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LIMITS ON JUMP INVERSION FOR STRONG REDUCIBILITIES

BARBARA F. CSIMA, ROD DOWNEY, AND KENG MENG NG

Abstract. We show that Sacks’ and Shoenfield’s analogs of jump inversion fail for both tt- and wtt-

reducibilities in a strong way. In particular we show that there is a ∆02 set B >tt ∅
′ such that there is no

c.e. set A with A′ ≡wtt B . We also show that there is a Σ
0
2 set C >tt ∅

′ such that there is no ∆02 set D with

D′ ≡wtt C .

§1. Introduction. The concern of this paper is the interaction of two basic notions
from computability theory. These are the jump operator and reducibilities stronger
than Turing reducibility which are of the tabular type. We answer a question of
Anderson [And08] by showing that there are no analogs of Sacks Jump Inversion
Theorem [Sac63] and Shoenfield’s Jump InversionTheorem [Sho59] for these strong
reducibilties.
The study of strong reducibilities has been part of computability since the dawn
of the subject, as witnessed by Post’s paper [Pos44]. A is Turing reducible to B,
A ≤T B, means that A can be computed by B via any oracle access mechanism.
It is clearly natural to ask what happens when we restrict the access mechanism in
the reduction from A to B. Tabular reducibilies such as weak truth table (wtt-)
and truth table (tt-) reduciblities do not allow the reduciblity to be adaptive. Thus,
as is well known, A ≤tt B, is defined as x ∈ A iff B |= óf(x) where f is a

computable function and óf(x) is the f(x)
th truth table. As is also well known a

truth table reduction is simply a Turing reduction Φ which is total for all oracles.
Weak truth table reducibility simply has the truth table being partial, or ΦB = A
where the use of the computation ϕ(x) is a computable function. Thus in either
case we are not allowed to adapt the size of the reduction as the oracle B varies.
A ≤tt B implies A ≤wtt B but it is easy to construct examples where the converse
fails.
These reducibilities also arise very naturally when we consider reducibilities com-
ing from reductions in mathematical structures. For example, the reduction of
the word problem to the conjucacy problem in combinatorial group theory is a
tt-reduction and the degrees of bases of c.e. vector spaces are naturally represented
by weak truth table degrees (Downey and Remmel [DR89]).
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In recent times, truth table reducibility has become a central area of interest as
it has been shown to be a natural reducibility to study in algorithmic randomness,
a fact first realized by Demuth [Dem88]. The point here is that if A ≤tt B, via
ΦB = A, with Φ total on all oracles, then we can use Φ to translate between
measures effectively. For instance if B is random with respect to uniform measure,
and A is noncomputable, A will be random wih respect to the measure generated
by the inverse of Φ. Thus, for instance, truth table degrees are absolutely central
to the deep investigations of Reimann and Slaman [RS08a, RS08b] on sets never
continuously random. They are also deeply connected with things like the Cantor-
Bendixson rank of sets for a similar reason.
All of this recent work has highlighted our lack of understanding as to how the
finer structure of the (w)tt-degrees relates to the jumpoperator. Thehalting problem
is a fundamental object of computability theory, and the jump A′ = {e : ΦAe (e) ↓}
is the relativized form of the halting problem.
For Turing reducibility, we know a lot about how the jump operator behaves. The
most basic theorem is Friedberg’s Jump Inversion Theorem [Fri58], that if X ≥T ∅′

then there is a set A with A′ ≡T X ≡T A ⊕ ∅′. Early on, Mohrherr [Moh84]
proved that if X ≥tt ∅′, then there is a set A with A′ ≡tt X . Mohrherr’s proof
came from an analysis of Friedberg’s Theorem, and resulted in a 1-generic set A. It
was only much later that Anderson [And08] proved that indeed the full analog of
Friedberg’s Theorem held; if X ≥tt ∅′ then there is a setA withA′ ≡tt X ≡tt A⊕∅′.
Anderson’s theorem was more difficult thanMohrherr’s, and the method employed
by Friedberg (which will give generics sets) provably fails, so that arguments akin
to those from information theory were necessary.
All of this led to the present paper. The most important sets in computability
theory are the c.e. sets as well as those computable from the halting problem, the
∆02 sets. Shoenfield [Sho59] proved a jump theorem for such sets. Namely for any
Σ02 set X ≥T ∅′ there is a ∆02 set A with A

