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Abstract. The relation ‘being primitively recursively isomorphic’ is a reduc-

tion (a pre-order) rather than an equivalence relation between presentations

of an algebraic structure. It leads to the definition of punctual degrees of a
given algebraic structure. We show that the punctual degrees PR(Q) of the

order of the rationals are not dense.
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1. Introduction

In this paper we investigate the sub-recursive content of the dense linear order
η = (Q, <), and we discover that it is remarkably complex. It is well-known that any
dense countable linear orders without endpoints is isomorphic to η. The elementary
back-and-forth proof of this fact is clearly algorithmic in nature. This intuition
can be clarified using the classical notion of computable categoricity. We follow
Mal’cev [Mal61] and Rabin [Rab60] and say that a structure is computable if its
domain is ω and the relations and the operations of the structure are computable
predicates and functions upon ω. If A ∼= M and A is computable, then we say
that A is a computable presentation of M. Following Mal’cev, we say that a
countable algebraic structure M is s computably categorical or autostable if any
two computable presentations of M are computably isomorphic. Thus, we obtain
the elementary folklore fact: The dense linear order η = (Q, <) is computably
categorical.

The study of computable categoricity has accumulated a lot of intricate techniques
and deep results; we cite the books [EG00, AK00, Mon21]. Computably categori-
cal structures can be very complex in general since their index set is Π1

1-complete
[DKL+15]. Remarkably, there also exist structures having exactly two computable
presentations up to computable isomorphism [Gon80b, Tur20]. In the terminology
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of [KS99, HKSS02], such structures have ‘computable dimension’ two. However,
non-trivial examples of computably categorical structures or structures of finite
computable dimension n > 1 have to be specifically constructed, and furthermore
this requires significant effort. Such complex examples can be found among two-
step nilpotent groups [Gon81], fields [MPSS18], and in some other classes [HKSS02],
but these have to be specifically built using elaborate techniques. It appears that
practically all algorithmically presented algebraic structures encountered in mathe-
matical practice will possess a computable dimension of either 1 or ω, and this fact
is likely to be apparent and lacking in depth. This assertion certainly holds true for
the dense linear order (Q, <) and for linear orders more generally [Rem81, GD80].
The same can be said about, e.g., Boolean algebras [Gon97, LaR77], broad classes
of abelian groups [Smi81, Gon80a, MN18], trees of finite height [LMMS05], ordered
abelian groups [GLS03], and finitely generated groups and algebras (folklore).

Why do all naturally occurring algebraic structures generally lack deep effective
categoricity properties? It is crucial to emphasize that the discussed above approach
to algorithms in algebra does not make any assumptions regarding resource or
time restrictions on the algorithms. In particular, the use of unbounded search is
permitted. In [Ner14], Nerode straightforwardly acknowledges:

“Unbounded search is a mathematical construction in a mathemat-
ical universe, not realizable in the world in which we live.”

However, the excessive computational power of the unbounded search is often con-
veniently assumed throughout the vast mathematical literature, and often without
further justification. For example, the classical study of the Word Problem in
finitely generated groups [Mil92, LS01] typically assumes that the Word Problem
is invariant under the change of group presentation; this is, however, only true if
we allow unbounded search. The same can be said about the aforementioned back-
and-forth proof illustrating that (Q, <) is computably categorical. One might start
to suspect that permitting unbounded search overlooks many intriguing algorith-
mic properties and effects that could vary across different presentations of the same
structure.

What happens if we forbid unbounded search in computable structure theory? As
argued in [BDKM19, KMN17b], the most natural way to attack this question is to
use primitive recursive procedures. It was proposed in [KMN17b] to systematically
investigate structures that admit a presentation with primitive recursive operations,
as defined below.

Definition 1.1 ([KMN17b]). A countable structure is fully primitive recursive or
punctual if its domain is N and the operations and predicates of the structure are
(uniformly) primitive recursive.

The main intuition is that we need to define more of the structure “without delay”.
However, in contrast with automatic [KN94] or polynomial-time structures [NR87],
the apriori bounds in a punctual algorithm can still be relatively inefficient computa-
tionally. So one would perhaps expect that the theory of punctual structures should
not be too different from the theory of computable structures since Definition 1.1 is
still rather abstract. This naive intuition has proven to be entirely false. Indeed, as
explained in [BDKM19, DMN21], punctual structures tend to be more technically
related to polynomial-time structures and to online combinatorics [Kie98, BEY98]
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rather than to computable structures. We cite the surveys [BDKM19, DMN21]
for many counter-intuitive results which required novel techniques to be developed.
The main result of this article surprisingly refutes a seemingly natural conjecture
which we will discuss shortly.

Following the same pattern as before, fully primitive recursive (i.e. punctual)
structures should be studied up to primitive recursive isomorphism. The difference
between the primitive recursive and the computable cases becomes immediately
apparent. While the inverse of a computable bijective function is also computable,
the inverse of a primitive recursive bijective function is not necessarily primitive re-
cursive. To address this issue, we could restrict ourselves to punctual isomorphisms;
these are the primitive recursive isomorphisms whose inverses are also primitive re-
cursive. This idea was explored in [KMN17b, MN20, DHTK+20, DGM+20, Ala18].
In the present paper we adopt a different, more subtle approach. It was proposed in
[KMN17a] to instead view ‘being primitively recursively isomorphic’ as a reduction
between presentations, as clarified below.

Suppose A and B are punctual structures. We say that A is punctually reducible
to B, written A ≤pr B, if there exists a primitive recursive surjective isomorphism
f : A → B. When A ≤pr B, up to a primitive recursive delay we can view A as a
substructure of B at every stage. We write A ∼=pr B when A and B are punctually
reducible to each other. Note that B ≤pr A does not have to be witnessed by the
inverse of a primitive recursive isomorphism illustrating A ≤pr B.

Definition 1.2 ([KMN17a]). We write PR(M) to denote the collection of all
punctual degrees of M, which are the ∼=pr-classes of its punctual presentations
under ≤pr.

It turned out that the punctual degrees of algebraically tame structures can pos-
sess many counter-intuitive properties. For example, it was illustrated in [MN16]
that the punctual degrees of the dense linear order η, the countable atomless
Boolean algebra, and the random graph are all pairwise not isomorphic. All three
structures seem to share essentially the same algorithm witnessing their computable
categoricity, with exactly one instance of unbounded search at every stage. How-
ever, the result from [MN16] detects the subtle difference in the (truly) unbounded
search in the back-and-forth proofs for these homogeneous structures. This is in
contrast to the coarser invariants of computable and punctual dimension which fail
to distinguish between these three structures. These results show that studying
the punctual degree structure PR(M) of an algebraic structure M is important
beyond just being of mere technical interest. It can reveal the very subtle intricacies
of the algorithmic nature of the structure that other methods cannot detect nor
explain. This is the main concern of the present paper.

Given a familiar structure A, what kind of properties does PR(A) exhibit (as
a partial ordering)? This question can be remarkably challenging even for some
common structures such as, e.g., the random graph [MN16], the ordered semi-ring
(N, <,+,×, 0, 1) [KMZ23], and the discrete order (Z, <) [DDH+]. Some progress
has been made in the study of the punctual degrees of finitely generated struc-
tures [BKMN20, KMZ23], especially in the case of rigid finitely generated struc-
tures, but many problems remain unresolved.
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Conversely, given some property, can we find a structure whose punctual degrees
have this property? Attacking the latter question usually involves constructing
some ‘artificial’ punctual A so that PR(A) has the desired property. For example,
there exists a structure A such that the partial order PR(A) is infinite and has the
greatest and the least element [BKMN20]. Also, one can have |PR(A)| =2 [MN20];
further results can be found in [KMN17a, GHTMT21]. We state one such result
that is directly related to the present paper.

Theorem 1.3 ([GHTMT21]). There exists a structure A such that the punctual
degrees of A are not dense.

The proof of the result in [GHTMT21] uses a tree of strategies to construct a
structure A and its punctual copies B <pr C so that there is no M with B <pr

M <pr C. This result (and its relative complexity) suggests that the non-density of
PR(A) is a pathology, and that structures with this property have to be specifically
constructed. Compare this with structures having computable dimension two; as
we discussed earlier, such examples have to be specifically constructed. Also, the
punctual degrees are dense for finitely generated structures [BKMN20] and for the
order (Z, <) [DDH+]. These results seemed to further support this intuition.

The principal result of this paper states:

Theorem 1.4. The punctual degrees of (Q, <) are not dense.

The high combinatorial complexity of the proof of Theorem 1.4 is potentially more
unexpected than the result itself. Indeed, not all aspects of (Q, <) are elementary.
For instance, the automorphism group of (Q, <) is a non-trivial object [Mac11,
Gla81]. The complexity of our proof is not related to the level of injury or guessing
in the construction. Rather, it is related to the complexity of Aut(Q, <). We need to
build many automorphisms of (Q, <) stage-by-stage while simultaneously resolving
multiple tensions between different strategies. This is done using an elaborate
system of labels which will help us to sort out the combinatorics. In Section 3 we
thoroughly explain the main strategies and ideas behind the formal construction.
This should help the reader to understand the technical formal proof.

We also remark that there are very few structures A for which its punctual degrees
PR(A) is known to be not dense. Indeed many early results about the structure
of PR(A) for a given A focusses on using the ‘switching’ argument to prove the
density of PR(A) (e.g. [BKMN20, KMZ23, DDH+]). The earliest techniques for
controlling the size of (an interval) in PR(A) comes from the ‘pressing’ technique
developed in [KMN17b], and later adapted to construct various structures A with
different restrictions on PR(A) (see [MN20, DGM+20]). The example mentioned
above [GHTMT21] was also specifically constructed with non-density in mind.

In view of these results in the literature, we believe the result of the present paper
is a significant breakthrough in the study of punctual structure theory. All of the
known techniques for producing empty intervals in PR(A) rely on being able to
specifically construct the structure A, usually a graph, in which some version of the
pressing technique can be employed. Our result is the first example of a natural
structure in which its punctual degrees is not dense. Another significant fact is
that the example we found was of a homogeneous structure in which there is no
way to distinguish between different ‘components’, the latter being a key thrust in
many proofs in computable structure theory. Therefore our proof will have to rely
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on developing various novel techniques to overcome the combinatorial difficulties
presented.

There are many open questions in the area, some of which are directly related to
the study of punctual degrees of common structures; see [BDKM19]. We of course
would also like to have some general results and meta-theorems that would relate
order-theoretic properties of PR(A) with algebraic properties of A, in the spirit of
the results from [BKMN20, KMZ23] mentioned above. However, it appears crucial
to gather more results about common algebraic structures first, as our intuition
repeatedly proves to be unreliable and our techniques seem often insufficient.

2. The setup and the requirements

Let {Ak}k∈ω be an effective listing of all primitive recursive presentations of all
structures in the language of one binary relation. (We are manly interested in
those Ak that are dense linear orders with no endpoints. It is Π0

2 to tell whether
Ak is indeed isomorphic to Q. Since the natural presentation of Q is primitively
recursively universal, each Ak can be viewed as a subset of this presentation.) Let
(ϕn)n∈ω, (pi)i∈ω, (qj)i∈ω be uniformly computable lists of (all) primitive recursive
functions; we use three different lists in place of just one for notational convenience.
We build two punctual presentations B ≤pr T of the dense order of the rationals
that satisfy the following requirements.

R⟨i,j,k⟩ : If pi : B →iso Ak and qj : Ak →iso T then either β⟨i,j,k⟩ : Ak →iso

B or α⟨i,j,k⟩ : T →iso Ak,

where ‘d : X →iso Y ′ stands for ‘d is a (surjective) isomorphism from X onto Y ’,
and

Nm : ϕm : T → B is not a surjective isomorphism.

In R⟨i,j,k⟩ the maps β⟨i,j,k⟩ and α⟨i,j,k⟩ will be constructed in stages in the proof,
thus witnessing that Ak, if it is indeed a punctual presentation of Q, does not lie
strictly in-between B and T .

2.1. Notation and conventions. We also need to fix some notation that will be
used throughout the proof, and usually without explicit reference.

Notation 2.1. For convenience, R⟨i,j,k⟩ will be referred to as Re, similarly, p, q, β, α
and A mentioned in R⟨i,j,k⟩ will all be indexed by e (where e could be thought of as
e = ⟨i, j, k⟩).

Notation 2.2. Define Qnd = Q \Z[ 12 ] to be the set of all non-dyadic rationals. We
also fix the natural presentation of Qnd via fractions throughout the proof.

We construct punctual presentations B =
⋃

s Bs and T =
⋃

s Ts as subsets of Qnd

via stages, and under the order inherited from Qnd. We ensure that at every stage
s, Bs+1 \Bs and Ts+1 \ Ts is non-empty. Note that we shall treat each element of
B, T as a non-dyadic rational.

To better track the ‘flow’ of the elements entering B and T during the construc-
tion, and for the sake of the definitions of certain functions, each interval will be
labelled by some finite string. The formal definition of the labels will be introduced
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in Section 4, where we also establish and verify several technical properties of such
string-labels that will be necessary to run (and then verify) the construction.

2.2. The global requirements. In what will follow, we shall monitor various
primitive recursive functions (p, q etc.) which are not defined by us. Whenever we
see that such a function is not order-preserving we immediately declare the respec-
tive requirement met. We will assume that this action is taken in the background,
and we will never mention it explicitly in the informal description below. The same
can be said about the potential structures A below T and above B: if A is not a
linear order then we instantly declare the requirements associated with A met.

At every stage we will have B ⊆ T ⊂ Qnd. Thus, we have a primitive recursive
isomorphism

i : B → T

which is just the inclusion (identity) map.

Also, we have to ensure that both B and T are dense without end-points. It is
crucial that we do not have to meet the densification sub-requirements promptly.
In other words, we can afford adding such a z witnessing density arbitrarily late in
the construction, and thus these actions will effect our construction rather insignif-
icantly. Even if we declare a certain interval ‘restrained’ we can once in a while
still add a fresh point to it, as long as it happens very rarely. Due to these global
requirements being rather easy to meet, we shall not make their strategies explicit
in the description below. The reader should however keep in mind that these global
requirements will be met in the general construction.

3. An informal description of the strategies

3.1. A global overview of the construction. We suppress the indices through-
out. Recall that B ≤pr T is witnessed by i : B → T . Of course i−1 is not necessarily
primitive recursive because of the free elements in T \B. In the informal explana-
tion, we imagine that A and the maps p : B → A and q : A → T are ‘played’ by
the ‘opponent’. In order to construct a structure A such that B ≤pr A ≤pr T ,
the opponent must provide us with primitive recursive functions p : B → A and
q : A → T . In order to satisfy R, we attempt to define primitive recursive functions
β : A → B or α : T → A.

According to our notation, the composition qp : B → T gives an embedding of B
onto T , and we shall argue shortly that it should agree with i : B → T (in the sense
that qp = i) otherwise we can diagonalise against either p or q. In other words, we
can view A as a punctual substructure of T and a superstructure of B. The most
straightforward plan for meeting an N -requirement

ϕ : T → B is not a surjective isomorphism

is to add extra points to T and restrain their ϕ-images from entering B; we will call
such elements currently in T \B free. The danger is that A may attempt to switch
between copying T and B by adding the free points in some irregular way. The
overall plan is to build T in a way that it contains as few free points as possible
when compared to B. If A ‘responds’ with a primitive recursive delay by giving
its versions of the extra diagonalization points, then we can use this delay to show
that A =pr T . On the other hand, if there is no primitive recursive upper bound
on how slowly A responds, then we can ‘copy’ A into B and show that B <pr T
and A =pr B.
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Simply put, if A is ‘slow’ then we will attempt to copy A into B, and this seems
consistent with B <pr T . If A is ‘quick’ then, with a primitive recursive delay,
it should essentially be T . The obvious tension here is that, of course, we cannot
know ahead of time whether A is ‘slow’ or ‘quick’. Thus, we will have to ‘press’ A
to make a choice. We will set up the construction so that, for any given primitive
recursive ϕ, either A always responds with delay ϕ, or we diagonalise against ϕ.
Then the Π0

2 outcome corresponds to the situation when we diagonalise against all
such ϕ, one-by-one.

The idea here is to make β surjective only if A is ‘slow’ (Π0
2), thus witnessing

A ≤pr B via β. In this case α will be initialized infinitely often. Every time we
initialize α, the strategy will pick the next timestamp function ϕ to measure the
speed of convergence of α. On the other hand, if ‘A is quick’ (as witnessed by some
ϕ; this is Σ0

2) is the true outcome, then we will eventually stick with a stable α
primitive recursive in ϕ. Also, in this case β will influence only some part of B
leaving enough room for action for the other strategies. The definition of β is not
too complex; it will be explained shortly. Recall that β corresponding to A has to
be total only under the Π0

2-outcome (when A is ‘slow’). Thus, at every stage of the
construction β will not be onto; its range will have ‘gaps’. This is explained below.

