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Abstract. We extend our work on difference randomness. Each component of a difference test is
a Boolean combination of two r.e. open sets; here we consider tests in which the kth component is
a Boolean combination of g(k) r.e. open sets for a given recursive function g. We use this method
to produce an alternate characterization of weak Demuth randomness in terms of these tests and
further show that a real is weakly Demuth random if and only if it is Martin-Löf random and cannot
compute a strongly prompt r.e. set. We conclude with a study of related lowness notions and obtain
as a corollary that lowness for balanced randomness is equivalent to being recursive.

1. Introduction

In [8], we introduced a new kind of randomness based on the difference hierarchy. We defined this
notion, difference randomness, by altering the definition of a Martin-Löf test so each component
of the test was the difference of two r.e. open sets in the Cantor space instead of simply a single
r.e. open set. We showed that the difference random reals are precisely the Turing incomplete
Martin-Löf random reals; since every Martin-Löf random real is Turing incomplete if and only if
it cannot compute a complete extension of Peano arithmetic [15], this is a natural class of random
reals to study. In particular, this class satisfies our intuition that a random real should not have
high computational strength.

In this paper, we extend our analysis to a form of randomness defined by tests where the kth

component is not a difference of two r.e. open sets but is instead the Boolean combination of g(k)
many r.e. open sets for some recursive function g. We also discuss variants on weak Demuth ran-
domness in which particular recursive bounds on the mind-change functions are used and describe
the relationship of these variants to the g-change randomness notions. Then we give an alternate
characterization of weak Demuth randomness in terms of ω-change randomness and show that weak
Demuth randomness is equivalent to Martin-Löf randomness combined with the inability to com-
pute a strongly prompt r.e. set. Strongly prompt r.e. sets were introduced by Diamondstone and
Ng [4] as a natural way to strengthen the classical notion of prompt simplicity. They showed that
strongly prompt r.e. sets are intimately related to cupping in the r.e. degrees, extending the study
of promptness and cupping in the well-known paper of Ambos-Spies, Jockusch, Shore, and Soare
[1]. The result we obtain in this paper is of the same sort as many other theorems on randomness
notions, such as weak 2-randomness: a real is weakly 2-random if and only if it is Martin-Löf
random and does not compute any promptly simple r.e. set (this follows from [10]). In contrast,
each incomplete ∆0

2 Martin-Löf random real computes a promptly simple r.e. set.
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Finally, we describe the lowness classes for these variants on weak Demuth randomness. We
obtain as a corollary that there is no nonrecursive set which is low for balanced randomness.

1.1. Notation and terminology. In general, our notation follows that of [14]; for a basic discus-
sion of randomness, we refer the reader to [6, 12]. We will work within the Cantor space equipped
with the usual clopen topology. Given a finite binary string σ, we will write [σ] for the basic open
subset of the Cantor space formed by all the infinite extensions of σ. We will extend this notation to
a subset U of 2<ω and write [U ] for ∪σ∈U [σ]. We use the Lebesgue measure µ, where µ([σ]) = 2−|σ|.
For ease of notation we will often write σ and U instead of [σ] and [U ]. All functions mentioned in
this paper, unless otherwise stated, will be recursive functions from ω to ω.

We will be interested in the Borel subsets of 2ω that are g-change for some recursive function g.
A set X ⊆ ω is g-change if there is a recursive approximation to X whose mind-change function
is bounded by g. More formally, we say that X is g-change if there is a recursive approximation
X(n, s) to X such that #{s | X(n, s) 6= X(n, s + 1)} ≤ g(n) for all n. We will write n-change for
g-change when g(n) = n for every n. We wish to extend this notion to subsets of 2ω and consider
sets of the form ∩iVi where each Vi is g(i)-r.e. The most obvious way to define a set Vi ⊆ 2ω to be
k-r.e. is to require that Vi = [W ] where W is a k-r.e. set presenting Vi. Unfortunately, it is easy to

see that for every k > 1 and every k-r.e. set W , there is a set Ŵ ≤T ∅′ such that [W ] = [Ŵ ] and
vice versa. Therefore the randomness notion generated by looking at either “k-r.e. tests” or “g-r.e.
tests” defined in this way coincides with 2-randomness.

To get around this problem, we observe that in our naive approach to k-r.e. tests, we had allowed
for a neighbourhood [σ] to be put into and removed from Vi unboundedly (even infinitely) many
times. It is therefore necessary to consider the enumerability of neighbourhoods rather than the
enumerability of the presenting set. As in [8], we will write D(U, V ) for [U ] − [V ] when U and
V are subsets of 2<ω. For an n-element collection U1, U2, . . . , Un of subsets of 2<ω, we will write
D(U1, U2, . . . , Un) for ([U1] − [U2]) ∪ ([U3] − [U4]) ∪ . . . ∪ ([Un−1] − [Un]) when n is even and
([U1] − [U2]) ∪ ([U3] − [U4]) ∪ . . . ∪ ([Un−2] − [Un−1]) ∪ [Un] when n is odd. We will sometimes
simplify this definition for the purpose of our proofs and consider only the “even” case, padding
with Un+1 = ∅ if n is actually odd.

This allows us to extend the notion of a Martin-Löf test to that of a test whose components
are Boolean combinations of open sets. Most randomness notions are generated by tests whose
components are open subsets of 2ω; it is by varying the effectivity of the presentation of the tests
that we get varying randomness notions. Here we consider a randomness notion where the test
components are not open sets, but are instead ∆0

2 subsets of 2ω with recursively bounded mind-
change functions.

