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Abstract. The complexity of equivalence relations has received much attention in the recent literature. The main tool for such
endeavour is the following reducibility: given equivalence relations R and S on natural numbers, R is computably reducible to S
if there is a computable function f : ω → ω that induces an injective map from R-equivalence classes to S -equivalence classes. In
order to compare the complexity of equivalence relations which are computable, researchers considered also feasible variants of
computable reducibility, such as the polynomial-time reducibility. In this work, we explore Peq, the degree structure generated by
primitive recursive reducibility on primitive recursive equivalence relations with infinitely many equivalence classes. In contrast
with all other known degree structures on equivalence relations, we show that Peq has much more structure: e.g., we show that it
is a dense distributive lattice. On the other hand, we also offer evidence of the intricacy of Peq, proving, e.g., that the structure is
neither rigid nor homogeneous.
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1. Introduction
The classification of equivalence relations according to their complexity is a major research thread in logic. The

following two examples stand out from the existing literature.

• In descriptive set theory, one often deals with equivalence relations defined on Polish spaces (e.g., 2ω or ωω),
which are classified in terms of Borel embeddings. The corresponding theory is now a consolidated field of
modern descriptive set theory, which shows deep connections with topology, group theory, combinatorics,
model theory, and ergodic theory (see, e.g., [1–4]).

• On the other hand, in computability theory, it is common to concentrate on equivalence relations on the natural
numbers and compare their algorithmic content in terms of computable reductions (see, e.g., [5–9]).

Computable reducibility (for which we use the symbol 6c, and call c-degrees the elements of the correspond-
ing degree structure) has been adopted to calculate the complexity of natural equivalence relations on ω, proving,
e.g., that provable equivalence in Peano Arithmetic is Σ0

1 complete [10], Turing equivalence on c.e. sets is Σ0
4 com-

plete [11], and the isomorphism relations on several familiar classes of computable structures (e.g., trees, torsion
abelian groups, fields of characteristic 0 or p) are Σ1

1 complete [12]. In parallel, there has been a growing interest in
the abstract study of the poset of degrees generated by computable reducibility on the collection of equivalence rela-
tions of a certain complexity. Most notably, the poset Ceers of the c-degrees of computably enumerable equivalence
relations (commonly known by the acronym ceers) has been thoroughly explored [13, 14]: e.g., it has been recently
shown that its first-order theory is as complicated as true arithmetic [15]. Less is known about larger structures of
c-degrees; but recent studies considered the ∆0

2 case [16, 17] and the global structure ER of all c-degrees [18].
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Yet, despite its classificatory power, computable reducibility has an obvious shortcoming: it is simply too coarse
for measuring the relative complexity of computable equivalence relations. Indeed, it is easy to note that any two
computable equivalence relations R and S with infinitely many classes are computably bi-reducible. A natural way
to overcome this limitation is by adopting feasible reducibilities, as is done in [19, 20], where the authors prove that,
relatively to these reducibilities, the isomorphism relations of finite fields, finite abelian groups, and finite linear
orders have all the same complexity.

This paper focuses on a subcollection of computable equivalence relations, namely primitive recursive equiva-
lence relations with domain ω. To classify primitive recursive equivalence relations, we adopt primitive recursive
reducibility. More precisely, a primitive recursive equivalence relation R is pr-reducible to a primitive recursive
equivalence relation S (notation: R 6pr S ) if there exists a primitive recursive function f such that

(∀x, y ∈ ω)[x R y⇔ f (x) S f (y)].

The main object of study of this paper is Peq, i.e., the degree structure of pr-degrees of primitive recursive equiva-
lence relations R possessing infinitely many equivalence classes.

A final piece of motivation comes from the rapid emergence of online structure theory (see, e.g., [21–26]), a
subfield of computable structure theory which deals with algorithmic situations in which unbounded search is not
allowed, that is formalized by focusing, e.g., on punctual presentations of structures, rather than computable ones.
An infinite structure S (in a finite signature L) is punctual if the domain of S equals ω, and the signature functions
and relations of S are primitive recursive. Note that the study of primitive recursive structures dates back to the
works of Mal’tsev [27, 28]: in Subsection 3.1 of [27], he introduces primitive recursive algebraic systems.

The present paper delivers three main theorems, by which we hope to convince the reader that Peq is a remark-
able structure. First, we prove that Peq is surprisingly well-behaved. Many of the results obtained in Sections 3–7
are collected in the following main theorem:

Theorem 1.1. Peq is a a topped dense distributive lattice, in which each degree is join-reducible and each degree
below the top is meet-reducible.

This is in sharp contrast with Ceers and all other established structures of c-degrees. In fact, these desirable
properties led us to formulate the hypothesis that Peq could be a simple structure which might have a decidable
first order theory. We were unable to prove this (it remains open whether the theory of Peq is decidable). But, as
sometimes happens, aiming to prove that the structure is simple, we unveiled its hidden complexity. Most notably,
we individuated a new technical notion (to be defined in Section 8). This notion is called �-property, and it captures
many combinatorial features of Peq. Remarkably, the �-property allows to distinguish intervals of Peq. So, the
following result is our second main theorem:

Theorem 1.2. An interval of Peq embeds the diamond lattice preserving 0 and 1 if and only if it satisfies the �-
property.

In the final section, we uncover even further structural complexity, confirming that the tameness of Peq was only
apparent. These results are subsumed in our third main theorem:

Theorem 1.3. Peq is neither rigid nor homogeneous and it contains nonisomorphic lowercones.

The reader should be warned that working in a primitive recursive setting will affect our proof strategies: as
any primitive recursive check converges, our constructions will be typically injury-free and requirements will be
satisfied one by one. That said, to build primitive recursive objects, we won’t need to worry about coding, and in fact
we will rely on a restricted form of Church–Turing thesis (see Remark 2.3). Moreover, let us warn the reader that
the difficulty of our proofs increases over the course of the paper. Indeed, the techniques employed in the first half of
the paper, which is devoted to Theorem 1.1, are fairly straightforward. But in order to tackle Theorems 1.2 and 1.3,
we had to develop new techniques which make the discussion in the second half of the paper more combinatorially
involved.
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2. Background, terminology, and notations
We review some background material and terminology. For background on computability theory, especially

primitive recursive functions, the reader is referred to [29].

2.1. Equivalence relations
Unless stated otherwise, all our equivalence relations will be primitive recursive relations on domainω. A transversal
of an equivalence relation R is any set T such that x�Ry for any distinct x, y ∈ T . The principal transversal TR of a
given equivalence relation R is the following transversal,

TR := {y 6= 0 : (∀x < y)(x�Ry)}.

Clearly, if R is primitive recursive, then TR is a primitive recursive set. We often write f : R 6pr S to mean that f is
a primitive recursive reduction from R to S . As is customary in the theory of ceers, we denote by Id the identity on
the natural numbers.

For our purposes, it is convenient to assume that all our equivalence relations have infinitely many equivalence
classes. This is a minor restriction. Indeed, similarly to the case of ceers [7] (but differently from the case of ∆0

2

equivalence relations [17]), primitive recursive equivalence relations with finitely many equivalence classes can be
readily characterized. To do so, let Idn denote the identity mod n and simply observe the following easy facts:

(1) Id1 <pr Id2 <pr · · · <pr Idn <pr · · · ;
(2) every primitive recursive R with finitely many equivalence classes is pr-equivalent to Idn, for some n > 1;
(3) for all n > 1, Idn is pr-reducible to any primitive recursive R with infinitely many equivalence classes.

Definition 2.1. We say that an equivalence relation E is infinitary if E has infinitely many classes.

Remark 2.2. Henceforth, we will work with infinitary primitive recursive equivalence relations. We let Peq be the
poset of pr-degrees of these relations under pr-reducibility.

2.2. A listing of the primitive recursive functions
Throughout the paper we will refer to an effective listing {pe}e∈ω of the primitive recursive functions, which can
be found in many textbooks: see, e.g., [30] for a detailed definition of such a listing. Let T (e, x, z) and U denote
respectively Kleene’s (primitive recursive) predicate and a primitive recursive function such that for every e, ϕe(x) =
U(µz T (e, x, z)) (where ϕe denotes the partial computable function with index e in the standard listing of the partial
computable functions), and let p be a recursive function such that pe = ϕp(e): since p comes from the s-m-n-theorem
we may assume that p is primitive recursive. Let V be the primitive recursive predicate

V(e, x, y, s) ⇔ (∃z < s)(T (p(e), x, z) & U(z) = y) :

we will refer to V(e, x, y, s) by saying that “pe(x) has converged to y in < s steps”, and we will denote this by
pe(x)[s]↓ = y. Similarly, it is primitive recursive to check whether “pe(x) has converged in < s steps” (denoted by
pe(x)[s]↓), i.e., (∃y < s)V(e, x, y, s).

2.3. Binary strings
We will use the standard notations and terminology about finite binary strings, which are the elements of the set 2<ω.
Let σ, τ be finite binary strings: we will denote by lσ the length of σ; the concatenations of σ and τ will be denoted
by σ̂τ; if i ∈ {0, 1} is a number then 〈i〉 denotes the string of length 1, consisting of the single bit i; the symbol λ
denotes the empty string.
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We will freely identify a set X ⊆ ω with its characteristic function, thus viewing X as a member of 2ω. If k ∈ ω
and X is a set, then the symbol X � k denotes the initial segment of X (thus a member of 2<ω) of length k. Given
σ ∈ 2<ω and a set X, let

σ ∗ X =

{
σ(i), if i < lσ,
X(i− lσ), otherwise.

In analogy with the common usage for sets (where X = {x : X(x) = 0}), given a string σ ∈ 2<ω, we denote
σ = {i : i < lσ & σ(i) = 0}, and we let # (0σ) = #(σ), i.e., the number of 0’s in the range of σ.

We will assume a “primitive recursive coding” of the binary strings, with primitive recursive length function,
projections, etc.

Remark 2.3. Throughout this paper we will often build primitive recursive functions or primitive recursive sets. It is
sometimes convenient to use the following analogue of the Church–Turing thesis for primitive recursive functions:

Let ϕe be the eth partial (general) computable function. Then (in accordance with what stated in Section 2.2)
every primitive recursive function is equal to some ϕe where the computation for ϕe runs in primitively recursively
many steps. Thus, to define a primitive recursive function f (or a set), it is enough to specify a general algorithm for
computing f (n) as long as the number of steps taken to decide f (n) is bounded by a primitive recursive function.

This helps to avoid overly formal and cumbersome definitions, since it is often easy to see that the time bound
is primitive recursive.

3. Normal form of primitive recursive equivalence relations
Recall that we prefer to work only with infinitary equivalence relations. Nevertheless, we note that the results of

this section also hold for primitive recursive equivalence relations having only finitely many classes.
In the literature about computable reducibility, it is common to use the following way of encoding sets of

numbers by equivalence relations: given X ⊆ ω, one defines

xRXy ⇔ x, y ∈ X or x = y.

Equivalence relations of the form RX are called 1-dimensional in [7], while c-degrees containing 1-dimensional
equivalence relations are called set-induced in [16]. The interesting feature of set-induced degrees is that they offer
algebraic and logical information about the overall structure of c-degrees: for example, in [8] it is proved that
the first-order theory of ceers is undecidable, by showing that the interval [degc(Id),degc(RK)] of the c-degrees is
isomorphic to the interval [01, 0′1] of the 1-degrees, where 01 is the 1-degree of an infinite and co-infinite computable
set and 0′1 is the 1-degree of the halting problem K. Yet, set-induced degrees are far from exhausting the collection
of all c-degrees. In fact, if R is an equivalence relation with two non-computable R-classes, then there is obviously
no X such that R ≡c RX .

When dealing with primitive recursive equivalence relations, the situation changes: all pr-degrees are set-
induced. Specifically, the next theorem says that investigating primitive recursive equivalence relations under 6pr

is the same as investigating primitive recursive sets under a primitive recursive reducibility that is required to be
bijective on the complements of the sets.

Theorem 3.1. Let R and S be primitive recursive equivalence relations. Then there are primitive recursive sets X
and Y such that the following statements are equivalent:

(1) R 6pr S ;
(2) there is a primitive recursive function g : X 6 Y so that

(a) x ∈ X if and only if g(x) ∈ Y, and
(b) g[X] = Y.



N. Bazhenov et al. / Primitive recursive equivalence relations 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

Proof. The proof of the theorem is conveniently separated into intermediate results. The next one, which is par-
ticularly useful when dealing with Peq, states that the pr-complexity of any R is entirely encoded in its principal
transversal TR.

Proposition 3.2 (Normal Form). For any primitive recursive equivalence R, we have

R ≡pr RTR
.

Proof. It is immediate to see that the function f (x) = (µy 6 x)[y R x] is primitive recursive and reduces R to RTR
.

On the other hand, the following primitive recursive function g reduces RTR
to R:

g(x) =

{
0, if x ∈ TR,

x, otherwise.

Hence, R ≡pr RTR
. �

Since the lemma guarantees that R 6pr S holds if and only if RTR
6pr RTS

, we now wish to define the desired
primitive recursive sets X and Y as TR and TS , respectively. To conclude, we shall prove that item (2) above is
satisfied. That is, we need to prove the following: if RTR

6pr RTS
is true, then there is a pr-reduction g witnessing

this fact such that g maps TR into TS and g[TR] = g[TS ]. The next couple of lemmas show that such a g always
exists.

Lemma 3.3. If RX 6pr RY , then there is a reduction g from RX to RY such that g[X] ⊆ Y.

Proof. Let f be a primitive recursive function reducing RX to RY such that f [X] = {a} with a /∈ Y . Fix y ∈ Y and
define

g(x) =


y, if x ∈ X,
a, if x /∈ X and f (x) ∈ Y ,
f (x), if x /∈ X and f (x) /∈ Y .

It is easy to see that g is primitive recursive, maps X to Y , and reduces RX to RY . �

Lemma 3.4. If RX 6pr RY then there exists g such that g : RX 6pr RY and g hits all the RY -classes.

Proof. Let RX 6pr RY via f . By Lemma 3.3, we may assume that f maps X to Y . Define

g(x) =

{
f (x), if x ∈ X,
µy [y 6 max{ f (i) : i 6 x}& y ∈ Y r {g(i) : i < x}], if x /∈ X.

