s). Therefore, L =
∑
q∈Q

lim inf
s→∞

g(q, s).

It is strongly η-like with no rational subinterval because we will ensure that 2 ≤
g(q, s) ≤ 4 for every q, s. Hence, L is of the desired type.

3.2.2. The definition of an expansionary stage. We call s = 0 an expansionary
stage. For s > 0 we let s− be the largest expansionary stage less than s. First
define the set Ind(s) to be all numbers of the form q + n where q ∈ Q such that
0 ≤ q < 1 and the Gödel number of q is < s, and n ∈ Z such that |n| < s. We
declare s to be an expansionary stage if and only if the following conditions hold.

• ϕe is currently order preserving on the set ∪{Is(q) | q ∈ Ind(s−)}.
• For each q ∈ Ind(s−), ϕe (Is(q), s) is an interval of Le[s]. That is, no other

elements of Le[s] lies strictly between two elements of ϕe (Is(q), s).
• For each q ∈ Ind(s−), |Is(q)| = 4.

3.2.3. The q-module. The q-module is only active at a stage s if q ∈ Ind(s−).
Otherwise, it is inactive, and doesn’t do anything at stage s. Suppose the q-module
is active at the current stage s. We call U1(q) and U2(q) the special elements of

38 KENG MENG NG AND MAXIM ZUBKOV

I(q), and the element x ∈ Is(q) the secondary element of I(q) if x is the immediate
predecessor of U1(q) if q is even, and the immediate successor of U2(q) if q is odd.

Case 1: ϕe(x, s) 6= ϕe(x, s− 1) for some special element x of I(q). Then we
request for g(q − 1, s) = g(q, s) = g(q + 1, s) = 2.

Case 2: The secondary element x of I(q) exists and ϕe(x, s) 6= ϕe(x, s − 1).
Then we request for g(q − 1, s) = g(q, s) = g(q + 1, s) = 3.

Case 3: Otherwise. Then we check if the two elements immediately to the
left of ϕe (Is(q − 1)), ϕe (Is(q)) and ϕe (Is(q + 1)) and the two elements
immediately to the right of ϕe (Is(q − 1)), ϕe (Is(q)) and ϕe (Is(q + 1)) are
enumerated after s−. If all of these elements are new, we request for g(q −
1, s) = g(q, s) = g(q + 1, s) = 4. Otherwise we make the same requests as
the previous stage.

3.2.4. The definition of f . We update f on ϕe (I(q)) only if s is an expansionary
stage, g(q − 1, s) = g(q, s) = g(q + 1, s) = 4, |Is(q − 1)| = |Is(q)| = |Is(q + 1)| and
q ∈ Ind(s−). Otherwise, as usual, we retain the previous value of f(y) if there are
no requests to update f(y, s).

For each x ∈ Is(q) we define f (ϕe(x, s), s) to be the corresponding element
in ϕe (Is(q + 1)). That is, send the smallest element of ϕe (Is(q)) to the smallest
element in ϕe (Is(q + 1)), and so on.

For each y ∈ ϕe (Is(q)) we also enumerate (y, z) into Gs for every z 6= f(y, s)
and z ∈ ∪{ϕe (Is(q)) | q ∈ Ind(s−)}.

3.2.5. The main module for Re. At every stage we update ϕe(x, s) at the beginning
of stage s. The main module at stage s > 0 consists of the following steps.

(1) Do step s of each active q-module (§3.2.3).
(2) For each active q, define g(q, s) to be the smallest requested value in the

previous step. If q is not yet active, define g(q, s) = 4.
(3) Do step s of the L-construction (§3.2.1).
(4) Do step s of the definition of f (§3.2.4).

3.3. The formal verification for a single requirement. First of all, notice that
g(q, s) is either 2, 3 or 4 for every q and s. Furthermore, every x enumerated into
L is eventually inside I(q) for some fixed q. Since §3.2.1 is taken at every stage, it
is clear that L =

∑
q∈Q

lim inf
s→∞

g(q, s). Hence, L is of the desired type.

For the rest of the verification, we assume that Fe = limϕe(−, s) is total and is
an isomorphism from L → Le.

Lemma 3.1. For any q, g(q, s) = 4 for almost all s.

Proof. If q is never active, then g(q, s) = 4 for all s. We first assume that there
is some q such that g(q, s) = 2 for infinitely many s. This means that for some
q′ = q−1, q or q+1, the q′-module will infinitely often request for g(q, s) = 2 under
case 1 or 3. As the special elements of I(q′) are fixed, and ϕe(x, s) must eventually
stop changing on these special elements, this means that eventually the q′-module
is stuck in case 3. That means that from some point on, Is(q

′ − 1), Is(q
′) and

Is(q
′ + 1) will consist of only its special elements. This means that ϕe (Is(q

′ − 1)),
ϕe (Is(q

′)) and ϕe (Is(q
′ + 1)) are all eventually stable. By the construction of L,

Is(q
′− 1), Is(q

′) and Is(q
′+ 1) are maximal blocks of L, which means that in order

ON KIERSTEAD’S CONJECTURE 39

to get stuck in case 3, Fe cannot be surjective. Therefore, we conclude that for
every q, g(q, s) > 2 eventually.