Definition 1.1. Let f be a recursive function. We say that an f -change test is a sequence〈
D(U1

i , . . . , U
f(i)
i )

〉
i∈ω

such that µ(D(U1
i , . . . , U

f(i)
i )) ≤ 2−i for all i and that a real A is f -change

random if for all f -change tests
〈
D(U1

i , . . . , U
f(i)
i )

〉
i∈ω

, A 6∈ ∩iD(U1
i , . . . , U

f(i)
i ).

In [8], we considered n-change tests for a fixed n and found that n-change randomness was
equivalent to difference randomness for every n > 1 (clearly, 1-change randomness is equivalent
to Martin-Löf randomness). f -change randomness is a natural extension of difference randomness.
We also consider an even stronger notion:
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Definition 1.2. A real A is ω-change random if it is f -change random for every recursive function
f .

In Section 2, we discuss f -change randomness for a fixed recursive f , and in Section 3, we discuss
ω-change randomness and its relationships to other strong randomness notions, in particular, weak
Demuth randomness. We also give a characterization of weakly Demuth random reals based on their
low computational strength. In Section 4, we consider one of the corresponding lowness notions as
well as lowness for balanced randomness.

2. f-change randomness

Throughout this section, we will take f to be recursive. We begin by observing that if the
range of f is bounded, then f -change randomness is clearly equivalent to difference randomness.
Therefore, it makes sense to only consider f -change randomness where f is an order function (i.e.,
a recursive nondecreasing function with unbounded range).

Remark 2.1. In [8], we noted that there is a standard form for n-change test:s we called an n-
change test

〈
D(U1

i , U
2
i , . . . , U

n
i )
〉
i∈ω canonical if each Uki was prefix-free and for every i, σ, and k

such that 1 < k ≤ n and σ ∈ Uki , there was a τ in Uk−1i that is an initial segment of σ. This means
that after the first element of a test component, we only “remove” (or “add”) neighborhoods that
we “added” (or “removed”) in the previous element. We note without ceremony that the same
form can be found for an f -change test for any f (see Lemma 2.5 of [8]).

There is one very important way in which f -change randomness differs from Martin-Löf random-
ness. When a Martin-Löf test is defined, the rate of decrease of the measure of the test components
is always recursively bounded, usually by 2−k; however, the precise recursive bound does not mat-
ter because we can always take a subsequence of a test if we would like this rate of decrease to
be faster. However, the function bounding the rate of decrease of the measure of an f -change test
is as important as the function f itself because the different components of an f -change test may
have to satisfy different requirements. We can no longer be sure, for instance, that the seventeenth
component of an f -change test can be the fifth component of an f -change test because it may be
that the seventeenth component may have more than f(5) mind changes. Therefore, we will re-
strict our attention to the tests whose kth components have a measure bounded by 2−k (the precise
bound will not matter, but we fix this for convenience). This issue was also considered in Figueira,
Hirschfeldt, Miller, Nies, and Ng [7] and is one of their main motivations for considering balanced
randomness.

We begin by recalling the definition of weak Demuth randomness and then presenting our variant
of it.

Definition 2.2. [3, 11] A Demuth test is a sequence
〈
Wg(i))

〉
i∈ω of r.e. open sets where g is an

ω-r.e. function and µ(Wg(i)) ≤ 2−i for every i. A real A is weakly Demuth random (WDR) if for

every Demuth test
〈
Wg(i)

〉
i∈ω, A 6∈ ∩iWg(i).

Definition 2.3. If h is a recursive function, an h-Demuth test is a sequence
〈
Wg(i)

〉
i∈ω of r.e. open

sets where g is an ω-r.e. function with mind-change function bounded by h and µ(Wg(i)) ≤ 2−i for

every i. A real A is h-weakly Demuth random (h-WDR) if for every h-Demuth test
〈
Wg(i)

〉
i∈ω,

A 6∈ ∩iWg(i).
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We note that A is weakly Demuth random if A is h-WDR for every recursive function h.
We consider generalizing weak Demuth randomness by considering f -WDR for various recursive

functions f . If f = o(2n) is a recursive function, then it is easy to see that f -WDR is equiva-
lent to Martin-Löf randomness: Each f -WDR test

〈
Wg(i)

〉
i∈ω is covered by the Martin-Löf test〈

∪sWg(f̂(i),s)

〉
i∈ω

, where f̂(i) is the least number j such that f(j) < 2j−i. Thus it makes sense to

consider 2nf(n)-WDR for an arbitrary recursive (not necessarily unbounded) function f . We note
that 2n-WDR is the same as balanced randomness. We first show that different choices of f can
give rise to different randomness notions. In fact, we can specify exactly how far apart f and g
have to be in order for 2nf(n)-WDR and 2ng(n)-WDR to be different.

Theorem 2.4. Suppose that f and g are recursive nondecreasing functions.

(i) If lim supn |f(n)− g(n)| <∞, then 2nf(n)-WDR and 2ng(n)-WDR are the same.
(ii) If lim supn(f(n)− g(n)) =∞, then there is an A so that A is 2ng(n)-WDR but not 2nf(n)-

WDR.

Proof. (i): We first observe that for any constant M , any recursive subsequence of an M2n-Demuth
test is covered by an M2n-Demuth test. To see this, fix M , a strictly increasing recursive function
u, and an M2n-Demuth test

〈
Wk(n)

〉
n∈ω. Define g(n, s) by letting Wg(n,s) copy (all the different

versions of) Wk(u(n),s) until a stage is found such that k(u(n), s) has changed its mind 2u(n)−n

many times. We then change g(n, s) to a new index and copy the next 2u(n)−n many different
versions of Wk(u(n),s), and so on. Clearly

〈
Wlims g(n,s)

〉
n∈ω is an M2n-Demuth test, and for every

n, Wk(u(n)) ⊆Wlims g(n,s).