3.2. Maintaining the gaps in rng(β). The most natural (naive) way to define
α is to set α = q−1, provided that q−1 converges with the speed ϕ. If q−1 currently
seems primitive recursive (via ϕ), then β will stop extending its range, and thus (at
least temporarily) fail to be surjective. This idea will be implemented as follows.
Pick two dyadic rationals x0, x1 and keep (x0, x1) out of the range of β. We refer
to the interval (x0, x1) as the gap of β. As long as q−1 seems primitive recursive
with respect to the current timestamp function ϕ, the gap will remain. While the
gap remains, we attempt to define α based on q−1 to obtain T ≤pr A.

If it is discovered that q−1 not primitive recursive via ϕ, we abandon this definition
of α and shrink the gap (x0, x1). If q−1 seems primitive recursive for cofinitely
many stages, then the version of α defined past that stage is a primitive recursive
isomorphism. If we can ensure that each successive gap is a strict subset of the
previous one, with their lengths approaching 0 and so that they converge to a
dyadic point, then β will end up being surjective in the Π0

2 outcome. We never
initialise β.

3.3. One R-strategy and infinitely many N-strategies. In the following sub-
sections, we provide a more in-depth discussion of the details of the strategies.

3.3.1. The basic Strategy for R. The main challenge of the strategy will be defining
α = q−1 primitively recursively. Of course we cannot always succeed in doing so,
but we shall pair each attempt of defining α with the help of ϕ = ϕm provided by
Nm, and in this case we say that we assign ϕm to α.

Ensure that qp = i, as follows. If qp ̸= i, then fix b ∈ B such that qp(b) ̸= b, and
(w.l.o.g.) suppose that qp(b) > b. Then we make sure that qp fails to be a primitive
recursive isomorphism with the strategy below, as illustrated in Fig. 1. Notice that
b′ ∈ (b, i−1 qp(b)) can always be found as B is a copy of η. Then it must be that
qp(b′) > qp(b), otherwise qp fails to be order-preserving. When enumerating such
a b′ into B, the global requirement maintaining i only causes elements to enter T
on the left of qp(b). As long as we ensure that no elements enter between qp(b)
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B

T

•
b

•
i(b)

•
qp(b)

▲

b′

▲

i(b′)

i i
q p

Figure 1. Ensuring that qp = i.

and qp i−1 qp(b), qp must fail to be a primitive recursive isomorphism as it has no
suitable image for b′. (Note this diagonalization is achieved in finitely many stages.)

Thus, without loss of generality, suppose that qp = id. Define β : A → B as
follows. Recall that an element t ∈ T is called free (at the stage) if t is currently
not in B. Let

Ik := (k, k + 1),

for each k ∈ Z. Recall that since Bs ⊆ Ts ⊂ Qnd, then there is a version of
Ik in Bs, Ts for each k. Often times we will not explicitly state which Ik we are
talking about but will be obvious from the maps. Throughout the construction,
free elements can only be introduced in (the interval in T associated with) I0. In
order to keep β primitive recursive, whenever some element x is enumerated into
A such that q(x) (in T ) is not in I0, enumerate q(x) + 1 into B.

Recall that the strategy was to keep a gap in the range of β while we are attempt-
ing to define α. This gap will be some subinterval of I1 (in B). Roughly speaking,
β behaves like the translation map q(x) 7→ q(x)+ 1, except for the elements x such
that q(x) ∈ I0. We introduce a map Θ : Qnd → Qnd which will be maintained
for the sake of β. For x /∈ I0, Θ(x) = x + 1. The definition for Θ(x) if x ∈ I0 is
relatively complicated and depends on various factors in the construction. In fact,
most of the informal description will be dedicated to explaining certain properties
which we want Θ to satisfy, and how they ensure that the construction works.
Since B ⊆ Qnd, we can read Θ as a map from B to B, and define β = Θ i−1 q.
In other words, when some element x enters a structure A, we have to enumerate
Θ i−1 q(x) into B without delay. We note here that even though the notation uses
i−1, regardless of whether or not q(x) ∈ T is free (without a i preimage), Θ i−1 is
a map on the non-dyadic rationals independent of whether i−1 q(x) is currently in
B. Thus we are able to find the correct element to enumerate into B given any x
in A. Since the definition of β boils down to a careful definition of Θ, we will also
refer to the gap of β as the gap of Θ.

The definition of Θ will be dynamic and relatively intricate; we postpone the
details until the later subsections. Here we only outline several key ideas behind this
formal definition. As soon as some ϕ is newly assigned to α (to be formally clarified
in the following subsection), use the definition of Θ to ensure β is temporarily
non-surjective, and set α = q−1. Recall that it is assumed that qp = i, and so
q−1(t) = p i−1(t). Hence, for elements t ∈ T , which are not free, p i−1(t) must
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B

T

•

•
t

•

•

▲
x

▲

▲ ▲◦

ϕi

Θk Θ

Θk+1

Figure 2. Ensuring that Θk i−1.

show up in A primitively recursively. Thus, unless ϕm is wrong, α can always be
defined primitively recursively on elements t ∈ T which are not free. As discussed
in Subsection 3.2, if q−1 seems to not be primitive recursive (on the free elements),
we abandon the current definition of α and remove the gap of Θ, making β ‘more
surjective’. Furthermore, in such a case, ϕm also fails to be a primitive recursive
isomorphism as explained in the basic strategy for Nm below.

3.3.2. The basic strategy for Nm. Ensure that ϕ : T → B is such that ϕ = Θk i−1

for some k ≥ 0, as follows. If there exists a t ∈ T such that

∀k ≥ 0 ϕ(t) ̸= Θk i−1(t),

then let k be such that ϕ(t) is strictly between Θk i−1(t) and Θk+1 i−1(t). Wait for
ϕ−1Θk+1 i−1(t) ↓, which must happen at some finite stage or else ϕ is not surjective.
When it does halt, consider the situation illustrated in Fig. 2. Then we do the
following. Since B[s] ⊆ Qnd, we can find an element x ‘close enough’ to i−1(t) such
that both of the following conditions hold:

• t < i(x) < ϕ−1Θk+1 i−1(t).

• For all lΘl(x) /∈
(
ϕ(t),Θk+1 i−1(t)

)
, which must exist because

(
Θk i−1(t), ϕ(t)

)
̸=

∅.
Then as illustrated in Fig. 2, when such an element x enters B and i(x) enters
T we can assume that Θl(x) enters B for all l ∈ ω. However, no new elements
enter

(
ϕ(t),Θk+1 i−1(t)

)
, but in order for ϕ to be order preserving, it must be that

ϕ i(x) ∈
(
ϕ(t),Θk+1 i−1(t)

)
. Thus ϕ cannot be a primitive recursive isomorphism.

Thus, we may assume that for some k ≥ 0 we have ϕ = Θk i−1.

Case 1. If k = 0, that is ϕ = i−1, then we enumerate a free element t in T ,
as illustrated in Fig. 3. Let b0 and b1 be currently adjacent elements in B. By
enumerating a free element t such that i(b0) < t < i(b1), since ϕ has already chosen
to map (i(b0), i(b1)) to (b0, b1), as long as we are able to keep (b0, b1) empty for
arbitrarily long, ϕ necessarily fails to be a primitive recursive isomorphism.

Case 2. If k > 0, then assume ϕ = ϕm has been assigned to R (or equivalently,
Nm has been assigned to α). Introduce a gap into the range of θ. Now R attempts
to define α to satisfy

α = q−1.
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B

T

•
b0

•
b1

• •△
t

i ϕ

Figure 3. Enumerating a free element.

B

T

•
b

•
b0

•
b1

• • •

•
Θ(b0)

◦
gap

•
Θ(b1)

• ◦
Θk−1(gap)

•

i ϕ
Θk−1

Figure 4. If ϕ maps into the gap.

As discussed in Subsections 3.2 and 3.3, there is now some part of I1 which is
currently not in the range of θ. While there is a gap in the range of θ, to ensure
that the structure is dense, we need to enumerate elements into the gap. However,
the definition of the gap means that there are no elements in I0 which map to any
element in the gap under Θ. Thus, if ϕ ever maps some element into the gap or its
subsequent images under Θ, we can make ϕ fail as a primitive recursive isomorphism
based on the idea sketched on Fig. 4, as follows

Suppose that i(b) is the first element which is mapped by ϕ into Θk−1(gap) for
some k ≥ 0. By assumption, we also have that ϕ i(b0) = Θk(b0) and ϕ i(b1) =
Θk(b1), as ϕ must have decided upon the image of some elements before the gap
was introduced. Now consider the possible positions of Θk(b). Suppose first that
Θk(b) < ϕ i(b). Then there are infinitely many x > b and ’close enough’ to b
such that Θk(x) < ϕ i(b). In particular, Θk(x) /∈

(
ϕ i(b),Θk(b1)

)
. There can only

be finitely many elements currently in
(
ϕ i(b),Θk(b1)

)
, say, n elements. Then by

enumerating n + 1 many such x ’close enough’ to b, and temporarily suspending
elements from entering the gap and thus Θk−1(gap), ϕ must fail to be a primitive
recursive isomorphism. So it must be that ϕ truly follows Θk even after Nm is
assigned to Re and a gap is introduced. Thus in such a case, ϕ cannot be surjective.

3.3.3. Putting the strategies together. Without loss of generality, suppose that qp =
i and that, for every m, ϕm(x) = Θkm i−1(x) for some km ≥ 0. At each stage, pick
the least m such that Nm is currently not satisfied and not assigned to R. Then
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wait for ϕm(t) ↓ for some t ∈ I0. As explained earlier, either Nm is assigned to R
or ϕm(t) = i−1(t). Then we have the following possibilities.

Case 1. No other N -requirement is currently assigned to R. Then if ϕm(t) =
Θkm(t) for some km > 0, as in the basic strategy, Nm is then assigned to R and
R attempts to define α = q−1, and puts a gap in the range of θ. If km = 0, then
as explained in the basic strategy for Nm, a free element is enumerated into T and
Nm will be satisfied once ϕm fails to be a primitive recursive isomorphism.

Case 2. Some other N -requirement is currently assigned to R. If it is some lower
priority N -requirement assigned to R we initialise it for the sake of Nm of higher
priority. We may thus suppose that N = Nm′ for some m′ < m is assigned to α.
Then Θ currently has a gap in its range. There are then two further possibilities
for Nm. If ϕm = Θk i−1 for some k > 0, then it cannot possibly be surjective. If
instead ϕm = i−1, then we enumerate a free element t into T . Nm must be satisfied
as long as we keep t free until ϕm(t) ↓. Furthermore, since ϕm′ is already assigned
to α, when t is enumerated free, either α(t) converges (before ϕm′), or we obtain a
diagonalisation against ϕm′ . That is, after enumrating t free, we either satisfy Nm′

of higher priority or we satisfy Nm while maintaining the primitive recursiveness of
α.

3.3.4. The verification (only one R). Now we provide some explanation as to why
R and the infinitely many Nm are satisfied. To see that R is satisfied, observe that it
either swaps infinitely often between defining β and α, in which case Θ is eventually
surjective, or for cofinitely many stages some ϕm is permanently assigned to R. In
the latter case q−1 is primitive recursive relative to ϕM , and hence α = q−1 is a
primitive recursive isomorphism.

To see that each Nm is satisfied, again consider the two outcomes of R separately.
First, suppose R swaps between defining β and α infinitely often, which is the Π0

2-
outcome. Each time it does so, its instructions guarantee that the highest priority
Nm currently assigned to R is met. Then every Nm eventually assigned to R
must be met. For the remaining Nm requirements never assigned to R, it must be
that ϕm = i−1. These requirements are then satisfied by the enumeration of free
elements. Thus all Nm are satisfied.

In the Σ0
2-outcome, when R defines α for cofinitely many stages, the ϕm assigned

to α never becomes surjective. This is because it faithfully follows Θkm for some
km > 0 (which is not surjective as long as some Nm is assigned to it), and hence Nm

is satisfied. For all other Nm′ , we have the following possibilities. If ϕm′ = Θkm′ i−1

for some km′ > 0, then it cannot be surjective as well. Otherwise, ϕm′ maps some
element into the gap of Θ. In the latter case we eventually diagonalise against
ϕm′ . The only remaining possibility is that ϕm′ = i−1, in which case we enumerate
a free element t ∈ T and make sure Nm′ is met in finite time in this case too.
(Recall that by our assumption, q−1(t) shows up with a primitive recursive delay
without us having to enumerate i−1(t) into B, so we can diagonalise while keeping
the definition of α primitive recursive.)

3.4. Two R-strategies with infinitely many N-strategies. Recall that in Sub-
section 3.3 we noted that in the final definition of β (which will be given later) we
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B

A1

A2

T •
t

◦
S⟨⟩

•

◦

• •

p1 p2

q1 q2

Θ2
Θk−1

2

ϕm

Θ1

Figure 5. Issue 1

will use a certain auxiliary function θ and its extension Θ. The final, formal defini-
tion of θ will be relatively complex. However, it is certainly not evident at all from
the description of the basic strategy in Subsection 3.3 why some naive definition
of β would not be sufficient to run the construction successfully. Unfortunately,
further tensions arise already when we have to deal with just two R-requirements;
this is informally explained below.

3.4.1. The two main issues with the (naive) basic strategy. One of the main chal-
lenges in the basic strategy presented in Subsection 3.3 was in the definition of α.
In order to do so, we needed to ensure the following:

• In the strategy for R, we ensure qp = i, which help to define α(t) whenever
t is not free.

• In the strategy for Nm, we ensure ϕm = Θk i−1 for some k ≥ 0, in order to
define α(t) when t is free. In particular, as long as t remains free, Θk i−1(t)
does not get enumerated into B provided q−1(t) ↑.

Now consider the case when we have two different R-requirements, say R1, R2. We
informally explain here why there is a potential issue with ensuring that q2p2 = i.
To see why it can be an issue, recall that the function Θ1 is maintained for the
sake of R1. Thus, if we follow just the basic strategy (as outlined earlier), we will
potentially be unable to diagonalise against q2p2 if it ‘chooses’ to follow the map
iΘk

1 for some k > 0.

Also, we need to be careful with how exactly we define Θ1 and Θ2 on I0. It
would be most convenient if we could keep Θ1(I0) and Θ2(I0) disjoint so that dif-
ferent strategies are maximally independent from each other. Making these ranges
independent will not be quite possible due to various tensions in the construction
which are perhaps not entirely obvious to the reader at this stage of the informal
description. Our (less ambitious) plan is to make the ranges of Θ1 and Θ2 disjoint
at least on some small subinterval where free elements are enumerated, say S⟨⟩, of
I0. (We use S⟨⟩ here to be consistent with the more complex notation that will be
introduced in later subsections.)
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◦
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q1 q2
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Figure 6. Issue 2

For simplicity, first suppose that q1p1 = q2p2 = i, and that R2 is currently
attempting to define α2 (using the earlier strategy). The explanation that follows
next is illustrated on Fig. 5. Recall that the strategy attempts to define α2 on a
free element t as follows. It waits for A2 to reveal q−1

2 (t) in order to maintain the
primitive recursiveness of α2 relative to some ϕm currently assigned to α2. That is,
as long as A2 never enumerates q−1

2 (t), no new elements will enter Θ2(S⟨⟩) (other

than in its gap). In order for ϕm to be assigned to α2, it must be that ϕm = Θk
2 i

−1

for some k > 0. However, if θ1(S⟨⟩) and θ2(S⟨⟩) are not disjoint, the opponent could

instead show q−1
1 (t) in A1 to force an enumeration of Θ1 i

−1(t) into Θ2(S⟨⟩). This

will force us to enumerate elements into Θk
2(S⟨⟩) which can later serve as an image

for t under ϕm. It is thus important to keep Θ1(S⟨⟩) and Θ2(S⟨⟩) disjoint.

Now we return to the issue mentioned earlier caused by q2p2 ’following’ iΘk
1 for

some k > 0. Consider the situation described on Fig. 6. Suppose in this case that
R2 is attempting to define α2 = q−1

2 , and that a free element t is enumerated into
S⟨⟩ for the sake of some other requirement. If A1 produces the element q−1

1 (t), then

we have to enumerate Θk
1 i

−1(t) into B to keep β1 primitive recursive. Since i is
maintained for the sake of the global requirement that B ≤pr T , we would also

have to enumerate iΘk
1 i

−1(t) into T promptly. Then in order to keep α2 primitive
recursive, we could enumerate i−1(t) into B, thus forcing A2 to enumerate p2 i

−1(t).
This however forces t to no longer be free, while the strategies for satisfying (other)
N -requirements depend on the ability to keep t free for arbitrarily long. (We note
here that in this specific case it is perfectly fine since both α1 and α2 are safe.
However we would not like to ever be forced to enumerate i−1(t) quickly should we
choose t to be enumerated free.)

In summary, to address the issues, we need the following.