′ ≡T X. Famously, Sacks used the infinite
injury method to show that the same result held with A a computably enumerable
set, and after that many other intricate jump theorems were found culminating in
Robinson’s Jump Interpolation Theorem [Rob71]. (See Soare [Soa87] for more
details.)
Anderson asked: do the analogs of any of these basic theorems hold for tt- or
perhaps wtt-reducibilities? We prove that the analogs fail to hold and in fact that
they fail in more or less the strongest way that they can. Our first result shows
that Sacks’ Jump Inversion Theorem fails for both the tt- and wtt-reducibilities, by
constructing a ∆02 counter-example. We will in fact prove something stronger:

Theorem 3.3. For any computable sequence of ∆02 sets {Ve}e∈N (given by their ∆02
indices), there exists a ∆02 set S ≥tt ∅′ such that for every e, V ′

e 6≡wtt S.

Using Theorem 3.3 we can easily show the failure of Sacks’ Jump Inversion for
both tt- and wtt-reducibilities:

Theorem 3.4. There exists an ù+1-c.e. set S >tt ∅′ such that there is no c.e. set A
with A′ ≡wtt S.

We remind the reader what an ù + 1-c.e. set is. S ≤T ∅′ is said to be ù + 1-
c.e., if there exists a computable approximation g : ù2 7→ {0, 1} of S and a partial
computable function h : ù 7→ ù so that for every x, lims→∞ g(x, s) = S(x) and
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the number of mind changes of g(x,−) is either 0, or else h(x) ↓ and bounds the
number of mind changes of g(x,−).
That is, the set S belongs to the first level of the Ershov hierarchy for which such
a counter-example is not immediately ruled out by existing results. The result also
gives an interesting fact about the ∆02 wtt-degrees which are realized as the jump of
a low c.e. set. Clearly there are such wtt-degrees a > 0′wtt, namely the wtt-degrees
which are the jump of a low but not superlow c.e. set. Our result shows that not
every ∆02 wtt-degree a > 0

′
wtt can be realized by the jump of a (low) c.e. set.

Our second result shows that the analogue of Shoenfield’s Jump Inversion Theo-
rem fails for both the tt- and wtt-reducibilities. By Mohrherr’s result, the counter-
example S has to be strictly Σ02:

Theorem 3.5. There exists a Σ02 set S >tt ∅
′ such that there is no ∆02 set A with

A′ ≡wtt S.

1.1. Notation. We follow standard notation for Computability Theory, as found
in Cooper [Coo04] and Soare [Soa87].

§2. The basic module.

2.1. The plan for the c.e. case. Let (Γe ,∆e , ãe , äe)e∈ù run through all possible
4-tuples where Γe and ∆e are Turing functionals, and ãe and äe are partial com-
putable functions. Let us suppose we wanted to prove Theorem 3.4 directly by
constructing S. We must then meet for all e ∈ ù the requirements:

Re : Γ
V ′

e
e 6= S or ∆S⊕∅′

e 6= V ′
e ,

where Ve is the eth c.e. set, and ãe and äe bound the uses of the computations of Γe
and ∆e , respectively. Then S⊕∅′ will be the desired set. Note that the requirements
automatically ensure that S ⊕ ∅′ 6≡wtt ∅′.
Suppose we wanted to satisfy Re . We can first try making ∆S⊕∅′

6= V ′ (for
the purpose of the discussion we drop subscript e). In particular we assume that
the recursion theorem gives us infinitely many indices x1, x2, . . . for which we can
control V ′(xi). The obvious plan is to keep V ′(x1) = 0 until ∆S⊕∅′

(x1) ↓= 0. We
then make V ′(x1) = 1 by enumerating an axiom with some use V ↾u. The only way
in which ∆S⊕∅′