Now assume that
〈
Wk(n)

〉
n∈ω is a 2nf(n)-Demuth test. Define the partial recursive function u by

letting u(n+1) be the first number u greater than u(n) found such that k(u) has 2u(f(u)−1) many
mind changes. Either u is partial, in which case

〈
Wk(n)

〉
n∈ω is covered by a 2n(f(n)− 1)-Demuth

test, or else u is total, in which case ∩n[Wk(n)] ⊆ ∩n[Wk(u(n))]. Furthermore, the latter can be viewed
as a subsequence of some 2n-Demuth test, and by the comments in the preceding paragraph, it is
covered by a 2n-Demuth test. The statement follows after sufficiently many iterations. We note
that the statement holds even if f and g are bounded.

(ii): We fix some uniform enumeration of all 2ng(n)-Demuth tests. Let
〈
Wke(n)

〉
n∈ω be the eth

test in this enumeration. We begin by fixing a recursive sequence 〈nk〉k∈ω as follows. Assume
we have defined nk such that f(nk) >

∑
i≤k g(ni). Find the least number m > nk such that

f(m) > 4
∑

i≤k g(ni). Now choose nk+1 > m large enough so that for every m ≥ i ≥ nk,

f(nk) >
1

1− 3
22i−nk+1

∑
i≤k

g(ni),

and that f(nk+1) >
∑

i≤k+1 g(ni). The reason for our choice of 〈nk〉k∈ω will become clear later.

We will build the Demuth test 〈Uk〉k∈ω and argue at the end that this is a 2nf(n)-Demuth
test. Henceforth, we will write Ge[s] for Wke(ne,s)[s] and say that Ge switches version at s if
ke(ne, s− 1) 6= ke(ne, s). For each i, we let k(i) be the largest k such that nk ≤ i.

During the construction, when we update Ui at stage s, we enumerate into Ui every string σ of
length s extending some string in ∩j<i[Uj ] such that [σ] ∩ ∪j≤k(i)[Gj [s]] = ∅. If the measure of all

such σ is greater than 2−i, we put in the first 2−i much of these σ (in the lexicographic ordering).
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Construction of 〈Uk〉k∈ω. At stage s = 0, we update U1. At a stage s > 0, we search for

the least i < s such that ∩j≤i[Uj ] ⊆ ∪j<s[Gj [s]] and µ(Ui) = 2−i. Now we switch version for
Ui and enumerate into the new version of Ui all the [σ] contained in the old version such that
[σ] ⊆ ∩j<i[Uj ] and [σ] ∩ ∪j≤k(i)[Gj [s]] = ∅. (The reason we have to do this is that these strings
may be lexicographically very far to the right and may not be enumerated into the new version of
Ui by the updating procedure.) Update U0, U1, · · · , Us. This ends the construction.

Verification. We assume each Ui changes version finitely often (this will be verified later). Hence
for each i, µ(Ui) ≤ 2−i. It is easy to see that each [Ui] is clopen: when we build Ui, we are only
considering finitely many Gjs, which will each have a final, stable version. At the point when each
of these Gjs are stable, Ui will be stable as well by the nature of the construction. We now argue
inductively that for each i, ∩j≤i[Uj ] 6⊆ ∪j∈ω[Gj ]. This is certainly true for i = 1 because U1 = [0]
which can never be covered by ∪j<s[Gj [s]] at any stage s. Assume this is true for i. If µ(Ui) is
ever 2−i, then ∩j≤i[Uj ] 6⊆ ∪j∈ω[Gj ] by compactness. Therefore, we may assume that µ(Ui) < 2−i

at almost every stage. Then ∩j<i[Uj ] − [Ui] must be covered by the final version of ∪j≤k(i)[Gj ]:
otherwise, the construction would enumerate some suitably long extension of ∩j<i[Uj ] − [Ui] into
Ui. Thus by the induction hypothesis, ∩j≤i[Uj ] 6⊆ ∪j∈ω[Gj ], so for every i, ∩j≤i[Uj ] 6⊆ ∪j∈ω[Gj ].
Then each ∩j≤i[Uj ] is clopen and nested, and by König’s Lemma, ∩i∈ω[Ui] 6⊆ ∪j∈ω[Gj ].

Now we only have to bound the number of version changes to each Ui. We argue that each Ui
changes version at most εi2

i
∑

j≤k(i) g(nj) times, where εi = 1

1− 3
2
2
i−nk(i)+1

(it is easy to see that for

every i, εi ≤ 4). Fix i ∈ ω, and let t0 < t1 be two consecutive stages where Ui has a version switch.
Between t0 and t1, the strings enumerated in Ui have measure 2−i. Let σ be enumerated in Ui at
some stage t between t0 and t1. Certainly [σ] ∩ ∪j≤k(i)[Gj [t]] = ∅. We argue that [σ] ⊆ χ1 ∪ χ2,
where

χ1 =
⋃

j≤k(i),t<t′≤t1

[Gj [t
′]] and χ2 =

⋃
j<t1

[Gj [t1]].

Let X ⊃ σ. We work towards a contradiction and assume that X 6∈ χ2. Then between t and t1
some Uj for j < i must switch version, since otherwise [σ] ⊆ ∩j≤i[Uj [t1]] ⊆ χ2. We now assume that
X 6∈ χ1. Let t′ > t be the first stage where some j′ < i switches version. We haveX ∈ ∩j≤j′ [Uj [t′]] ⊆
∪j<t′ [Gj [t′]]. This means that we must have [X�t′]∩∪j≤k(j′)[Gj [t′]] = ∅, and so by construction we
immediately enumerate X�t′ in Uj′ . This argument shows that X ∈ ∩j≤i[Uj [t1]] ⊆ χ2, and we are
done.