Then g gives the reduction and is onto Y: to show primitive recursiveness of g we use the fact that if x is the n-th
element in X, then the n-th element of Y in order of magnitude is 6 max{ f (i) : i 6 x} by injectivity of f on X. �

This concludes the proof of Theorem 3.1. �

It is worth highlighting a couple of features of the last technical lemma.
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Remark 3.5. The function g : RX 6pr RY constructed in Lemma 3.4 is increasing on X, i.e., if x < y and x, y ∈ X
then g(x) < g(y). Moreover, the lemma allows to assume that, without loss of generality, any pr-reduction between
primitive recursive equivalence relations is surjective on the equivalence classes of its target. This contrasts with the
case of ceers, where (see [13]) if R, S are such that R 6c S via a computable function f whose range hits all the
equivalence classes of S , then the reduction can be inverted, i.e., we have S 6c R as well.

In the rest of the paper, we will take advantage of the correspondence between reductions of primitive recur-
sive equivalences and reductions of primitive recursive sets just discussed. We often construct, instead of a full
equivalence relation R, only a primitive recursive set Y , and then we take R to be RY .

4. Incomparability of degrees in Peq
In this and the following section, we tackle some of the most natural questions that one can formulate about a

new degree structure.

4.1. The greatest degree in Peq
We begin by proving that there is a greatest degree in Peq.

Proposition 4.1. Peq has a greatest element. In fact, for all primitive recursive R, R 6pr Id.

Proof. Given R, let f be the primitive recursive function from the proof of the Normal Form Theorem (i.e., the
function reducing R to RTR

). Notice that f is also a reduction from R to Id, as it maps equivalence classes to
singletons. �

The pr-degree of Id contains many natural examples of equivalence relations. For example, in the literature
about polynomial-time reducibility (see, e.g., [19]) researchers considered the isomorphism relations of familiar
classes of finite structures, such as graphs, groups, trees, linear orders, Boolean algebras, and so forth. It is not
difficult to see that all these relations turn out to be pr-equivalent to Id. Consider for instance GI, the isomorphism
relation between finite graphs. On one hand, the problem of deciding whether two finite graphs are isomorphic is
primitive recursive (in fact, it belongs to NP). On the other hand, a pr-reduction from Id to GI is readily obtained
by assigning, to each n the empty graph on the domain {i : i < n}. Hence, GI is pr-equivalent to Id.

Anyway, the fact that the pr-degree of Id contains many natural representatives does not come as a surprise.
In fact, construction of a computable function which is not primitive recursive requires non-trivial work (recall
Ackermann’s famous construction [31]). Next, we show that a primitive recursive equivalence relation R lies strictly
below Id only if, when presented in normal form, the set of its singletons cannot be enumerated in a primitive
recursive way without repetitions.

To be more precise, let us introduce first the following analogue of immunity for primitive recursive sets.

Definition 4.2. A set X ⊆ ω is primitively recursively enumerable (abbreviated by p.r.e.) if X is the range of
an injective primitive recursive function. X is primitively recursively immune (abbreviated by p.r.-immune) if X is
infinite and it has no infinite p.r.e. subset.

Remark 4.3. Note that we define a set as p.r.e. only if it has a primitive recursive enumeration which is injective.
Without injectivity one would obtain all c.e. sets: it follows easily from Kleene’s Normal Form Theorem that any
nonempty c.e. set can be enumerated by a primitive recursive function. In contrast, Theorem 4.4 shows that the p.r.e.
sets (as just defined) form a proper subclass of the c.e. sets, and in fact even of the primitive recursive sets.

The notion of p.r.-immunity allows to show that there exists a pr-degree strictly below the identity.

Theorem 4.4. There exists an infinitary primitive recursive R such that R <pr Id.
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Proof. We first prove that, if Id reduces to some RX , then the set X cannot be p.r.-immune.

Lemma 4.5. If X is any set of numbers, then Id 66pr RX if and only if X is p.r.-immune.

Proof. (⇒): If X contains a p.r.e. set A, then Id 6pr RX via any primitive recursive function that injectively lists A.
(⇐): If Id 6pr RX via some primitive recursive function f , then, with the exception of at most one element, the

range of f is contained in X. Therefore, range( f ) ∩ X is an infinite p.r.e. set showing that X is not p.r.-immune. �

So, combining the last lemma with Proposition 4.1, we obtain that, in order to construct a primitive recursive
equivalence relation which is strictly pr-reducible to Id, it suffices to build a primitive recursive set whose comple-
ment is p.r.-immune. This is done by the next proposition.

Proposition 4.6. There exists a primitive recursive set Y whose complement is p.r.-immune.

Proof. We construct Y in stages by approximating its characteristic function, i.e., Y =
⋃

s∈ω σs, where lσs = s. The
construction of Y is similar to that of a simple set and is rather straightforward. We describe it in some detail to let
the readers familiarize themselves with the sort of machinery that we employ in more intricate constructions.

We aim at satisfying the following requirements:

Pe : if pe is injective, then range(pe) ∩ Y 6= ∅,

M : Y is co-infinite,

where {pe}e∈ω is a computable list of all primitive recursive functions, as in Section 2.2.
The strategy for a Pe-requirement works as follows. During the so-called “Pe-cycle” we enlarge the set Y (by

setting σs+1 = σŝ〈1〉 at the current stage s) until we see that one of the following conditions holds: either the
function pe is not injective, or we have pe(z) ∈ Y for some z. Let s0 + 1 be the first stage at which we witness such
a situation. We set σs0+1 = σs0̂〈0〉, close the Pe-cycle, and move to satisfying the Pe+1-strategy (by opening the
Pe+1-cycle).

The construction
At the beginning of any nonzero stage of the construction we assume that there exists exactly one open P-cycle.
Section 2.2 will guarantee that the various checks involving pe-computations and their convergence are primitive
recursive.

Stage 0

Define σ0 = λ; open the P0-cycle. Thus at the beginning of the next stage, there will be exactly one open P-cycle,
namely the P0-cycle.

Stage s + 1

Assume that the Pe-cycle is the currently open cycle. We distinguish three cases:

(1) There are l,m 6 s such that pe(l)[s] ↓ = pe(m)[s] ↓: if so, close the Pe-cycle, define σs+1 = σŝ〈0〉, and
open the Pe+1-cycle.

(2) There is m 6 s such that pe(m)[s]↓ = z and σs(z)↓ = 1: do the same as in (1).
(3) Otherwise: keep the Pe-cycle open and define σs+1 = σŝ〈1〉.

Again it is immediate to see that the next stage will inherit from this stage exactly one open P-cycle.
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The verification
The verification relies on the following lemmas.

Lemma 4.7. Every Pe-cycle is eventually opened and is later closed forever.

Proof. Notice that the Pe-cycle is opened at stage s if and only if e = 0 and s = 0, or e > 0 and we close at s the
Pe−1-cycle.

So assume by induction that the lemma is true of every i < e: thus there exists a unique s0 at which we open
the Pe-cycle (s0 = 0 if e = 0, or otherwise s0 is the stage at which we close the Pe−1-cycle). If the Pe-cycle does
not satisfy the claim then the construction implies the following: the function pe is injective and σs+1 = σŝ〈1〉 for
all s > s0 + 1. Therefore, since pe is injective and Y is cofinite, there would be infinitely many elements m with
pe(m) ∈ Y . Thus, at some stage s1 + 1 > s0 + 1, the Pe-cycle would be closed by the item (2) of the construction,
and never opened again. We obtain a contradiction, showing that the Pe-cycle satisfies the claim. �

Lemma 4.8. Y is primitive recursive and co-infinite.

Proof. It is enough to observe that for all s, the value of σs is decided at stage s, and therefore the function s 7→ σs

is primitive recursive. Moreover, it is immediate to check that lσs = s, for every s. Hence, Y =
⋃

s∈ω σs is primitive
recursive, as Y(s) = σs+1(s).

Since every Pe-cycle eventually closes, there are infinitely many stages s with σs+1 = σŝ〈0〉. This implies that
the set Y is infinite. �

Lemma 4.9. All P-requirements are satisfied.

Proof. Suppose that pe is an injective function. Consider the stage s0 at which the Pe-cycle closes. Clearly, the
closure of the Pe-cycle is triggered by item (2). Thus, there is a number m 6 s0 with σs0(pe(m))↓ = 1. Hence, we
have pe(m) ∈ Y and range(pe) ∩ Y 6= ∅. �

Proposition 4.6 is proved. �

This concludes the proof of Theorem 4.4. �

4.2. Counterexamples to reducibilities
In the rest of the paper, we will often need to build a primitive recursive S such that, for a given R, we have R �pr S .
To do so, we construct a primitive recursive set Y such that for every e, the requirement

Pe : pe does not reduce R to RY ,

is satisfied, and thus S = RY is our desired equivalence relation. Typically, we construct an increasing sequence
{σs : s ∈ ω} of strings in 2<ω so that Y =

⋃
s σs.

At a stage s + 1 of the construction we say that pe shows a counterexample to R 6pr RY if there exist l,m 6 s
so that pe(l)[s]↓, pe(m)[s]↓, and pe(l)[s], pe(m)[s] < lσs , and

l R m ⇔ (σs(pe(l)) 6= σs(pe(m))) or (pe(l) 6= pe(m) &σs(pe(l)) = σs(pe(m)) = 0).

A counterexample will guarantee, for the final Y , that

l R m ⇔ pe(l)��RY pe(m),
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as desired. Note that there is a primitive recursive procedure which, for a given σs, checks whether a counterexample
is being shown.

Similarly, if for every e we want to satisfy the requirement

Qe : pe is not a reduction from RY to R,

at a stage s + 1 of the construction we say that pe shows a counterexample to RY 6pr R if there exist l,m < lσs so
that l 6= m, pe(l)[s]↓, pe(m)[s]↓, and

σs(l) = σs(m) = 1 ⇔ pe(l)�R pe(m) :

a counterexample guarantees for the final Y that RY �pr R.
Finally, sometimes we build two primitive recursive sets X,Y in the form X =

⋃
s σ

X
s , and Y =

⋃
s σ

Y
s . At a

stage s + 1 of the construction we say that pe shows a counterexample to RX 6pr RY if there exist l,m < lσ
X
s so that

l 6= m, pe(l)[s]↓, pe(m)[s]↓, and pe(l)[s], pe(m)[s] < lσ
Y
s , and

σX
s (l) = σX

s (m) = 1⇔ (σY
s (pe(l)) 6= σY

s (pe(m))) or (pe(l) 6= pe(m) &σY
s (pe(l)) = σY

s (pe(m)) = 0).

4.3. Incomparability
In Peq, there is no least degree. In fact, we will now prove that Id is the only primitive recursive equivalence relation
which is comparable with all other equivalence relations in Peq.

The next result will be a consequence also of Theorem 6.1 and Theorem 6.7 (to be discussed later). However,
it may be useful to give a direct proof in order to introduce the incomparability strategy, which will be exploited in
other constructions.

Theorem 4.10. For any infinitary primitive recursive R <pr Id, there is primitive recursive S such that S |pr R.

Proof. Given R <pr Id, we build by stages a primitive recursive set Y such that S = RY satisfies the claim. The
requirements to be satisfied are

Pe : pe is not a reduction from R to RY ,

Qe : pe is not a reduction from RY to R.

The strategy
To satisfy Pe, one continues putting more and more fresh elements into Y , thus not increasing the number of RY -
classes. By doing so, we will witness eventually that pe maps two R-classes to a single RY -class, since the number
of R-classes will outgrow the number of RY -classes.

To satisfy a given Qe-requirement, we follow a dual strategy: for any fresh element, we declare the corresponding
singleton as an RY -class. This ensures that we will find a pair of witnesses that show that pe is not a reduction of RY

to R, since otherwise we would have a reduction of Id to R as well.

The construction
We construct set Y in stages: in fact, at a stage s we define its initial segment σs of length s, and eventually we take
Y =

⋃
s∈ω σs.

Stage 0

Define σ0 = λ; open the P0-cycle.
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Stage s + 1

Assume that R is the currently open cycle.

(1) R = Pe, for some e: If so, we distinguish two cases.

(a) If pe shows a counterexample to R 6pr RY (see Section 4.2) then close the Pe-cycle. Define σs+1 =
σŝ〈0〉. Open the Qe-cycle .

(b) Otherwise, keep the Pe-cycle open and define σs+1 = σŝ〈1〉.
(2) If R = Qe, for some e, then distinguish two more cases.

(a) If pe shows a counterexample to RY 6pr R (see Section 4.2) then close the Qe-cycle. Define σs+1 =
σŝ〈0〉. Open the Pe+1-cycle.

(b) Otherwise, keep the Qe-cycle open and define σs+1 = σŝ〈0〉.
This concludes the construction.

The verification
The verification relies on the following lemmas.

Lemma 4.11. Y is primitive recursive.

Proof. The function s 7→ σs is primitive recursive; moreover lσs = s. Hence, Y is primitive recursive, as Y(s) =
σs+1(s). �

Lemma 4.12. All P-requirements are satisfied.

Proof. The proof follows the lines of the analogous claim in the proof of Theorem 4.4. First of all, it easily follows
by induction that the Pe-cycle is opened at stage 0 if e = 0, and at the stage at which the Qe−1-cycle is closed if
e > 0; and the Qe-cycle is opened at the stage at which the Pe-cycle is closed. Assume that for every i < e the
Pi-cycle and the Qi-cycle have been closed, and the corresponding requirements are satisfied. Then at the stage s0
(with s0 = 0 if e = 0, or s0 is the stage when we close the Qe−1-cycle) we open the Pe-cycle. Failure to close
the Pe-cycle would entail that Y is cofinite, thus RY would have only finitely many classes, but pe never showing a
counterexample would give that pe : R 6pr RY , a contradiction as R is not finite. Thus, at some stage, pe shows a
counterexample to R 6pr RY , whence Pe is satisfied. �

Lemma 4.13. All Q-requirements are satisfied.

Proof. Assume that for every i < e the Qi-cycle has been closed, and for every i 6 e the Pi-cycle has been closed,
and the corresponding requirements are satisfied. If s0 is the stage at which we open the Qe-cycle (that is when we
close the Pe-cycle) and for every s > s0 + 1 we never close the cycle then this would entail that Y is finite (whence
RY ≡pr Id), but as pe never shows a counterexample, this would give that pe : RY 6pr R, whence Id 6pr R, a
contradiction. Thus, at some stage, pe shows a counterexample to RY 6pr R, whence Qe is satisfied. �

This concludes the proof of Theorem 4.10. �

From the last theorem, it follows that there is an infinite antichain of degrees in Peq.