• Θ1(S⟨⟩) and Θ2(S⟨⟩) must be disjoint.

• α2 is primitive recursive on elements outside of I0.

In order to achieve these goals, we will introduce a system of labels on subintervals
of I0 and I1, whose purpose is to trace the series of enumerations originating from
S⟨⟩ under θe for various e. This system shall serve as the basis for all strategies. To
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define α2 primitively recursively on elements outside of I0, we define θ0 : I0 → I1
and extend it to Θ0 : B → B (recall that B ⊆ Qnd). Then take α2 = p2Θ

−k
0 i−1

for some appropriate k on intervals Im where m ̸= 0. Observe that on intervals
which are not I0, the map i−1 is primitive recursive since free elements are only
enumerated into I0. As long as Θ−1

0 is kept primitive recursive, α2 must also be
primitive recursive, at least on elements outside of I0.

As a consequence of keeping Θ−1
0 primitive recursive, the ‘flow’ of new elements

will expand in ‘both directions’. This potentially opens up more options for the
’opponent’ but the system of labels is robust enough to handle this additional
freedom qp has. Since the map Θ0 (and Θ−1

0 ) will be maintained globally, i.e., for
the sake of all R-requirements, we omit the R0-strategy for notational convenience.
(Our enumeration begins with 1.)

We now depart from the case of only two strategies and explain the system of
labels in presence of infinitely many R-strategies. (Of course, the reader is free to
restrict themselves only to the case when we only have R1 and R2.)

3.5. The system of labels and colours. An outline. We now provide a de-
scription of the label and colour system. We refer the reader to Section 4 for the
formal explanation of the labels. We shall use strings from ω<ω for the labels and
thus introduce some notation which shall be used throughout.

Notation 3.1. Let σ ∈ ω<ω be given.

• Let ⟨⟩ denote the empty string.

• max(σ) := max{σ(i) | i < |σ|}.
• If σ ̸= ⟨⟩, then σ− denotes σ ↾|σ|−1.

• Let ⌢ denote concatenation. For convenience, we write σ⌢x to mean
σ⌢⟨x⟩. When there is no danger of ambiguity, we opt to drop the ⌢ entirely
and simply write σx.

The purpose of the labels are to track the actions of Θe and Θ−1
e for various e

on I0 and I1 respectively. We first consider a simple example of how strings (not
necessarily labels) σ ∈ ω<ω can be interpreted as compositions of Θe and Θ−1

e

maps.

Example 3.2. • For a string ⟨1, 0, 1, 2⟩, this corresponds to the subinterval
as follows.

S⟨⟩
Θ1−−→ S⟨1⟩

Θ−1
0−−−→ S⟨1,0⟩

Θ1−−→ S⟨1,0,1⟩
Θ−1

2−−−→ S⟨1,0,1,2⟩.

• For a string ⟨1, 1⟩, this would correspond to the subinterval as follows.

S⟨⟩
Θ1−−→ S⟨1⟩

Θ−1
1−−−→ S⟨1,1⟩.

A quick observation would then tell us that the strings ⟨1, 1⟩ and ⟨⟩ should
represent the same subinterval.

Thus it is evident that there should be some sort of equivalence between certain
strings. This equivalence will be formally defined in Section 4. For each equivalence
class, we fix a unique representative called the reduced form, and denote the reduced
form of σ by σ∗. For instance, ⟨1, 1⟩∗ = ⟨⟩, and the latter is reduced. The collection
of all reduced forms will then form the labels. We now introduce some relevant
definitions and properties of the labels.
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I1

I0

⟨⟩ ⟨1, 0⟩⟨0, 1⟩

⟨0⟩ ⟨1⟩⟨0, 1, 0⟩

. . . . . .

⟨2, 0⟩ ⟨1, 0, 2, 0⟩⟨0, 1, 2, 0⟩

⟨2⟩ ⟨2, 0, 2⟩⟨0, 1, 2⟩

⟨0, 2⟩⟨1, 2⟩⟨0, 1, 0, 2⟩

⟨0, 2, 0⟩ ⟨1, 2, 0⟩⟨0, 1, 0, 2, 0⟩

Z1 : θ0 ̸= θ1

Z⌢
1 0

Z⌢
1 ⟨2, 0⟩ : θ0 = θ1Z⌢

1 ⟨0, 2⟩ : θ0 = θ1

Z⌢
1 ⟨2⟩Z⌢

1 ⟨0, 2, 0⟩

Figure 7. Illustration of labels

Definition 3.3. Let Ze denote the collection of all even length labels with maximum
entry at most e. The set Z⌢

e 0 is defined similarly, but it consists of all labels of
odd length with maximum entry at most e. We shall use Ze (and Z⌢

e 0) to denote
the union of intervals labelled with elements of Ze (and Z⌢

e 0).

To provide some illustration of the labels, we refer the reader to Fig. 7. (Def. 3.3
will be repeated and further clarified in Section 4 but the current ones shall suffice
for the informal description.)

The following are some properties of the system of labels, which we lift directly
from Section 4. For any label σ, γ, the following properties hold. Recall that every
label is assumed to be reduced.

i) Sσ ∩ Sγ = ∅ whenever σ ̸= γ. This property is important in two ways.

• To avoid the issue as presented in Fig. 5, we need Θ1(S⟨⟩) = S⟨1⟩ and
Θ2(S⟨⟩) = S⟨2⟩ to be disjoint.

• To avoid the issue illustrated in Fig. 6, we need Θ−1
0 Θ1(S⟨⟩) = S⟨1,0⟩

to be disjoint from S⟨⟩.

ii) Θe : Sσ → S(σ⌢e)∗ when Sσ ⊆ Ze

iii) Θ−1
e : Sσ → S(σ⌢e)∗ when Sσ ⊆ Ze

⌢0.

Recall that for each e > 0, Θe is maintained for the sake of Re. Whenever q−1
e (t)

is enumerated into Ae, then we must enumerate Θe i
−1(t) into B in order to keep βe

primitive recursive. Since the labels of subintervals track the action of the Θe maps,
we now know exactly where to enumerate elements in order to keep the various β
primitive recursive. For example, when some x enters Ae such that qe(x) ∈ Sσ,
then we need to enumerate Θe i

−1 qe(x) into S(σ⌢e)∗ .

Throughout the construction, the enumeration of new points will originate from
either S⟨⟩ or S⟨e⟩ for some e > 0. That is, any other action (when it comes to adding
new points) will be a result of repeated applications of θe′ (or Θe′) or their inverses
to elements of S⟨⟩ or S⟨e⟩. Each of these infinitely many cases corresponds to a
certain specific scenario in the construction. To distinguish between these cases, we
introduce the concept of colour in the definition below. Informally, we can think
of subintervals with labels starting with e simply as (slightly delayed) copies of
S⟨e⟩. Thus, it makes sense to put them together into one group and declare that
its ‘colour’ is e. Recall that all labels are reduced.
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Definition 3.4. Let σ ∈ ω<ω be a label and σ ̸= ⟨⟩. Then σ has colour σ(0). Also
let ⟨⟩ be defined as having colour 0.

We clarify why it is convenient to define the colour of the empty string to be 0,
i.e., has the same colour as ⟨0⟩. As we mentioned earlier, both maps Θ0 and Θ−1

0

will be primitive recursive and shared among all requirements Re. Thus S⟨0⟩ will
simply be a copy of S⟨⟩. Hence, it makes sense to colour ⟨⟩ and ⟨0⟩ identically.
The system of labels will be used to ‘monitor’ the actions of the maps qp and

ϕ provided by the opponents. Assuming we know the position of each subinterval
(to be defined in Section 4), we are then able to trace the ‘cascading-effect’ of
enumerations. We provide an example illustrating this.

Example 3.5. Suppose some element is newly enumerated into S⟨1,0,2⟩. Then we
know the following must have happened.

(1) Some element x must first have been enumerated into S⟨1⟩.

(2) In order to maintain Θ−1
0 , the element Θ−1

0 (x) was enumerated into S⟨1,0⟩.

(3) q−1
2 iΘ−1

0 (x) ↓ to cause an enumeration into S⟨1,0,2⟩.

Such a property of the labels will turn out to be useful when we are attempting
to make qp and ϕ behave in some desired way.

We give a brief explanation now as to why this system of labels resolve the issues
raised earlier. Once again, we refer the reader to Fig. 6. The problem was that in
order to define α2(t

′), where t′ = iΘk
1 i

−1(t), we were forced to enumerate i−1(t)

into B. However, with the new definition of α2 = p2Θ
−k
0 i−1 on elements outside of

I0, we have

α2(t
′) = p2Θ

−k
0 Θk

1 i
−1(t).

Since Θ0 = Θ1 on the intervals that are not I0, we conclude that α2(t
′) = p2Θ

−1
0 Θ1 i

−1(t).
As long as S⟨1,0⟩ is disjoint from S⟨⟩, we can keep t free while ensuring that α2(t)
is defined.

3.6. The modified basic strategy of Re. As seen earlier, the two essential tasks
of the strategy is to make βe primitive recursive and to define αe using some ϕm

that is currently assigned to the strategy. To succeed in the first task we keep Θe

primitive recursive. To successfully define αe, we need the following properties:

• For t not free, we must be able to ‘force’ Ae to show a suitable image for
αe(t) promptly.

• For t free (and as long as it remains free) ϕm assigned to αe has no suitable
image for t.

In the earlier strategy, the first condition is satisfied via ensuring that qepe = i.
However, we cannot guarantee this in general. In particular, as long as q2p2 only
follows maps of higher priority, for example, Θ1,Θ0 or Θ−1

0 , then we are unable to
diagonalise against q2p2 without blocking the higher priority maps. Even though
we cannot ensure q2p2 = i, we are still able to ensure that it behaves in a certain
way. To simplify the explanation that follows, we ignore the possibility of q2p2
having a ‘large shift’. We only consider the possibilities where q2p2(I0) = Ik for
some k = −1, 0 or 1. The more general case where k ∈ Z is an easy generalisation
and will be covered in the later sections.

To avoid diagonalisation, q2p2 has to ‘follow’ only maps of higher priority. This
means that q2p2 has to copy some composition of maps consisting only of Θ1,Θ0
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and Θ−1
0 . Then q2p2 must map Z1 to Z1 ∪Z⌢

1 0, and as a result (q2p2)
−1(Z1)

must be in Z1 ∪Z⌢
1 0. We state this as a lemma below.

Remark 3.6. During the construction, we will enforce certain conditions on qepe.
We simplify the more general statement in Section 5.1 to fit our purposes here.
If there is some τ ∈ Z1 where (q2p2)

−1(Sτ ) is not contained in Z1, Θ0(Z1), or
Θ−1

0 (Z1), then we can diagonalise against q2 or p2.

Intuitively, we are able to enforce this property as follows. If q2p2 copies only
compositions of maps Θ0,Θ

−1
0 and Θ1, then it only has the ability to be different

from i (or some translation map x 7→ x + 1) on intervals in Z1 ∪Z⌢
1 0. Thus,

if we discover that q2p2 does not satisfy the condition as stated in the lemma, we
enumerate elements into an appropriate interval in Z1 ∪Z⌢

1 0 while temporarily
blocking all Θe maps for e ≥ 2. In this way, q2p2 cannot possibly be a primitive
recursive isomorphism.

Recall that we made a simplifying assumption that q2p2 : I0 → Ik for some
k = −1, 0 or 1. As a result, we can conclude that (q2p2)

−1(I0) is one of I−1, I0 or
I1. We present the definitions of α2 in each of these cases below.

(a1) If q2p2 : I−1 7→ I0, then

α2(x) =

{
q−1
2 (x), if x ∈ Z1,

p2Θ
−1
0 i−1(x), otherwise.

(a2) If q2p2 : I0 7→ I0, then

α2(x) =

{
q−1
2 (x), if x ∈ Z1,

p2 i
−1(x), otherwise.

(a3) If q2p2 : I1 7→ I0, then

α2(x) =

{
q−1
2 (x), if x ∈ Z1,

p2Θ0 i
−1(x), otherwise.

To see why this definition works, we first check that if q2 and p2 are isomorphisms,
then α2 defined according to these rules is also an isomorphism (in each case).
We explain only the first case; the other cases are similar. Suppose that q2p2 is
a primitive recursive isomorphism. Applying Remark 3.6, we may assume that
(q2p2)

−1(Z1) = Θ−1
0 i−1(Z1). That is, q−1

2 (Z1) = p2Θ
−1
0 i−1(Z1). If q2 is an

isomorphism, α2 is also an isomorphism between Z1 and p2Θ
−1
0 i−1(Z1). For the

other line of Definition (a1), as long as p2 is an isomorphism, α2 will be isomorphism
between T \Z1 and p2Θ

−1
0 i−1(T \Z1). These ideas will extend to the more general

case when qepe : Ik → I0 (for k ∈ Z as in Def. 6.11) to define αe.

Now we give an example to illustrate how the issues presented earlier in Fig. 5 and
6 are resolved with this new definition of α2. For simplicity, assume ϕm : S⟨⟩ 7→ S⟨2⟩
and thus ϕm is assigned to α2 (this will be explained in more detail in the strategy
for Nm). The explanation that follows is illustrated in Fig. 8.

The first issue is simply resolved by ensuring that S⟨1⟩ and S⟨2⟩ are disjoint.

Now given a free element t, even if q−1
1 (t) is enumerated into A1, we still need to

enumerate Θ1(t) into S⟨1⟩ for the sake of β1 as before. However, since S⟨1⟩ and S⟨2⟩
are disjoint, no new elements are enumerated into S⟨2⟩, and ϕm still does not have

a suitable image for the free element t. That is, as long as q−1
2 (t) does not show up
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A1

A2

T •
t

◦ •

•

•

•
S⟨1⟩

•

◦
S⟨2⟩

p1

q−1
1

p2

α2

Θ1

Θ2

iϕm

Θ−1
0

Figure 8. Resolving issues 1 and 2

in A2, no new elements will be enumerated into S⟨2⟩ (accessible from S⟨⟩ only via
Θ2, as will be formally verified in Corollary A.3).

Recall that the second issue arises when q2p2 ‘copies’ Θ1 (on S⟨⟩). For example,
when q2p2 = iΘ1. Using the naive strategy discussed in Section 3.4, in order to
force A2 to show α2 iΘ1(t), we had to enumerate i−1(t) into B, thus losing the
‘freeness’ of t. But now, since q2p2 : S⟨⟩ → S1, α2 will be defined via (a1). In

particular, for elements t /∈ Z1, α2 iΘ1 i
−1(t) = p2Θ

−1
0 Θ1 i

−1(t). Thus, in order to

force A2 to show an image for α2 iΘ1 i
−1(t), we need only enumerate an element

into S⟨1,0⟩. This is done so primitively recursively after an element is enumerated
into S⟨1⟩ as mentioned in Example 3.5. By keeping S⟨⟩ disjoint from S⟨1,0⟩, we can
then maintain the ‘freeness’ of t while defining α2(t) primitively recursively.

3.6.1. The modified basic strategy for Nm. Recall that in order for the strategy for
Nm to succeed, we needed to ensure that ϕm = Θk

e i
−1 for some k ≥ 0, and in

this case we say that ϕm has been assigned to αe. However, that was under the
assumption that there is only one Re, or equivalently, we maintain only one Θe.
Since we now need to maintain the functions Θe for various e, it is entirely possible
that ϕm could choose to follow some composition of these maps, e.g., Θ2Θ

−1
0 Θ1. In

this case, we are again unable to diagonalise against ϕm as Θ1,Θ2 are maintained
at the priority of R1, R2, and Θ−1

0 is maintained for the sake of all αe. Thus we
need a new condition to decide whether or not to assign ϕm to αe.

To start the strategy for Nm, wait for ϕm(x) ↓ for some x ∈ S⟨⟩. Employing a
similar reasoning as in Remark 3.6, we know that if ϕm : S⟨⟩ 7→ Sτ , then τ ∈ Zm−1.
Thus, we have the following possibilities.

• τ is of colour e > 0 (recall Def. 3.4), then we say that ϕm is assigned to αe

(or Re).

• τ is of colour 0, then this corresponds to the case when ϕm = i−1.

Once we know whether or not to assign ϕm to αe, then the strategy for Nm is the
same as before. If it is assigned to some αe, then ϕm cannot possibly be surjective
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Figure 9. Additional complications

(or we can diagonalise against it should it attempt to become surjective). On the
other hand, if ϕm maps to some interval of colour 0, then by enumerating a free ele-
ment t into S⟨⟩, no other intervals of colour 0 ever receive new enumerations as long
as t remains free. Thus ϕm cannot possibly be a primitive recursive isomorphism.

3.7. Some additional complications. For a general Re requirement (of low pri-
ority), due to qepe having the option of ’copying’ more θe′ maps, the definition of
αe needs to be generalised as follows. If qepe : Ik → I0,

αe(x) =

{
q−1
e (x), if x ∈ Ze−1

peΘ
k
0 i

−1(x), otherwise.

