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1 Introduction

A real α is left-recursively enumerable (left-r.e. for short) if we can effectively
generate α from below. That is, the left Dedkind cut of α, L(α) = {q ∈ Q :
q ≤ α}, forms a r.e. set. Equivalently, a real α is left-r.e. if it is the limit of a
converging recursive increasing sequence. If we can also compute the radius of
convergence effectively, then α is recursive.

Left-r.e. reals are the measures of the domains of prefix-free Turing machines,
or halting probabilities. These reals occupy a central place in the study of al-
gorithmic randomness in the same way as recursively enumerable sets occupy
a central place in classical recursion theory. However, the collection of left-r.e.
reals does not behave well algebraically since it is not closed under subtraction.
Because of this, in [1], Ambos-Spies, Weihrauch and Zheng introduced the collec-
tion of weakly computable reals, where a real α is weakly computable if there are
left-r.e. reals β and γ such that β− γ equals to α. Ambos-Spies, Weihrauch and
Zheng [1] proved that the collection of weakly computable reals is closed under
the arithmetic operations, and hence forms a field. The following proposition
gives an analytical characterization of weakly computable reals:

Theorem 1.1 [1]. (Ambos-Spies, Weihrauch and Zheng) A real number x is
weakly computable reals iff there is a recursive sequence {xs}s∈N of rational num-
bers which converges to x such that

∑
s∈N |xs − xs+1| ≤ c for a constant c.

In this paper, we will study the Turing degrees of weakly computable reals
reals. The following is known:

Theorem 1.2 [4]. (Downey, Wu and Zheng) (1)Any ω-c.e. degree contains
a weakly computable real. (2) There are Turing degrees below 0′ containing no
weakly computable reals.

In this paper, we first introduce a generalized notion of those degrees con-
structed in [4] (Theorem 1.2 (2)). Say that a nonzero degree a is nonbounding
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if every nonzero degree ≤ a contains no weakly computable reals. The existence
of such nonbounding degrees can be proved by an oracle construction.

Theorem 1.3. There is a degree below 0′ such that every nonzero degree below
it contains no weakly computable reals.

Our construction can be easily modified to make the nonbounding degrees 1-
generic. However, if we let c be any r.e. and strongly contiguous degree, then
every degree below c is ω-r.e., and hence contains a weakly computable real
(by Theorem 1.2 (1)). Now by the fact that any nonzero r.e. degree bounds a
1-generic degree, there are 1-generic degrees below 0′ not nonbounding.

The notion of (∅′, f)-genericity will be introduced, and an alternative proof of
Theorem 1.3 by using (∅′, f)-genericity will be given. This proof can be modified
to prove that there are degrees a below 0′ such that those degrees containing
weakly computable reals comparable with a can only be 0 and 0′. This latter
result improves Yates’ result in [15].

We will also consider those Turing degrees on the other extreme, those degrees
containing only weakly computable reals. A Turing degree is called completely
weakly computable if every set in this degree is weakly computable. Our result
involves the notion of array recursive degrees.

Recall that a sequence of finite sets is called a strong array {Fn}n∈N if there
is a recursive function f such that Fn = Df(n) for every n ∈ N. In [7], Downey,
Jockusch and Stob defined a very strong array {Fn}n∈N as a strong array sat-
isfying the following three properties: (a) ∪n∈NFn = N, (b) if n1 6= n2, then
Fn1 ∩ Fn2 = ∅, (c) for all n ∈ N, 0 < |Fn| < Fn+1|. Given a very strong array
{Fn}n∈N, an r.e. set is called array nonrecursive with respect to {Fn}n∈N if for
any e, there is some n such that

We ∩ Fn = A ∩ Fn.