Corollary 4.14. There are primitive recursive equivalence relations {S i}i∈ω such that S i |pr S j for all i 6= j.

Proof. The proof relies on the following observation
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Observation. Suppose that {Ri : i ∈ ω} is a family of infinitary primitive recursive equivalence relations none of
which is pr-equivalent to Id, and for which there exists a primitive recursive predicate U(i, x, y) such that x Ri y if
and only if U(i, x, y). Then a straightforward modification of the proof of Theorem 4.10 will show that there exists a
primitive recursive S such that Ri |pr S , for every i. The construction in this case aims to build a primitive recursive
set Y satisfying the following requirements R〈e,i〉 indexed by the values of the primitive recursive Cantor pairing
function:

P〈e,i〉 : pe does not reduce Ri to RY ,

Q〈e,i〉 : pe does not reduce RY to Ri.

The construction goes by opening and closing R-cycles as in the proof of the previous theorem. Checking if a coun-
terexample is being shown is primitive recursive, since this can be done by using the primitive recursive predicate
U, together with Section 2.2.

To finish the proof of the corollary, define by induction the following infinite antichain {S n}n∈ω of primitive
recursive equivalence relations. Pick an infinitary S 0 <pr Id; having found S 0, . . . , S n, apply the above observation
to the family {Ri}i∈ω, where Ri = S i if i < n, and Ri = S n if i > n. �

5. The structure Peq is a distributive lattice
In this section, we study the structure of the pr-degrees under joins and meets. By the Normal Form Theorem

we will confine ourselves to equivalence relations of the form RX , where X is a primitive recursive set, and X is
infinite and coinfinite.

The first result of this section provides us with a useful characterization of the reducibility 6pr. Informally
speaking, the characterization connects the pr-degree of a relation RX with the growth rate of the function

#(0X)[s] := #(0X�(s+1)),

i.e., the function which counts the number of singleton RX-classes.
We emphasize that for a primitive recursive X, the corresponding function #(0X)[s] is also primitive recursive.

Proposition 5.1. Let X and Y be co-infinite primitive recursive sets. Then we have RX 6pr RY if and only if there
exists a primitive recursive function h(x) such that for all s,

#(0X)[s] 6 #(0Y)[h(s)].

Proof. Suppose that f : RX 6pr RY . By Remark 3.5, one may assume that for any pair of elements k < l from X, we
have f (k) < f (l). In addition, by Lemma 3.3, we assume that f [X] ⊆ Y . The desired primitive recursive function
h(s) is defined as follows:

h(s) =

{
f (k∗), if k∗ is the greatest number such that k∗ 6 s and k∗ ∈ X,
0, if (∀k 6 s)(k ∈ X).

Indeed, suppose that #(0X)[s] = N > 0. Consider the set

X ∩ {0, 1, . . . , s} = {k1 < k2 < · · · < kN}.

Then we have f (k1) < f (k2) < · · · < f (kN) = h(s), and hence, #(0Y)[h(s)] > N = #(0X)[s].
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To show the converse, let h be a primitive recursive function such that #(0X)[s] 6 #(0Y)[h(s)] for all s. Without
loss of generality, one may assume that 0 ∈ Y . The desired primitive recursive reduction g : RX 6pr RY is defined
by recursion on x ∈ ω as follows:

g(0) =

{
0, if 0 ∈ X,
the least element from Y , if 0 ∈ X;

g(x + 1) =

{
0, if x + 1 ∈ X,
µy[y 6 h(x + 1) & y ∈ Y r {g(z) : z 6 x}], if x + 1 ∈ X.

Suppose that x ∈ X r {0} and the set X ∩ {0, 1, . . . , x} equals {k1 < k2 < · · · < kN = x}. Then the set Y ∩
{1, 2, . . . , h(x)} contains at least N elements, and this set has at most N − 1 elements from range(g � x). Therefore,
the function g is well-defined. In addition, it is easy to observe that g provides a reduction RX 6pr RY . �

Proposition 4.5 can now be restated as:

Corollary 5.2. Id 6pr RY if and only if there is a primitive recursive function h(x) such that s 6 #(0Y)[h(s)] for
all s ∈ ω.

5.1. Joins and meets
Now we are ready to prove that the partial order Peq has joins and meets, which make the structure a lattice.
By slightly abusing notations, we will talk about suprema and infima of primitive recursive equivalence relations
(referring of course to the poset Peq of the pr-degrees).

Theorem 5.3. The structure Peq is a lattice.

Proof. Suppose that X and Y are co-infinite primitive recursive sets such that RX |pr RY . Without loss of generality,
we assume that 0 ∈ X ∩ Y . In order to prove the theorem, it is sufficient to show that the relations RX and RY have
supremum and infimum.

We define a set Z0 ⊆ ω as follows: 0 ∈ Z0, and

s + 1 6∈ Z0 ⇔ max(#(0X)[s + 1],#(0Y)[s + 1]) > max(#(0X)[s],#(0Y)[s]).

Recall that the functions #(0X)[s] and #(0Y)[s] are primitive recursive. Hence, it is easy to show that the set Z0 is
primitive recursive and co-infinite.

Claim 5.4. RZ0 is the supremum of RX and RY .

Proof. First, we note the following: #(0Z)[0] = #(0X)[0] = #(0Y)[0] = 0, and every set U satisfies

#(0U)[s + 1] =

{
#(0U)[s] + 1, if s + 1 6∈ U,
#(0U)[s], if s + 1 ∈ U.

These observations (together with an easy induction argument) imply that

#(0Z0)[s] = max(#(0X)[s],#(0Y)[s]). (1)

Thus, one can apply Proposition 5.1 for the function h(x) = x, and deduce that RZ0 is an upper bound for both RX
and RY .
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Now suppose that RV is an arbitrary upper bound of RX and RY . By Proposition 5.1, we choose primitive recursive
functions hX and hY such that #(0X)[s] 6 #(0V)[hX(s)] and #(0Y)[s] 6 #(0V)[hY(s)]. Then by (1), we obtain

#(0Z0)[s] 6 max(#(0V)[hX(s)],#(0V)[hY(s)]) = #(0V)[max(hX(s), hY(s))].

Hence, we deduce that RZ0 6pr RV , and RZ0 is the join of RX and RY . �

Let now Z1 be the set determined by the following: 0 ∈ Z1, and

s + 1 6∈ Z1 ⇔ min(#(0X)[s + 1],#(0Y)[s + 1]) > min(#(0X)[s],#(0Y)[s]).

Claim 5.5. RZ1
is the infimum of RX and RY .

Proof. As in the previous claim, one can easily show that

#(0Z1)[s] = min(#(0X)[s],#(0Y)[s]). (2)

By Proposition 5.1, RZ1 is a lower bound for RX and RY .
Let RV be a lower bound of RX and RY . We fix primitive recursive functions qX and qY such that #(0V)[s] 6

#(0X)[qX(s)] and #(0V)[s] 6 #(0Y)[qY(s)]. Then by (2),

#(0V)[s] 6 min(#(0X)[qX(s)],#(0Y)[qY(s)]) 6 min(#(0X)[max(qX(s), qY(s))],#(0Y)[max(qX(s), qY(s))])

= #(0Z1)[max(qX(s), qY(s))].

Therefore, RZ1 is the meet of RX and RY . �

Theorem 5.3 is proved. �

Definition 5.6. Given primitive recursive sets X and Y , let us denote RX ∨ RY the relation RZ0
, constructed in the

proof of Theorem 5.3, giving the supremum of RX and RY . In addition, let us denote Z0 = X ∨ Y . Likewise, let us
denote RX ∧ RY the relation RZ1

, constructed in the proof above, giving the infimum of RX and RY . We also denote
Z1 = X ∧ Y .

Corollary 5.7. There are no minimal pairs inside Peq.

Proof. Immediate. �

Note that in the proof of Theorem 5.3, we gave an explicit algorithm for building suprema and infima. This
allows us to easily obtain the following:

Theorem 5.8. The lattice Peq is distributive.

Proof. Let X, Y , and Z be co-infinite primitive recursive sets. As discussed above, by RX ∨ RY we denote the
supremum of RX and RY , and RX∧RY is the infimum of RX and RY . We sketch the proof for the following distributivity
law:

RX ∨ (RY ∧ RZ) ≡pr (RX ∨ RY) ∧ (RX ∨ RZ).
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Suppose that Q ≡pr RX ∨ (RY ∧ RZ) and S ≡pr (RX ∨ RY) ∧ (RX ∨ RZ). We may assume that Q = RU and
S = RV , where U and V are primitive recursive sets such that 0 ∈ U ∩ V , and for every s ∈ ω,

#(0U)[s] = max(#(0X)[s],min(#(0Y)[s],#(0Z)[s])),

#(0V)[s] = min(max(#(0X)[s],#(0Y)[s]),max(#(0X)[s],#(0Z)[s])).

Since the structure (ω,6) is a linear order, for any numbers x, y, z ∈ ω, we have

max(x,min(y, z)) = min(max(x, y),max(x, z)).

Hence, it is clear that #(0U)[s] = #(0V)[s] for every s, and RU = RV . This concludes the proof of Theorem 5.8. �

6. Density
We prove now that the distributive lattice Peq is dense. This contrasts with the case of Ceers and ER, where each

degree has a minimal cover (see [13, 18] for details). However, density is a phenomenon that often shows up when
focusing on the subrecursive world. Mehlhorn [32] proved that the degree structures induced by many subrecursive
reducibilities on sets (including the primitive recursive one) are dense. Similarly, Ladner [33] proved that if P 6= NP,
then the poset of NP sets under polynomial-time reducibility is dense.

Density emerges also in the study of the online content of structures. More precisely, for a punctual structure
A, FPR(A) denotes the degree structure generated by primitive recursive isomorphisms on the collection of all
punctual copies of A. Bazhenov, Kalimullin, Melnikov, and Ng [34] recently proved the following: if a punctual
infinite A is finitely generated, then the poset FPR(A) is dense.

Theorem 6.1 (Density). If RX <pr RZ are infinitary primitive recursive equivalence relations, then there exists a
primitive recursive set Y such that RX <pr RY <pr RZ .

Proof. We will satisfy the following requirements, for every e ∈ ω:

Pe : pe does not reduce RY to RX ,

Qe : pe does not reduce RZ to RY ,

M : RX 6pr RY ,

N : RY 6pr RZ ,

where {pe}e∈ω is a computable listing of all primitive recursive functions, see Remark 2.2.
Assume that f : RX 6pr RZ . Assume also, without loss of generality, that 0 ∈ X ∩ Z, and that Z is infinite.

The environment
At stage s + 1 we inherit from stage s a finite binary string σY

s of length s + 1; moreover we will let σX
s = X � s + 1

and σZ
s = Z � s + 1. For U ∈ {X,Y,Z}, we will denote #

(
0U
)

[s] = #
(

0σ
U
s

)
(see Section 2.3 for the notation

# (0τ), where τ is a finite binary string).

The strategies
Let us sketch the strategy to achieve RY �pr RX . When we attack for the first time the requirement at stage s0, we
are given the strings σX

s0 , σ
Y
s0 , σ

Z
s0 , for which we have guaranteed that #

(
0Y
)

[s0] = #
(
0Z
)

[s0].
We open the so called Pe-cycle: until pe does not show a counterexample to RY 6pr RX , we keep copying larger

and larger pieces of Z in Y , so that starting from the input s0 + 1, the set Y looks like Z from the input s0 + 1. If this
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process goes on forever, then we would eventually get RZ 6pr RY : the initial segment σZ
s0 of Z which is not copied

by the copying procedure can be mapped by the reduction to σY
s0 as the two strings have the same number of 0’s; if

i < s0 + 1 is such that σZ
s0(i) = 1 (i.e., Z(i) = 1), then the reduction maps i to 0 ∈ Y . Thus, eventually we get that

pe does show a counterexample to RY 6pr RX , otherwise RY 6pr RX , but then RZ 6pr RY 6pr RX .
When a counterexample shows up, we close the Pe-cycle and we move to the next requirement, opening the

Qe-cycle. (In fact, before opening the Qe-cycle, we have to go through a transition phase to reach a stage t at which
#
(
0Y
)

[t] = #
(
0X
)

[t].) This also shows that Pe is eventually satisfied.
The strategy to achieve RZ �pr RY is similar, opening and closing the so called Qe-cycle: until pe does not show

a counterexample to RZ 6pr RY , we keep copying larger and larger pieces of X in Y , so that starting from the input
s0+1 (where s0 is when the cycle was opened) the set Y looks like X from s0+1. In order to implement this procedure
in a correct way, we require the following: when we start the Qe-cycle at s0, we have #

(
0Y
)

[s0] = #
(
0X
)

[s0].
Again, the Qe-cycle cannot go on forever, otherwise we would get RZ 6pr RY (since pe never shows a coun-

terexample), but on the other hand the copying procedure would give RY 6pr RX , yielding a contradiction. After
a counterexample shows up, there will be a transition phase, at the end of which we will reach a stage t at which
#
(
0Y
)

[t] = #
(
0Z
)

[t].
It remains to explain how we achieve that RX 6pr RY 6pr RZ . For this, we guarantee that at each step s we have

#
(
0X) [s] 6 #

(
0Y) [s] 6 #

(
0Z) [s],

so that we can search in a bounded way for the images in Y of the 0’s in σX
s , and for the images in Z of the 0’s in

σY
s . This, together with the facts that s is in the domains of both σX

s and σY
s , and the mappings s 7→ σU

s are primitive
recursive, will give the desired reductions.

Remark 6.2. As RX 6pr RZ , we may assume that if σ ⊂ X, τ ⊂ Z have the same length, then # (0σ) 6 # (0τ): for
this, one can replace Z with the join X ∨ Z if needed.

The construction
The construction is in stages.

Stage 0

Let Y(0) = 1, and σY
0 = λ. Open the P0-cycle. Notice that #

(
0X
)

[0] = #
(
0Y
)

[0] = #
(
0Z
)

[0] = 0.

Stage s + 1

We distinguish two relevant cases:

CASE 1) Suppose that we are within a previously opened Pe-cycle which has not been declared closed yet. We
assume by induction that when we opened (say at s0) the cycle, we had #

(
0X
)

[s0] 6 #
(
0Y
)

[s0] = #
(
0Z
)

[s0].