In the definition above, if k = 0, we read peΘ
k
0 i

−1(x) as pe i
−1(x).

The main issue that arises is getting q−1
e (x) to show up promptly in Ae for

x ∈ Ze−1. The previous few sections were focused on getting q−1
e (t) to show up

in Ae primitively recursively for free elements t ∈ S⟨⟩. However, αe = q−1
e for all

elements in Ze−1 which contains many more subintervals other than S⟨⟩. In order

to force q−1
e (t) to show up in Ae for t in other intervals, we shall utilise two different

strategies.

Definition 3.7. A label σ is good iff for every i < |σ|
2 , σ(2i + 1) = 0. We say a

label is bad otherwise.

On the intervals which are good, we are able to ensure αe stays defined via pressing
Ae with ϕm. However, this does not work for elements enumerated into the bad
intervals as illustrated in Fig. 9. Suppose that at some stage an element t (possibly
free) is enumerated into S⟨⟩. Let t′ = iΘ−1

2 Θ0 i
−1(t), which is contained in S⟨0,2⟩

in T . Suppose further that ϕm : S⟨⟩ 7→ S⟨3,0,3⟩ and ϕm : S⟨0,2⟩ 7→ S⟨3⟩. Then it

could be that q−1
3 (t′) ↑ but Θ3 i

−1(t) ↓. This means that ϕm(t′) ↓ = Θ3 i
−1(t) but

α3(t
′) = q−1

3 (t′) ↑; we failed to diagonalise ϕm and also failed to keep α3 primitive
recursive.

In order to define αe primitively recursively on elements in the bad intervals,
whenever an element enters some bad interval, all ‘related’ bad intervals must
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also receive elements primitively recursively. Returning to the example illustrated
in Fig. 9, if we want to enumerate t′ into T , then we must also be prepared to
enumerate x into B. But note that as long as we do not enumerate t′ into T , we
need not enumerate x. The strategy then is to not enumerate any elements into
the bad intervals until we are ready to do so.

3.8. The priority order and injury. Arrange the requirements in order of prior-
ity N1, R1, N2, R2, . . . . There is a list of conditions which we ensure are maintained
during the construction. The specifics can be found in Section 4.2. Roughly speak-
ing, these conditions ensure that each Θe is primitive recursive and that qepe and
ϕe behave ‘properly’ in the sense of Remark 3.6. Recall that we may need to tem-
porarily make some Θe′ not primitive recursive in order to diagonalise against qepe
or ϕe which do not satisfy the desired conditions. This action then injures Re′ , but
only for the sake of higher priority Re or Ne requirements. Thus each Re′ can only
be injured finitely many times.

At each stage, attend to the highest priority Nm requirement which is not cur-
rently assigned to any Re requirement and not yet satisfied. Then wait for ϕm(x) ↓
for some x ∈ S⟨⟩. Consider the following cases.

Case 1: If ϕm(x) ∈ Sτ for some τ of colour 0, then enumerate a free element
t into T and wait for ϕm(t) ↓. While waiting, all Re strategies currently
attempting to define αe are potentially in danger of failing to find a suitable
image for αe(t). However, as explained in the basic strategy for Re, as long
as q−1

e (t) fails to be enumerated into Ae, the ϕm′ assigned to αe will also not
have a suitable image for t. That is, Nm′ will become satisfied as ϕm′ fails
to be a primitive recursive isomorphism. Since Nm′ was attended to before
Nm, it is also necessarily of higher priority, and thus we can initialise Nm

once Nm′ is satisfied. Once this happens, Re abandons its current definition
of αe and changes its strategy back to defining βe by temporarily removing
its gap.

Case 2: In this case ϕm(x) ∈ Sτ for some τ of positive colour e. If there are no
ϕ currently assigned to Re, or if there is some lower priority ϕm′ currently
assigned to Re, then proceed as follows. Assign ϕm to Re, initialise all lower
priority Nm′ for which ϕm′ is assigned to Re, and introduce a gap into the
range of Θe (if required). Then as discussed in the basic strategy for Nm,
either ϕm ends up being not surjective, or it maps some element into the
gap (or the image of the gap) of Θe. If it does so, we will then be able to
diagonalise against ϕm.

If there is currently some other higher priority Nm′ assigned to Re, then
there is already some gap in the range of Θe. We also assign Nm to Re as
before but without initialising any Nm′ of higher priority. Then either Nm

is satisfied in the same way as before provided that the gap of Θe is never
removed. However, it could be that the gap is removed at some stage after
Nm has been assigned to Re thus injuring Nm. But recall that the gap
of Θe is removed only if the highest priority ϕm′ assigned to Re has been
diagonalised against. Thus Nm can only be injured this way finitely many
times.

By employing a finite injury argument, we obtain that each requirement is satisfied.
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4. Labelling and defining subintervals

In preparation for the formal construction, we revisit the system of labels in
more detail. The rest of this section will be dedicated to formally defining the
labels and some notation regarding the labels which will be required to describe
the construction. Recall that the purpose of the labels was to track the behaviour
of the Θe maps and their inverses on I0 and I1. We once again refer the reader to
Fig. 7 for an illustration of the labels. An important ingredient in the strategy for
Re was to keep the different subintervals as disjoint as possible. With this in mind,
we generate the subintervals in the following way. We first focus only on the maps
Θ0,Θ1.

(1) Start with the base interval S⟨⟩ in I0. Applying Θ0,Θ1 gives us the follow-
ing.

S⟨⟩
Θ0−−→ S⟨0⟩ and S⟨⟩

Θ1−−→ S⟨1⟩.

Recall that these should be disjoint.

(2) Now we apply the inverse maps to the subintervals S⟨0⟩, S⟨1⟩ of I1. This
gives the following.

S⟨0⟩ ⊔ S⟨1⟩
Θ−1

0−−−→ S⟨⟩ ⊔ S⟨1,0⟩ and S⟨0⟩ ⊔ S⟨1⟩
Θ−1

1−−−→ S⟨0,1⟩ ⊔ S⟨⟩.

In order to keep Θ0 and Θ1 order-preserving, we obtain the relative posi-
tions as shown in Fig. 7.

(3) Repeat the process recursively to obtain all labels σ with max(σ) ≤ 1
(recall Notation 3.1). Denote the union of all subintervals contained in I0
generated this way as Z1 and the collection of their labels as Z1. Similarly,
let the union of all subintervals contained in I1 generated by this procedure
by Z1

⌢0 and the collection of their labels be Z1
⌢0.

The idea here is that the maps Θ0,Θ1 and their inverses are ‘separated’ within
Z1. Outside of Z1, the maps Θ0 and Θ1 are now equal. Assuming that Ze has
been defined, and that Θe′(Ze) = Θ0(Ze) for any e′ ≤ e, recursively define Ze+1

as follows.

(1) For each σ ∈ Ze (contained in I0), apply the maps Θ0,Θe+1 to Sσ. This
allows us to obtain the following.

Ze
Θ0−−→ Ze

⌢0 and Ze
Θe+1−−−→ Ze

⌢⟨e+ 1⟩.
We order them by placing Ze

⌢0 < Ze
⌢⟨e+ 1⟩.

(2) For each σ ∈ Ze
⌢0 ⊔ Ze⌢ ⟨e + 1⟩ (contained in I1), apply the maps Θ−1

0

and Θ−1
e+1 to obtain the following.

Ze
⌢0⊔Ze

⌢⟨e+1⟩
Θ−1

0−−−→ Ze ⊔Ze
⌢⟨e+1, 0⟩ and Ze

⌢0⊔Ze
⌢⟨e+1⟩

Θ−1
e+1−−−→ Ze

⌢⟨0, e+1⟩⊔Ze .

To keep Θe+1,Θ0 order-preserving, we order the intervals Ze
⌢⟨0, e+ 1⟩ <

Ze < Ze
⌢⟨e+ 1, 0⟩.

(3) Recursively repeat the previous two steps alternately to generate Ze+1 and
Ze+1

⌢0 in the same way as before. In general, the position of the subinter-
vals of Ze+1 is made up of a ζ-chain1 of copies of Ze arranged as follows.

. . . < Ze
⌢⟨0, e+1, 0, e+1⟩ < Ze

⌢⟨0, e+1⟩ < Ze < Ze
⌢⟨e+1, 0⟩ < Ze

⌢⟨e+1, 0, e+1, 0⟩ < . . .

1Here and throughout, ζ stands for the usual order on the integers.
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The subintervals of Ze+1
⌢0 are arranged in a similar way.

. . . < Ze
⌢⟨0, e+1, 0, e+1, 0⟩ < Ze

⌢⟨0, e+1, 0⟩ < Ze
⌢0 < Ze

⌢⟨e+1⟩ < Ze
⌢⟨e+1, 0, e+1⟩ < . . .

Remark 4.1. Even though the Θ functions seem to be involved in generating the
labels, they are there only to provide the intended meaning of the labels. The la-
bels and their relative positions can be generated completely independently of the Θ
functions. Thus, when we later define the Θ maps in Section 5 based on the labels,
there is no circularity involved.

In view of the procedure used to generate the subintervals, we introduce a reduc-
tion rule on strings σ ∈ ω<ω as follows. (Recall Notation 3.1.)

4.1. Reducing strings. Recall now that in Example 3.2, some equivalence be-
tween different strings was suggested. The purpose of f and ∗ defined below is to
formalise this notion. Roughly speaking, the first and second cases in the definition
of f reflect that ΘeΘ

−1
e (Sσ) = Sσ and Θe = Θ0 outside Ze.

Example 4.2. Consider the string σ = ⟨1, 2, 0, 1, 2⟩. This should correspond to the
following subinterval.

Θ2Θ
−1
1 Θ0Θ

−1
2 Θ1(S⟨⟩).

We can derive the label σ∗ using the intended behaviour of Θ maps described before.

S⟨⟩
Θ1−−→ S⟨1⟩

Θ−1
2−−−→ S⟨1,2⟩

Θ0−−→ S⟨1,2,0⟩
Θ−1

1−−−→ S⟨1,2⟩
Θ2−−→ S⟨1⟩. The first three steps are

easy to obtain, while the fourth follows from the fact that ⟨1, 2, 0⟩ /∈ Z1, and hence
Θ−1

1 (S⟨1,2,0⟩) = Θ−1
0 (S⟨1,2,0⟩) = S⟨1,2⟩.

To define what it means for a string to be reduced, we will define a reduction
procedure f on strings. The role of f is to calculate the string naming the range
after applying the next Θ-map. We obtain the following computation using the
reduction procedure.

σ0 = ⟨1⟩, σ1 = f(σ⌢
0 2) = ⟨1, 2⟩, σ2 = f(σ⌢

1 0) = ⟨1, 2, 0⟩,

σ3 = f(σ⌢
2 1) = ⟨1, 2⟩, σ4 = f(σ⌢

3 2) = ⟨1⟩.

Definition 4.3. Let f : ω<ω → ω<ω be defined as follows.

• f(⟨⟩) = ⟨⟩ and for any e ∈ ω, f(⟨e⟩) = ⟨e⟩.

• f(σ⌢e) =


σ−, if σ(|σ| − 1) = e or if σ(|σ| − 1) = 0 and e < max(σ)

σ⌢0, if σ(|σ| − 1) ̸= 0 and e < max(σ)

σ⌢e, otherwise

The function f will be used as an elementary step in the reduction procedure
defined as follows.

Definition 4.4. We say that a string σ ∈ ω<ω is reduced if for every i ≤ |σ|, f(σ ↾i
) = σ ↾i. Given any string σ, we can obtain its reduced form in the following way.

• Let σ0 = σ(0).

• Recursively define σi+1 = f(σ⌢
i σ(i+ 1)).

Observe that σ|σ|−1 is reduced. For any given string σ, we denote the reduced form
(obtained by the described procedure) as σ∗. We also use ∗ as an operator that takes
a string to its reduced form.
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Given any string σ, in order to compute its reduced form, note that we apply
the function f exactly |σ| − 1 many times. It is also evident that f is primitive
recursive. Thus, finding the reduced form σ∗ of any string σ is a primitive recursive
procedure.

It should follow immediately from the definition of ∗ that for any string, its
reduced from is well-defined. Furthermore, one can easily check that (proof in
appendix?) every reduced string is contained in Zn ∪ Zn

⌢0 for some n ∈ ω. Since
we know exactly the structure of Zn ∪Z⌢

n 0, we arrive at the following observation.

Fact 4.5. If σ is reduced, then σ = (σ1σ2 . . . σnξ)
∗, where n = max(σ), and each

σi is an even length tuple (possibly empty) of alternating 0’s and i’s, and ξ = ⟨⟩ or
0. Furthermore, such a form σ1σ2 . . . σnξ is unique.

In preparation for the construction and verification, we introduce the following
definition as a means to talk about ‘adjacency’ of labels. This will mainly be used
in order to describe how qepe and ϕe map different subintervals. Intuitively, if qepe
(and ϕe) are isomorphisms and they map some Sσ to Sτ , then they should also
map the other subintervals ‘near’ Sσ to the subintervals ‘near’ Sτ . (See Section 5.1
for details.)

Definition 4.6. Let σ = (σ1σ2 . . . σnξ)
∗ as stated in Fact 4.5, then define

• succm(σ) :=

{
(σ1σ2 . . . σ

⌢
mm0⌢σm+1 . . . σnξ)

∗
, if m ≤ n

(σ1σ2 . . . σ
⌢
n m0⌢ξ)

∗
, otherwise

• succ−1
m (σ) :=

{
(σ1σ2 . . . σ

⌢
m 0m⌢σm+1 . . . σnξ)

∗
, if m ≤ n

(σ1σ2 . . . σ
⌢
n 0m⌢ξ)

∗
, otherwise

and also
Zm(σ) :=

{
succki (σ) | ∀0 < i ≤ m, ∀k ∈ Z

}
.

In the same fashion as before, we shall use Zm(σ) to denote the union of subinter-
vals with labels from Zm(σ).

A quick analysis of the definition above allows us to obtain the following fact.

Fact 4.7. If σ(0) = e, then for every n < e, if γ ∈ Zn(σ), then γ(0) ≤ n or γ = σ.

The reader might have noticed that Zn corresponds to some ζn-chain of labels,
where ζ is the order on the integers. The succ functions defined above allow us to
navigate this ordering, as illustrated in the example below.

Example 4.8. Consider the label σ = ⟨1, 3⟩ ∈ Z3. Applying Fact 4.5, we can
rewrite σ = ⟨1, 0, 0, 3⟩∗. The label that is directly to the right of σ would be given
by succ1(σ) = ⟨1, 0, 1, 3⟩. Repeatedly applying succ1 and succ−1

1 to σ then generates
the ζ-chain of labels around σ, as below.

. . . < ⟨0, 1, 0, 3⟩ < ⟨0, 3⟩ < ⟨1, 3⟩ < ⟨1, 0, 1, 3⟩ < ⟨1, 0, 1, 0, 1, 3⟩ < . . .

The ζ-chain that is directly right of the one above would be given by the ζ-chain
around succ2(σ) = ⟨1, 0, 2, 3⟩, which we denote as Z1(⟨1, 0, 2, 3⟩). Repeatedly ap-
plying succ2 to σ allows us to obtain the labels which form the ‘centre’ of each
successive ζ-chain to the right of Z1(σ). Similarly, applying succ−1

2 will allow us to
traverse left of Z1(σ). Together, they compose the ζ2-chain around σ (Z2(σ)).

. . . < Z1(⟨1, 2, 0, 2, 0, 3⟩) < Z1(⟨1, 2, 0, 3⟩) < Z1(⟨1, 3⟩) < Z1(⟨1, 0, 2, 3⟩) < Z1(⟨1, 0, 2, 0, 2, 3⟩) < . . .
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In Section 3.7, we briefly mentioned some ‘relation’ between different bad in-
tervals. Recall that this was in order to ensure that q−1

e converges primitively
recursively on elements within bad intervals, so as to keep the definition of αe safe.
The idea was that all ‘related’ bad intervals should receive elements within primitive
recursive delays of each other. The relation is formalised below.

Definition 4.9. Let σ be a good label. Then define Bad(σ) as follows.

γ ∈ Bad(σ) ⇐⇒ (γ ↾i is good =⇒ γ ↾i⪯ σ) and γ bad,

that is, σ is the maximal good prefix of γ.

Recall that the purpose of the labels is to define the Θe maps on I0. Furthermore,
as discussed in the informal description, there are certain properties that we want
them to satisfy. We mainly need each Θe map to be surjective (Lemma A.5), order-
preserving (Lemma A.6) and have ‘sufficiently disjoint’ images (Corollary A.3).
The careful definition of the labels thus far ensure that the desired properties are
satisfied. As the proofs that the properties hold are technical and do not contribute
to the discussion, we leave them to the Appendix.