An r.e. set is said to be array nonrecursive if A is array nonrecursive with re-
spect to some very strong array {Fn}n∈N. As usual, a Turing degree is called
array nonrecursive if it contains an array nonrecursiv r.e. set, and is called array
recursive if it contains no array nonrecursiv r.e. set. Downey, Jockusch and Stob
proved in [7] the following: (1) array nonrecursive degrees are closed upwards
in the r.e. degrees; (2) all nonlow2 r.e. degrees are array nonrecursive; (3) ar-
ray nonrecursive degrees can be low. The following characterizations of array
nonrecursive degrees, and hence of array recursive degrees, are also from [7]:

Theorem 1.4 [7]. (Downey, Jockusch and Stob) For any r.e. set A, the following
are equivalent:

(1) A has array nonrecursive degree,
(2) there are disjoint r.e. sets B and C, each of which is reducible in A, such

that B ∪ C is coinfinite and no set of degree 0′ separates B and C,
(3) there is a Martin Pour-El theory T of degree a.

We will provide in this paper another characterizations of array recursive
degrees:



Theorem 1.5. Let A be any r.e. set. Then the Turing degree of A is com-
pletely weakly computable if and only if any set Turing reducible to A is weakly
computable if and only if A has array recursive degree.

Our notation and terminology are standard and generally follow Soare [14].

2 Nonbounding Degrees

In this section, we prove Theorem 1.3. That is, we will construct a real A such
that weakly computable reals Turing reducible to it are all recursive. A is con-
structed satisfying the following requirements:

Pe: A 6= {e};
Re,i,j : if {e}A is total, then either {e}A is recursive or {e}A 6= αi − αj ,

where {αi}i∈N is an effective list of all left-r.e. reals.

Pe requirement can be satisfied by the Kleene-Post’s diagonalization. That
is, at stage s, given a finite approximation σs, we can ask whether there is some
number m > |σs| such that {e}(m) converges. This is a Σ1 question, and we can
get the answer from oracle ∅′. If the answer is “yes”, then we can define σs+1 as
an extension of σs such that |σs+1| = m + 1 and σs+1(m) 6= {e}(m). Otherwise,
we extend σs to σs+1 by just letting σs+1 = σŝ 0. Obviously, Pe is satisfied in
both cases.

Now we describe the strategy satisfying the requirement Re,i,j . For conve-
nience, we omit the subscript, and it will not cause any confusion. Suppose
that at stage s + 1, σs is given, and we want to satisfy R. We ask ∅′ whether
there is a number n and strings τ1, τ2 extending σs such that for all m ≤ n,
{e}τ1(m), {e}τ2(m) converge and that |{e}τ1 � (n+1)−{e}τ2 � (n+1)| ≥ 2−(n−1).

If the answer is “no”, then we claim that if {e}A is total, then {e}A is
recursive. To see this, for any n, to calculate {e}A(n), we find a string τ extending
σs such that for all m ≤ n+2, {e}τ (m) converges (by the assumption that {e}A

is total, such a τ exists). Then {e}A(n) = {e}τ (n), because by our assumption,
|{e}A � (n + 3) − {e}τ � (n + 3)| is less than 2−(n+1). In this case, we let
σs+1 = σŝ 0.

On the other hand, if the answer is “yes”, then for any real number x,

|{e}τ1 � (n + 1)− x � (n + 1)|+ |{e}τ2 � (n + 1)− x � (n + 1)|

is bigger than |{e}τ1 � (n+1)−{e}τ2 � (n+1)| and hence is bigger than 2−(n−1).
As a consequence, one of |{e}τ1 � (n+1)−x � (n+1)| and |{e}τ2 � (n+1)−x � (n+
1)| must be bigger than 2−n. If we know that |{e}τ1 � (n+1)−x � (n+1)| > 2−n,
then we can define σs+1 as τ1, and we will have {e}A � (n+1) = {e}τ1 � (n+1).
As a consequence, {e}A differs from x in the first n + 1 digits.