Now we estimate the measure of χ2 − χ1 from above. Clearly

χ2 − χ1 ⊆
⋃

k(i)<j<t′

[Gj [t1]] < 2−nk(i)+1 + 2 · 2−nk(i)+2

Since by our choice of the sequence 〈nx〉x∈ω, nx+1 > nx + 2 holds for any x, it now follows by

an easy calculation that the measure of χ2 − χ1 is at most 3
22−nk(i)+1 . Therefore the measure

of the reals in χ1 is at least 2−i − 3
22−nk(i)+1 = 2−i(1 − 3

22i−nk(i)+1) = 1
εi

2−i. But when X was

enumerated in Ui, X 6∈ ∪j≤k(i)[Gj [t]]. Hence the total number of version changes for Ui is bounded

by εi2
i
∑

j≤k(i) g(nj).

We now argue that our choice of 〈nk〉k∈ω guarantees that for every i, f(i) > εi
∑

j≤k(i) g(nj),

which will complete the proof of the theorem. To see this, fix k and an i such that nk ≤ i < nk+1
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(hence k = k(i)). If i ≤ m (in the choice of nk), then f(i) ≥ f(nk) > εi
∑

i≤k g(ni). If i > m, then

f(i) ≥ f(m) > 4
∑

i≤k g(ni) ≥ εi
∑

i≤k g(ni). �

Theorem 2.4 says that the constant M does not matter in M2n-WDR. That is, varying the
constant in the definition for balanced randomness does not matter, a fact already pointed out
in [7]. However for O(2nf(n))-WDR, where f is an order function, the constant factor makes a
difference:

Corollary 2.5. For any order function f and constant M ∈ ω, M2nf(n)-WDR is strictly weaker
than (M + 1)2nf(n)-WDR.

Corollary 2.6. For any order function f , 2n-WDR is strictly weaker than 2nf(n)-WDR.

Corollary 2.7. There is no single order function f such that 2nf(n)-WDR randomness is the
same as weak Demuth randomness.

We now show a similar result for f -change randomness. In contrast to the situation for n-change
randomness, different functions f may give rise to different classes of random reals.

Theorem 2.8. Suppose that f and g are recursive nondecreasing functions.

(i) If lim supn |f(n)− g(n)| <∞, then f -change randomness is the same as g-change random-
ness.

(ii) If lim supn(f(n)− g(n)) =∞, then there is an A such that A is g-change but not f -change
random.

Proof. The proof of (i) is similar to that of Theorem 2.8 in [8]. Suppose there is a f -change

test
〈
D(U1

i , . . . , U
f(i)
i )

〉
i

in canonical form such that A ∈ ∩iD(U1
i , . . . , U

f(i)
i ). Since we can pad

the test with ∅, we may assume that for every i, f(i) is an even number larger than 2. Let

lim supn |f(n) − g(n)| = k. Let Vi = ∪j>i+1U
f(j)−1
j and Wi = ∪j>i+1U

f(j)
j . Since µ(D(Vi,Wi)) ≤

µ
(
∪j>i+1D(U

f(j)−1
j , U

f(j)
j )

)
< 2−i, it follows that 〈D(Vi,Wi)〉i∈ω is a difference test. By canonicity,

A 6∈ Wi for every i. Therefore either A is in D(U1
i , . . . , U

f(i)−3
i , U

f(i)−2
i ) for almost every i or

A ∈ D(Vi,Wi) for almost every i. Repeating this k
2 times yields that A is either not g-change

random or not difference random.
The proof of (ii) is similar to that of Theorem 2.4(ii) and contains no new ideas, so we will simply

sketch the proof. Suppose that we have an enumeration of the g-change tests. We will denote the
kth g-change test by Uk =

〈
Uki
〉
i∈ω. We will construct an f -change test 〈Vi〉i∈ω and a real A such

that A ∈ ∩iVi but A 6∈ Ukj for some j for every k.

We begin by choosing a recursive sequence 〈nk〉k∈ω such that for every k, f(nk) >
∑

i≤k g(nk) and
nk ≥ 2k. The general idea behind our construction is this: for every i and s, we will approximate
an initial segment ai,s of A at stage s such that ai,s ⊆ ai+1,s for every i and let A = ∪i lims ai,s.

We must keep ai,s out of Uknk
for every k (henceforth, we will drop the superscript). At the same

time, we will construct our Vis so for every i and s, ai,s ∈ Vi,s.
Consider i ≥ n0. (For i < n0, we will simply “hardwire” ai to be A�i and Vi to be {ai}.) For

each such i, we will choose a very large length `i that ai,s will have at every stage s. We initialize

by defining ai,0 to be 0`i and Vi,0 = {ai,0} for every i.
At each stage s > 0, we find the smallest i ≤ s such that [ai,s] ⊆ ∪nk≤s[Unk,s]. If there is no such

i, we say that ai,s = ai,s−1 for every i and go on to stage s+ 1. We begin by identifying the set of
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strings σ such that |σ| = `i and [σ] 6∈ ∪[Unk,s], that is, the set of candidates for ai,s. We know this
set must be nonempty because we have required that nk ≥ 2k for every k, so µ(∪k[Unk,s]) ≤ 1

2 (we

can assume that at any stage s, µ([Unk,s]) ≤ 1
2nk by speeding up the enumerations of the sets that

count “removals” from Unk
). Now we choose the element of that set that has been chosen least

often as ai,s. If there is more than one that has been chosen the minimum number of times, we
choose the lexicographically least such string.

Now that we have found ai,s such that [ai,s] 6∈ [Unk,s] for all nk ≤ s, we must ensure that ai,s ∈ Vi,s
by adding ai,s to Vi,s. However, we must also ensure that the measure of Vi,s is appropriately small.