4.2. Assigning labels. In this section, we assign to each label σ, dyadic rationals
for the left and right endpoints of Sσ. Recall that B, T are constructed to be
subsets of Qnd. Now we assign dyadic rationals in a primitive recursive way to the
endpoints of each subinterval. For each subinterval Sσ, denote the left and right
endpoints as σ0 and σ1 respectively. At each stage s, and for each σ where |σ| ≤ s
and max(σ) ≤ s, we will assign dyadic values to σ0 and σ1. Recall that we have
already decided on the relative positions of the subintervals based on their labels.
The procedure here simply assigns a specific dyadic to the endpoints for the sake
of defining θ.

Stage 0: Let S⟨⟩ =
(
1
4 ,

3
4

)
.

Stage 1: Let S⟨0⟩ =
(
5
4 ,

7
4

)
, and S⟨1⟩ =

(
7
4 ,

15
8

)
.

Stage s > 1: We aim to keep the length of each subinterval as 2−m for somem ∈ ω.
Given some interval of length 2−m, we will either split it into two smaller
intervals each of length 2−m−1 or into three smaller intervals, two of which
have length 2−m−2 and one of length 2−m−1. In the case that we split it
into three, we assume the ‘middle’ interval is the longest one (though this
is not important).

Now let σ be given such that σ0, σ1 has not yet been defined. Let Sσ ⊆
Ik = (k, k + 1) where k is either 0 or 1. Based on the relative position of
Sσ (among the other subintervals of Ik), we split into the following cases.

• If Sσ < Sγ for all Sγ ⊆ Ik such that both γ0 and γ1 have already
been defined, then fix Sγ to be the current left-most subinterval of Ik.
If succ1(σ) = γ, (recall Def. 4.6) then split (k, γ0) into two smaller
intervals (as described earlier), and let Sσ be the one on the right.
Otherwise, split (k, γ0) into three smaller intervals and let Sσ be the
one in the middle.

• If Sσ > Sγ for all Sγ ⊆ Ik such that both γ0 and γ1 have already been
defined, then we apply a similar procedure as in the case before.

• If there is γ, τ such that the endpoints of Sγ , Sτ ⊆ Ik have already been
defined and Sγ < Sσ < Sτ , then fix Sγ , Sτ to be the right-most and
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left-most subinterval satisfying the premise respectively. Now check if
succ1(γ) = σ or succ1(σ) = τ . If both clauses are true, then let Sσ =
(γ1, τ0). If exactly one of the clauses is true, then split (γ1, τ0) into
two smaller intervals and let Sσ be the one adjacent to the subinterval
for which the clause holds true. Finally, if both clauses are false, then
split (γ1, τ0) into three smaller intervals and let Sσ be the middle one.

It should be evident from the description that each subinterval Sσ has length 2−m

for some m ∈ ω. This property about the length of subintervals will be important
in the definition of Θ.

5. Formal Construction

Before presenting the formal construction, we give a brief recap of the notations
and objects that have been introduced thus far.

• B, T are structures defined by us to be primitive recursive subsets of Qnd.

• pe : B → Ae and qe : Ae → T are maps provided by the requirement Re.
We can think of the composition qepe as a map on Qnd.

• ϕe : T → B is the map provided by the requirement Ne.

• For each e, Θe is a map on Qnd, which is defined by us.

• Ze is the collection of all labels (reduced strings) with maximum entry e.

• Ze is the union of all intervals labelled by labels from Ze.

5.1. Diagonalising against qepe and ϕe. In this subsection we restate formally
the conditions listed out at the end of Section 3.4 and provide a description of the
procedures to be implemented in order to maintain them. The elementary sub-
strategies described here will be used as modules in the formal construction that
will be given shortly. As explained earlier, in order for the strategies to work, we
need qepe and ϕe to ‘align’ with the various Θe maps. In order to specify what we
mean, we introduce the following definition.

Definition 5.1. Let x ∈ Qnd be given. Define O(x) as follows.

• x ∈ O(x).

• If y ∈ O(x), then for each e ∈ ω, Θe(y) and Θ−1
e (y) (if defined) are both

also in O(x).

Furthermore, given any x, denote the unique element y ∈ Sσ ∩ O(x) as xσ.

Recall that the Θ maps are defined on Qnd. Provided that there are currently no
gaps in the range of them, for any x ∈ Qnd and any σ reduced, xσ is defined. How-
ever, this is not to say that it currently exists in B (or T ) as these are constructed
stagewise to be primitive recursive substructures of Qnd. In view of this, we will
write xσ ↓ to signify that it has already been enumerated (or ‘flagged’, to be clari-
fied later) into B, and xσ ↑ otherwise. We also note here that O(x) depends on the
definitions of the various Θe (and hence ultimately θe), which is defined stagewise
during the construction. Even though the definition of Θe changes, once xτ ↓, it
will remain the unique element in O(x) ∩ Sτ regardless of subsequent changes in
the definition of Θe.

We are now ready to state the conditions which we will enforce on qepe and
ϕe during the construction. (We only write them for qepe but they shall also be
enforced on ϕe.)
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C1.) For each label σ, and each integer l, there exists a label τ and an integer

l′, such that for every b ∈ Θl
0(Sσ), qepe(b) ∈ Θl′

0 (Sτ ).

i) Furthermore, qepe(b) = bτ . In particular, if bτ ↑ and qepe(b) ↓, then we
are able to diagonalise against qe or pe.

C2.) If qepe : Θl
0(Sσ) → Θl′

0 (Sτ ) for some l, l′ integers, then all of the following
must hold.

i) If τ ∈ Bad(γ) for some γ, then σ ∈ Bad(γ).

ii) If τ is of colour k, then σ is either of colour k or 0. (If k = 0 then σ
must be colour 0.)

iii) For all n, qepe : Θl
0(Zn(σ)) → Θl′

0 (Zn(τ)) (recall Def. 4.6). Further-
more, (qepe)

−1(Ze−1) = Θk
0(Ze−1) for some integer k.

Below are the procedures to diagonalise against qepe should they fail to satisfy
one of the conditions above. In what follows, we suppress the Θ0 maps. Since Θ0 is
maintained to be primitive recursive, any enumeration (or lack thereof) in Sσ and
Sτ will be reflected in Θl

0(Sσ) and Θl
0(Sτ ) for all integers l respectively. Removing

them thus has no real effect on any intricacies of the proof, and we shall do so in
order to lighten the notation.

During the construction, every enumeration action is represented by one of A1,
A2, A3, A4. The exact details are not important for now but we will put the
corresponding actions in parentheses whenever we say to enumerate something in
the following discussion. This is to ensure that we do not perform any action which
is not allowed by the formal construction.

Condition (C1): Suppose that there is some label σ and two elements x, y ∈ Sσ

such that qepe(x) and qepe(y) are in different subintervals. Let qepe(x) ∈ Sτ .
Remember that we suppress the Θ0. The strategy described below will work
even if qepe(x) and qepe(y) are not within the same interval Ik. Without
loss of generality, we may assume that x < y and thus qepe(x) < qepe(y).
Otherwise one of qe, pe must fail to be order preserving.

We consider the following possibilities.

• σ and τ are of different positive colours.

• τ is of colour 0 and σ is not.

In either of these two cases, we are able to enumerate elements (using
A3) into Sσ between x, y without having to enumerate any elements into
Sτ . This can be done as we are able to keep the subintervals with labels
of different colour ‘sufficiently disjoint’ (see Corollary A.3). Then we can
diagonalise against qepe as follows. Wait for some z between x, y such
that qepe(z) ∈ Sτ . This must happen at some finite stage, otherwise qepe
cannot be surjective as qepe(x, y)∩Sτ ̸= ∅. Once such an element z is found,
enumerate sufficiently many elements (using A3) into Sσ between x, z. Then
qepe must fail to be a primitive recursive isomorphism since we are able to
increase the number of elements between x, z without enumerating any new
elements into qepe(x, z).

We may thus assume that one of the following holds.

• σ and τ are both of the same colour.

• σ is of colour 0.

Recall from Def. 5.1 that if σ, τ are of the same colour, or if σ is of colour 0,
then for any z ∈ Sσ, z

τ must be defined as non-dyadics (but not necessarily
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in B). In particular, both xτ and yτ are defined. Furthermore, since x, y,
have already been enumerated, xτ , yτ , can be assumed to exist in B. If
(xτ , yτ )∩qepe(x, y) = ∅, then a similar strategy as in the case where σ and τ
are of different colours can be employed. This is because enumerations into
(x, y) will only cause other enumerations within Sτ to happen in (xτ , yτ ).
We thus assume that (xτ , yτ ) ∩ qepe(x, y) ̸= ∅.
Let z be the element xτ if it is in qepe(x, y) and let z = yτ otherwise. By
our assumption, z ∈ qepe(x, y). Wait for (qepe)

−1(z) ↓. As before, this wait
must be finite or qepe cannot be surjective. We now have the following.

x < (qepe)
−1(z) < y and (qepe(x), z) ⊆ Sτ .

If z = xτ , then we are able to diagonalise against qepe by enumerating suf-
ficiently many elements (using A1 if σ is of colour 0 and A3 otherwise) into
(x, (qepe)

−1(z)). Doing so would only cause enumerations to the right of xτ

and thus no new elements are enumerated into (qepe(x), z). As a result, qepe
cannot be a primitive recursive isomorphism. We may thus assume that
xτ /∈ qepe(x, y), and so z = yτ . Let w = (qepe)

−1(z). Enumerating elements
into (x,w) might no longer work now, seeing as (qepe(x), z)∩ (xτ , wτ ) ̸= ∅.
We then iterate the idea above once more; wait for (qepe)

−1(wτ ) ↓, (note
that wτ ↓) and provided that qepe is order preserving, we obtain the follow-
ing.

x < (qepe)
−1(wτ ) < w and qepe((qepe)

−1(wτ ), w) = (wτ , z)

Now when we enumerate elements (again using either A1 or A3 based on
the colour of σ) into ((qepe)

−1(wτ ), w), new elements only get enumerated
into Sτ to the right of wτ . Therefore, doing so causes no new enumerations
into (wτ , z) and thus qepe cannot be a primitive recursive isomorphism.

Condition (C1i): We may now assume that qepe satisfies Condition (C1); there
exists some τ such that for all b ∈ Sσ, qepe(x) ∈ Sτ . Suppose also that
there exists some b ∈ Sσ such that qepe(b) ̸= bτ . Similar to before, we may
assume that bτ ↓ (is in B). Otherwise, either σ and τ are of different positive
colours, or τ is of colour 0 and σ is not. Then the same strategy used in
Condition (C1) can be applied to diagonalise against qepe. However, if
qepe(b) ∈ Sτ and is different from bτ (which exists), then a similar strategy
as the one in Condition (C1) can again be used to diagonalise against qepe.

Condition (C2i): Supppose that Condition (C1) is enforced on qepe. Let τ be the
unique label for which qepe(b) ∈ Sτ for each b ∈ Sσ. Further suppose that
qepe fails to satisfy Condition (C2i); τ ∈ Bad(γ) but σ /∈ Bad(γ). In order
to diagonalise against qepe, we enumerate ‘sufficiently’ many elements into
Sσ (using A3), and wait for qepe to converge on them. Since σ /∈ Bad(γ),
there is no reason for us to enumerate any new elements into intervals
with labels in Bad(γ). In other words, we are able to enumerate any
number of elements we like into Sσ (using A3), without having to enumerate
any elements into Sτ . Then qepe must fail to be a primitive recursive
isomorphism.

Condition (C2ii): We use a similar idea as in enforcing Condition (C2i). Observe
that if τ is of colour k and σ is of some positive colour k′ ̸= k, then we
are able to enumerate elements into Sσ (using A3) without doing so into
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Sτ . (Once again this depends on Corollary A.3.) For the same reasons as
before, qepe must fail to be a primitive recursive isomorphims.

Condition (C2iii): We proceed inductively on n. The base case is trivial since
Z0(γ) = Sγ for any label γ. Suppose inductively that it is true for all
m < n, that is, if qepe : Sσ → Sτ , then qepe : Zm(σ) → Zm(τ).

The aim now is to prove that for all integers l, qepe : Zn−1(succ
l
n(σ)) →

Zn−1(succ
l
n(τ)); recall Def. 4.6. Let σl = succln(σ). First consider the

case where l = 1. Suppose that qepe : Sσ1
→ Sτ ′ for some τ ′. Applying

the inductive hypothesis, we obtain that qepe : Zn−1(σ1) → Zn−1(τ
′).

Provided that qepe is order preserving and surjective, it must be that
Zn−1(τ

′) = Zn−1(succn(τ)). To see this, recall that Zn−1(succn(τ)) is the
ζn−1-chain of intervals adjacent to Zn−1(τ). Thus, if qepe maps Zn−1(σ)
to Zn−1(τ) but does not map Zn−1(succn(σ)) to Zn−1(succn(τ)), then it
either fails to satisfy Condition (C1) or it is not surjective. An easy induc-
tion allows us to conclude that it is true for all integers l. We thus have that
if qepe : Sσ → Sτ , then for all n, qepe : Zn(σ) → Zn(τ). Observe that this
implies that for each k, there exists a unique k′ for which qepe : Ik → Ik′ .

Recall that Θe is maintained at the priority of Re. Thus, qepe(S⟨⟩) ∈
Θk

0(Ze−1) for some k. Otherwise, it implies that qepe is copying some
composition of maps which include Θe or its inverse. Then we would be
able to diagonalise against qepe by enumerating elements into S⟨⟩ while
preventing enumerations into any interval with labels that have entry e.
Therefore, qepe would fail to be a primitive recursive isomorphism. Hence,
the only possible preimage for Ze−1 has to be Θk

0(Ze−1) as qepe maps each
interval to exactly one interval.

Recall that B, T are constructed as primitive recursive substructures of Qnd. Fur-
thermore, the only difference between B, T is that we sometimes enumerate an
element free into T . But observe that the strategies above do not utilise any enu-
merations of free elements. As such, the same conditions can also be enforced on
ϕe : T → B using the above strategies.

In addition, during the construction, we will not ‘directly’ enumerate elements
into Sσ for any label σ of length more than 1. However, we remind the reader
here that Sσ is a slightly delayed copy of Sσ(0); any enumeration into Sσ(0) will be
reflected via following Θ maps into Sσ. Therefore, when we say to enumerate an
element into Sσ (in the discussion above), we simply enumerate an element into
Sσ(0) and wait for the respective images of the enumerations to show up in Sσ.
Note that this wait is not necessarily primitive recursive as we might have to use
some Θ−1

e (not primitive recursive for e > 0) to reach Sσ from Sσ(0). However, for
the sake of obtaining a permanent satisfaction of some R or N -requirement, the
inverse Θ could be made temporarily primitive recursive.

5.2. The construction. For convenience, we index the requirements starting from
1. We arrange the requirements in order of priority as follows. Q1, R1, Q2, R2, . . . .
During the construction, each requirement can have one of the following states.

• For Re:

(1) Waiting

(2) Building β

(3) Building α
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(4) Satisfied

• For Ne:

(1) Waiting

(2) Prepared

(3) Satisfied

Recall that we construct B, T as subsets of the non-dyadic rationals. Define
Ik = (k, k + 1) for each k ∈ Z, and split I0 and I1 into subintervals labelled
with reduced strings as described in Section 4.2. Further split S⟨⟩ into even smaller
subintervals, each to be assigned to a single R-requirement as follows. Split S⟨⟩
into countably many disjoint subintervals, Sn

⟨⟩, where the n
th subinterval has length

2−n−1(length of S⟨⟩). For each Re, where e > 0, assign Se
⟨⟩ to it.

Throughout the construction, each non-dyadic will be in one of the following
states.

• Not yet flagged to be enumerated.

• Flagged to be enumerated at some stage s.

• Flagged at ∞: to be enumerated at some stage to be decided later. These
flags are for elements which we temporarily want to keep out of B, T . But
as shall be seen later, during ‘catch up’ stages, all such elements will be
enumerated into the structure.

• Already enumerated into the structure.

An element being flagged for enumeration into the structure is a global requirement
and cannot be blocked by any of the R or N -requirements. For convenience when-
ever an element is flagged with a number less than or equal the current stage, we
enumerate the element into the structure immediately. Also, if an element is flagged
multiple times by different actions, the flag with the lowest value will always take
precedence. During the construction, we keep track of ces and des for each e > 0,
defined to be the right-most element in the left half and the left-most element in
the right half of Se

⟨⟩, respectively, flagged to be enumerated at stage s.

In order to define actions that will be used during the construction, we will
make use of Θe, which is defined during the construction. There is no circularity
involved as the stagewise definition of Θe, as the definition below depends only
on the calculus of reduced strings. The exact definition specifying the action of
Θe on each element will depend on a stage. However, its global behaviour on
various intervals is set up in advance, according to the following Definition 5.2.
The definition below formalises the idea of the gap (and subsequent images of it) of
Θ described in Section 3.2. More specifically, the following definition will be used

to describe the part S†
⟨e⟩ of the subinterval S⟨e⟩ which is currently in the range of

Θe. Note this definition does not actually specify what exactly S†
⟨e⟩ ⊆ S⟨e⟩; this

will be defined during the construction.