(x1) can later change to be 1, is for some number< ä(x1) to enter ∅′.
Our next step would be then to extract x1 out from V ′; if we could always do this
then we would know what to do. We would alternate the value of V ′(x1), and we
will eventually succeed because ∅′ is c.e. and the use ä(x1) is fixed. Unfortunately
we only have partial control over V ′ and extraction can only be achieved by forcing
a change in V ↾u.
We can start another line of attack by trying to make ΓV

′

6= S true. We pick
a follower z for S, and for simplicity let us first consider the case where Γ is an
m-reduction; i.e., z ∈ S iff q ∈ V ′ for some q. We begin by making S(z) = 1, and
wait for V ′(q) = 1, i.e., ΦVq (q) ↓ with some use u. Note that while the uses on ∆
and Γ are bounded, this use u may be unbounded. We then begin the attack above
by first waiting for ∆S⊕∅′

(x1) ↓= 0. We then enumerate an axiom Φ
V
x1(x1) with the

same V -use u, and wait for a ∅′-change below ä(x1).
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If no ∅′-change occurs then it is clear that we would succeed at ∆S⊕∅′

(x1) 6=
V ′(x1). If on the other hand a V ↾u change occurs before a ∅′-change, then we
would wait for ΦVq (q) ↓ again with a new use u

′, and then make ΦVx1(x1) converge
with the same use u′. The point is that if V changes infinitely often this way with no
∅′-change, then V ′(q) = 0 and we would succeed via ΓV

′

(ze) 6= S(z). Lastly if ∅′

changes then we would remove z from S, and wait for ΦVq (q) to become undefined

again. This has to happen (unless already ΓV
′

6= S), and so at some point we will
also get a divergence ΦVx1(x1) ↑. We can then repeat by making S(z) = 1 again.
Note that we only toggle z in S whenever ∅′ changes below ä(x1), so requirementRe
can be satisfied with only finite action on S (although we might possibly enumerate
infinitely many axioms for x1).
The strategy for a general wtt-reduction Γ is as above, but we will run a separate
copy of the strategy above for each possible configuration of the use V ′

e ↾ãe(ze).

We have 2ãe(ze) many different x’s corresponding to each different configuration of
V ′
e ↾ãe(ze). At each stage we look at the current approximation for V

′
e↾ãe(ze) (see

section 2.2) and apply the above plan. As in the basic case we will only toggle ze
in S if ∅′ changes below some äe-use. Each time we toggle ze we will force the
configuration V ′

e ↾ãe(ze) to change. This can only move lexicographically right
finitely many times (consecutively), hence after finitely much toggling of ze , the
configuration for V ′

e ↾ãe(ze) will return to an earlier one. This makes all the xô (for
all the ô on the right of the currentV ′

e -configuration) undefined, so that if ô ⊂ V
′
e [s]

holds again later we can use xô to cause further ∅
′-changes.

The above works when diagonalizing against all c.e. sets. However ifV is ∆02 then
whenever the configuration ofV ′↾ãe(ze) returns to an earlier one, there is no guaran-
tee that all xô (for ô on the right of the currentV ′-configuration) become undefined.
However we can show that some amount of progress has been made because in this
case,V has to return to a previousxô axiom, and thuswewill threatenV to be not ∆02.
From the above discussion, the reader will notice that the different requirements
act almost independently of one another. In fact all that a single requirement needs
to know is the correct initial segment of S. When diagonalizing against all ∆02 sets, it
may be possible for a requirement to flip S infinitely often. This, however, does not
necessitate re-picking the followers of lower priority requirements. The only reason
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why R2 needs to pick a new z2 is because R1 has seen ä1, ã1 converge, and wants to
protect now a certain segment of S. This initialization happens only finitely often
(despite R1 flipping S(z1) infinitely often). Therefore it will be straightforward
to combine the requirements, and will not require a tree argument as one usually
expects in full approximation arguments.