If the smallest nk such that [ai,s−1] ⊆ [Unk,s] is no bigger than i, we remove ai,s−1 from Vi and
add ai,s to it. Since there can only be

∑
i≤k g(nk) < f(nk) ≤ f(i) stages where this happens, this

will not prevent 〈Vi〉i∈ω from being an f -change test.
On the other hand, if the smallest nk such that [ai,s−1] ∈ [Unk,s] is larger than i, we cannot

remove ai,s−1 from Vi and be certain that 〈Vi〉i∈ω will be an f -change test in the end. However, we
can arrange for `i to be large enough that we can have as many different “versions” of ai in Vi as
we need to make sure that ai 6∈ Unk

for any k.
Now we repeat this procedure for each i ≤ s such that [ai,s] ∈ ∪nk≤s[Unk,s] in increasing order,

making sure that aj,s ⊆ aj+1,s for all j. For i > s, we simply let ai,s = as,s ∗ 0`i−`s . �

The following two corollaries are immediate.

Corollary 2.9. For any order function f , difference randomness is strictly weaker than f -change
randomness.

Corollary 2.10. There is no single order function f such that f -change randomness is the same
as ω-change randomness.

We observe that although these notions are distinguishable, this does not result in a linear
hierarchy: it is possible to have a real that is f -change random but not g-change random and
another real that is g-change random but not f -change random.

3. ω-change randomness

We begin by observing that for ω-change randomness, the rate of convergence of the measures
of the components of the tests no longer matters: since failing to be ω-change random is equivalent
to failing an f -change test for some f , we can simply convert our f -change test with rate of
convergence p to a g-change test with some other rate of convergence q if necessary. However, if
we do not specify a rate of convergence, it should be assumed that it is the standard 2−k rate.

We now consider the way the class of ω-change random reals is related to other classes of
random reals. We show that the natural extension of difference randomness to ω-change randomness
coincides with a well-known existing notion of randomness—weak Demuth randomness. That is,
we can interpret each f -change test where the test components are ∆0

2 sets of reals as a g-Demuth
test where the test components are open sets of reals and vice versa.

For each order function f , O(f)-change tests are significantly more powerful than O(f)-Demuth
tests. We show that each f -Demuth test can be covered by a 2f -change test, while each f -change
test can only be covered by a 2i+1f(i)-Demuth test. This is because each D(U, V ) can pretend to
cover all of 2ω before finally settling down on a small subset.

Theorem 3.1. Let f be an order function.
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(i) Each 2f -change random real is f -WDR.
(ii) Each 2if(i+ 1)-WDR real is f -change random.

Proof. (i): Let
〈
Wg(i)

〉
i∈ω be a f -Demuth test. Let

U2k
i =

⋃{
Wg(i,s) | #{t < s | g(i, t) 6= g(i, t+ 1)} = k

}
,

U2k+1
i = Wg(i,s), where #{t < s | g(i, t) 6= g(i, t+ 1)} = k and g(i, s) 6= g(i, s+ 1).

Then
〈
D(U0

i , . . . , U
2f(i)
i )

〉
i∈ω

is a 2f -change test covering
〈
Wg(i)

〉
i∈ω.

(ii): Now we consider a canonical f -change-test
〈
D(U1

i , . . . , U
f(i)
i )

〉
i∈ω

. By padding, we may

assume that f(n) is even for every n. We fix i and describe how to get Wlims g(i,s) covering Gi =

D(U1
i , . . . , U

f(i)
i ). For σ ∈ 2<ω and s ∈ ω, we say that σ ∈ Gi,s if there exists some odd k such

that [σ] ⊆ [Uki,s] and [σ] ∩ [Uk+1
i,s ] = ∅. We assume by the s-m-n Theorem that we are building

Wm for an infinite recursive set of indices for m. By speeding up the enumerations for the Uki s, we
can assume that for every i and s, µ(Gi,s) < 2−i. For each i, we reserve 2if(i + 1) many indices
m1, . . . ,m2if(i+1) for building Wg(i).

We start by letting g(i, s) equal the first index m1 and call this the first version. For the kth

version, we keep g(i, s) = mk and enumerate into Wmk
every string σ found such that σ ∈ Gi+1,s

until a stage sk > sk−1 is found such that µ(Wmk,sk) > 2−i. When this happens we move to the
next index mk+1 and repeat the process.

It is clear that [Gi+1] ⊆ [Wlims g(i,s)] if the limit lims g(i, s) exists because Uki+1,s is a finite set
of neighborhoods for each k and s. Now we argue that we will not run out of indices mk. We

claim that for each k, if we find sk, then µ
(
∪j
(
U2j+1
i+1,sk

− U2j+1
i+1,sk−1

))
≥ 2−i−1. To see this, we

suppose not for a contradiction and fix a counterexample k. Then it is easy to see that at least
2−i−1 much measure of the strings in Wmk,sk must be in Gi+1,sk , since any σ with σ ∈Wmk,sk and

σ 6∈ Gi+1,sk must have some extension in U2j+1
i+1,sk

− U2j+1
i+1,sk−1

for some j. This is a contradiction to

our assumption that µ(Gi+1,s) < 2−i−1 for every s.
Now it is easy to see that the number of different indices we need is at most 2if(i+1). Once more,

we suppose not. By a simple combinatorial argument, we see that there must be some σ where σ

appears in ∪j
(
U2j+1
i+1,sk

− U2j+1
i+1,sk−1

)
for at least 2−1f(i+1) many different k. This is a contradiction.

Hence
〈
Wlims g(i,s)

〉
i∈ω is a 2if(i+ 1)-Demuth test covering

〈
D(U1

i , . . . , U
f(i)
i )

〉
i∈ω

. �

From this we immediately get the equivalence of ω-change randomness and weak Demuth ran-
domness.