Definition 5.2. For σ a label of positive colour, define S†
σ[s] recursively.

• S†
⟨e⟩[s] := Θe,s(S⟨⟩).

• S†
(σe)∗ [s] := Θe,s(S

†
σ[s]), where (σe)∗ is the reduced form of σe.

Remark 5.3. In what follows, we use the notation introduced in Def. 5.1 to identify
the elements of Qnd that will be flagged for enumeration. Since the definition of
Θe changes based on the stages of the construction, for some fixed x and some
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fixed σ, xσ could change between different stages of the construction. Thus to avoid
ambiguity, we should index xσ with the stage number. But we also do not wish to
be bogged down by the (already) heavy notation, and hence we opted to suppress
the index representing stages for xσ. Instead, whenever we write ‘flag xσ...’ we
mean flag the current version of xσ at whatever stage the action is taken. Once an
element has been flagged, we never change the definition of Θe on them again.

During the construction, there will only be the following types of enumeration
actions. Whenever we say ‘flag an element in Sσ to be enumerated’, it means that
the corresponding element in both B and T are flagged except when enumerating
free elements. To enumerate free elements, we will use Ŝ⟨⟩ to emphasize that we
flag only some element in T .

Notation 5.4. To simplify the notation, we will also use Val(σ) to denote max{max(σ), |σ|}
and refer to this as the value of the interval labelled with σ.

A1. Enumerate an element x in S⟨⟩. Then flag all xσ for σ of colour 0 with
Val(σ).

A2. Enumerate a free element x into Ŝ⟨⟩ (the interval in T corresponding to
S⟨⟩). That is, it only enters T and not B. Set the flag for x ∈ B to be ∞.

A3. Enumerate an element x ∈ S⟨k⟩ where k > 0. Then flag all xσ for σ of
colour k with ∞.

• For good intervals of colour k, the flags at ∞ could be replaced due to
actions as defined later.

• For each bad interval of colour k, it must be in Bad(γ) for some good
γ (see Def. 3.7 and 4.9). Once xγ has been enumerated, then we are
allowed to also flag xτ in all labels τ ∈ Bad(γ) with Val(τ). Unless
mentioned otherwise, flagging of xτ for τ ∈ Bad(γ) will be assumed
to take place whenever xγ is enumerated. Recall from Section 3.7 that
we can put elements into bad intervals as long as Condition (C2i) is
maintained.

A4. Do the following.

• For x ∈ S⟨⟩ flagged with ∞, enumerate x into B. Note that x must
already be in T .

• For x ∈ S†
σ flagged with ∞, replace the flags with Val(σ).

• For each e and each x ∈ S†
⟨e⟩, enumerate y = Θ−1

e,s(x) into S⟨⟩ (if y has

yet to be enumerated into B).

• For each σ, and each z ∈ S⟨⟩, flag zσ with Val(σ).

The purpose of this action is to ensure that all subintervals have the same
number of elements (up to some primitive recursive delay). Furthermore,
once this action is applied, we should have Bs = Ts.

The actions described above will be the only active actions which we perform
and actively control during the construction. All other enumeration actions will be
performed in the background ‘automatically’, as described below. These actions
are to ensure that the Θe-maps are well-defined and primitive recursive (and so is
Θ−1

0 ). Recall that Ik = (k, k + 1) for each k ∈ Z.
B1. Whenever some x enters Ik for k > 0, flag x + 1 to be enumerated at the

next stage.
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B2. Whenever some x enters Ik for k ≤ 0, flag x − 1 to be enumerated at the
next stage.

B3. Whenever some x enters Sσ at stage s, flag both Θ0,s(x) and Θ−1
0,s(x) to be

enumerated at stage s+ 1.

B4. Whenever some x enters Sσ at stage s, if |σ| is even, then do the following.

i) If q−1
e (x) is enumerated into Ae and Re is active in the construction,

flag Θe,s(x) to be enumerated at stage s+ 1. As long as q−1
e (x) is not

enumerated into Ae, we can delay enumerating Θe,s(x) into B.

ii) If Re is satisfied or building β, then we do not need to wait for q−1
e (x)

to be enumerated into Ae. Once x is enumerated, flag Θe,s(x) to be
enumerated at stage s+ 1 directly.

Throughout the construction, we shall also maintain a queue of pending tasks;
let it be empty at stage 0. A task in the construction would correspond to a
diagonalisation procedure described in Section 5.1. If we discover some qepe or ϕe

to fail one of the enforced conditions, then we would add the task to diagonalise
against qepe or ϕe respectively to the queue of pending tasks. We also say that a
task is ready if it is not currently waiting for surjectivity of the map (qepe or ϕe) it
is trying to diagonalise against.

Now we proceed to the formal construction.

Stage 0: Set all Re and Ne to the waiting state. Define for each e, the function
Θe,0 : Qnd → Qnd as follows. For any x /∈ I0, Θe,0(x) = x + 1. In fact,
for every s and x /∈ I0, Θe,s(x) = x + 1. In order to define Θe,0 on I0, we
consider each subinterval separately. For each label σ, let τ = (σe)∗, which
is the reduced form of σe. (Recall that σ0, σ1 are the left and right dyadic
endpoints of Sσ respectively.)

Θe,0 : x ∈ Sσ 7→ x− σ0

σ1 − σ0
(τ1 − τ0) + τ0 ∈ Sτ .

Note that by the careful choice of endpoints, Θe,0(x) is dyadic iff x is dyadic.
Pick the non-dyadic with the least index, x ∈ S⟨⟩, and flag it using action
A1.

Stage s: If there is some task currently in progress, then continue attending to
the task. Otherwise, pick the non-dyadic with the least index in S⟨⟩ and
enumerate it using action A1. Also, for each Rn currently building α, pick
the non-dyadic with the least index in the gap of Θn,s and enumerate it with
action A3. If some pending task is ready, then remove it from the queue
and act for it. Otherwise, pick the least e such that one of the following
holds.

(1) Re is waiting.

(2) One of the conditions (C1), (C1i), (C2i), (C2ii) or (C2iii) (see Sec-
tion 5.1) fails for qepe. For convenience we shall henceforth refer to
these conditions (C1), (C1i), (C2i), (C2ii), and (C2iii), as the enforced
conditions.

(3) Ne is waiting.

(4) One of the enforced conditions does not hold for ϕe.

In each of the above cases, we do the following.

Case 1: Change the state of Re to building β. Proceed to the next stage.
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Case 2: If qepe fails one of the enforced conditions, then begin the task
of diagonalising against qepe according to the strategy in Section 5.1.
Recall that in some of the cases, the strategy waits for the preimage of
qepe on some element in the structure. If a wait is required, we add this
task to the queue of pending tasks and proceed with the construction.
If the preimage is found, we say that this task is ‘ready’. (Otherwise
the task stays pending forever.)

Once the task begins, we issue no new instructions except for the
actions dictated by the diagonalisation strategies (of Section 5.1) until
either it is complete, or needs to wait again for some preimage of qepe
to be revealed. If qepe was observed to fail, then set Re to satisfied.
Otherwise, add the task back to the queue, where it stays pending until
it is once again ready. In any case, reset all statuses of Re′ , Ne′ for
each e′ > e which are not satisfied back to the waiting state. For each
Re′ in state building α that was initialised, close the gaps in Θe′,s+1

(see Case 4). Once a task is complete, perform action A4 and proceed
to the next stage.

Case 3: Pick some element t ∈ Ŝ⟨⟩ and compute ϕe(t). If ϕe satisfies all of
the desired conditions, particularly Condition (C1), then there exists
some τ such that for all t′ ∈ S⟨⟩, ϕe(t

′) ∈ Sτ . Thus computing the
image just for t will reveal τ . The possibilities are as follows.

(1) ϕe : S⟨⟩ 7→ Sτ where τ has positive colour n less than e.

(2) ϕe : S⟨⟩ 7→ Sτ where τ has colour 0.

If τ has positive colour n, provided that Rn is active and in state
building β, we say that ϕe is assigned to Rn. Then change the state of
Rn to building α and the state ofNe to prepared. Then introduce a gap
in the range of Θn,s+1 as follows. Choose for each i < 5, yi ∈ (cns , d

n
s )

dyadics such that y2 is the midpoint of Sn
⟨⟩, and for some m > s,

yi+1 − yi = 2−m. Also let zi = Θn,s(yi). Then define

Θn,s+1(x) :=


x−y0

y2−y0
(z1 − z0) + z0 if x ∈ (y0, y2)

y4−x
y4−y2

(z4 − z3) + z3 if x ∈ (y2, y4)

Θn,s(x) otherwise

If Rn was already building α, then we also say ϕe is assigned to Rn and
change the state of Ne to prepared, but do not change the definition
of Θn,s; let Θn,s+1 = Θn,s.

If Rn is inactive, then act to diagonalise against ϕe as follows. Enumer-
ate sufficiently many elements x into S0

⟨⟩ using action A1, and block

action B4i even if q−1
n (x) shows up in An. As before, issue no new

instructions until either ϕe ↑ or it fails one of the conditions being en-
forced on it. Then apply action A4 and add a new task to the queue if
ϕe was not witnessed to fail as a primitive recursive isomorphism but
instead fails to satisfy one of the desired conditions.

If instead we have that τ is of colour 0, then enumerate an element
free into Ŝ0

⟨⟩ according to action A2 at stage s+ 1.
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For stages t while an element x remains free in S0
ϵ , maintain only

actions B3 and B4. As a result, only good intervals will receive enu-
merations during such stages where some element remains free. Once
ϕe′(x) fails to either be quick or order-preserving for some e′ ≤ e and
Qe′ prepared, then we apply action A4, and proceed to the next stage.

Case 4: If ϕe fails one of the enforced conditions, then we can diagonalise
against ϕe as described in Section 5.1. Do the same thing here as in
Case 2.

If in addition, ϕe is currently the highest priority map assigned to some
Rn requirement, then after diagonalising against it, we need to close
the gap of Θn,s. Choose for each i < 5, y′i ∈ (cns , d

n
s ) dyadics such that

y′2 = y2 and for some appropriate large m, y′i+1 − y′i = 2−m. Also let
z′i = Θn,s(y

′
i). Then define

Θn,s+1(x) :=



x−y′
0

y′
1−y′

0
(z1 − z′1) + z′1 if x ∈ (y′0, y

′
1)

x−y′
1

y′
3−y′

1
(z3 − z1) + z1 if x ∈ (y′1, y

′
3)

x−y′
3

y′
4−y′

3
(z′4 − z3) + z3 if x ∈ (y′3, y

′
4)

Θn,s(x) otherwise

Then we use action A4 at the beginning of stage s+1. In particular, for
each y ∈ (z1, z3) flagged to be enumerated, enumerate Θ−1

n,s+1(y) ∈ Sn
⟨⟩,

and flag
(
Θ−1

n,s+1(y)
)σ

at stage s+ 1 with Val(σ).

Once the gap of Θn is closed, set all N -requirements of lower priority
that are not in the satisfied state back to the waiting state.

6. Verification

Before we check that the requirements are satisfied, we prove some preliminary
lemmas about the enumerations of elements and argue that the injury is finite.

Recall that all labels are reduced strings. For an interval J , we write |J [s]| to
denote its cardinality at stage s. (We however usually suppress s if there is no
danger of ambiguity.)

Lemma 6.1. At any stage s, if σ ≺ γ and both σ, γ are labels of the same colour,
then |Sγ | ≤ |Sσ|. Furthermore, after action A4 is applied, for all σ, |S†

σ| = |S⟨⟩|.

Proof. First notice that all enumerations are due to either action A1, A2 or A3.
Action A4 only replaces flags which are already there while actions B1-B4 flags
new elements only when some x previously entered the structure. Since A1, A2
and A3 only ever place elements into S⟨⟩ or Sk, then for any σ where |σ| > 1, if
some element is flagged to be enumerated into Sσ it must be due to one of A4, B3
or B4, as actions B1, B2 only enumerates elements into Ik for k ̸= 0, 1.

Now let γ such that |γ| > 1 be given. Further suppose that some element x in Sγ

has just been flagged to be enumerated at stage s and that γ is the minimal string
such that xγ has been flagged to be enumerated at some finite stage. However,
since |γ| > 1, x must have been flagged due to either actions B3 or B4. It cannot

be action A4, as that would have flagged xγ−
with Val (γ−) which cannot be more

than Val(γ). However, if it is due to actions B3 or B4, then let x1 := xγ1 be the
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element enumerated which triggered B3 or B4. Note that γ1 ≻ γ, since γ is assumed
to be the minimal. Furthermore, it must be that x1 was enumerated at stage s− 1
in order for B3 or B4 to flag x at s. Then we repeat the argument to obtain
xi+1 := xγi+1 which was enumerated at stage s − i − 1 to cause the enumeration
of xi. By Corollary A.3, and the fact that γ is minimal, it must be that γn ≻ γ
for all n. In particular γs ≻ γ, that is, |γs| > 1 but xs ∈ Sγs

was flagged to be
enumerated at stage 0, which cannot be the case. Therefore, x ∈ Sγ can only be

flagged at some finite value if xγ−
was flagged at an earlier stage. Therefore, if γ

is of colour k, it only receives an element x after all σ such that σ ≺ γ and also of
colour k has received xσ. We then have that |Sγ | ≤ |Sσ|.
Finally, when A4 is applied, for any element x ∈ S†

⟨n⟩ where n is positive, Θ−1
n,s(x)

is enumerated into the structure. And subsequently,
(
Θ−1

n,s(x)
)σ

is also flagged with

Val(σ) by A4. Thus |S⟨⟩| = |S†
σ|. □

Lemma 6.2. Each task in the construction, once initiated, only lasts for finitely
many stages before the respective requirement is met. If a task stays pending forever,
then the requirement corresponding to the task is satisfied.

Proof. Each task in the construction corresponds to some diagonalisation procedure
explained in Section 5.1. If a task is pending, then it means that we are waiting for
the preimage of some element under qepe or ϕe for some e. Therefore, if a task stays
pending forever, then qepe (or ϕe) is not surjective, thus satisfying the requirement
the task is for.

Suppose at some stage a task becomes ready. A task is added to the queue iff some
qepe or ϕe fails one of the enforced conditions. It is evident from the description
that only finitely many actions are applied to obtain a diagonalisation against qepe
(or ϕe). It thus remains to check that each individual action takes only a finite
amount of time.

During the construction, we only actively control the enumeration of elements
into either S⟨⟩ (A1) or one of S⟨e⟩ for some e > 0 (A3); the other enumerations
(B1)-(B4) happen in the background. All other flags occur as a result of these
enumerations. In particular, we show that when we wish to diagonalise against
qepe (or ϕe), the respective enumerations eventually happen in Sσ, (where σ is as
in Section 5.1). The crucial cases then are actions A3 and actions B4i. All other
actions provide a finite flag to elements.

In action A3, we are allowed to block enumerations into Bad(γ) by leaving the
flags at ∞. However, since we are actually attempting to get enumerations into
Sσ, if σ ∈ Bad(γ), then we would not leave the flags at ∞ for the elements in Sσ,
provided enumerations happen in Sγ first. Suppose σ is good. We now proceed by
induction on |σ| to prove that xσ ↓, i.e., enters B at some stage.

The cases for |σ| = 0, 1 are trivial. Suppose inductively that after some finite
delay from when x is enumerated into S⟨⟩ or S⟨e⟩, x

σ ↓ for σ of colour e and length
< n. If n is even, then the last bit of σ is necessarily 0. Therefore, by action B3, once

xσ− ↓ (recall Notation 3.1), xσ = Θ−1
0 (xσ−

) would be flagged to be enumerated.
If n is odd, then the last bit of σ must be k for some k > 0. There are two

further possibilities. When xσ− ↓, if Rk is not in state building α, then by action

B3i, xσ = Θk(x
σ−

) would have been flagged with some finite value. We may thus
suppose that Rk is in state building α. In order to maintain α for Rk, we thus need
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to wait for q−1
k (xσ−

) ↓. But this could potentially never happen. However, we note
here that since Rk is in state building α, there must be some ϕ which is currently

assigned to it. Referring the reader to Lemma 6.14, if q−1
k (xσ−

) ↑, then ϕ fails to
be a primitive recursive isomorphism in finite time. Once this happens, Rk changes
state back to building β as mentioned in Case 4 of the formal construction. We are

then allowed to enumerate xσ = Θk(x
σ−

) into B. □

Lemma 6.3. B, T are dense linear orders with no endpoints.