Now fix some q with infinitely many s such that g(q, s) = 3. Again let the
q′-module be infinitely often responsible for requesting g(q, s) = 3 under case 2 or
3. Since g(q′, s) is eventually ≥ 3, this means that the secondary element of I(q′)
is eventually stable and ϕe is also stable on it. Hence the q′-module is eventually
stuck in case 3. Since g(q′ − 1, s), g(q′, s) and g(q′ + 1, s) are eventually ≥ 3, this
means that I(q′ − 1), I(q′) and I(q′ + 1) are eventually stable with exactly three
elements each (two special, one secondary). The same argument as above produces
a contradiction. Hence we conclude that for any q, g(q, s) = 4 for almost all s. �

Therefore, under the additional assumptions that L ∼= Le via Fe, we in fact
have L ∼= 4 · η, and that for every q, Is(q) is eventually stable with four elements.
Thus, it can be easily seen that there are infinitely many expansionary stages in
the construction.

Lemma 3.2. f(y) = lim
s→∞

f(y, s) is a nontrivial automorphism of Le.

Proof. Fix y ∈ Le. As Fe is bijective, there is some unique x such that Fe(x) = y,
which means that ϕe(x, s) = y for almost all s. But x has to eventually be in some
I(q) for some fixed q, and since there are infinitely many expansionary stages, q
is eventually active. Hence f(y, s) must be defined for a large enough s. Since
Is(q + 1) and ϕe (Is(q + 1)) are eventually stable, lim

s→∞
f(y, s) is also eventually

stable. Thus, the function f(y) = lim
s→∞

f(y, s) is total.

It is easy to see that f is order-preserving. If y1 < y2 then fix the corresponding
q1 and q2 such that yi ∈ ϕe (I(qi)). Since ϕe is order-preserving, this means that
q1 ≤ q2. If q1 = q2 then obviously f(y1) < f(y2). If q1 < q2 then q1 + 1 < q2 + 1
and so ϕe(I(q1 + 1)) lies to the left of ϕe(I(q2 + 1)) and thus f(y1) < f(y2). The
surjectivity of f follows similarly. �

Lemma 3.3. f has a Π0
1 graph.

Proof. We need to show that f(y) = z if and only if (y, z) 6∈ G. If f(y) 6= z
then at a suitably large expansionary stage s after y and z are both in the set
∪{ϕe (Is(q)) | q ∈ Ind(s−)} and f(y, s) 6= z, we will enumerate (y, z) into G.

Now assume for a contradiction that there exists some (y, z) ∈ G such that
f(y) = z. Fix x0, x1, q0 and q1 such that ϕe(x0, s) = y, ϕe(x1, s) = z, x0 ∈ Is(q0)
and x1 ∈ Is(q1) for almost all s. Notice that as f(y) = z, we must have q1 = q0 + 1.
Since y and z occupy the same position in ϕe (I(q0)) and ϕe (I(q0 + 1)), it must be
that either x0 is a special element of I(q0), or x1 is a special element of I(q0 + 1).
Without loss of generality, assume that x0 is a special element of I(q0). Thus x1 is
a non-special element of I(q0 + 1).

Let s0 be the first time (y, z) is enumerated into G. In particular, s0 is an
expansionary stage and both y, z ∈ Le[s0]. After s0, we cannot have a change in
ϕe(x) where x is a special element of I(q0 +1). This is because otherwise, we would
set g(q0+1, s) = 2 and thus at every expansionary stage after s0, ϕ(v, s) has to be a
new element not in Le[s0] for each non-special element v of I(q0 +1). In particular,
this contradicts the property of z.

Therefore, after s0, we also see that we cannot have a change in ϕe(x0). Other-
wise, as x0 is a special element of I(q0), this would cause g(q0 + 1, s) = 2. Since

40 KENG MENG NG AND MAXIM ZUBKOV

ϕe (U1(q0 + 1)) and ϕe (U2(q0 + 1)) are stable at s0, this also means that at every
expansionary stage after s0, ϕ(v, s) has to be a new element not in Le[s0] for each
non-special element v of I(q0 + 1), contradicting the property of z.

Thus we conclude that at s0, ϕe (x0), ϕe (U1(q0 + 1)) and ϕe (U2(q0 + 1)) are
all stable. In particular, at s0, ϕe(x0, s0) = y. At stage s0, since we enumerated
(y, z) into G, there are some q′ ∈ Ind(s−0) and x′ ∈ Is0(q′) such that z = ϕe(x

′, s0).
Obviously, q′ = q0 + 1, because otherwise as s0 is an expansionary stage, we have
|Is0(q0+1)| = 4 and so there are at least two elements between z and ϕe (U1(q0 + 1))
and ϕe (U2(q0 + 1)). Since the latter two values are already stable at s0, z cannot
possibly end up in ϕe (I(q0 + 1)) later.