Then, how can we decide which one of τ1 and τ2 is the one we want to satisfy
R? Since αi and αj are left-r.e. reals, there are effective approximations of αi, αj

from the left, {αi,s}s∈N, {αj,s}s∈N say, and hence, we can use ∅′ as oracle to find



a stage s such that αi,s � (n+3) = αi � (n+3), αj,s � (n+3) = αj � (n+3). Thus
αi � (n+3)−αi,s � (n+3) ≤ 2−(n+2), αj � (n+3)−αj,s � (n+3) ≤ 2−(n+2), and
hence |(αi−αj) � (n+3)−(αi,s−αj,s) � (n+3)| ≤ 2−(n+1). Now if we let x above
be αi,s−αj,s, then we can know which one of |{e}τ1 � (n+1)−(αi,s−αj,s) � (n+1)|
and |{e}τ2 � (n + 1) − (αi,s − αj,s) � (n + 1)| is bigger than 2−n. Suppose that
|{e}τ1 � (n+1)− (αi,s−αj,s) � (n+1)| ≥ 2−n. Then |{e}τ1 � (n+1)− (αi−αj) �
(n+1)| ≥ ||{e}τ1 � (n+1)−(αi,s−αj,s) � (n+1)|−|(αi−αj) � (n+1)−(αi,s−αj,s) �
(n + 1)|| ≥ 2−n − 2−(n+1) = 2−(n+1). Therefore we can satisfy R by extending
σs to τ1 (that is, define σs+1 = τ1).

The whole construction of A is a finite extension argument, with ∅′ as oracle,
where at each stage, one requirement is satisfied.

3 (∅′, f)-generic degrees

In [15], Yates proved that there are degrees d below 0′ such that the r.e. degrees
comparable with d are exactly 0 and 0′. Actually, as noticed later, Yates’ degree
d can be 1-generic, and can be minimal. In [16], Wu proved that Yates’ degree d
can appear in every jump class. In this section, we construct a degree a below 0′

such that the degrees containing weakly computable reals which are comparable
with a are exactly 0 and 0′.

We need the following notion of (∅′, f)-genericity.

Definition 3.1. (1) A set A is called (∅′, f)-generic iff for each e ∈ N, if there
are infinitely many m such that W ∅′

e,f(m) contains an extension of A(0)A(1) · · ·A(m),

then there is an n such that W ∅′

e contains A(0)A(1) · · ·A(n).
(2) A set A is called (∅′, f)-semigeneric iff for each e, if for almost all m,

W ∅′

e,f(m) contains an extension of A(0)A(1) · · ·A(m), then there is an n such that

A(0)A(1) · · ·A(n) ∈ W ∅′

e .

Here W ∅′

e is the set of all strings enumerated by the e-th algorithm using the
oracle ∅′ and W ∅′

e,f(m) is the set of those strings in W ∅′

e which are enumerated in
time f(m).

A (∅′, f)-generic set A forces membership in W ∅′

e only if for infinitely many
prefixes A(0)A(1) · · ·A(m) of A an extension in W ∅′

e can be found within time
f(m), so this notion differs from the 1-genericity (see [10]) by having an oracle
and bounding the search. Nevertheless, if f is sufficiently fast growing then
(∅′, f)-genericity implies 1-genericity.

We note that for a real α, the notions of computable (by approximation)
and recursive (by computing all digits) coincides. But this does no longer hold
for sequences of reals as one can have that they are uniformly computable in
the sense that there is a function g : N × N → Q such that |αi − g(i, j)| < 2−j

for all i, j while they are not uniformly recursive in the sense that the function
i, j → αi(j) which computes the digit j+1 of αi after the dot is not computable.



This fact relativizes to the oracle ∅′. While there is a uniformly ∅′-recursive
sequence of all left-r.e. reals, there is no uniformly ∅′-recursive sequence contain-
ing all weakly computable reals. But there is still an enumeration α0, α1, α2, · · ·
of all weakly computable reals and an ∅′-recursive function g : N× N → Q such
that the approximation condition |αi − g(i, j)| < 2−j holds for all i, j.