Copying phase
(Copy RZ in RY .) If we have not yet moved to the Pe → Qe-transition phase, then let

σY
s+1 = σY

s ̂〈Z(s + 1)〉.

Notice that by the assumption in Remark 6.2, after this we still have

#
(
0X) [s + 1] 6 #

(
0Y) [s + 1] = #

(
0Z) [s + 1].

After this, if pe has shown a counterexample to RY 6pr RX (as defined in Section 4.2) then enter the Pe → Qe-
transition phase:
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Transition phase
Carry out the following.

(1) If #
(
0X
)

[s + 1] = #
(
0Y
)

[s + 1], then exit from the transition phase. We close the Pe-cycle and open the
Qe-cycle.

(2) If #
(
0X
)

[s + 1] < #
(
0Y
)

[s + 1], then let

σY
s+1 = σY

s ̂〈1〉 :

(when X(s + 1) = 0, this has the effect of making #
(
0X
)

[s + 1] = #
(
0X
)

[s] + 1, whereas #
(
0Y
)

[s + 1] =

#
(
0Y
)

[s]) and go to (1), remaining in this transition phase.

Notice that at each stage t within a Pe-cycle we have by the assumption in Remark 6.2

#
(
0X) [t] 6 #

(
0Y) [t] 6 #

(
0Z) [t],

and when we close the Pe-cycle, we have

#
(
0X) [t] = #

(
0Y) [t] 6 #

(
0Z) [t].

CASE 2) Suppose that we are within a previously opened Qe-cycle which has not been declared closed yet. We
assume by induction that when we opened (say at s0) the cycle, we had #

(
0X
)

[s0] = #
(
0Y
)

[s0] 6 #
(
0Z
)

[s0].

Copying phase
(Copy RX in RY .) Let

σY
s+1 = σY

s ̂〈X(s + 1)〉.

Notice that by the assumption in Remark 6.2, after this we still have #
(
0X
)

[s+1] = #
(
0Y
)

[s+1] 6 #
(
0Z
)

[s+1]

if we had #
(
0X
)

[s] = #
(
0Y
)

[s] 6 #
(
0Z
)

[s]. After this, if pe has shown a counterexample to RZ 6pr RY (as
defined in Section 4.2), then enter the Qe → Pe+1-transition phase:

Transition phase
Carry out the following.

(1) If #
(
0Y
)

[s + 1] = #
(
0Z
)

[s + 1], then exit from the transition phase. We close the Qe-cycle and open the
Pe+1-cycle.

(2) If #
(
0Y
)

[s + 1] < #
(
0Z
)

[s + 1], then let

σY
s+1 = σY

s ̂〈0〉 :

(when Z(s + 1) = 1, this has the effect of making #
(
0Y
)

[s + 1] = #
(
0Y
)

[s] + 1 whereas #
(
0Z
)

[s + 1] =

#
(
0Z
)

[s]) and go to (1), remaining in this transition phase.

Notice that at each stage t within a Qe-cycle we have by the assumption in Remark 6.2

#
(
0X) [t] 6 #

(
0Y) [t] 6 #

(
0Z) [t],

and when we close the Qe-cycle, we have

#
(
0X) [t] 6 #

(
0Y) [t] = #

(
0Z) [t].
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The verification
The verification relies on the following lemmas.

Lemma 6.3. For each e, the requirements Pe and Qe are satisfied.

Proof. As in the proof of Theorem 4.10, it easily follows by induction that the Pe-cycle is opened at stage 0 if e = 0,
and at the stage at which the Qe−1-cycle is closed if e > 0. The Qe-cycle is opened at the stage at which the Pe-cycle
is closed.

Assume that for every i < e the Pi-cycle and the Qi-cycle have been closed, and the corresponding requirements
are satisfied. Then at the stage s0 (with s0 = 0 if e = 0, or s0 is the stage when we close the Qe−1-cycle if e > 0) we
open the Pe-cycle. If pe never shows a counterexample to RY 6pr RX , then we claim that RZ 6pr RX , a contradiction.

To show this claim, notice that in this case (i.e., should pe never show a counterexample to RY 6pr RX , implying
that RY 6pr RX) we would have Y = σY

s0 ∗ Z. Then RZ 6pr RY by a primitive recursive function q which matches
up the zeros in σZ

s0 with those of σY
s0 (using that both strings have the same number of zeros, since #

(
0Y
)

[s0] =

#
(
0Z
)

[s0]), q(i) = 0 if Z(i) = 1 and i 6 s0, and q(i) = i for i > s0 + 1. It would follow that RZ 6pr RX , a
contradiction.

Thus, at some stage pe shows a counterexample to RY 6pr RX , whence Pe is satisfied. Moreover, since X is
infinite, the transition phase of the cycle will end, since eventually X will produce enough 0’s to match up with those
which are present in σY at the beginning of the Pe → Qe-transition phase of the Pe-cycle. Therefore, the cycle will
be closed.

Similarly, assume that for every i < e the Qi-cycle has been closed, and for every i 6 e the Pi-cycle has been
closed, and the corresponding requirements are satisfied. If s0 is the stage at which we open the Qe-cycle (that is
when we close the Pe-cycle) and for every s > s0 we never close the cycle, then RZ 6pr RY , and thus an argument
similar to the one given above would entail that RZ would be pr-reducible to RX , as the construction would ensure in
this case that Y = σY

s0 ∗ X and #
(
0X
)

[s0] = #
(
0Y
)

[s0], giving that RY 6pr RX . Finally, the Qe → Pe+1-transition
phase ends, since Z is infinite.

Hence, all P- and Q- requirements are satisfied. �

Claim 6.4. Y is primitive recursive.

Proof. The function s 7→ σY
s is primitive recursive, and Y(s) = σY

s+1(s). �

Lemma 6.5. RX 6pr RY 6pr RZ .

Proof. We need to define two primitive recursive functions g, h which provide reductions g : RX 6pr RY and
h : RY 6pr RZ . Using that the functions qY , qZ where qY(s) = σY

s and qZ(s) = σZ
s are primitive recursive, and

at each stage t we have that #
(
0X
)

[t] 6 #
(
0Y
)

[t], define

g(s) =

{
0, if X(s) = 1,

min{i < lYs : σY
s (i) = 0 & (∀ j < s)[i 6= g( j)]}, if X(s) = 0.

Similarly, using that at each stage t we have #
(
0Y
)

[t] 6 #
(
0Z
)

[t], we can define

h(s) =

{
0, if Y(s) = 1,

min{i < lZs : σZ
s (i) = 0 & (∀ j < s)[i 6= h( j)]}, if Y(s) = 0.

It is not hard to see that g and h provide the desired pr-reductions. �
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The last lemma ensures that the global requirements M and N are both satisfied. In combination with Lemma 6.3,
this means that RY lies strictly in between RX and RZ , as desired. Theorem 6.1 is proved. �

Upwards and downwards density are immediate consequences of Theorem 4.10, the existence of infima (Theo-
rem 5.3), and Theorem 6.1:

Corollary 6.6. If R <pr Id and R is infinitary, then there are infinitary S 0 and S 1 such that

S 0 <pr R <pr S 1 <pr Id .

Proof. Upwards density (i.e., the existence of S 1) is a particular case of Theorem 6.1. For downward density (i.e.,
the existence of S 0), recall that if R is in Peq, then by Theorem 4.10, there exists S such that R |pr S : thus,
S 0 := R ∧ S is a primitive recursive equivalence relation such that S 0 <pr R. �

We now combine the density strategy of the previous theorem with the incomparability strategy exploited in
Theorem 4.10.

Theorem 6.7 (Density plus incomparability). If RX <pr RT <pr RZ are infinitary primitive recursive equivalence
relations, then there exists a primitive recursive set Y such that RX <pr RY <pr RZ and RT |pr RY .

Proof. Suppose that RX <pr RT <pr RZ are primitive recursive equivalence relations. To build Y , a trivial modifica-
tion of Theorem 6.1 suffices.

In the previous proof, we close the Pe-cycle in Case 1 of Step s + 1 when we see that pe has shown a coun-
terexample to RY 6pr RX . For the purpose of the present proof, we now ask to close the Pe-cycle in Case 1 of
Stage s + 1 when we have seen that pe has shown a counterexample to RY 6pr RT , and we have matched up through
the transition phase #

(
0X
)

= #
(
0Y
)
: should pe never show a counterexample to RY 6pr RT , then (as in the

proof of Theorem 6.1) our copying phase of Case 1 would end up with making RZ 6pr RY , giving RZ 6pr RT , a
contradiction.

Similarly, here we ask to close the Qe-cycle in Case 2 of Step s+1 when we see that pe shows a counterexample
to RT 6pr RY , and we have matched up through the transition phase #

(
0Y
)

= #
(
0Z
)
. Should pe never show a

counterexample to RT 6pr RY , then (as in the proof of Theorem 6.1) our copying phase of Case 2 would end up with
making RY 6pr RX , giving RT 6pr RX , a contradiction. �

Remark 6.8. Notice that the two previous theorems provide another proof of Theorem 4.10: Indeed, given an
infinitary primitive recursive R <pr Id, it is enough to pick by Corollary 6.6 infinitary relations S 0, S 1 such that
S 0 <pr R <pr S 1, so that by density plus incomparability there exists S |pr R, with the stronger specification that S
lies between S 0 and S 1.

Notice also that by a straightforward extension of the argument in Theorem 6.7 (in the same vein as in the
argument for Corollary 4.14), one can show that if R <pr S inside Peq, then one can build an infinite antichain
whose members all lie between R and S .

7. Join- and meet-reducibility
In a poset 〈P,6〉 an element a ∈ P is join-reducible if in P there are b, c < a such that a is the join of b, c, and a

is meet-reducible if there are b, c > a such that a is the meet of b, c.
Before showing that in Peq every element is join-reducible, and every R <pr Id is meet-reducible, let us introduce

some notations and simple observations which will be useful in the rest of this section.
In analogy with the principal function pX of the complement X (where X ⊆ ω), given a string σ ∈ 2<ω, let also

pσ denote the order preserving finite bijection pσ : {n : n < # (0σ)} −→ σ (the notation σ has been introduced in
Section 2.3). Again in analogy with what we have done for sets (see Definition 5.6), we give the following definition.
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Definition 7.1. Given σ, τ ∈ 2<ω such that lσ = lτ = h and # (0σ) = # (0τ) = m, let σ ∨ τ be the string with
lσ∨τ = h and such that (σ∨ τ)(i) = 0 if and only if i = min(pσ(n), pτ(n)), for some n < m. Dually, define σ∧ τ to
be the string with lσ∧τ = h and such that (σ ∧ τ)(i) = 0 if and only if i = max(pσ(n), pτ(n)), for some n < m.

Notice that for σ, τ as in the definition, we have # (0σ∨τ) = # (0σ∧τ) = m.

Lemma 7.2. Let (σ0, σ1) be a pair of strings such that lσ0 = lσ1 = h and # (0σ0) = # (0σ1); let (τ0, τ1) be
another pair of strings such that lτ0 = lτ1 = h′ and # (0τ0) = # (0τ1); finally, let Y0,Y1 be a pair of sets such that
σ0 ⊂ Y0 and σ1 ⊂ Y1. Then, for an operation � ∈ {∨,∧},

(1) for every i < h′ we have

(σ0̂τ0�σ1̂τ1)(h + i) = (τ0�τ1)(i);

(2) σ0�σ1 ⊂ Y0�Y1, and for every i < h, we have

(Y0�Y1)(i) = (σ0�σ1)(i).

Proof. The proof is immediate. Let # (0σ0) = # (0σ1) = m, and # (0τ0) = # (0τ1) = m′. Item (1) follows
from the fact that σ0̂τ0�σ1̂τ1 has m + m′ zeros: the first m ones of them (in order of magnitude) come from
comparing the pairs (pσ0

(n), pσ1
(n)) with n < m; and the last m′ ones of them come from comparing the pairs

(pσ0̂τ0(m + n), pσ1̂τ1(m + n) with n < m′, which amounts to comparing the pairs (pτ0(n), pτ1(n)) with n < m′.
Finally, (2) follows easily from (1). �

Theorem 7.3. Each infinitary primitive recursive RZ is join-reducible.

Proof. Let RZ be a primitive recursive equivalence relation in normal form. As Id ≡pr RE , with E denoting the set
of even numbers, we can always assume that Z is infinite and co-infinite.

We will build RY0
,RY1

<pr RZ such that RY0
∨ RY1

= RZ . To do so, we will satisfy the following requirements:

Pe : pe does not reduce RZ to RY1
,

Qe : pe does not reduce RZ to RY0
,

N : RZ = RY0
∨ RY1

.

Notice that the N-requirement is actually requesting that RZ = RY0 ∨ RY1 , not just RZ ≡pr RY0 ∨ RY1 .
We will build Y0,Y1 in stages by approximating their characteristic functions, i.e., Yi =

⋃
s∈ω σ

Yi
s for i ∈ {0, 1}.

In the construction at each stage s we will use also the string σZ
s which, we recall, is the initial segment of Z with

length s.

The construction
We adopt the same terminology and notations as those employed in Theorem 6.1. As in the proof of that theorem,
at each stage, the construction can be either in a copying phase or in a transition phase.

Stage 0

σY0
0 = σY1

0 = λ. Open the P0-cycle, which will be implemented starting from next stage.

Stage s + 1

We distinguish two cases.

CASE 1. Suppose that we are within a previously opened cycle Pe, which has not been declared closed yet. We
assume by induction that we have #

(
0Y1
)

[s + 1] 6 #
(
0Y0
)

[s + 1] 6 #
(
0Z
)

[s + 1].
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Copying phase
If we have not yet moved to the Pe → Qe-transition phase, then we copy RZ into RY0 : let σY0

s+1 = σY0
s ̂〈Z(s)〉 and

σY1
s+1 = σY1

s ̂〈1〉. After this, if pe shows a counterexample to RZ 6pr RY1
, then go to the Pe → Qe-transition phase

which will be implemented starting from the next stage.

Transition phase
Suppose that we are within the Pe → Qe-transition phase. Let Y1(s + 1) = 0 and Y0(s + 1) = Z(s). After this, if
#
(
0Y0
)

[s +1] = #
(
0Y1
)

[s +1], then close the Pe-cycle and open the Qe-cycle which will be implemented starting
from next stage; otherwise, stay in this transition phase.