2.2. The modular approach. We proceed in a general setting, and then obtain the
main theorems as corollaries. We start by fixing a computable sequence {Ve}e∈N

of possible ∆02-approximations. That is, Ve,s(x) is a computable function of e, s, x.
We say that Ve is ∆02 if lims Ve,s(x) exists for all x and Ve(x) is this limit.

Let the natural approximation of the jump of Ve be V ′
e,s(n) = 1 iff Φ

Ve,s
n,s (n) ↓

(as is customary we assume the hat trick, that there must be a divergence between
consecutive convergences with different uses, see Soare [Soa87]). If Ve is ∆02 then
this serves as a natural Σ02-approximation to the characteristic function of V

′
e in

the sense that V ′
e (n) = lim inf s V

′
e,s(n) for every n. However when approximating

V ′
e ↾x as a finite string, V

′
e,s↾x is obviously not ideal because V

′
e ↾x might not be the

lexicographically leftmost string specified by V ′
e,s↾x at infinitely many s . Here we

think of 0 as being to the left of 1. It is easy to fix this by delaying any entry of n
into the (approximation for the) jump in the following way.
We define another approximation Qe↾x[s] for V ′

e↾x this time by induction as

follows: 0 ∈ Qe [s] iff Φ
Ve,s
0,s (0) ↓. For n > 0, let t < s be maximal such that

Qe↾n[t] = Qe↾n[s]. If Φ
Ve,r
n,r (n) ↓ for all t < r ≤ s , and Ve has been stable below the

use during this period, declare n ∈ Qe [s], and declare n /∈ Qe [s] otherwise. Hence
if Ve is ∆

0
2 then the lexicographically leftmost segment Qe↾x[s] specified infinitely

often is the segment of the true jump V ′
e ↾x. The “delayed” approximation {Qe[s]}s

will be used when deciding whether or not to act for a module, since it is correct
infinitely often. Furthermore the delayed approximation Qe for V

′
e is obtained

effectively in e.
We have infinitely many modules Mè,e indexed by a finite binary string è and
e ∈ N. HereMè,e works in a similar way to requirement Re above, and guesses that
è ⊂ S. It outputs (effectively) an infinite binary sequence mè,e listing the stage by
stage guesses as to whether our toggle point zè,e is in S, as well as a number dè,e
such that if Ve is ∆

0
2, then

(P1) m = lims mè,e(s) exists,

(P2) if ãe and äe are total, then additionally dè,e ↓ and we have either Γ
V ′

e
e (zè,e) 6= m

or V ′
e 6= ∆

(èama0ù⊕∅′)↾ dè,e
e .

Note that undefined counts as being not equal. For the rest of this section the
reader should think of the construction of eachMè,e as being run at every stage in
isolation. That is, at stage s of the construction we evaluate the given parameters
Qe , ãe , äe at stage s and outputmè,e(s). There are no interactions between different
modules. In section 3 we will then show how to combine the independent modules
into a construction of a set S.

2.3. The construction forMè,e . Now we give the actions of the moduleMè,e .
Step 1: Let zè,e = |è|.
Step 2: Wait for ãe(zè,e) ↓. Using the recursion theorem, for each ó ∈ 2ãe(zè,e),
let xó > ãe(zè,e) be a number that we control for V

′
e . That is, we may enumerate
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axioms for ΦXxó (xó) and also specify the use of the axioms. The recursion theorem
allows us to obtain values for xó effectively. In short, we call these axioms for xó .
Note that xó for different modules are different.
Wait for äe(maxó xó) ↓. Let dè,e = äe(maxó xó), and proceed to Step 3.