Theorem 3.2. Assume that for α0, α1, α2, · · · is a list of weakly computable reals
such that there is a ∅′-recursive function g : N×N → Q with ∀i, j (|αi−g(i, j)| <
2−j). Then there is a function f ≤T ∅′ such that: (1) every (∅′, f)-generic set A
is 1-generic, (2) for all i, if αi ≤T A then αi ≡T ∅, and (3) for all i, if αi ≥T A
then αi ≡T ∅′. Furthermore, one can choose A such that A ≤T ∅′ and hence A
can be chosen to be low.

Proof. Below in Propositions 3.3, 3.4 and 3.5, we will construct functions
f1, f2, f3 ≤T ∅′ respectively such that: every (∅′, f1)-semigeneric set satisfies (1),
every (∅′, f2)-semigeneric set satisfies (2), and every (∅′, f3)-generic set satisfies
(3).

Let f be defined as f(n) = f1(n)+f2(n)+f3(n) for all n. Then every (∅′, f)-
generic set A is (∅′, f1)-semigeneric, (∅′, f2)-semigeneric and (∅′, f3)-generic, and
hence A satisfies all three statements simultaneously.

Proposition 3.3. There is a function f1 ≤T ∅′ such that every (∅′, f1)-semi-
generic set is also 1-generic.

Proof. In an acceptable numbering, there are indice for algorithms and not only
for sets. Thus every r.e. set has an index in the enumeration W ∅′

0 ,W ∅′

1 , · · · (the
oracle is not accessed during the enumeration of this r.e. set). So it is reasonable
to make the following definition.

Let f1(n) be the time needed to find for every e ≤ n and every string σ ∈
{0, 1}∗ with |σ| ≤ n + 1 a string τ � σ which is enumerated into W ∅′

e without
having accessed the oracle ∅′ whenever such a τ exists.

As the search in an W ∅′

e is aborted for this e whenever the oracle ∅′ is accessed,
the oracle ∅′ does not play any role in the definition of f1 and so f1 ≤T ∅′.

Now let A be any (∅′, f1)-generic set and consider any r.e. set V of strings.
There is an index e such that W ∅′

e = V and the enumeration procedure does not
access the oracle ∅′ at all. Suppose that there are infinitely many n for which
A(0)A(1) · · ·A(n) has an extension in V . Then by the definition of f1, it is easy
to see that for all n, there is an extension of A(0)A(1) · · ·A(n) in W ∅′

e,f1(n). Since

A is (∅′, f1)-semigeneric, there is an m with A(0)A(1) · · ·A(m) ∈ W ∅′

e,f1(m). Thus
A meets V and hence, A is 1-generic.

Proposition 3.4. Let α0, α1, α2, · · · and g be the same as in Theorem 3.2. Then
there is a function f2 ≤T ∅′ such that for every (∅′, f2)-semigeneric set A and
every i, if αi ≤T A then αi is recursive.

Proof. Given any binary string τ , for any e, let στ,e,0, στ,e,1, kτ,e and t be
the first data found such that (1) στ,e,0, στ,e,1 extend τ and have length t; (2)
{e}στ,e,0

t (m) and {e}στ,e,1
t (m) are defined for all m < kτ,e; (3) there are at least



two binary strings of length kτ,e lexicographically between {e}στ,e,0
t (m) � kτ,e

and {e}στ,e,1
t (m) � kτ,e.

Let h be a recursive function such that WK
h(e,i) contains one of στ,e,0 and

στ,e,1, στ,e,j say, such that αi does not extend {e}στ,e,j

t (m), if the above search
terminates for e, i, τ (such a string can be found since the third condition guaran-
tees that the restriction of g(i, kτ,e + 2) to its kτ,e first bits cannot be a identical
with or a neighbour of both computed strings). In other words, the function h
searches for the “real number variant” of an e-splitting, as described in Theorem
1.3.