Corollary 3.2. For any real A, A is ω-change random if and only if A is weakly Demuth random.

Next, we investigate the hypothesis that stronger randomness notions correlate with lower com-
putational power. Many results, which we summarize in Table 1, support this hypothesis: several
strong randomness notions have been characterized as Martin-Löf randomness together with a
property asserting computational feebleness. The property we consider here is strong promptness.

Definition 3.3 (Diamondstond, Ng [4]). An r.e. set B is strongly prompt if there is an enumeration
〈Bs〉s∈ω of B, an increasing recursive function p : ω → ω, called the “promptness function,” and an
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Randomness notion Martin-Löf random and cannot compute. . .

difference randomness
• 0′ [8]
• any PA-degree [15]

weak Demuth randomness • any strongly prompt r.e. set (this paper)
Demuth randomness • any r.e. set that is not strongly jump traceable [11]

weak 2-randomness
• any nonrecursive r.e. set [5]
• any promptly simple r.e. set [10]

2-randomness • any set that is low for Ω [13]

Table 1. Strong randomness notions and computational weakness

ω-r.e. function g : ω → ω, such that the following holds:

(1) |We| ≥ g(e)→ (∃x)(∃s)[x ∈We, at s ∧Bs�x 6= Bp(s)�x].

Here each time some large x enters B, either B must permit promptly below x or g(e, s) must
increase. Hence the intuition behind Definition 3.3 is that a strongly prompt set has an r.e.
enumeration where there is a recursive bound on the number of times a request for a prompt
change can be denied. In contrast, an r.e. set of promptly simple degree can be viewed as having an
r.e. enumeration where the number of times a request for a prompt change can be denied is finite.
For more information we refer the reader to [4].

We noted above that being weakly 2-random can be characterized as being Martin-Löf random
and computing no promptly simple r.e. set. Our next result is a pleasing analogue of this result.
Since the proof makes heavy use of cost functions, we recall their definition for the reader:

Definition 3.4. [9, 12] A monotone cost function is a computable function c : ω × ω → Q≥0 such
that for every n, the sequence c(n, 0), c(n, 1), . . . is nondecreasing and converges to a limit and for
every s, the sequence c(0, s), c(1, s), . . . is nonincreasing. A monotone cost function c is benign if
there is a computable function g : Q>0 → ω such that whenever q ∈ Q>0 and I is a set of pairwise
disjoint intervals of ω such that c(n, s) ≥ q for all [n, s) ∈ I, #I ≤ g(q).

Theorem 3.5. A is weakly Demuth random if and only if A is Martin-Löf random and A does not
compute a strongly prompt r.e. set.

Proof. In this proof, to avoid confusion, we let Ve be the eth r.e. set of strings and We be the eth

r.e. set. We first prove the easier direction. Assume that A is Martin-Löf random and not weakly
Demuth random. We claim that there is a benign cost function c(x, s) such that if B is a r.e.
set obeying c, then B ≤T A. Let g(i, s) be a recursive function such that A ∈ ∩i[Vg(i)], where
g(i) = lims g(i, s) with a recursively bounded number of mind changes. We define the recursive
sequence bis as follows. Initially, we set bi0 = i for every i. At stage s, find the least i < s such that

bis < s and g(i, s − 1) 6= g(i, s). Set bi+js = s + j for every j ≥ 0. Now let c(x, s) = 2−i for the
largest i where bis ≤ x. It is easy to see that c is monotonic and benign.

Now take an r.e. set B obeying c. We claim that B ≤T A. First define Z to contain Vg(j,s) for

every j and s such that x is enumerated into B at stage s and c(x, s) = 2−j . Then, since B obeys
c, Z is a Solovay test. We fix x and wait for a stage s such that c(x, s) = 2−i and A ∈ ∩j≤i[Vg(j,s)].
We claim that for almost every x, x ∈ B if and only if x ∈ Bs. If this fails for x, then there must
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be a t such that x ∈ Bt −Bs. Let j ≤ i be such that c(x, t) = 2−j . Hence we have g(j, s) = g(j, t),
which means that A is put into Z. Since A can extend only finitely many strings in Z, this means
that our computation can fail for only finitely many x. Finally, if c is a benign cost function, then
by Diamondstone and Ng there is a strongly prompt r.e. set obeying c [4]. This completes one
direction.1

Now suppose that B = ΓA where B is strongly prompt via the enumeration 〈Bs〉s∈ω as witnessed
by the function b(x) = lims b(x, s) and the promptness function p. To utilize the strong promptness
of B we will (uniformly) define an array of r.e. sets Ue,c. By the recursion theorem and the slowdown
lemma, there is a recursive function q such that for all e and c, we have Wq(e,c) = Ue,c, and every
element enumerated into Ue,c appears strictly later in Wq(e,c). For more information on the use of
the recursion theorem here we refer the reader to [4].

Fix e. We describe a procedure that is uniform in e to build Vg(e), which will be the eth component

of a Demuth test
〈
Vg(e)

〉
which catches A. To this end we assume that we are building Vm1 , Vm2 , . . ..

Let m be the current index. We define a nondecreasing sequence of numbers 〈bs〉 and keep c as
a parameter which initially starts off as c = 1. It will be incremented by one each time we get a
prompt permission from Ue,c.

Initially we let c = 1 and b0 = b(q(e, c)) + 1. At each stage s, we copy Γ−1(Bs �bs) = {σ |
Γσ = Bs�bs} into Vm until we find that µ(Vm) ≥ 2−e. If this happens, then we challenge B�bs to
change by enumerating all elements less than bs into Ue,c. We then wait for b(q(e, c)) to increase
beyond bs or for B to permit below bs (one of the two must happen due to the recursion theorem
and the fact that B is strongly prompt). If b(q(e, c)) increases, then we increase bs+1 to match
b(q(e, c)) + 1 and go on to the next index for m. If B has permitted below bs, we increment c by
1, set bs+1 = b(q(e, c)) + 1 for this new c, and go on to the next index for m.