CASE 2. Suppose that we are within a previously opened Qe-cycle, which has not been declared closed yet. We
assume by induction that we have #

(
0Y0
)

[s + 1] 6 #
(
0Y1
)

[s + 1] 6 #
(
0Z
)

[s + 1].

Copying phase
If we have not yet moved to the Qe → Pe+1-transition phase, then we copy RZ into RY1

: let σY0
s+1 = σY0

s ̂〈1〉 and
σY1

s+1 = σY1
s ̂〈Z(s)〉. After this, if pe shows a counterexample to RZ 6pr RY0 , then go to the Qe → Pe+1-transition

phase which will be implemented starting from the next stage; otherwise, stay in this transition phase.

Transition phase
Suppose that we are within the Qe → Pe+1-transition phase. Let Y0(s + 1) = 0 and Y1(s + 1) = Z(s). After this,
if #

(
0Y0
)

[s + 1] = #
(
0Y1
)

[s + 1], then close the Qe-cycle and open the Pe+1-cycle which will be implemented
starting from next stage; otherwise, stay in this transition phase.

Notice that for every s, the constructed initial segment σYi
s of Yi has length s.

(We note that the distinction between “copying phase” and “transition phase” can be misleading, as in the
transition phase of Case 1 we still keep copying Z into Y0 as we were doing during the copying phase, and similarly
in the transition phase of Case 2 we still keep copying Z into Y1 as we were doing during the copying phase.)

The verification
Y0 and Y1 are primitive recursive as Yi(s) = σYi

s+1(s), and the mapping s 7→ σYi
s+1 is primitive recursive.

The rest of the verification is based on the following lemmas.

Lemma 7.4. The P- and Q- requirements are satisfied. Moreover, if s is a stage at which we close a cycle, then
#
(
0Y0
)

[s] = #
(
0Y1
)

[s].

Proof. As in the proof of Theorem 4.10 and Theorem 6.1, if s is any stage, then at s we are either in an open Pe- or
Qe-cycle for exactly one e.

Eventually any P- or Q- cycle will be closed. This is easily seen by induction. Suppose that at stage s0 we open
the Pe-cycle (the P0-cycle is opened at stage 0). Then eventually pe shows a counterexample to RZ 6pr RY1

(thus
Pe is satisfied), otherwise our copying procedure would put all fresh elements into Y1, giving that RY1

has only
finitely many equivalence classes, contradicting that RZ has infinitely many equivalence classes. After pe has shown
a counterexample, we start the Pe → Qe-transition phase. During the transition we keep all fresh elements out of Y1.
This makes the number of 0’s of Y1 growing as fast as possible, while we copy Z in Y0. Eventually, we will witness
a stage s at which #

(
0Y0
)

[s] = #
(
0Y1
)

[s]; otherwise, Z would be finite contradicting the fact that Z is infinite.
This shows that the Pe-cycle is eventually closed, and we open the Pe-cycle.

By a similar argument we can prove that each Qe-cycle is eventually opened, then closed, and the corresponding
requirement is satisfied. �
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Lemma 7.5. The N-requirement is satisfied.

Proof. We want to show that Z = Y0 ∨ Y1. Let s0 < s1 < . . . be the sequence of stages at which we open a cycle,
with s0 = 0. Our argument is by induction on the index n of sn. Assume by induction that, for every i < sn we have
(Y0 ∨ Y1)(i) = Z(i): this is true if n = 0. Assume that at sn we open a Pe-cycle, the other case being similar: this
cycle is closed at the stage sn+1.

By construction, σY0
sn+1

= σY0
sn
̂τ0 and σY1

sn+1
= σY1

sn
̂τ1, where

τ0 = 〈Z(sn), . . . ,Z(sn+1 − 1)〉 and τ1 = 1ĥ0k,

for some h, k with h + k = sn+1 − sn (here, for i ∈ {0, 1}, im denotes the string of length m giving value i on all its
inputs). As in τ1 the bit 0 appears only in the final segment 0k, for every i < sn+1 − sn we have that

(τ0 ∨ τ1)(i) = Z(sn + i).

It then follows from Lemma 7.2 that for every j < sn+1 − sn we have

(Y0 ∨ Y1)(sn + j) = (τ0 ∨ τ1)( j) = Z(sn + j),

giving that (Y0 ∨ Y1)(i) = Z(i) for all i < sn+1. �

This concludes the verification. �

By a symmetric argument, one can also show the following.

Theorem 7.6. Any RZ <pr Id is meet-reducible.

Proof. The requirements are

Pe : pe does not reduce RY1 to RZ ,

Qe : pe does not reduce RY0
to RZ ,

M : RZ = RY0
∧ RY1

.

The proof and the construction are similar to the previous theorem, with the modifications that whenever in the
previous theorem in a copying or transition phase we added the bit i to Y0 or Y1, we now add the bit 1 − i. Notice
for instance that for every e, pe eventually shows a counterexample to RY1 6pr RZ as otherwise now Y1 would be
eventually finite, thus RY1

≡pr Id, and thus Id 6pr RZ , a contradiction. So Pe is satisfied. A similar argument shows
that each Qe is satisfied.

In order to show that RZ = RX ∧RY , notice that this time (assuming that at sn we open a Pe-cycle, the other case
being similar) σY0

sn+1
= σY0

sn
̂τ0 and σY1

sn+1
= σY1

sn
̂τ1 where τ1 = 0ĥ1k, for some h, k with h + k = sn+1 − sn, and

τ0 = 〈Z(sn), . . . ,Z(sn+1 − 1)〉. It then follows from Lemma 7.2 (as in τ1 the 0’s show up before the 1’s) that for
every j < sn+1 − sn we have

(Y0 ∧ Y1)(sn + j) = (τ0 ∧ τ1)( j) = Z(sn + j).

Thus by induction on the index n of sn, we can show that (Y0 ∧ Y1)(i) = Z(i) for all i < sn. �
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8. Embedding of the diamond lattice
So far, we highlighted that Peq is a remarkably well-behaved degree structure, being a dense distributive lattice.

Moreover, we proved that degrees below the top are not distinguishable with respect to join- or meet-reducibility.
In these two remaining sections, we will turn the perspective upside down, focusing on some fairly unexpected ill-
behaviour of Peq. In particular, in this section we show that some intervals R <pr S (inside Peq) embed the diamond
lattice, and some others don’t. In fact, we will offer a complete characterization of the intervals which embed the
diamond lattice, by relying on a combinatorial property of primitive recursive sets X and Y , named �-property,
which intuitively says that there are infinitely many initial segments of the natural numbers up to which X and Y
have an equivalent number of zeros.

Given a set U, throughout the section we agree, as in the proof of Theorem 6.1, that σU
s denotes the initial

segment of U having length s + 1 and #
(
0U
)

[s] denotes the cardinality of σU
s . To avoid trivial cases, we also

assume that here we consider only primitive recursive sets X that are infinite.

Definition 8.1. We say that a pair (X,Y) of primitive recursive sets satisfies the �-property if there is a pair (X∗,Y∗)
of primitive recursive sets such that RX∗ ≡pr RX and RY∗ ≡pr RY and

(∀s)(∃t > s)
[
#
(

0X∗
)

[t] = #
(

0Y∗
)

[t]
]
.

We say that a stage s is an equilibrium point for a pair (X,Y) of primitive recursive sets if

#
(
0X) [s] = #

(
0Y) [s].

Theorem 8.2. An interval [R, S ] of Peq embeds the diamond lattice preserving 0 and 1 if and only if (R, S ) has the
�-property.

Proof. By Lemma 3.2, there exist primitive recursive sets such that R ≡pr RX and S ≡pr RZ .
(⇒): Suppose that for some primitive recursive sets Y0 and Y1, we have that RX , RY0

, RY1
, and RZ form a

diamond. Without loss of generality, one may assume that 0 ∈ Y0. We shall prove that the pair (Y0,Y1) has infinitely
many equilibrium points.

Suppose that s∗ is the last equilibrium point for (Y0,Y1). Then, without loss of generality, we may assume that
for any s > s∗,

#
(
0Y0
)

[s] > #
(
0Y1
)

[s].

Let n∗ := #
(
0Y0
)

[s∗ + 1]. For a number m > n∗, as pY0
(m) > s∗ + 1, we have

m + 1 = #
(
0Y0
)

[pY0
(m)] > #

(
0Y1
)

[pY0
(m)],

and thus pY0
(m) < pY1

(m). By the definition of Y0 ∨ Y1, we deduce that for every m > n∗, we have pY0∨Y1
(m) =

pY0
(m). Therefore, the function

f (x) :=


0, if x ∈ Y0 ∨ Y1,

pY0
(l), if x = pY0∨Y1

(l) for some l < n∗,
x, otherwise,

provides a pr-reduction from RY0
∨ RY1

into RY0
, which gives a contradiction.
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Let s0 < s1 < s2 < . . . be the sequence of all equilibrium points for (Y0,Y1). We choose an infinite subsequence
of equilibrium points

s∗0 < s∗1 < s∗2 < . . .

such that for every i ∈ ω, #
(
0Y0
)

[s∗i ] < #
(
0Y0
)

[s∗i+1].
Let ti := #

(
0Y0
)

[s∗i ]. By Lemma 7.2 it is clear that

#
(
0Y0∨Y1

)
[s∗i ] = #

(
0Y0∧Y1

)
[s∗i ] = ti,

and hence, the pair (X,Z) satisfies the �-property.

(⇐): On the other hand, we need to show that the �-property is sufficient for embedding the diamond. So,
suppose that (X,Z) satisfies the �-property. We will prove that there are primitive recursive RY0 ,RY1 such that the
infimum (resp. supremum) of RY0 and RY1 is pr-equivalent to RX (resp. RZ).

Without loss of generality, assume that 0 ∈ X ∩ Z. Observe also that we may assume that the following hold:

(1) the pair (X,Z) has infinitely many equilibrium points;
(2) for all s, #

(
0Z
)

[s] > #
(
0X
)

[s].

To see that this can be assumed, first choose X,Z with infinitely many equilibrium points; they must exist since
(X,Z) has the �-property. Second, replace Z with X ∨ Z if needed; note that if t is an equilibrium point for (X,Z),
then by Lemma 7.2 it should be an equilibrium point for (X, X ∨ Z) as well.

We will build sets Y0,Y1 in stages, satisfying the following requirements:

Qe : pe does not reduce RZ to RY0 ,

Pe : pe does not reduce RZ to RY1
,

M : RX = RY0
∧ RY1

,

N : RZ = RY0
∨ RY1

.

It is easy to see that the above requirements are sufficient: in particular, we do not need to prove that RYi �pr RX .
Notice also that we require RX and RZ to be in fact equal, and not just pr-equivalent, to RY0

∧ RY1
and RY0

∨ RY1
,

respectively: therefore, we get for free that RY0
and RY1

lie in the interval determined by RX and RZ . As always, we
will build Y0,Y1 in stages by approximating their characteristic functions, i.e., Yi =

⋃
s∈ω σ

Yi
s for i ∈ {0, 1}. Each

string σYi
s , σ

X
s , σ

Z
s we define or deal with at a stage s has length s + 1.

The strategies
In order to achieve that pe does not reduce RZ to RY0

we open the Qe-cycle and employ a copying procedure, copying
RX into RY0

, until we see that pe shows a counterexample to RZ 6pr RY0
. Meanwhile we employ a corresponding

copying procedure, copying RZ into RY1
.

When seeing that pe shows a counterexample at stage, say, s+1, by our assumption on always being #
(
0X
)

[t] 6
#
(
0Z
)

[t], it may happen that #
(
0X
)

[s + 1] < #
(
0Z
)

[s + 1]. If so, before closing the Qe-cycle we open the so-
called Qe → Pe-transition phase, which consists (still copying RX into RY0

and RZ into RY1
) in prolonging bit by

bit σY0
s+1 (which the construction has guaranteed to have the same number of 0’s as σX

s+1) with the bits of X, and in
prolonging bit by bit σY1

s+1 (which the construction has guaranteed to have the same number of 0’s as σZ
s+1) with the

bits of Z, until we reach the next equilibrium point of (X,Z): at this point we close the Qe-cycle and we open the
Pe-cycle.
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The described procedure has the goal of making it possible to apply Lemma 7.2 and conclude that the bits added
to σY0

s+1 and σY1
s+1 since when we opened the Qe-cycle satisfy

(σY0
s+1 ∨ σ

Y1
s+1)(i) = (X ∨ Z)(i) and (σY0

s+1 ∧ σ
Y1
s+1)(i) = (X ∧ Z)(i),

so as to eventually get Y0 ∨ Y1 = X ∨ Z and Y0 ∧ Y1 = X ∧ Z.
In order to achieve that pe does not reduce RZ to RY1

, we use (in an obvious way) a similar strategy, this time
copying RX into RY1 and RZ into RY0 ; we go into the Pe → Qe+1-transition phase when pe shows a counterexample.
Finally, after reaching the next equilibrium point, we close the Pe-cycle and open the Qe+1-cycle.

The construction
Unless otherwise specified, we adopt the same terminology and notation employed in Theorem 6.1.

Stage 0

σY0
0 = σY1

0 = 〈1〉. Open the Q0-cycle.

Stage s + 1

There are two cases.

CASE 1. Suppose that we are within a previously opened Qe-cycle, which has not been declared closed. We assume
by induction that we have

#
(
0X) [s + 1] = #

(
0Y0
)

[s + 1] 6 #
(
0Y1
)

[s + 1] = #
(
0Z) [s + 1],

and the first stage s′ of this particular Qe-cycle has the following property

#
(
0X) [s′] = #

(
0Y0
)

[s′] = #
(
0Y1
)

[s′] = #
(
0Z) [s′].

Copying phase
If we have not yet moved to the Qe → Pe-transition phase, then we copy RX into RY0

and copy RZ into RY1
: let

σY0
s+1 = σY0

s ̂〈X(s + 1)〉 and σY1
s+1 = σY1

s ̂〈Z(s + 1)〉. After this, if pe shows a counterexample to RZ 6pr RY0
then

go to the Qe → Pe-transition phase, which will be implemented starting from the next stage.

Transition phase
Suppose that we are within the transition phase of a previously opened Qe-cycle, which has not been declared closed
yet. Let σY0

s+1 = σY0
s ̂〈X(s + 1)〉 and σY1

s+1 = σY1
s ̂〈Z(s + 1)〉. After this, if #

(
0Y0
)

[s + 1] = #
(
0Y1
)

[s + 1], then
close the Qe-cycle, and open the Pe-cycle, which will be processed starting from next stage.