Proof. Since we add the least indexed dyadic into S⟨⟩ and S⟨e⟩ \ S†
⟨e⟩ infinitely

often, all such intervals are dense. Applying the lemma above with the fact that
all other subintervals are simply copies of either S⟨⟩ or S⟨e⟩ for some e, we obtain
the lemma. □

Lemma 6.4. For each e > 0, Re and Ne are initialised at most finitely many times.

Proof. During the construction, a requirement is only ever initialised if some re-
quirement of higher priority switches it status to satisfied, as in Cases 2 and 4 of
the formal construction. Furthermore, once a requirement switches it status to
‘satisfied’, it never again becomes an active requirement. That is, for each fixed n,
there are only at most finitely many times which it can be initialised as there are
only finitely many requirements of higher priority. □

Thus for each requirement, there is some large enough finite stage s for which it is
never again injured. We are now ready to prove that each requirement is satisfied.

Lemma 6.5. If Ne changes to state ‘satisfied’ during the construction, then Ne is
satisfied.

Proof. During the construction, a requirement Ne changes its state to ‘satisfied’
only if one of the following happens.

• In Case 3 of the formal construction; if ϕe(S⟨⟩) ⊆ Sτ where τ is of colour 0
or n for some inactive Rn.

• In Case 4 of the formal construction where ϕe fails one of the enforced
conditions.

In Case 3, when Ne picks some inactive Rn, then elements x are enumerated into
S0
⟨⟩ while action B4i (for Θn) is blocked. Meaning that xτ for τ of colour n never

shows up until A4 is applied, which only happens until after ϕe fails. Similarly, in
the case that ϕe(S⟨⟩) ⊆ Sτ where τ is of colour 0, action A2 is used to enumerate

a free element x into Ŝ0
⟨⟩, that is to say, xτ for τ of colour 0 is never flagged to be

enumerated at a finite stage until action A4 is executed. Thus ϕe must fail one of
the enforced conditions or we find some witness that ϕe is not a primitive recursive
isomorphism.

In Case 4, if ϕe fails one of the enforced conditions, then the construction acts
according to the strategy as described in Section 5.1 and thus guarantees that ϕe

fails as a primitive recursive isomorphism. □

Lemma 6.6. For each e, Ne is satisfied.

Proof. By Lemma 6.4, after some stage s, Ne is never again initialised. Let stage
s be the stage at which Ne is initialised for the last time. Further assume that
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during the construction, Ne never changes its state to satisfied, otherwise by the
previous lemma, Ne would be satisfied. We may thus assume that ϕe satisfies all
of the enforced conditions.

At some stage t ≥ s, the strategy Ne must be the highest priority requirement in
the waiting state, and thus the construction must act for it. Then ϕe(S⟨⟩) ⊆ Sτ ,
for some τ . We may assume here that τ is of colour n > 0, otherwise Ne will be
satisfied as shown in the previous lemma. There are then two possibilities.

Case 1: There are no other N -requirements currently assigned to Rn. Then as
described in Case 3 of the formal construction, Ne is assigned to Rn and a
gap is introduced in the range of Θn,t. By assumption, Ne is never again
initialised after stage s, and so it must be that Θn never again changes its
definition, and the gap of Θn is not surjective. Since ϕe satisfies all of the
enforced conditions, it implies that ϕe(Ŝ⟨⟩) ⊆ S†

τ ⊊ Sτ , and so, ϕe cannot
be surjective.

Case 2: There is some other N -requirement already assigned to Rn, say Ne′ . We
claim that e′ < e. When Ne is initialised, all lower priority N -requirements
are also initialised. Since Ne is the current highest priority N -requirement
in the waiting state, it must thus be attended to first. Thus any other
N -requirement already assigned to Rn after stage s must all be of higher
priority than Ne. By assumption, since Ne is never again initialised after
stage s, then we can once again assume that the gap in Θn,t is never closed,
as no higher priority N -requirement changes its state to satisfied after stage
s. In particular, the highest priority Ne′ requirement currently assigned to
Rn never changes state after stage s. Then it must be that ϕe(Ŝ⟨⟩) ⊆ S†

τ ⊊
Sτ . Thus ϕe cannot be surjective.

Therefore, each Ne requirement either changes its state to satisfied at some finite
stage, in which case it must be satisfied, or ϕe is assigned to some Rn requirement
for cofinitely many stages and fails to be surjective. □

We split the proof that Re is satisfied into two subsections, addressing the β and
α strategy respectively.

6.1. Defining βe.

Definition 6.7. Let Θe =
⋃

s Θe,s, and define βe : Ae → B as follows.

βe(x) = Θe i
−1 qe(x).

We now show that βe is primitive recursive and order preserving.

Lemma 6.8. Given x ∈ Bs, it is primitive recursive to find σ such that x ∈ Sσ.

Proof. Observe that during the construction, for any k and any x ∈ Sk, x is flagged
at with some value at least k. Then applying a simple induction and Lemma 6.1
allows us to easily conclude that at each stage s, the only intervals Sσ that has
elements enumerated into it are such that Val(σ) ≤ s. Observe that there are
at most ss many such intervals. Furthermore, given any label, it is also primtiive
recursive to find its endpoints (see the procedure in Section 4.2). Thus, given any
x ∈ Bs, it is primitive recursive to find σ such that x ∈ Sσ. □

Lemma 6.9. If there are infinitely many stages s such that Re is in state building
β at stage s, then βe is a surjective isomorphism.
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Proof. Suppose that qe is surjective and order-preserving. Since i−1 is clearly an
isomorphism, then it suffices to check that Θe is surjective and order-preserving. By
the definition above, Θe : x ∈ Qnd \I0 7→ x+ 1 ∈ Qnd \I1 which is an isomorphism.
Thus it remains to check that Θe ↾I0 is order preserving and surjective.

Since Θe ↾I0 maps each subinterval to exactly one other subinterval, we can
think of it as a map on the labels. By Lemmas A.5 and A.6, Θe ↾I0 is both
order preserving and surjective as a map on the labels. From the definition in
Section 5, it is easy to see that Θe,0 ↾I0 is order preserving and surjective on each
subinterval. Furthermore, for any x /∈ Se

⟨⟩, Θe,s(x) = Θe,0(x). Therefore, we need

only check that Θe ↾Se
⟨⟩

is order preserving and surjective. By the assumption,

there are infinitely many stages during which Re is in state building β. Hence, a
gap is placed and removed in the range of Θe infinitely often. We refer the reader
to Cases 3 and 4 of Section 5 for the exact definitions of placing and removing gaps
in the range of Θe. Each time a gap is placed, it is an interval centered at a fixed
dyadic y2 (as in the definition), with radius 2−m for some m larger than the current
stage number. When the gap is removed (in Case 4) the definition of Θe,s becomes
surjective. Now for a fixed y ∈ S⟨e⟩, there must be some t large enough for which

|y − y2| > 2−t. Then for any stage t′ > t, y will never again be in the gap of Θe.

Finally, to prove that Θe is order preserving, it suffices to check only for elements
x, y ∈ S⟨⟩. We proceed by induction. Since Θe,0 is order preserving (on elements),
then suppose inductively that Θe,s is order preserving. We consider the cases when
Θe,s+1 ̸= Θe,s.

Case 1: Re swapped to building α at stage s (Case 3 of the formal construction).
Let x < y be given. If x, y /∈ (y0, y4) as in the definition of Θe,s+1, then
Θe,s+1(x) = Θe,s(x) and Θe,s+1(y) = Θe,s(y). Applying the inductive
hypothesis allows us to conclude that Θe,s+1(x) < Θe,s+1(y).

By definition of Θe,s+1, z ∈ (y0, y4) iff Θe,s+1(z) ∈ (z0, z4). That is, if
exactly one of x, y ∈ (y0, y4), then we also have that Θe,s+1(x) < Θe,s+1(y).
Finally, it is easy to check that if both x, y ∈ (y0, y4) we also have the desired
property.

Case 2: Re swapped to building β at stage s (Case 4 of the formal construction).
A similar analysis as before can be done to show that θe,s+1 is also order-
preserving.

Thus by induction, for each s ∈ ω, Θe,s is order-preserving. □

As long as action B4i and B4ii is maintained forRe, βe must be primitive recursive.
During the construction, when B4i or B4ii is blocked, Re is initialised. However,
by Lemma 6.4, there is a final stage where this happens. The version of βe built
after such a stage will thus be primitive recursive. Notice also that the primitive
recursiveness of βe is completely independent of the surjectivity of βe. We thus
obtain the following.

Corollary 6.10. If there are infinitely many stages for which Re is in state building
β, then βe is a primitive recursive surjective isomorphism.

6.2. Defining αe.
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Definition 6.11. Suppose qepe : Ik → I0 for some k ∈ Z, then let αe : T → Ae be
as follows.

αe(x) =

{
q−1
e (x) if x ∈ Ze−1

peΘ
k
0 i

−1(x) otherwise.

Given any x ∈ Ts, applying the same reasoning in Lemma 6.8, it is primitive
recursive to tell which Sσ ∋ x. Since σ ∈ Ze−1 iff max(σ) ≤ e − 1, it is thus
primitive recursive to tell which case of αe should be applied to x. To prove that
αe is primitive recursive, it remains to check that αe(x) is enumerated into Ae

within a primitive recursive delay after x is enumerated into T .

Lemma 6.12. Let τ ∈ Ze−1 be arbitrarily chosen, and suppose that qepe satisfies
the enforced conditions. Then it is primitive recursive to find σ such that qepe(Sσ) =
Sτ .

Proof. For notational convenience, in the following proof, we treat qepe as a map
on the labels. Since qepe satisfies all of the enforced conditions, then this induced
map is well-defined. Let qepe(⟨⟩) = γ. By Condition (C2iii), it must be that for
all k ∈ Z, qepe

(
succk1(⟨⟩)

)
= succk1(γ). If τ ∈ Z1(γ), since we can always promptly

find k such that succk1(γ) = τ , then take σ = succk1(⟨⟩).
Now suppose that τ ∈ Zi(λ), and let δ be such that qepe(δ) = λ. We aim to find

δ′ such that τ ∈ Zi−1((qepe)(δ
′)). Given λ and τ , using Fact 4.5, rewrite them as

follows.

• λ = (λ1λ2 . . . λi . . . λe−1)
∗

• τ = (τ1τ2 . . . τi . . . τe−1)
∗

If τ ∈ Zi−1(λ), then take δ′ = δ. Otherwise, search for ki such that succki
i (λi) = τi,

which can always be found promptly. Then take δ′ = succki
i (δ), and notice that by

Condition (C2iii), τ ∈ Zi−1(qepe(δ
′)).

Observe that applying the procedure above starting with δ = ⟨⟩ and λ = γ allows
us to obtain σ. Furthermore, since each ki can be found primitively recursively in
τ, γ, the quantity ||σ| − |τ || is also primitive recursive in τ, γ. □

Lemma 6.13. If ϕn satisfies the enforced conditions and ϕn : S⟨⟩ 7→ Sτ , where τ
has colour e > 0, then for all σ ∈ Ze−1 good, ϕn(Sσ) = Sστ .

Proof. Let ϕn be such that it satisfies the enforced conditions, ϕn(S⟨⟩) = Sτ and
τ(0) = e > 0. Then by Condition (C2iii), it must be that ϕn : Ze−1 7→ Ze−1(τ).
We proceed by induction on the colour of σ ∈ Ze−1. Let σ good with colour
e − 1 be given. Then σ = succke−1(⟨⟩) for some k > 0. Again by Condtion (C2iii),

ϕn : Ze−2(σ) 7→ Ze−2

(
succke−1(τ)

)
. Since τ(0) = e, and k > 0, then γ = succke−1(τ)

is good and also has colour e − 1. Applying Fact 4.7 allows us to conclude that
γ is the only label in Ze−2

(
succke−1(τ)

)
with colour e − 1. That is, ϕn(Sσ) = Sγ ,

otherwise ϕn cannot possibly satisfy Condition (C2iii). Furthermore, since τ(0) = e,
by the definition of succ (Def. 4.6), it is easy to see that γ = στ as desired.

Now inductively suppose that ϕn(Sσ) = Sστ for any good σ ∈ Ze−1 of colour e−i.
Let σ good of colour e−i−1 be given. It must be in some Ze−i−1(γ) where γ is ⟨⟩ or
some good label with colour strictly above e−i−1. Then there must be some k such
that succke−i−1(γ) = σ for some k > 0. Since γ is good, by the inductive hypothesis
ϕn : Sγ 7→ Sγτ . Furthermore, as ϕn is assumed to satisfy Condition (C2iii), then
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ϕn : Ze−i−2(γ) 7→ Ze−i−2(γτ). In fact, ϕn : Ze−i−2(σ) 7→ Ze−i−2

(
succke−i−1(γτ)

)
.

Finally, applying Fact 4.7 allows us to conclude that the only label of colour e−i−1
in Ze−i−2

(
succke−i−1(γτ)

)
is succke−i−1(γτ), which is στ . Thus, ϕn : Sσ 7→ Sστ . □

Lemma 6.14. αe is a primitive recursive isomorphism if there exists s such that
for all t > s, Re is in state ‘building α’.

Remark 6.15. Observe that the proof below is done without dependence on Lemma
6.2 thus removing any potential circularity. This is because ϕ must first be satisfying
the enforced conditions in order for it to be assigned to some R. Once it is assigned,
ϕ potentially only fails in some finitary way, thus causing R to change its state back
to building β as required in the proof of Lemma 6.2.

Proof. Suppose that there exists s such that for all t > s, Re is in state building α.
We first check that αe is primitive recursive. In the definition of αe, the second line
utilizes the functions i−1, Θ0 or Θ−1

0 . Since x /∈ Ze−1, i
−1(x) is primitive recursive.

As maintained by actions B1, B2 and B3, Θ0,Θ
−1
0 are also both primitive recursive

functions. Thus αe : T → Ae is then primitive recursive for any x /∈ Ze−1 provided
pe is primitive recursive. It remains then to check that for any x ∈ Ze−1, q

−1
e (x) is

primitive recursive after stage s. Consider the αe being built after stage s.

Let ϕn : T → B be the highest priority primitive recursive function assigned to
αe; ϕn(S⟨⟩) = Sτ for some good τ of colour e. Suppose to the contrary that there

exists x ∈ Ze−1 for which q−1
e (x) does not show up primitively recursively (in ϕn).

Case 1: Suppose that x enters some bad interval, Sγ , where γ ∈ Ze−1. Let γ ∈
Bad(γ′) for some good γ′. Since we can assume that qepe satisfies Condition
(C2i), if (qepe)(Sσ) = Sγ , then σ ∈ Bad(γ′).

If we further have that γ is of positive colour, then x must have entered due
to action A3. This same action must have also flagged the elements xξ for
every ξ ∈ Bad(γ′). In particular, xσ must be flagged to be enumerated at
some finite stage. Furthermore, by Lemma 6.12, |σ| can be found primitive
recursively in |γ|. Thus, the element xσ must enter Sσ within primitively
recursively many stages after x enters Sγ . If instead γ is of colour 0, then
it must be that qepe(Sσ) = Sγ for some σ of colour 0 (by Condition (C2ii)).
Employing a similar argument, if x enters Sγ , action A1 must have also
flagged xσ to be enumerated at some finite stage. Hence, it must enter Sσ

within some primitive recursive delay after x enters Sγ .

Case 2: Suppose that x enters some good interval Sγ where γ ∈ Ze−1. Applying
Lemma 6.13 allows us to obtain that ϕn(Sγ) = Sγτ , where τ is such that
ϕn(S⟨⟩) = Sτ .

Case 2a: If x is enumerated due to action A4, then note that xσ is defined for
any σ, as x ∈ S†

γ . Furthermore, since action A4 flags elements according
to the value of the interval they are in, by Lemma 6.12, xσ must enter
within primitively recursively many stages after x enters S†

γ . After action

A4 is applied, we have that |S†
σ| = |S⟨⟩| = |S†

γ |, and thus q−1
e (x) must

be enumerated into the structure Ae. Otherwise peqe must fail to satisfy
Condition (C1i).

Case 2b: If x enters Sγ not due to action A4, then we prove that as long as
q−1
e (x) ↑, then ϕn(x) has no suitable image.



40 HEER TERN KOH, ALEXANDER G. MELNIKOV, AND KENG MENG NG

We may suppose that γ is of even length (and good) since only the first
line in the definition of α is in danger of not being primitive recursive.
Recall from Lemma 6.1 that |Sγe| ≤ |Sγ |. In fact, when x is enumerated
into Sγ , since Re is in state building α, action B4ii will not be used to flag
Θe(x) ∈ Sγe. In particular, we now have that |Sγe| < |Sγ |. As long as
q−1
e (x) ↑, we never flag the element xγe = Θe(x) to be enumerated; ϕn(x)
has no suitable image in Sγτ . This is because xγτ can only be enumerated
if xγe ↓. In other words, ϕn : Sγ → Sγτ but |Sγ | > |Sγe| ≥ |Sγτ |. ϕn

cannot possibly be a primitive recursive isomorphism while satisfying all of
the enforced conditions.