Clearly, if we only use finitely many indices, then µ(Vlimimi
) < 2−e and A ∈ [Vlimimi

]. It remains

to verify that we use at most
∑

c≤2e
[
b̃(q(e, c)) + 1

]
many indices m, where b̃(k) is the mind-change

bound for b(k). First observe that if Vm and Vm′ were assigned to copy Γ−1 under different values
of c, then [Vm] ∩ [Vm′ ] = ∅. Since we only abandon an index when µ(Vm) ≥ 2−e, this means that c
can be no larger than 2e. Each time we abandon an index we either increment c or force an increase
in b(q(e, c)) (since new values of bs are picked to be larger than the current b(q(e, c)) value). Hence
we get a recursive bound on the number of indices used. �

Remark 3.6. We could have studied ∆0
2-change randomness by requiring a real A to pass every

f -change test for every total ∆0
2 function f instead of only the recursive ones. To ensure that the

tests are presentable by Boolean combinations of effective open sets instead of allowing the tests
to be defined using access to an oracle f , we may consider each ∆0

2-change test to be a recursive
double sequence of r.e. open sets

〈
D(U1

i , U
2
i , . . .)

〉
i∈ω such that for every i and every j > f(i),

U ji = ∅. Of course, we also require the usual measure restriction µ(D(U1
i , . . .)) ≤ 2−i for all i. By

the correspondence in Theorem 3.1 which can be easily generalized, we see that A is ∆0
2-change

random if and only if for every limit test
〈
Wg(i)

〉
i∈ω, A 6∈ ∩i[Wg(i)]. Here a limit test is identical

to a Demuth test except that we allow g ≤T ∅′. The latter notion is easily seen to be equivalent
to weak 2-randomness. We note that a stronger notion called limit randomness was studied in

1The authors thank André Nies for pointing out that this proof can be presented using cost functions.



ω-CHANGE RANDOMNESS AND WEAK DEMUTH RANDOMNESS 11

Barmpalias, Miller and Nies [2] and Kučera and Nies [11], where A is limit random if and only if
for every limit test

〈
Wg(i)

〉
i∈ω, A 6∈ [Wg(i)] for almost every i.

4. Lowness

We now investigate the associated lowness notions. Recall that for randomness notions C and D,
the class Low(C,D) is the class of all reals A such that every C-random real is D-random relative
to A; that is, C ⊆ DA. Every K-trivial is low for Martin-Löf randomness and hence in the class
Low(WDR,ML), while Low(WDR,ML) is contained in the class Low(W2R,ML). The work of
Downey, Nies, Weber, and Yu shows that the class Low(WDR,ML) is exactly the K-trivial sets
[5].

We consider the corresponding lowness notions for f -WDR. For a fixed recursive nondecreasing

function f , an f -Demuth test relative to A is a sequence
〈
WA
gA(i)

〉
i∈ω

of A-r.e. open sets where gA

has an A-recursive approximation with mind-change function bounded by f and µ(WA
gA(i)

) ≤ 2−i

for every i. As usual, we define a real X to be f -WDR relative to A if it passes every f -Demuth
test relative to A. A real A is low for f -WDR if every real that is f -WDR is f -WDR relative to A.

For each fixed recursive nondecreasing function f , every low for f -WDR is in Low(WDR,ML)
and hence K-trivial. If f = o(2n), then the sets that are low for f -WDR are exactly the K-trivial
sets. We show that the class of sets that are low for 2nf(n)-WDR is the class of recursive sets.

Theorem 4.1. Let f be a recursive nondecreasing (possibly bounded) function. If A is low for
2nf(n)-WDR, then A is recursive.

Proof. By the remarks in the preceding paragraph, it is enough to show that A is of hyperimmune-
free degree. We fix an arbitrary real A of hyperimmune degree and build a 2nf(n)-Demuth test
relative to A which is not covered by any unrelativized 2nf(n)-Demuth test. We follow the proof of
Theorem 2.4(ii). Fix an A-recursive function F which is not dominated by any recursive function
and a uniform enumeration of all unrelativized 2nf(n)-Demuth tests. Let

〈
Wke(n)

〉
n∈ω be the eth

test in this enumeration. During the construction, we will approximate the sequence 〈nk〉k∈ω by
〈nk,s〉k,s∈ω. We ensure that for every k and s, nk+1,s > nk,s and nk,s ≤ nk,s+1. At stage s, to

redefine nk means to reset the values of nj for j ≥ k. To do this, we assume that nj has been
(re)defined for j ≥ k − 1 and find the least number m > nj such that f(m) > 5

∑
i≤j f(ni). Now

we choose nj+1 > max{m, s} large enough so that for every m ≥ i ≥ nj ,
1

1− 3
22i−nj+1

+ 2−i+1 <
3

2

and f(nj+1) >
3
4

∑
i≤j+1 f(ni). Hence this action moves (or lifts) the markers nk+j beyond s for

every j ∈ ω and spreads them out sufficiently sparsely. Finally, we speed up the construction until
stage F (s).

We will write Ge[s] for Wke(ne,s,s)[s] and say that Ge changes version at s if ke(ne,s, s − 1) 6=
ke(ne,s, s) and ne,s−1 = ne,s. For each i, we let k(i, s) be the largest k such that nk,s ≤ i. We will
not mention s where it causes no confusion. We build the A-relative Demuth test 〈Uk〉k∈ω and
argue at the end that this is a 2nf(n)-Demuth test relative to A.