Step 3: We say that s is a recovery stage if ΓQee (zè,e)[s] ↓= mè,e [s] and

∆
(èamè,e

a0ù⊕∅′)↾ dè,e
e [s] ↓= Qe [s]↾(1 + maxô xô).
For clarity of presentation, we assume that the enumeration of Qe is fixed and
independent of our actions. In particular we do not follow the customary practice
of using a slowdown lemma in the enumeration of the jump. That is, when we define
some ΦVexó (xó) to converge, we do not assume thatQe(xó) responds instantly. If this
computation we defined is indeed correct then this will be reflected eventually in
Qe(xó) and we can just wait for it; on the other hand if Ve changes before Qe(xó)
responds, then we would havemade some progress since the use on the axiom for xó
was based on some other “real” computation reflected earlier by Qe . Consequently
we say thatQe(x) is good at stage s , if x is an index which we control by the recursion
theorem, and Qe(x)[s] = 1 iff there is a current axiom at s which applies for x.
For any set X ⊂ 2ù and any number n ∈ ù, we let u(n,X ) denote the (current)
use of the computation ΦXn (n). At each future stage of the construction subsequent
to the point at which we complete step 2, and for each ó ∈ 2ãe(zè,e), xó will have a
mode associated to it, which will be either IN or OUT, reflecting our desire to have
xó in or out of V ′

e . Initially begin with all xó in mode OUT. Unless a change in
mode is explicitly stated in the ensuing construction, the mode will not change from
one stage to the next.
At all successive stages, mè,e(s) outputs the previous value unless zè,e is toggled
in which case we flip mè,e(s).
Stage s : Let ó = Qe↾ãe(zè,e)[s].
If xó has mode IN, and there is no axiom that currently applies for xó , we
enumerate an axiom for xó with use Ve,s↾max{u(q,Ve,s) | ó(q) = 1}.
If s is a recovery stage and Qe(xó) is good, we call s a good recovery stage and
proceed as follows.
Case 1: no axiom for xó applies. Declare xó to have mode IN for stage s + 1.
Case 2: an axiom for xó applies. Declare xó to have mode OUT for stage s + 1,
and toggle zè,e .

2.4. Verification. This completes the construction. If ó ⊂ Qe [s] then we will
refer to s as a ó-stage. We first make the following observation.

Lemma 2.1. At all stages s after Step 2 is completed, if an axiom applies for xô ,
then it has use max{u(q,Ve,s) | ô(q) = 1} with all the uses defined. Moreover, if xó
has mode IN at stage s and ó = Qe↾ãe(zè,e)[s] then u(q,Ve,s) ↓ for every q such that
ó(q) = 1.

Proof. The first statement follows directly from the second, while the second
statement follows from the fact that if q ∈ Qe [s] then ΦVeq (q)[s] ↓. ⊣

Lemma 2.2. If ó = Qe↾ãe(zè,e)[s] is to the left of ô and an axiom for xô currently
applies (with use u), then Ve↾u cannot have been stable since the last ô-stage.

Proof. Since ô is to the right of ó there is a least q < ãe(zè,e) such that ô(q) = 1
and ó(q) = 0. Since ó(q) = 0, we have q /∈ Q[s]. We know Ve,s extends ç for
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some xô-axiom ç enumerated earlier (say at t), hence Φ
ç
q(q)[t] ↓. This means that

ΦVeq (q)[s] ↓ which means that Ve cannot extend ç at every stage between the last

ó↾q-stage and s (otherwise q ∈ Qe [s]). ⊣

We recall that we only enter Case 1 or 2 at good recovery stages.

Lemma 2.3. If Step 3 is started andVe is ∆02, then there are only finitely many good
recovery stages. Consequently zè,e is toggled only finitely often.

Proof. Assume for a contradiction that there are infinitely many good recovery
stages. Let s be the stage by which ∅′ has settled on dè,e . There are at most two
possible configurations of (èamè,e