Thus, αe is primitive recursive or the highest priority ϕn assigned to αe must
fail. If the latter case happens, then Re closes the gap in Θe and switches its
state back to building β as described in Case 4 of the formal construction, which
is a contradiction to the assumption. It remains to check that αe : T → Ae is a
surjective isomorphism.

Suppose that qe : Ae → T and pe : B → Ae are both isomorphisms, and that qepe :
Ik → I0 for some k ∈ Z. Let x ∈ I0 \ Ze−1 be given. Then αe(x) = peΘ

k
0 i

−1(x),
that is to say, αe(x) ∈ pe (Ik \ Ze−1). In particular, since Θk

0 : I0\Ze−1 → Ik\Ze−1

is a surjective isomorphism, then αe : I0 \ Ze−1 → pe (Ik \ Ze−1) must also be a
surjective isomorphism.

Now let x ∈ Ze−1 be given. Then, αe(x) = q−1
e (x). With the assumption that qe

is an isomorphism, αe : I0\Ze−1 → q−1
e (I0 \ Ze−1) is also a surjective isomorphism.

Using the assumption that qepe satisfies Condition (C2iii), and that qepe : Ik 7→ I0,
we obtain that q−1

e (I0 \ Ze−1) and pe (Ik \ Ze−1) partition pe (Ik). Hence, αe :
I0 → pe(Ik) is a surjective isomorphism. Then for all other intervals Il where l ̸= 0,
αe : x ∈ Il 7→ (peΘ

k
0)(x) ∈ pe(Il+k), which is clearly a surjective isomorphism.

Putting it all together gives us that αe : T → Ae is an isomorphism. □

Lemma 6.16. For each e, Re is satisfied.

Proof. If Re changes its state to satisfied at some stage during the construction,
it must be because qepe was found to fail one of the enforced conditions. Then
the construction acts to diagonalise against qepe and thus Re must be satisfied.
Suppose qe, pe are both primitive recursive isomorphisms. Suppose Re never enters
the satisfied state during the construction. By Lemma 6.4, let s be the stage after
which Re is never again initialised. After such a stage s, Re is either in state building
α for cofinitely many stages, or it is in state building β for infinitely many stages.
Then αe is a primitive recursive surjective isomorphism by Lemma 6.14, or βe is a
primitive recursive surjective isomorphism by Corollary 6.10 respectively. □
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Appendix A. Proofs of lemmas about labels

Here we establish certain technical lemmas regarding the labels used in the proof
of the main theorem. We begin by listing some observations about the labels.

Fact A.1. The following are true for any string σ:

• If σ is reduced, then for any x, n ∈ ω, f(σ⌢x) = fn+1(σ⌢x).

• If σ is reduced, then for any i ≤ |σ|, σ ↾i is also reduced.

• For any string τ ∈ ω<ω and any decomposition τ = σ⌢γ, τ∗ = (σ∗⌢γ)∗.

• If σ is reduced, then for all x ∈ ω, (σ⌢x)∗ = f(σ⌢x).

• If σ is reduced, then for any e ∈ ω, θ̂e(σ) = (σ⌢e)∗.

The following lemma and corollary illustrate that the intervals of different colour
are ‘sufficiently disjoint’. For example, when some element x is enumerated into
S⟨1⟩, the only way for this to have an effect on enumerations in S⟨2⟩ is for θ−1

1 (x)
to first be enumerated into S⟨⟩.
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Lemma A.2. If σ⌢k is reduced, (σ⌢k⌢γ)∗ = σ⌢k′ where σ⌢k′ is also reduced,
and k ̸= k′, then there exists some i < |γ| such that (σ⌢k⌢(γ ↾i))∗ = σ.

Proof. Let σk be reduced and γ be such that for all i < |γ|, (σk⌢(γ ↾i))
∗ ̸= σ. We

aim to show that for all i < |γ|, σk is a prefix of (σk⌢(γ ↾i))
∗
. Suppose not, let

j < |γ| be the least index for which σk ⊈ (σk⌢(γ ↾j))
∗
. Applying Fact A.1, we

arrive at

(σk⌢(γ ↾j))
∗
=

(
(σk⌢(γ ↾j−1))

∗⌢γ(j − 1)
)∗

= f
(
(σk⌢(γ ↾j−1))

∗⌢γ(j − 1)
)
.

By choice of j, σk ⊆ (σk⌢(γ ↾j−1))
∗
. Thus in order for σk ⊈ (σk⌢(γ ↾j))

∗
to hold,

it must be that (σk⌢(γ ↾j−1))
∗
= σk, as f only affects at most the last two entries

of its input. In fact, the only possibility is that f removes the last two entries of
σk⌢γ(j − 1), which implies that (σk⌢(γ ↾j))

∗
= σ, a contradiction. Finally, since

for each i < |γ|, σk ⊆ (σk⌢(γ ↾i))∗ and σk is reduced, then (σkγ)∗ either also
has σk as a prefix or is equal to exactly σ. In either case, (σkγ)∗ ̸= σk′ for any
k′ ̸= k. □

Corollary A.3. If (k⌢γ)∗ = k′ where k ̸= k′, then there is some i < |γ| such that
(k⌢(γ ↾i))∗ = ⟨⟩.

Lemma A.4. For all γ ∈ ω<ω, there is a unique σ such that γ∗ = σ. Furthermore,
σ ∈ Zn ∪ Z⌢

n 0 for some n.

Proof. Existence of σ is trivial, and since the reduction procedure is well-defined,
the uniqueness is guaranteed. For the second part of the statement, we prove that
if max(σ) ≤ n, σ is reduced, and |σ| is even (or odd), then σ ∈ Zn (or σ ∈ Z⌢

n 0).

Base case: max(σ) = 0 or σ = ⟨⟩. It is easy to see that ⟨⟩ ∈ Z0 and 0 ∈ Z⌢
0 0.

Note that if σ is reduced and max(σ) = 0, then it can only be the case that σ = ⟨0⟩.
Suppose true for σ where max(σ) < n. Now consider σ (reduced) such that

max(σ) = n. We write σ = γ⌢n⌢τ , where max(γ) < n. By the definition of the
reduction procedure, it is clear that τ is a string of alternating 0’s and n’s, where
τ(0) = 0, otherwise, σ∗ ̸= σ. We now go through the possible cases.

Case 1a: |γ| is even, |τ | is odd. By the inductive hypothesis, γ ∈ Zm for somem <
n. In particular, γ ∈ Zn−1. Then σ = γ⌢n⌢τ = γ⌢n⌢⟨0, n⟩k ⌢0 = γ⌢⟨n, 0⟩k+1

for some k ≥ 0. Thus σ ∈ Zn−1
⌢⟨n, 0⟩k+1. And since σ∗ = σ, we have that

σ ∈ Zn−1
⌢⟨n, 0⟩k+1.

Case 1b: |γ| is odd, |τ | is even. By the inductive hypothesis, γ ∈ Zm
⌢0 for

some m < n, and so γ = (ξ⌢0)∗ for some ξ ∈ Zm. In particular, ξ ∈ Zn−1,
hence ξ⌢⟨0, n⟩⌢τ ∈ Zn−1

⌢⟨0, n⟩k+1 for some k ≥ 0. This gives σ = γ⌢n⌢τ =

(ξ⌢0)∗ ⌢n⌢τ =
(
ξ⌢⟨0, n⟩k+1

)∗
, because max(ξ) < n. That is, σ ∈ Zn−1

⌢0.

Case 2a: |γ| and |τ | are both even. Consider σ⌢0 = γ⌢n⌢τ⌢0 and see that
(σ⌢0)∗ = σ⌢0. Furthermore, since |γ| is even and |τ⌢0| is odd, by Case 1a, we
have that σ⌢0 ∈ Zn. Therefore, σ = (σ⌢⟨0, 0⟩)∗ ∈ Z⌢

n 0.

Case 2b: |γ| and |τ | are both odd. Then write τ as τ ′⌢0. By Case 1b, σ′ =
γ⌢τ ′ ∈ Zn, as σ

′ is also reduced. Hence, σ = γ⌢n⌢τ ′⌢0 ∈ Z⌢
n 0.

Thus we have that if |σ| = 2m and max(σ) = n then σ ∈ Zn, and also, if
|σ| = 2m+ 1 and max(σ) = n then σ ∈ Z⌢

n 0. □

It is evident from the definition of Θx in the formal construction that for each σ
reduced, Θx : Sσ → S(σx)∗ . We can thus think of Θx as a map on labels defined
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by Θx : σ 7→ (σx)∗. We now verify that as a map on labels, for all x ∈ ω, Θx is
surjective (Lemma A.5) and order preserving (Lemma A.6).

Lemma A.5. For all σ reduced and for all x ∈ ω, there exists γ reduced such that
(γ⌢x)∗ = σ. In particular, if σ is reduced, then ((σx)∗⌢x)∗ = σ.

Proof. We prove that for all σ reduced, ((σx)∗⌢x)∗ = σ. From Def. 4.3 and Fact
A.1, we know that

(σx)∗ =


σ−, if σ(|σ| − 1) = x or if σ(|σ| − 1) = 0 and x < max(σ)

σ0, if σ(|σ| − 1) ̸= 0 and x < max(σ)

σx, otherwise.

Then it remains to check through each possibility.

Case 1: (σx)∗ = σ−. If σ(|σ|− 1) = x, then σ−(|σ|− 2) ̸= x. In this case, it must
also be that x ≥ max(σ) ≥ max(σ−). That is, (σ− ⌢x)∗ = σ− ⌢x = σ. In the
other case, if σ(|σ| − 1) = 0, then σ−(|σ| − 2) ̸= 0. Additionally, since x < max(σ)
in this case, then x < max(σ−), since σ(|σ|−1) = 0. Then (σ− ⌢x)∗ = σ− ⌢0 = σ.

Case 2: (σx)∗ = σ0. In this case, we have that x < max(σ), that is, (σ0⌢x)∗ =
f(σ0⌢x) = σ.

Case 3: (σx)∗ = σx, then (σx⌢x)∗ = σ.

In any case, ((σx)∗⌢x)∗ = σ. Thus for any σ reduced and for any x ∈ ω, there
exists γ = (σx)∗ which gives the desired result. □

We now prove that each Θx is order preserving as a map on the labels.

Lemma A.6. For all σ, γ reduced and even length and for all x ∈ ω, if σ < γ then
(σx)∗ < (γx)∗.

Proof. Fix some x ∈ ω. Since each label of odd length is in Zn
⌢0 for some n, and

the ordering there is inherited from the ordering in Zn, we want to find for each
reduced τ , some τ ′ such that (τx)∗ = (τ ′0)∗. We claim that given τ , the τ ′ are
determined exactly as below.

τ ∈ Zn−1
⌢(0n)k τ ∈ Zn−1 τ ∈ Zn−1

⌢(n0)k

x < n τ ′ = τ τ ′ = (τx0)∗ τ ′ = τ
x = n τ ′ = (τx0)∗ = (τn0)∗ τ ′ = τx0 = τn0 τ ′ = τx0 = τn0
x > n τ ′ = τx0 τ ′ = τx0 τ ′ = τx0

Proof of claim. Fix n, x ∈ ω, and an arbitrary τ ∈ Zn. We run through the
computations.

For x > n, since τ is reduced, then τx is also reduced, i.e. (τx)∗ = τx. For the
other side of the equality, (τ ′0)∗ = (τx00)∗ = f(τx00) = τx.

For x < n,

• τ ∈ Zn−1
⌢(0n): τ ends with n. Since x < n, then (τx)∗ = f(τx) = τ0 =

τ ′0 = (τ ′0)∗.

• τ ∈ Zn−1: (τ
′0)∗ = ((τx0)∗0)∗. Applying Fact A.1, we know that (τx0)∗ =

((τx)∗0)∗. Since (τx)∗ is reduced, thus by Lemma A.5, ((τx0)∗0)∗ = (τx)∗.

• τ ∈ Zn−1
⌢(n0)k: (τx)∗ = f(τx) = τ−. But we also have that f(τ ′0) =

f(τ0) = τ−.

Finally, for x = n,
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• τ ′ = (τx0)∗: (τ ′0)∗ = ((τx0)∗0)∗ = (((τx)∗0)∗0)∗ = (τx)∗.

• τ ′ = τx0: Since τx0 is reduced, then (τ ′0)∗ = (τx00)∗ = f(τx00) = τx =
(τx)∗.

□

We now return to the proof of the lemma. Fix σ < γ (of even length) and
x ∈ ω. Let max{σ, γ} = n and apply the claim above to obtain σ′, γ′ such that
(σ′0)∗ = (σx)∗ and (γ′0)∗ = (γx)∗. It then suffices to show that if σ < γ, σ′ < γ′

as this would then imply that (σ′0)∗ < (γ′0)∗. (Recall that the ordering in Z⌢
m 0 is

inherited from Zm.)

Case 1: x > n. Then σ′ = σx0 and γ′ = γx0. Since max{σ, γ} = n < x, then
σ, γ ∈ Zx−1. Thus σx0, γx0 ∈ Z⌢

x−1x0 where the ordering is inherited from Zx−1.
Thus σ′ = σx0 < γx0 = γ′ as desired.

Case 2: x < n. For the subcases here, if σ′ = σ and γ′ = γ, the argument is
trivial, as σ < γ by assumption, giving σ′ < γ′. So we check only the cases where
at least one of σ, γ is in Zn−1.

• σ < Zn−1 and γ ∈ Zn−1: Then σ′ = σ and γ′ = (γx0)∗ which we again
note is in Zn−1, thus σ

′ < γ′ as desired.

• σ, γ ∈ Zn−1: In this case, max{σ, γ} < n which cannot be.

• σ ∈ Zn−1 and γ > Zn−1: Then σ′ = (σx0)∗ and γ′ = γ. Since σ′ ∈ Zn−1

then σ′ < γ′.

Case 3: x = n. In this case, the choice of τ ′ is always (τx0)∗ = (τn0)∗, for τ
either σ or γ. We then show that τ ′ is always exactly one block to the right of τ .
More specifically, in the ordering

· · · < Zn−1
⌢(0n)2 < Zn−1

⌢(0n) < Zn−1 < Zn−1
⌢(n0) < Zn−1

⌢(n0)2 < . . .

if τ ∈ Zn−1
⌢(0n)k for some k > 0, then τ ′ ∈ Zn−1

⌢(0n)k−1, and if τ ∈ Z⌢
n−1(n0)

k

for some k ≥ 0, then τ ′ ∈ Zn−1
⌢(n0)k+1. In the latter case, since τ ∈ Zn−1

⌢(n0)k

must be of the form ξ⌢(n0)k where ξ ∈ Zn−1, then τ ′ = ξ⌢(n0)k ⌢n0 = ξ⌢(n0)k+1,
thus τ ′ ∈ Zn−1

⌢(n0)k+1.

If τ ∈ Zn−1
⌢(0n)k for some k > 0, then τ =

(
ξ⌢(0n)k

)∗
for some ξ ∈ Zn−1. If

ξ(|ξ| − 1) = 0, then τ = (ξ−)⌢n(0n)k−1. If we further have that k − 1 > 0, then

τ ′ =
(
(ξ−)⌢n(0n)k−1 ⌢n0

)∗
= (ξ−)⌢n(0n)k−2

= (ξ⌢(0n)⌢(0n)k−2)∗

= (ξ⌢(0n)k−1)∗

giving that τ ′ ∈ Zn−1
⌢(0n)k−1 as desired. Otherwise, suppose that k−1 = 0, then

τ ′ = ((ξ−)⌢n⌢n0)∗

= f(f((ξ−)⌢n⌢n)⌢0)

= f((ξ−)⌢0)

= ξ

That is, if τ ∈ Zn−1
⌢(0n), then τ ′ = ξ ∈ Zn−1.
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Finally, if ξ(|ξ| − 1) ̸= 0 then τ = ξ⌢(0n)k for some k > 0. Then

τ ′ =
(
ξ⌢(0n)k ⌢n0

)∗
= f

(
f
(
ξ⌢(0n)k ⌢n

)⌢
0
)

= f
(
ξ⌢(0n)k−1 ⌢0⌢0

)
= ξ⌢(0n)k−1

Thus τ ′ ∈ Z⌢
n−1(0n)

k−1 as desired. It is then easy to see that if σ is in a block
strictly left of γ, σ′ must also be in a block strictly left of γ′, giving that σ′ < γ′.
If however, σ, γ are in the same block, then σ′, γ′ will also be in the same block.
Then the order between them comes down to their initial segments which lie in
Zn−1. However, since σ < γ, and they lie in the same block, it must be that the
initial segment of σ which lies in Zn−1 is strictly to the left of the initial segment
of γ which lies in Zn−1. But the initial segment of σ which lies in Zn−1 is exactly
the initial segment of σ′ which lies in Zn−1, and the same holds for γ and γ′, thus
σ′ < γ′ as desired. □
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