CASE 2. Suppose that we are within a previously opened Pe-cycle, which has not been declared closed yet. We
assume by induction that

#
(
0X) [s + 1] = #

(
0Y1
)

[s + 1] 6 #
(
0Y0
)

[s + 1] = #
(
0Z) [s + 1],

and when we had opened this cycle, we had #
(
0Y1
)

[s′] = #
(
0Y0
)

[s′].

Copying phase
If we have not yet moved to the Pe → Qe+1-transition phase, then let σY0

s+1 = σY0
s ̂〈Z(s + 1)〉 and σY1

s+1 =
σY1

s ̂〈X(s + 1)〉. After this, if pe has shown a counterexample for pe : RZ 6pr RY1 , then move to the Pe → Qe+1-
transition phase.
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Transition phase
Suppose that we are within the transition phase of a previously opened Pe-cycle, which has not been declared closed
yet. Let σY0

s+1 = σY0
s ̂〈Z(s + 1)〉 and σY1

s+1 = σY1
s ̂〈X(s + 1)〉. After this, if #

(
0Y0
)

[s + 1] = #
(
0Y1
)

[s + 1], then
close the Pe-cycle, and open the Qe+1-cycle, which will be processed starting from next stage.

The verification
The sets Y0,Y1 are primitive recursive as Yi(s) = σYi

s (s) (recall that lYi
s = s + 1) and the mapping s 7→ σYi

s is
primitive recursive. The rest of the verification is based on the following lemmas.

Lemma 8.3. The P- and Q- requirements are satisfied.

Proof. Similarly to the proofs of Theorem 5.3 and Theorem 6.1, it is easily seen by induction that every P- or Q-
cycle is opened and later closed, and exactly one cycle is open at each stage. Consider for instance a Qe-cycle, and
assume that it was opened at stage s0, and we started processing the cycle from s0 + 1. Assume also that

#
(
0X) [s0] = #

(
0Y0
)

[s0].

Should pe never show a counterexample to RZ 6pr RY0
, then it would be RZ 6pr RX . Indeed, in this case we would

eventually get Y0 = σY0
s0 ∗ X (see Section 2.3 for the notation): thus, pe : RZ 6pr RY0

would imply RZ 6pr RX .
Therefore, eventually we do get a counterexample, and requirement Qe is satisfied.

After pe shows a counterexample, we start the transition phase: when we open it (say, at s1), we have

#
(
0Y0
)

[s1] 6 #
(
0Y1
)

[s1].

By our assumption that (X,Z) has the �-property, it follows (by prolonging σY0 as X, and σY1 as Z) that eventually
#
(
0Y0
)

catches up with #
(
0Y1
)
, thus we reach a stage s + 1 when #

(
0Y0
)

[s + 1] = #
(
0Y1
)

[s + 1]. At this stage,
we close the Qe-cycle and we open the Pe-cycle.

A similar claim holds for Pe-cycles. Note that in the second part of the cycle, the transition phase waits until the
inequality #

(
0Y1
)

[t] 6 #
(
0Y0
)

[t] reaches a stage s + 1 such that #
(
0Y1
)

[s + 1] = #
(
0Y0
)

[s + 1].
We also conclude that all P- and Q-requirements are satisfied. �

Lemma 8.4. The M-requirement and the N-requirement are satisfied.

Proof. Let 0 = s0 < s1 < . . . be an infinite sequence of stages s at which we have

#
(
0X) [s] = #

(
0Y0
)

[s] = #
(
0Y1
)

[s] = #
(
0Z) [s].

For instance, this happens when we open cycles.
Let i ∈ ω and let n be such that i < sn+1 − sn. Suppose that at sn we open a Q-cycle — then σY0

sn+1
= σY0

sn
̂τ0

and σY1
sn+1

= σY1
sn
̂τ1, where τ0(i) = X(sn + 1 + i) and τ1(i) = Z(sn + 1 + i). Since the pairs (σY0

sn
, σY1

sn
), (τ0, τ1),

and (Y0,Y1) satisfy the assumptions of Lemma 7.2, it follows by induction on the index n of sn that

(Y0 ∧ Y1)(i) = (X ∧ Z)(i)

(Y0 ∨ Y1)(i) = (X ∨ Z)(i).

Hence, we deduce that RY0
∧ RY1

= RX and RY0
∨ RY1

= RZ . Lemma 8.4 is proved. �

This concludes the verification. Theorem 8.2 is proved. �



26 N. Bazhenov et al. / Primitive recursive equivalence relations

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

9. On the intricacy of Peq
In this final section, we deepen the analysis of Peq, unveiling further structural complexity. Most notably, we

will focus on the automorphisms of Peq, proving that this degree structure is neither rigid nor homogeneous. We
will also show that Peq contains nonisomorphic lowercones. These results will require both to further explore the
consequences of the �-property defined above and to introduce another property, named slowness, concerning the
rate at which a primitive recursive set shows its zeros. We conclude the section by collecting a number of interesting
open questions, which may motivate future work. We are particularly interested in whether the theory of Peq is
decidable or not.

Remark 9.1. (Redefining the symbol #
(
0X
)

[s].) In this section, for technical reasons, we will take #
(
0X
)

[s] to
be the number of i 6 k such that X(i) = 0, where k is the largest such that X( j) ↓ in at most s many steps for all
j 6 k. So #

(
0X
)

[s] is the number of zeroes that we can see in the characteristic function of X after evaluating it for
s many steps.

The next lemma is an analogue of Proposition 5.1 — it expresses RX 6pr RY in terms of the growth rates of
#
(
0X
)

and #
(
0Y
)
:

Lemma 9.2. Given any X,Y, RX 6pr RY if and only if there exists a primitive recursive function p such that for
every s, #

(
0X
)

[s] 6 #
(
0Y
)

[p(s)].

Proof. Suppose that RX 6pr RY via f . For each s we let p(s) be the least stage t > s such that Y(n)[t] ↓ for all
n 6 f (s). Then #

(
0X
)

[s] 6 #
(
0Y
)

[p(s)].
Now conversely fix p. For each m we find the first stage t for which we have X � (m + 1)[t]↓. Let h(m) = p(t).

Then h(pX(n)) > pY(n) for all n and by Proposition 5.1, RX 6pr RY . �

It is easy to see that inside Peq, there are R <pr S such that the pair (R, S ) satisfies the �-property: By Theorem
4.10 take a pair of incomparable Y0 |pr Y1, then R = Y0 ∧ Y1 <pr S = Y0 ∨ Y1 has the �-property. In fact, by
Theorems 7.3 and 7.6, given any R <pr Id there is some S >pr R, and given any S there is some R <pr S such that
(R, S ) has the �-property. So every degree in Peq is the top and (if it is not Id) the bottom of an interval with the
�-property.

However, since the �-property is a property of a pr-degree and not of a set, it is not totally obvious why there
should be an interval that does not satisfy the �-property. We prove a lemma which expresses the �-property as
a property about sets. Note that the �-property does not apriori require the two sets to be comparable, and the
characterization below holds in general.

Lemma 9.3. A pair (X,Y) satisfies the �-property if and only if there exist primitive recursive functions p and q
such that #

(
0X
)

[s] = #
(
0Y
)

[p(s)] = #
(
0Y
)

[t] = #
(
0X
)

[q(t)] for infinitely many s, t.

Proof. Suppose that (X,Y) satisfies the �-property. Fix (X∗,Y∗) witnessing that the pair (X,Y) has the �-property,
so that

(∀s)(∃t > s)
[
#
(

0X∗
)

[t] = #
(

0Y∗
)

[t]
]
,

and functions fX,X∗ , fX∗,X , fY,Y∗ and fY∗,Y satisfying

#
(
0X) [s] 6 #

(
0X∗
)

[ fX,X∗(s)], #
(

0X∗
)

[s] 6 #
(
0X) [ fX∗,X(s)],

#
(
0Y) [s] 6 #

(
0Y∗
)

[ fY,Y∗(s)], #
(

0Y∗
)

[s] 6 #
(
0Y) [ fY∗,Y(s)]
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for every s, respectively (applying Lemma 9.2). Then obviously we should take p and q to be the composition of
the given functions in the correct order. More specifically, we let p(s) = the least stage t 6 fY∗,Y( fX,X∗(s + 1))
such that #

(
0X
)

[s] = #
(
0Y
)

[t], and if t cannot be found then let p(s) = s. Similarly, let q(t) = the least stage
u 6 fX∗,X( fY,Y∗(t + 1)) such that #

(
0Y
)

[t] = #
(
0X
)

[u], and if u cannot be found then let q(t) = t.
We first check that p works. Let w and j be such that

#
(

0X∗
)

[w] = #
(

0Y∗
)

[w] = j.

Let s be the greatest stage such that #
(
0X
)

[s] = j. Then as #
(
0X∗
)

[w] = j and #
(
0X
)

[s + 1] = j + 1, we
certainly have w < fX,X∗(s + 1). Then

fY∗,Y( fX,X∗(s + 1)) > fY∗,Y(w)

and also

#
(
0Y) [ fY∗,Y(w)] > #

(
0Y∗
)

[w] = j.

Therefore, the bound fY∗,Y( fX,X∗(s + 1)) is large enough, and we have

#
(
0X) [s] = #

(
0Y) [p(s)] = j.

A similar argument holds for q.
Now conversely, assume that p and q exist. It is easy to see that we can make p and q nondecreasing. We wish to

show that (X,Y) satisfies the �-property. An obvious candidate for X∗ is a set satisfying #
(
0X∗
)

[p(s)] = #
(
0X
)

[s]
for every s, and then we can take Y∗ = Y , so that #

(
0X∗
)

[p(s)] = #
(
0Y∗
)

[p(s)] holds for infinitely many s.
Unfortunately, in order to do this, we will need to compute p−1 which in general is not primitive recursive. So we
will have to use both p and q to define X∗ and Y∗.

We call (s, t) a good pair if

#
(
0X) [s] = #

(
0Y) [p(s)] = #

(
0Y) [t] = #

(
0X) [q(t)];

by the hypothesis there are infinitely many good pairs.
First, suppose that there are infinitely many good pairs (s, t) such that p(s) > s. Define c(w) to be the largest

value of u 6 w such that #
(
0X
)

[u] 6 #
(
0Y
)

[w] or p(u) < w. Notice that the function c is primitive recursive and
non-decreasing. Therefore, so is the function d(w) = min

{
d(w− 1) + 1,#

(
0X
)

[c(w)]
}

. Furthermore, d has the
property that for any w, d(w + 1) 6 d(w) + 1, and that for any w there is some t satisfying w 6 t 6 2w such that
d(t) = #

(
0X
)

[c(w)]. (Recall our convention that for any set Z and any stage t, #
(
0Z
)

[t + 1] 6 #
(
0Z
)

[t] + 1).
Therefore we can define the primitive recursive set X∗ satisfying #

(
0X∗
)

[w] = d(w) for all w. Take Y∗ = Y .
Let d̂(w) be the largest value 6 w such that #

(
0X
)

[d̂(w)] = d(w), which is also primitive recursive. Therefore,
by Lemma 9.2 we obviously have RX∗ 6pr RX . Now we observe that for each s, s 6 c(w) where w = max{s, p(s)+
1}. Therefore

#
(

0X∗
)

[2w] = d(2w) > #
(
0X) [c(w)] > #

(
0X) [s],

showing that RX∗ >pr RX . Now it follows by a straightforward induction on w that the following claim is true:

d(w) > max
{

#
(
0X) [u] | #

(
0X) [u] 6 #

(
0Y) [w] for some u 6 w

}
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(using the fact that

#
(
0X) [c(w)] > max

{
#
(
0X) [u] | #

(
0X) [u] 6 #

(
0Y) [w] for some u 6 w

}
).

Now take (s, t) to be a good pair with p(s) > s. By the claim above, we have #
(
0X∗
)

[p(s)] > #
(
0X
)

[s]. If they
were not equal, then d(p(s)) would have to be larger than #

(
0X
)

[s] which means that

#
(
0X) [s] < d(p(s)) 6 #

(
0X) [c(p(s))].

But then as c(p(s)) > s and p is nondecreasing, we have p(c(p(s))) > p(s), which means, by the definition of
c(p(s)), that

#
(
0X) [c(p(s))] 6 #

(
0Y) [p(s)] = #

(
0X) [s],

a contradiction. Thus we conclude that

#
(

0X∗
)

[p(s)] = #
(
0X) [s] = #

(
0Y) [p(s)] = #

(
0Y∗
)

[p(s)].

If there are infinitely many good pairs (s, t) such that q(t) > t then we repeat the above, now taking X∗ = X
and Y∗ defined analogously, using q in place of p. So we assume that there are infinitely many good pairs (s, t) such
that p(s) < s and q(t) < t. We claim that we can take X = X∗ and Y = Y∗. Fix a good pair (s, t) such that p(s) < s,
q(t) < t, and

#
(
0X) [s] = #

(
0Y) [p(s)] = #

(
0Y) [t] = #

(
0X) [q(t)] = j.

Suppose that

min{w | #
(
0X) [w] = j} 6 min{w | #

(
0Y) [w] = j}.

Now this means that

p(s) > min{w | #
(
0X) [w] = j}

and since p(s) < s we have that

#
(
0X) [p(s)] = j = #

(
0Y) [p(s)].

On the other hand, if

min{w | #
(
0X) [w] = j} > min{w | #

(
0Y) [w] = j},

then

#
(
0Y) [q(t)] = j = #

(
0X) [q(t)]. �

Corollary 9.4. Let RX 6pr RY . Then (X,Y) satisfies the �-property if and only if there exists a primitive recursive
function q such that #

(
0Y
)

[t] = #
(
0X
)

[q(t)] for infinitely many t. Furthermore, we can take q to be nondecreasing,
and we may also replace “#

(
0Y
)

[t] = #
(
0X
)

[q(t)]" with “#
(
0Y
)

[t] 6 #
(
0X
)

[q(t)]".
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Proof. If RX 6pr RY , then we fix by Lemma 9.2, a function g such that #
(
0X
)

[s] 6 #
(
0Y
)

[g(s)] for every s. But
p(s) 6 g(s) for every s, where p(s) is the least such that #

(
0X
)

[s] = #
(
0Y
)

[p(s)]. �

Corollary 9.5. If RX 6pr RY and (X,Y) has the �-property, then every subinterval of (X,Y) also has the �-property.