Thus we see that at s0, z = ϕe(x
′, s0) for some x′ ∈ Is0(q0 + 1). However, one of

the conditions for enumerating (y, z) into G is that f(y, s0) 6= z. Therefore, the only
possibility is that at s0, x′ is the secondary element of I(q0 + 1). (Otherwise if x′ is
not the secondary element of I(q0 + 1) then z is not adjacent to a special element
of ϕ(I(q0 +1)) and of course cannot later become adjacent). Now after s0, we must
have g(q0 + 1, s) ≥ 3, otherwise we would require for at least two new elements to
show up between the special elements of ϕe (I(q0 + 1)) and z, which contradicts
the property of z. Therefore, x′ stays forever as the secondary element of I(q0 + 1).
This means that if ϕe(x

′, s) does not change after s0, then f(y, s) cannot be equal
to z later on. However, if ϕe(x

′, s) does change after s0 but not ϕe (U1(q0 + 1))
or ϕe (U2(q0 + 1)), then exactly one new element must appear between the special
elements of ϕe (I(q0 + 1)) and z. This causes g(q0 + 1, s) = 3 and thus before the
next expansionary stage we would require further elements between ϕe (I(q0 + 1))
and z, which again contradicts the property of z. �

3.4. Handling all requirements. The previous section is effective in the sense
that given any pair Le and Fe, we are able to produce L with the desired properties.
Let’s give this output L a different name, say Me. We can take our final linear
order

Lfinal ∼= 1 + 2 · η + 1 +M1 + 1 + 2 · η + 1 +M2 + 1 + 2 · η + 1 + · · ·
where in each interval Me we run the basic construction and play against the pair
Le and Fe � Me. Unlike the proof of the first main theorem, we do not need to
worry about the subinterval of Le corresponding to Me, because Fe � Me will
automatically pick it out for us, if Fe is to be trusted. Thus we will be able to
build a nontrivial Π0

1 automorphism of Le � Fe(Me). This obviously extends to an
automorphism of Le by taking the identity on the outside.

References

1. R. G. Downey. Computability Theory and Linear Orderings, in: Handbook of Recursive Math-

ematics Vol. 2., Elsevier, Amsterdam, (1998), pp. 823–976.

2. R. G. Downey, A. M. Kach, D. Turetsky. Limitwise monotonic functions and their applications,
Proceedings of the 11th Asian Logic Conference, (2012), pp. 59–85.

3. R. G. Downey, M. F. Moses. On Choice Sets and Strongly Non-Trivial Self-Embeddings of
Recursive Linear Orders, Mathematical Logic Quarterly, 35 (1989), pp. 237–246.

4. B. Dushnik, E. W. Miller. Partially Ordered Sets, American Journal of Mathematics, 63

(1941), pp. 600–610.
5. A. N. Frolov, M. V. Zubkov. Increasing η-Representable Degrees, Mathematical Logic Quar-

terly, 55 (2009), pp. 633–636.

6. A. N. Frolov, M. V. Zubkov. Limitwise Monotonic Functions Relative to the Kleene’s Ordinal
Notation System, Lobachevskii Journal of Mathematics, 35 (2014), pp. 295–301.

ON KIERSTEAD’S CONJECTURE 41

7. K. Harris. η-Represetation of Sets and Degrees, Journal of Symbolic Logic, 73 (2008), pp.

1097–1121.

8. C. Harris, K. Lee, S. B. Cooper. Automorphisms of η-Like Computable Linear Orderings and
Kierstead’s Conjecture, Mathematical Logic Quarterly, 62(6) (2016), pp. 481–506.

9. A. M. Kach, D. Turetsky. Limitwise Monotonic Fuctions, Sets and Degrees on Computable

Domaine, The Journal of Symbolic Logic, 75 (2010), pp. 131–154.
10. H. A. Kierstead. On Π0

1-Automorphisms of Recursive Linear Orders, Journal of Symbolic

Logic, 52 (1987), pp. 681–688.

11. J. Rosenstein. Linear Orderings, Academic Press, New York, (1982).
12. S. T. Schwarz. Quotient Lattices, Index Sets, and Recursive Linear Orderings, Ph.D. Thesis:

University of Chicago, Department of Mathematics, (1982).

13. S. T. Schwarz. Recursive Automorphisms of Recursive Linear Orderings, Annals of Pure and
Applied Logic, 26 (1984), pp. 69–73.

14. G. Wu, M. Zubkov. The Kierstead’s Conjecture and limitwise monotonic functions. Annals of
Pure and Applied Logic, 169(6) (2018), pp. 467–486.

15. M. V. Zubkov. Sufficient conditions for the existence of 0′-limitwise monotonic functions for

computable η-like linear orders. Siberian Mathematical Journal, 58(1) (2017), pp. 80–90.

Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, 21 Nanyang Link, Singapore 637371

N.I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal Univer-
sity, Russia, Kazan, Kremlevskaya 18, 420008