a0ù ⊕ ∅′)↾ dè,e after s , which differ on the value
ofmè,e . Every good recovery stage after s is either a ó0-stage or a ó1-stage, where ói
corresponds to the configuration with mè,e = i .
We first claim that there is a stage s1 > s such that Case 1 applies. Suppose not.
Then at every good recovery stage after s , we must have Case 2 applies, whence
zè,e is toggled. Thus as we visit the good recovery stages after stage s , we must be
alternating between the two configurationsó0 and ó1, in order to recover the toggles.
Also, after we have our first good recovery stage with configuration ói after stage s ,
we give xói mode OUT. Since we are assuming we never enter Case 1 after stage s ,
this means that xói will remain in mode OUT for the duration of the construction.
In particular, it follows that only finitely many axioms are enumerated for xó1 . Let
t > s be a stage where Ve↾max{of the xó1 axioms} is stable. Let t1 > t be a
good recovery stage with configuration ó1. Since we were in case 2, an axiom for xó1
applied at stage t1. Let t2 > t1 be a good recovery stage with configuration ó0. Since
t1 > t, the axiom for xó1 still applied at stage t2. Now since ó0 = Qe↾ãe(zè,e)[t2] is
to the left of ó1, Lemma 2.2 shows that Ve could not have been stable on the xó1
axiom since the previous ó1-stage, giving the desired contradiction.
The above contradiction shows that s1 exists. Suppose s1 is a ô-stage. Let s2 > s1
be the next good recovery stage (we want to get a contradiction). Since zè,e is not
toggled by the actions at s1, it follows that the configuration of (èamè,e

a0ù⊕∅′)↾ dè,e
at the beginning of s2 is the same as at the beginning of s1. Hence s2 is also a ô-stage.
Since xô receives mode IN at s1, it follows that xô has mode IN at the beginning
of s2, where an axiom for xô will be enumerated (if there is not already one). At s1,
Qe(xô) must be 0 because of its goodness, which means that at s2, Qe(xô) must be
again 0 since s2 is a recovery stage and a ô-stage. But an axiom for xô applies at
stage s2, and s2 is a good stage, so Qe(xô) = 1, a contradiction. ⊣

Lemma 2.4. Mè,e satisfies (P1) and (P2).

Proof. If Ve is ∆
0
2, then (P1) holds by Lemma 2.3. To show (P2) holds as well

we assume that äe , ãe are total (hence Step 3 is started). Let ó = V ′
e↾ãe(zè,e), the

true segment ofV ′
e . Also let r = V

′
e (xó). Hence there are infinitely many ó-stages s

where Qe(xó)[s] = r. We claim that Qe(xó) is good at almost every such stage.
For every p such that ó(p) = 1, p must be in the real V ′

e and so it is easy to
see that once Ve is stable below these uses, any xó-axiom we enumerate applies
forever. Hence we only enumerate finitely many axioms for xó . If Ve extends
one of these axioms then at almost every stage Ve [s] extends the axiom and also
Qe(xó) = 1. If Ve extends none of these axioms then at almost every ó-stage where
Qe(xó)[s] = 0, we have Ve[s] extending none of these axioms. Hence Qe(xó) is
good at almost every ó-stage s where Qe(xó)[s] = r.
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Assume for a contradiction that the last condition in (P2) fails. By Lemma 2.3 let
s0 be a stage by which (èamè,e

a0ù ⊕ ∅′)↾ dè,e has settled. There are infinitely many
stages after s0 where Qe[t]↾1 + max{xô} is correct, and each of these is a recovery
stage. By the above paragraph we will have infinitely many good recovery stages,
contradicting Lemma 2.3. ⊣

Wemake a further comment. If we further assumed that {Ve} is a c.e. approxima-
tion for every e, then the function (è, e) 7→ lims mè,e [s] isù+1-c.e.. To see this, sup-
pose s is a stagewherewe toggled zè,e. Follow theproof ofLemma2.3 and see that af-
ter s , as long as there is no change to the ∅′ portion of (èamè,e

a0ù⊕∅′)↾ dè,e , we only
toggle zè,e at most 4 times under Case 2 before Case 1 must apply at a good recovery
stage. The second paragraph in the proof of Lemma 2.3 shows that zè,e is never
toggled again, unless there is a change to the ∅′ portion of (èamè,e

a0ù ⊕ ∅′)↾ dè,e .
Hence, if Ve is c.e., then zè,e will be toggled no more than 2dè,e many times.