Proof. Suppose RX 6pr RX′ 6pr RY′ 6pr RY . Restricting the diamond RC ,RD to the subinterval (X′,Y ′) does not
automatically do it, since for instance, RC ∨ RX′ could be above RY′ .

We may assume that #
(
0X
)

[t] = #
(
0Y
)

[t] for infinitely many t. We fix functions f and g such that for every

t, f (t) and g(t) are the least such that #
(

0Y′
)

[t] = #
(
0Y
)

[g(t)] and #
(
0X
)

[t] = #
(

0X′
)

[ f (t)]. Now given any

t let q(t) = f (u) where u is the largest such that u < g(t + 1) and #
(
0X
)

[u] = #
(
0Y
)

[u]. If u cannot be found, let

q(t) = t. By Corollary 9.4 it remains to check that #
(

0Y′
)

[w] = #
(

0X′
)

[q(w)] for infinitely many w. Suppose

that #
(
0X
)

[t] = #
(
0Y
)

[t] = j for some t, j. Let w be the largest such that #
(

0Y′
)

[w] = j. Then

#
(
0Y) [g(w + 1)] = #

(
0Y′
)

[w + 1] = j + 1

and therefore t < g(w + 1). By the minimality of g(w + 1), we have

#
(
0X) [u] = #

(
0Y) [u] = j

for the chosen u, and therefore

#
(

0X′
)

[q(w)] = #
(

0X′
)

[ f (u)] = #
(
0X) [u] = j = #

(
0Y′
)

[w]. �

Lemma 9.3 characterizes the �-property in terms of the relative growth rates of #
(
0X
)

and #
(
0Y
)
. For our

next purpose it shall be convenient to express the �-property in terms of the relative growth rates of pX and pY . The
term “n + 1" in the next lemma is important; by Remark 9.14 we cannot replace pY(n + 1) with pY(n).

Lemma 9.6. Let RX 6pr RY . Then (X,Y) satisfies the �-property if and only if there exists a primitive recursive
function r such that pX(n) 6 r(pY(n + 1)) for infinitely many n.

Proof. Suppose that (X,Y) has the �-property. Fix q as in Corollary 9.4. Let r(m) = q(u), where u is the least
stage such that Y(i)[u] ↓ for all i 6 m. Now let t and n be such that #

(
0Y
)

[t] = #
(
0X
)

[q(t)] = n. Notice that
pX(n) < q(t). Let m = pY(n + 1) and u be such that r(m) = q(u). Then since #

(
0Y
)

[t] = n, we have t < u, which
means that r(m) = q(u) > q(t) > pX(n).

Now suppose that r exists; obviously we may assume that r is nondecreasing. Define q(t) to be the largest stage
u 6 v such that #

(
0X
)

[u] = #
(
0Y
)

[t], where v is the least stage such that X( j)[v]↓ for all j 6 r(t + 1); if this does
not exist, let q(t) = t. Now let n be such that pX(n) 6 r(pY(n + 1)), and let t be the largest such that #

(
0Y
)

[t] = n.
We check that #

(
0Y
)

[t] = #
(
0X
)

[q(t)]. We have #
(
0Y
)

[t + 1] = n + 1 and thus pY(n + 1) < t + 1 which means
that

r(t + 1) > r(pY(n + 1)) > pX(n).

This means that q(t) will be equal to some largest u such that

#
(
0X) [u] = #

(
0Y) [t] = n.

Hence #
(
0X
)

[q(t)] = #
(
0Y
)

[t]. �
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Returning to our question as to whether every interval has the �-property, we can now make use of Lemma 9.6
to construct an interval that does not have the �-property. In fact, we can show that every degree in Peq is the top of
an interval that does not satisfy the �-property:

Proposition 9.7. Given any infinitary RY , there is some RX <pr RY such that (X,Y) does not have the �-property.

Proof. We first note that given any total computable function F there is a co-infinite primitive recursive set X such
that pX(n) > F(n) for every n. Now given any Y we let F to be a computable function that is fast growing enough so
that for every primitive recursive function r, F(n) > r(pY(n + 1)) for almost all n. (Notice that pY is not necessarily
primitive recursive). Now we take X such that pX(n) > F(n) for all n. Then RX 6pr RY by Proposition 5.1 and
(X,Y) does not have the �-property by Lemma 9.6. This of course implies that Y �pr X. �

On the other hand, it is not the case that every pr-degree is the bottom of an interval that does not have the
�-property. For instance, if (X,T ) has the �-property then by Corollary 9.5 there is no Y such that RX 6pr RY and
(X,Y) does not have the �-property.

By Theorem 8.2, the �-property is definable in the language of partial orders. This property will be crucial in our
subsequent analysis of Peq. The next most natural step when studying a new degree structure is to verify whether
the degree structure is rigid or homogeneous. We introduce an important definition that shall soon prove to be very
useful:

Definition 9.8. Given any primitive recursive set X, we define X[−1] to be the set defined by:

X[−1](n) =

{
1, if n is the least such that X(n) = 0,

X(n), otherwise.

In particular, #
(

0X[−1]
)

[t] = max{0,#
(
0X
)

[t]− 1} for every stage t.

An immediate consequence of the definition is:

Lemma 9.9. RX[−1] <pr RX if and only if RX <pr Id.

Proof. Since #
(

0X[−1]
)

[t] 6 #
(
0X
)

[t] for every t, we have RX[−1] 6pr RX (by Lemma 9.2), so we have to show
that RX[−1] >pr RX if and only if RX >pr Id. Suppose that g reduces Id to RX . Let n be the least element not in X. If
n 6∈ range(g) then g is already a reduction from Id to RX[−1] , and if g(m) = n then the function h(k) = g(k + m + 1)
will reduce Id to RX[−1] .

Conversely suppose that f reduces RX to RX[−1] . Define the function F by the following. Let F(0) =
max f ([0, n]) where n is the second element not in X. Let F(k + 1) = max f ([0, F(k)]). Then for each k, there
are at least k + 1 many distinct elements not in X which are smaller than F(k). The function F can easily be used to
define a reduction of Id to RX . �

Our first question about rigidity is easily answered by Lemma 9.9:

Theorem 9.10. (Peq,6) is not rigid.

Proof. The map deg(RX) 7→ deg (RX[−1]) is a non-trivial automorphism. In fact, it fixes deg(Id) and moves every
other degree to a strictly smaller degree. �

Corollary 9.11. The only definable degree is the greatest degree, deg(Id). No finite set of degrees is definable except
for {deg(Id)}.
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We turn now our attention to the question of how homogeneous the structure (Peq,6) is. (Un)fortunately, the
structure (Peq,6) is neither rigid nor homogeneous, which indicates that the structure is not as trivial as might seem
at first glance. This justifies further investigations into the degree structure of Peq.

Definition 9.12. We call a co-infinite primitive recursive set X slow if for every primitive recursive function r,
pX(n + 1) > r(pX(n)) holds for almost every n.

A slow set generates its zeros slower than any primitive recursive recursive function can predict (infinitely often).
Slow sets obviously exist. An immediate consequence of Lemma 9.6 is:

Corollary 9.13. If X is slow then (X, Id) does not satisfy1 the �-property.

Thus, if X is slow and (Y, Id) satisfies the �-property (Y exists, by Theorem 6.1), then no automorphism of
(Peq,6) can map deg(Y) to deg(X). This fact also means that uppercones of Peq are not always isomorphic to each
other.

We also note that the converse to Corollary 9.13 is false: Given any X we can easily find some Y such that
RX[−1] 6pr RY 6pr RX and Y is not slow; to do this we can arrange pY(n + 1) = pY(n) + 1 for infinitely many n.
Then for each such Y , (Y, Id) cannot satisfy the �-property, by Corollary 9.5.

When we turn to lowercones however, the situation is less obvious. Since every degree in Peq is the top of an
interval with the �-property as well as the top of (another) interval without the �-property, it is not clear how we
can immediately distinguish two lowercones from each other using the �-property, similarly to how we separated
uppercones. In fact, the lowercone {deg(RY) | RY 6pr RX} is isomorphic to the lower cone {deg(RY) | RY 6pr
RX[−1]}.

Hence it is entirely conceivable that every lowercone {deg(RY) | RY 6pr RX} is isomorphic to (Peq,6). From
the point of view of each degree of RY where RY 6pr RX , the set X has no delay, since the zeros of X are always
generated no slower than the zeros of Y . Hence we might expect to always be able to extend any partial embedding
of Peq into {deg(RY) | RY 6pr RX}. We will show that this is not the case. The key to our analysis lies (again!) in
the operator X 7→ X[−1].

Remark 9.14. By Lemma 9.6, (X[−1], X) will have the �-property for any X. Consequently, we cannot replace
“pY(n + 1)" in Lemma 9.6 with “pY(n)"; for instance, if Y is slow and X = Y [−1].

Even though an interval of the form (X[−1], X) will always satisfy the �-property, the same is not true of an

interval of the form (X[−2], X), where X[−2] =
(
X[−1])[−1].

Lemma 9.15. (X[−2], X) satisfies the �-property if and only if X is not slow.

Proof. We apply Lemma 9.6 and noting that pX[−2](n) = pX(n + 2). �

Lemma 9.16. Given any RY 6pr RX , either (Y, X) satisfies the �-property or RY 6pr RX[−1] .

Proof. If RY �pr RX[−1] then #
(
0Y
)

[s] > #
(

0X[−1]
)

[s] for infinitely many s, which means that #
(
0Y
)

[s] >

#
(
0X
)

[s] for infinitely many s. Apply Corollary 9.4. �

Lemma 9.16 tells us that RX[−1] bounds all RY below RX such that (Y, X) does not have the �-property. This will
allow us to define the map deg(RX) 7→ deg(RX[−1]). Towards this, we prove another lemma:

Lemma 9.17. Let RX and RY be primitive recursive equivalence relations with RX[−1] �pr RY . Then there is some Z
such that RZ 6pr RX[−1] , (Z, X) does not have the �-property and RZ �pr RY .

1Strictly speaking, we should write (X, 2ω) instead of (X, Id) here.
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Proof. Fixing a computable listing of all primitive recursive functions (as in Section 2.2), it is not hard to construct
a collection {pe}e∈ω of primitive recursive functions so that every pe is strictly increasing and pe+1(n) > pe(n).
This listing (e, n) 7→ pe(n) is total computable but of course not primitive recursive. We will also assume that
pe(x) = ψ(x) for some total computable function which halts in fewer than p̂e(x) many steps, where p̂e is some
primitive recursive function. All indices can be found effectively.

We now define the set Z in stages. Since Z must be primitive recursive, at every stage s we must decide Z � s+1.
In the below construction, at each stage s + 1, we will declare #

(
0Z
)

[s + 1] = #
(
0Z
)

[s] or #
(
0Z
)

[s] + 1; in the
former case we mean that we set Z(s + 1) = 1 and in the latter case we set Z(s + 1) = 0.

At stage s we will have a parameter V(s) which stands for the index such that at stage s we are attempting to
make #

(
0Z
)

[s] � #
(
0Y
)

[pV(s)(s)]. At stage s = 0 we declare 0 ∈ Z (i.e. #
(
0Z
)

[0] = 0) and set V(0) = 0.
Suppose we have the value of #

(
0Z
)

[s] and V(s) = e. Compute pe(k) for one more step (where k was the input
that was last processed). If there is a new convergence pe(k) seen at this step such that #

(
0X
)

[k] 6= #
(
0X
)

[k + 1],
we take

#
(
0Z) [s + 1] = min{#

(
0Z) [s] + 1,#

(
0X) [s]− 1}.

Check if #
(
0Z
)

[t] > #
(
0Y
)

[pe(t)] for any t 6 s for which we have already found the value of pe(t). If so we
increase V by one. In all other cases take #

(
0Z
)

[s + 1] = #
(
0Z
)

[s], and go to the next stage with the same value
of V .

The above gives a primitive recursive description of the set Z. Since #
(
0Z
)

[s] < #
(
0X
)

[s] for every s, we have
RZ 6pr RX[−1] . Notice that the construction processes the inputs k sequentially; namely, the construction begins with
k = 0 and V = 0 and waits for p0(0) to converge (this takes p̂0(0) many stages). It then moves on to k = 1 and
waits for p0(1) to converge, and so on. If ever, the construction decides to increase the value of V while waiting on,
say, p0(5), then we will move on to wait for p1(5) to converge, then p1(6), and so on. Let k∗(s) be the value of k
being processed by the construction at stage s. Since {pe}e∈ω are all total, lims k∗(s) = ∞. Define the sequence
{ki}i∈ω such that #

(
0X[−1]

)
[ki] = i and #

(
0X[−1]

)
[ki + 1] = i + 1. Take k−1 = −1.

Claim 9.18. For every stage s we have #
(
0Z
)

[s] = i, where ki−1 < k∗(s) 6 ki.

Proof. If s = 0, then i = k∗(0) = 0 and so #
(
0Z
)

[0] = 0. Assume #
(
0Z
)

[s] = i where ki−1 < k∗(s) 6 ki.
Since the value of #

(
0Z
)

[s + 1] is decided at the end of stage s, we have to examine what the construction did
at stage s. At stage s we would increase the value of #

(
0Z
)

only if pV(s)(k∗(s)) is found to converge at that stage
and k∗(s) = ki. In that case k∗(s + 1) = ki + 1 and so ki < k∗(s + 1) 6 ki+1, and so we have to check that
#
(
0Z
)

[s + 1] = i + 1. But note that as k∗(s) < s we have

#
(

0X[−1]
)

[s] > #
(

0X[−1]
)

[k∗(s + 1)] = i + 1 = #
(
0Z) [s] + 1,

and so

#
(
0Z) [s + 1] = min{#

(
0Z) [s] + 1,#

(
0X) [s]− 1} = i + 1. �

Next, we verify that lims V(s) = ∞; suppose not. Let t0 be the least such that V(t0) = e and V(s) = e
for almost all s. Let t0 < t1 < t2 < · · · be the stages such that pe(li) first converged at stage ti, where i > 0,
k∗(ti) = li < k∗(ti + 1) and li = ki+t0 . Note that l1 > t0. By our convention above, we have that ti = p̂e(li). By
Claim 9.18 we see that #

(
0Z
)

[t] = #
(
0Z
)

[ti+1] for every t and i such that ti < t 6 ti+1.
For every k and i > 0 such that li < k 6 li+1, we have ti +1 = p̂e(li)+1 6 p̂e(li +1) 6 p̂e(k) 6 p̂e(li+1) = ti+1,

and since #
(
0Z
)

[ti + 1] = #
(
0Z
)

[ti+1], we also have #
(
0Z
)

[ p̂e(k)] = #
(
0Z
)

[ti+1]. Therefore, we have

#
(

0X[−1]
)

[k] 6 #
(

0X[−1]
)

[li+1] (by Claim 9.18)
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= #
(
0Z) [ti+1]

= #
(
0Z) [ p̂e(k)] (as the construction never increased V after t0)

6 #
(
0Y) [pe(p̂e(k))].