As before, when we update Ui during the construction, we enumerate into Ui every string σ of
length s extending some string in ∩j<iUj such that [σ]∩∪j≤k(i)[Gj ] = ∅. If the measure of all such

σ is greater than 2−i we put in the first 2−i much σ in the lexicographic ordering.
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Construction of 〈Uk〉k∈ω. At stage s = 0, we update U0. At a stage s > 0, we find the least j < s

such that Gj has changed version exactly 2nj−1f(nj) times and the final change took place strictly
after nj was last moved; that is, s is the least such that #{t < s | kj(nj,s, t − 1) 6= kj(nj,s, t)} =
2nj−1f(nj) and nj was not moved at s. Redefine nj and then search for the least i < s such that
∩j≤i[Uj ] ⊆ ∪j<s[Gj [s]] and µ(Ui) = 2−i. Switch version for Ui and enumerate into the new version
of Ui all the [σ] contained in the old version such that [σ] ⊆ ∩j<i[Uj ] and [σ] ∩ ∪j≤k(i)[Gj [s]] = ∅.
Update U0, U1, · · · , Us. This ends the construction.

Verification. First we argue that each nj is moved finitely often. Suppose nj is moved infinitely
often and that this movement takes place at the stages s1 < s2 < · · · . We may assume that
n0, · · · , nj−1 are never moved after s1. For each i, after nj is moved at si, we must have that
#{t < F (si) | kj(nj,si , t − 1) 6= kj(nj,si , t)} < 2nj−1f(nj) because otherwise nj cannot be moved
again. Since si+1 has to be the first stage larger than si such that kj(nj) changes its mind exactly
2nj−1f(nj) times, from si we can compute si+1 and hence the next value of nj . This can be done
without knowledge of F or the construction. Therefore 〈si〉i∈ω is a recursive sequence dominating
F (si) and hence F (i), which results in a contradiction.

We assume each Ui changes version finitely often (this will be verified later). By the same
reasoning as in the proof of Theorem 2.4(ii), we have for each i, µ(Ui) ≤ 2−i, [Ui] is clopen and
∩i∈ω[Ui] 6⊆ ∪j∈ω[Gj ].

Again it remains to bound the number of version changes to each Ui. We argue that each Ui
changes version at most

(
εi2

i−1 + 1
)∑

j≤k(i,i) f(nj,i) times, where εi = 1

1− 3
2
2
i−nk(i,i)+1

. Note that

we only begin building Ui at stage i. Again we have εi ≤ 4. Fix i ∈ ω and let t0 < t1 be two
consecutive stages where Ui has a version switch and assume that no nk below i is moved between
t0 and t1. The same argument as before (in the proof of Theorem 2.4(ii)) shows that the strings
enumerated in Ui between t0 and t1 is covered by χ1 ∪ χ2, where χ1 and χ2 are defined exactly as
before.

Now the measure of χ2−χ1 is at most 3
22−nk(i,t0)+1 . Note that nk(i,t0)+1 ≥ nk(i,i)+1. Therefore the

measure of the set of reals X in χ1 is at least 2−i− 3
22−nk(i,t0)+1 = 2−i(1− 3

22i−nk(i,t0)+1) ≥ 1
εi

2−i. But

whenX was enumerated in Ui, X 6∈ ∪j≤k(i,t0)[Gj [t]]. EachGj can change version at most 2nj−1f(nj)
times before it is redefined and removed from the calculation. Hence the total number of version
changes for Ui is bounded by εi2

i−1∑
j≤k(i,i) f(nj,i). This calculation did not include those stages

[t0, t1] where some nk below i was moved. There are at most k(i, i) ≤
∑

j≤k(i,i) f(nj,i) many of

these stages. Adding these, we get the promised upper bound of
(
εi2

i−1 + 1
)∑

j≤k(i,i) f(nj,i).

We now argue that our choice of 〈nk〉 guarantees that for almost every i, f(i) >(
εi
2 + 2−i

)∑
j≤k(i,i) f(nj,i), which will complete the proof of the theorem. To see this, fix k and i

such that nk ≤ i < nk+1 (hence k = k(i, i)) at the largest stage less than i where k(i, i) was redefined.
If i ≤ m (in the choice of nk), then f(i) ≥ f(nk,i) >

3
4

∑
j≤k f(nj,i). It is easy to see that 3

4 >
εi
2 +2−i.

On the other hand, if i > m, then f(i) ≥ f(m) > 5
∑

j≤k f(nj,i) ≥
(
εi
2 + 2−i

)∑
j≤k f(nj,i). �

As a corollary we obtain that there no nonrecursive real that is low for balanced randomness. Re-
call that a real is balanced random if it passes every balanced test; i.e., every sequence

〈
Wf(m)

〉
m∈ω

of r.e. sets such that f is a 2n-change function and µ([Wf(m)]) ≤ 2−m for every m [7].

Corollary 4.2. Every real that is low for balanced randomness is recursive.
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5. Questions

At this point, we have only analyzed the differences between f -change randomness and g-change
randomness at the level of individual reals. It is now natural to ask when, if at all, these notions
can be separated at the level of degrees as well and, if so, for which type of degree.

Question 5.1. If a Turing degree a contains a difference random real, does it contain an f -change
random real for every recursive function f? More generally, if there is an f -change random real
that is not g-change random, is there a Turing degree a that contains an f -change random real but
not a g-change random real?

Question 5.2. If it turns out that the answer to the second part of Question 5.1 is negative, is
there a weak truth table degree or a truth table degree for which the answer is positive?
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[12] André Nies. Computability and Randomness. Clarendon Press, Oxford, 2009.
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