§3. The failure of the analogs of jump inversion. Towards proving our main the-
orems, the module Mè,e will meet requirement Re , provided that è is indeed the
initial segment of the characteristic function of S. We now show how to combine
the modules in such a way that for each e, there is a successfulMè,e module.
Given a sequence {Ve}, we apply the previous section to get mè,e , dè,e . Hence
mè,e(t) is the result after running module Mè,e for t many steps. We now use the
result from the different modules to specify an approximation S[s] in the following
way. First we order the finite binary strings: ë ≺ 1 ≺ 0 ≺ 11 ≺ 10 ≺ 01 ≺
00 ≺ 111 ≺ · · · . Hence ≺ refers to the ordering obtained by first considering
increasing length, and then reverse lexicographic ordering. For each ç we will have
an associated binary string èç, and the corresponding zèç ,|ç| as defined in module
Mèç ,|ç|. That is, zèç ,|ç| = |èç|. For convenience, we will let zç denote zèç ,|ç|. We will
arrange it so that for ç′ ≺ ç, we have zç′ < zç. Basically zç serves as a pointer,
and points to a location of S where S(zç)[s] will be approximated by the digits of
mèç ,|ç|. Each ç codes a guess as to the membership of zç′ in S for ç

′ ≺ ç. We will
have èç represent the ç-guess as to the correct initial segment S↾|èç|. As we give the
stage by stage construction of S, we will move the pointers zç , but each zç will only
be moved finitely often. Although zç is defined to be the length of èç, in practice we
will define zç first, and later define èç. At every stage s , if y is not being pointed at
(i.e., y 6= zç for any ç), then we will have S(y)[s] = 0.
We give a few notations to be used. Define Ts to be a string of finite length, which
can be thought of as the current approximation to the “true strategies”. Loosely
speaking, only those zç where strategy ç ⊂ T will be the important ones; the other
zç with ç not on T are just red herrings; they are the artifacts produced by our
wrong guesses. Ts is defined inductively by: Ts(n) = S(zTs ↾n)[s]. Proceed this way
until we hit the first undefined zç .
At stage s to read the next digit of mè,e means to do the obvious thing: if this
is the first time we encounter this instruction then we output mè,e(0). Otherwise
output mè,e(k + 1) where mè,e(k) was the previous digit read by the construction.
Construction of S: at s = 0 make every zç , èç undefined. At stage s > 0, only
finitely many zç , èç have been defined at the end of stage s − 1. Go through all such
ç in increasing order, and for each we (inductively) update èç and specify S(zç)[s].
For zë we let èë = ë and set S(zë)[s] = the next digit of mèë,0.
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Now assume that S(zç′ )[s] has been defined for all ç′ ≺ ç. We define èç as
follows. For y < zç such that y 6= zç′ for any ç′, set èç(y) = 0. If y < zç is such
that y = zç′ , then necessarily ç′ ≺ ç. If ç′ is lexicographically to the right of ç↾|ç′|
then set èç(zç′ ) = 0. If ç′ is left of ç↾|ç′| then set èç(zç′ ) = S(zç′ )[s]. Otherwise
ç′ = ç↾|ç′| and we let èç(zç′) = ç(|ç′|). Next we define S(zç)[s] in the following
way. Note first of all that Ts↾|ç| can be evaluated at this point. If Ts↾|ç| = ç then
we let S(zç)[s] be the next digit ofmèç ,|ç|. If Ts↾|ç| is left of ç then let S(zç)[s] = 0.

Otherwise if Ts↾|ç| is right of ç we let S(zç)[s] = S(zç)[s − 1].
If some dèç ,|ç| has converged at stage s , wemake all zç′ , èç′ undefined for all ç

′ ≻ ç
and go to the next stage. Otherwise the above stops naturally when we find some
least ç with zç not defined at stage s − 1. We then pick a fresh value for zç and set
S(zç)[s] = 0.
Finally let S(x) = lim inf s S(x)[s]. It is clear that zç eventually settles on a final
value for each ç, and also that |Ts | → ∞. Let T be the leftmost path specified
infinitely often by Ts . We first show that T actually reflects the correct ç’s:

Lemma 3.1. For every ç ⊂ T , we have èç eventually settles, èç ⊂ S and S(zç) =
T (|ç|) = lim inf mèç ,|ç|.