This shows that RX[−1] 6pr RY , contrary to our assumption.
Now that we know lims V(s) = ∞, for every e there must be a stage s of the construction where we saw

#
(
0Z
)

[t] > #
(
0Y
)

[pe(t)] for some t 6 s, which means that RZ �pr RY . Now consider some primitive recursive
function pe. Let V(s) = e for some s. For each k > k∗(s) we let t > s be the stage where k∗(t) = k < k∗(t + 1), and
i be such that ki−1 < k 6 ki. By Claim 9.18, #

(
0Z
)

[t] = i. We now have

#
(
0Z) [pe(k)] 6 #

(
0Z) [p̂e(k)]

6 #
(
0Z) [ p̂V(t)(k)] (at stage t we saw pV(t)(k) converge)

= #
(
0Z) [t]

= i

= #
(

0X[−1]
)

[ki]

= #
(

0X[−1]
)

[k]

< #
(
0X) [k].

Thus, (Z, X) does not have the �-property. �

Now we are ready to apply the analysis started above.

Corollary 9.19. The map deg(RX) 7→ deg(RX[−1]) is definable in (Peq,6).

Proof. Apply Lemmas 9.16 and 9.17 to see the following. Given primitive recursive RX and RY , we have RY ≡pr

RX[−1] if and only if the following hold:

(1) RY 6pr RX ,
(2) For every RZ 6pr RX such that (Z, X) does not have the �-property, RZ 6pr RY , and
(3) If RV has properties (1) and (2), then RV >pr RY .

That is, we may define RX[−1] as the least degree below RX that is an upper bound for the set of all degrees
RZ 6pr RX such that (Z, X) does not have the �-property. Since the �-property is definable, so is the set of all
pairs (deg(RX),deg(RX[−1])). �

Corollary 9.20. If ψ is an automorphism of (Peq,6), then for any RX , we have that ψ(deg(RX[−1])) = deg(RY[−1]),
where RY ≡pr ψ(RX).

Corollary 9.21. If ψ is an automorphism of (Peq,6), then RX is slow if and only if ψ(RX) is slow.

Proof. By Lemma 9.15, RX is slow if and only if (X[−2], X) does not have the �-property, if and only if(
ψ(X[−2]), ψ(X)

)
2 does not have the �-property. But then ψ(X[−2]) = ψ(X)[−2] which is equivalent to the fact

that ψ(X) is slow. �

2The notation is not formally correct, but has the obvious meaning here.
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We are now able to give a negative answer to our question above regarding whether every lowercone is isomor-
phic to Peq. In fact, no proper lowercone can be isomorphic to Peq. Even though each lowercone is principal, our
intuition that we should be able to replicate the structure below Id in any lowercone by “relativising" is entirely
incorrect.

Corollary 9.22. No proper lowercone can be isomorphic to (Peq,6).

Proof. If RX <pr Id then by Lemma 9.9, RX[−1] <pr RX . Thus, by Lemma 9.16, deg(RX[−1]) is a degree strictly below
deg(RX) that is an upperbound on the set of all degrees RZ 6pr RX such that (Z, X) does not have the �-property
(and thus does not embed the diamond). By Lemma 9.17, (applied with RX = RX[−1] = Id), no degree strictly below
deg(Id) can serve as the image of deg(RX[−1]). �

Our analysis on lowercones exploits the unique property satisfied by X[−1], and thus can only be applied to
separate an incomplete (or proper) lowercone from Peq. Using our analysis, we can still say a little more; we show
that not every pair of proper lowercones are isomorphic:

Corollary 9.23. If X is slow and Y is not, then their lowercones cannot be isomorphic (as posets).

Proof. Because X[−1] (and similarly Y [−1]) is the least upperbound of the set of all RZ 6pr RX such that (Z, X) does
not embed the diamond, any isomorphism between the two lowercones must send X[−1] to Y [−1] and therefore must
map X[−2] to Y [−2]. However, as X is slow and Y is not, by Lemma 9.15, (Y [−2],Y) satisfies the �-property whereas
(X[−2], X) does not. �

Since it is not hard to construct a pair of incomparable degrees, one of which is slow and the other is not, we
immediately have a pair of incomparable lowercones that are not isomorphic. This leaves the intriguing question as
to whether any pair of incomparable lowercones are isomorphic. We leave this question open:

Question 9.24. Are there incomparable degrees RX |pr RY with isomorphic lowercones?

Question 9.25. Are there continuum many automorphisms of (Peq,6)?

Given that (Corollary 9.11) no finite set of degrees except for {deg(Id)} is definable (without parameters), it
may be difficult to apply the analysis of [13, 15] to encode finite graphs into Peq, which would involve having to
define finite sets of degrees, albeit with a parameter. So we also ask:

Question 9.26. Is the first order theory of (Peq,6) decidable?

Acknowledgements
Bazhenov was supported by the Mathematical Center in Akademgorodok under agreement No. 075-15-2019-

1613 with the Ministry of Science and Higher Education of the Russian Federation. Ng was supported by MOE
Tier 1 grant RG23/19. San Mauro was supported by the Austrian Science Fund FWF, Project M 2461. Sorbi is a
member of INDAM-GNSAGA, and was partially supported by PRIN 2017 Grant “Mathematical Logic: models,
sets, computability”.

References
[1] H. Friedman and L. Stanley, A Borel reducibility theory for classes of countable structures, J. Symb. Logic

54(3) (1989), 894–914. doi:10.2307/2274750.
[2] L.A. Harrington, A.S. Kechris and A. Louveau, A Glimm-Effros dichotomy for Borel equivalence relations, J.

Amer. Math. Soc. 3(4) (1990), 903–928.



N. Bazhenov et al. / Primitive recursive equivalence relations 35

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

[3] S. Gao, Invariant descriptive set theory, CRC Press, Boca Raton, 2008.
[4] G. Hjorth, Borel equivalence relations, in: Handbook of set theory, Springer, Dordrecht, 2010, pp. 297–332.

doi:10.1007/978-1-4020-5764-9_5.
[5] Y.L. Ershov, Theory of numberings, Nauka, Moscow, 1977, in Russian.
[6] Y.L. Ershov, Theory of numberings, in: Handbook of Computability Theory, E.G. Griffor, ed., Stud. Logic

Found. Math., Vol. 140, North-Holland, Amsterdam, 1999, pp. 473–503. doi:10.1016/S0049-237X(99)80030-
5.

[7] S. Gao and P. Gerdes, Computably enumerable equivalence relations, Stud. Log. 67(1) (2001), 27–59.
doi:10.1023/A:1010521410739.

[8] U. Andrews, S. Lempp, J.S. Miller, K.M. Ng, L. San Mauro and A. Sorbi, Universal computably enumerable
equivalence relations, J. Symb. Logic 79(1) (2014), 60–88. doi:10.1017/jsl.2013.8.

[9] S. Coskey, J.D. Hamkins and R. Miller, The hierarchy of equivalence relations on the natural numbers under
computable reducibility, Computability 1(1) (2012), 15–38. doi:10.3233/COM-2012-004.

[10] C. Bernardi and A. Sorbi, Classifying positive equivalence relations, J. Symb. Logic 48(3) (1983), 529–538.
doi:10.2307/2273443.

[11] E. Ianovski, R. Miller, K.M. Ng and A. Nies, Complexity of equivalence relations and preorders from com-
putability theory, J. Symb. Logic 79(3) (2014), 859–881. doi:10.1017/jsl.2013.33.

[12] E.B. Fokina, S.-D. Friedman, V. Harizanov, J.F. Knight, C. McCoy and A. Montalbán, Isomorphism relations
on computable structures, J. Symb. Logic 77(1) (2012), 122–132. doi:10.2178/jsl/1327068695.

[13] U. Andrews and A. Sorbi, Joins and meets in the structure of ceers, Computability 8(3–4) (2019), 193–241.
doi:10.3233/COM-180098.

[14] U. Andrews, S. Badaev and A. Sorbi, A survey on universal computably enumerable equivalence relations, in:
Computability and Complexity, A. Day, M. Fellows, N. Greenberg, B. Khoussainov, A. Melnikov and F. Rosa-
mond, eds, Lect. Notes Comput. Sci., Vol. 10010, Springer, Cham, 2017, pp. 418–451. doi:10.1007/978-3-
319-50062-1_25.

[15] U. Andrews, N. Schweber and A. Sorbi, The theory of ceers computes true arithmetic, Ann. Pure Appl. Logic
171(8) (2020), 102811. doi:10.1016/j.apal.2020.102811.

[16] K.M. Ng and H. Yu, On the degree structure of equivalence relations under computable reducibility, Notre
Dame J. Form. Log. 60(4) (2019), 733–761. doi:10.1215/00294527-2019-0028.

[17] N. Bazhenov, M. Mustafa, L. San Mauro, A. Sorbi and M. Yamaleev, Classifying equivalence relations in the
Ershov hierarchy, Arch. Math. Logic 59(7–8) (2020), 835–864. doi:10.1007/s00153-020-00710-1.

[18] U. Andrews, D. Belin and L. San Mauro, On the structure of computable reducibility on equivalence relations
of natural numbers, 2021, arXiv preprint arXiv:2105.12534.

[19] S. Buss, Y. Chen, J. Flum, S. Friedman and M. Müller, Strong isomorphism reductions in complexity theory,
J. Symb. Logic 76(4) (2011), 1381–1402. doi:10.2178/jsl/1318338855.

[20] S. Gao and C. Ziegler, On polynomial-time relation reducibility, Notre Dame J. Form. Log. 58(2) (2017),
271–285. doi:10.1215/00294527-3867118.

[21] N. Bazhenov, R. Downey, I. Kalimullin and A. Melnikov, Foundations of online structure theory, Bull. Sym-
bolic Logic 25(2) (2019), 141–181. doi:10.1017/bsl.2019.20.

[22] R. Downey, A. Melnikov and K.M. Ng, Foundations of online structure theory II: The operator approach, Log.
Methods Comput. Sci. 17(3) (2021), 6:1–6:35. doi:10.46298/lmcs-17(3:6)2021.

[23] I. Kalimullin, A. Melnikov and K.M. Ng, Algebraic structures computable without delay, Theoret. Comput.
Sci. 674 (2017), 73–98. doi:10.1016/j.tcs.2017.01.029.

[24] A.G. Melnikov, Eliminating unbounded search in computable algebra, in: Unveiling Dynamics and Complex-
ity, J. Kari, F. Manea and I. Petre, eds, Lecture Notes in Computer Science, Vol. 10307, Springer, Cham, 2017,
pp. 77–87. doi:10.1007/978-3-319-58741-7_8.

[25] A. Melnikov and K.M. Ng, A structure of punctual dimension two, Proc. Amer. Math. Soc. 148(7) (2020),
3113–3128. doi:10.1090/proc/15020.



36 N. Bazhenov et al. / Primitive recursive equivalence relations

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

[26] V.L. Selivanov and S. Selivanova, Primitive recursive ordered fields and some applications, in: Computer
Algebra in Scientific Computing - 23rd International Workshop, CASC 2021, F. Boulier, M. England,
T.M. Sadykov and E.V. Vorozhtsov, eds, Lect. Notes Comput. Sci., Vol. 12865, Springer, 2021, pp. 353–369.
doi:10.1007/978-3-030-85165-1_20.

[27] A.I. Mal’tsev, Constructive algebras. I, Russ. Math. Surv. 16(3) (1961), 77–129.
doi:10.1070/RM1961v016n03ABEH001120.

[28] A.I. Mal’cev, The metamathematics of algebraic systems. Collected papers: 1936–1967, Vol. 66, North-
Holland, Amsterdam, 1971.

[29] P. Odifreddi, Classical recursion theory: The theory of functions and sets of natural numbers, Elsevier, 1992.
[30] P.G. Hinman, Recursion-theoretic hierarchies, Springer, Berlin, 1978.
[31] W. Ackermann, Zum Hilbertschen Aufbau der reellen Zahlen, Math. Ann. 99 (1928), 118–133.

doi:10.1007/BF01459088.
[32] K. Mehlhorn, Polynomial and abstract subrecursive classes, J. Comput. System Sci. 12(2) (1976), 147–178.

doi:10.1016/S0022-0000(76)80035-9.
[33] R.E. Ladner, On the structure of polynomial time reducibility, J. ACM 22(1) (1975), 155–171.

doi:10.1145/321864.321877.
[34] N. Bazhenov, I. Kalimullin, A. Melnikov and K.M. Ng, Online presentations of finitely generated structures,

Theoret. Comput. Sci. 844 (2020), 195–216. doi:10.1016/j.tcs.2020.08.021.


	Introduction
	Background, terminology, and notations
	Equivalence relations
	A listing of the primitive recursive functions
	Binary strings

	Normal form of primitive recursive equivalence relations
	Incomparability of degrees in `39`42`"613A``45`47`"603APeq
	The greatest degree in `39`42`"613A``45`47`"603APeq
	The construction
	Stage 0
	Stage s+1

	The verification
	Counterexamples to reducibilities
	Incomparability
	The strategy
	The construction
	Stage 0
	Stage s+1

	The verification

	The structure `39`42`"613A``45`47`"603APeq is a distributive lattice
	Joins and meets

	Density
	The environment
	The strategies
	The construction
	Stage 0
	Stage s+1

	Copying phase
	Transition phase
	Copying phase
	Transition phase
	The verification

	Join- and meet-reducibility
	The construction
	Stage 0
	Stage s+1

	Copying phase
	Transition phase
	Copying phase
	Transition phase
	The verification

	Embedding of the diamond lattice
	The strategies
	The construction
	Stage 0
	Stage s+1

	Copying phase
	Transition phase
	Copying phase
	Transition phase
	The verification

	On the intricacy of `39`42`"613A``45`47`"603APeq
	Acknowledgements
	References