Proof. We proceed inductively on |ç|. The statement clearly holds if |ç| = 0 so
take |ç| > 0. After zç settles, the value of èç and also S↾zç will be decided on the
places {zç′ | ç′ ≺ ç}. There are three cases. If ç′ is right of ç↾|ç′| then èç(zç′) is al-
ways 0, while at infinitely many stages s ,Ts ⊃ çwhichmakesS(zç′ )[s] = 0 infinitely
often. If ç′ is left of ç↾|ç′| then Ts is right of ç′ at every stage after some s0. Hence
S(zç′ )[s] = S(zç′ )[s0] for all s > s0 and also èç(zç′) will agree with S(zç′ )[s0]. Fi-
nally if ç′ ⊂ ç then inductively let èç′ be the limit value. It is easy to see that the value
of èç(zç′ ) = ç(|ç

′|) = T (|ç′|) = S(zç′ ). Hence èç eventually settles and èç ⊂ S.
Since ç is on T , hence for almost all s we have Ts is right of ç (where S(zç)[s]
is unchanged from the previous stage) or Ts ⊃ ç (in which the next digit of mèç ,|ç|
is read). Hence S(zç) = lim inf mèç ,|ç|. To see that this value is the same as T (|ç|),

observe that T (|ç|) = lim inf{Ts(|ç|) | Ts ⊃ ç} = lim inf{S(zç)[s] | Ts ⊃ ç} =
lim inf mèç ,|ç|. ⊣

Lemma 3.2. For every e, if Ve is ∆02, then V
′
e 6≡wtt S ⊕ ∅′.

Proof. We assume that V ′
e = ∆

S⊕∅′

e and S = Γ
V ′

e
e with use bounded by äe , ãe

(which are total). Let ç = T ↾e. By Lemmas 2.4 and 3.1 S(zç) = limmèç ,e where
èç ⊂ S. Since dèç ,e ↓ then the initialization in the construction of S ensures that

in fact (S ⊕ ∅′)↾ dèç ,e = (èç
a limmèç ,e

a0ù ⊕ ∅′)↾ dèç ,e . A contradiction to the last
condition of (P2) follows. ⊣

We now obtain as corollaries, the following three statements.

Theorem 3.3. For any computable sequence of ∆02 sets {Ve}e∈N (given by their ∆02
indices), there exists a ∆02 set S ≥tt ∅′ such that for every e, V ′

e 6≡wtt S.

Proof. Apply the results of the past two sections, and S ⊕ ∅′ is the desired set.
Note that S is ∆02 because of (P2) and the fact that it is easy to prove that {Ts} itself
is a ∆02 approximation. ⊣

Theorem 3.4. There exists an ù+1-c.e. set S >tt ∅′ such that there is no c.e. set A
with A′ ≡wtt S.
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Proof. Theorem 3.3 gives a us a ∆02 set S. To see that S can be made ù + 1-c.e.,
use the fact that every module will reach a limit and modify the construction of S
slightly to ensure that each time S↾zç[s] changes we also reset zç. It is not hard to
see that the ensuing approximation for S will be ù + 1-c.e.. We sketch the reason
why, and leave the details to the reader. The value S(zç)[s] depends directly on the
value of Ts↾|ç|, which in turn depend on S(zí)[s] where í ≺ ç. As long as S↾zç[s]
remains unchanged, we will either output 0 for S(zç)[s], or the digits of mèç ,|ç|. èç
will also not change as long as S↾zç[s] remains fixed. Hence the number of changes
in S(zç) is at most the number of flips in mèç ,|ç| (until zç is cancelled). This number
can be computed by the comments after Lemma 2.4. ⊣

Theorem 3.5. There exists a Σ02 set S >tt ∅
′ such that there is no ∆02 set A with

A′ ≡wtt S.

Proof. Use a list of all possible ∆02 indices. ⊣
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