Let f2(n) be the time needed to find with oracle ∅′ for each e, i ≤ n and each
τ ∈ {0, 1}n+1 an extension of τ in W ∅′

h(e,i) whenever στ,e,0, στ,e,1 exist.

Assume that A is (∅′, f2)-semigeneric and αi = {e}A. If there is an n with
A(0)A(1) · · ·A(n) ∈ W ∅′

h(e,i) then it would follow that every extension of {e}A
n

differs from αi as a real, contradicting to the assumption. Thus there is an
n ≥ e + i such that no extension of A(0)A(1) · · ·A(n) is in W ∅′

h(e,i),f2(n). Then

there is also no extension of A(0)A(1) · · ·A(n) in W ∅′

h(e,i) and αi is the unique
real such that for every η � A(0)A(1) · · ·A(n) there is a binary representation
of αi extending {e}η

|η|, which means that αi is recursive.

Proposition 3.5. Let α0, α1, α2, · · · and g be the same as in Theorem 3.2. Then
there is a function f3 ≤T ∅′ such that for every (∅′, f3)-generic set A and every
i, if αi ≥T A then ∅′ ≤T αi.

Proof. Let c(n) be the convergence module of ∅′, that is, the time to enumerate
all elements of {0, 1, · · · , n} ∩ ∅′ into ∅′. Now let h̃(e, i) be a recursive function
such that W ∅′

h̃(e,i)
contain all strings σ of length n + 1 for which there are m, j, η

such that (1) m < n, j < c(n), (2) η is the binary representation of the first j +3
bits of g(i, j + 4), (3) η(j) = 0 and η(j + 1) = 1, and (4) {e}η

j (m) converges to
a value different from σ(m) without querying the oracle at j or beyond.

Since the sets W ∅′

h̃(e,i)
are uniformly ∅′-recursive, there is an ∅′-recursive func-

tion f3 such that f3(n) is the time needed to enumerate relative to ∅′ all members
of length ≤ n + 2 of sets W ∅′

h̃(e,i)
with e, i ≤ n.

Let A be a (∅′, f3)-generic set. Suppose that αi is irrational and that A =
{e}αi . Then there are only finitely many n such that some string A(0)A(1) · · ·A(n)b
is in W ∅′

h̃(e,i),f3(n)
since whenever such an extension is in then A(n + 1) 6= b. By

the choice of f3, the extension is also not in W ∅′

h̃(e,i)
. Now let u(n) be the first j

such that for all m ≤ n, αi(j) = 0, αi(j +1) = 1, and {e}αi(m) converges within
j steps without querying the oracle at j or above.

Since αi is is assumed to be irrational, the function u is total. Note that
u ≤T αi. Since for almost all n, there are no strings of length n in W ∅′

e , it
follows that u(n) ≥ c(n) for these n. Thus ∅′ ≤T αi.

The case that αi is rational is trivial.



Proposition 3.6. If f ≤T ∅′ then there is a set A ≤T ∅′ such that A is (∅′, f)-
generic.

Proof. We assumes that f is strictly monotonically increasing; if not one re-
places f by f̂ with ∀n (f̂(n) = f(0) + f(1) + . . . + f(n) + n) and use that every
(∅′, f̂)-generic set is also (∅′, f)-generic.

First define a partial ∅′-recursive function h with ∅′-recursive domain such
that, for all σ, e, if W ∅′

e,f(e+|σ|) contains a proper extension of σ then h(e, σ) is

that proper extension of σ which is enumerated into W ∅′

e first, and if W ∅′

e,f(e+|σ|)
contains no proper extension of σ then h(e, σ) is undefined.

Obviously, τ ≺ σ ≺ h(e, τ) implies that h(e, σ) = h(e, τ), because h(e, τ) is
the first element of the enumeration of W ∅′

e properly extending τ and is also the
first element of this enumeration properly extending σ.

Now we construct set A relative to oracle ∅′. Assume that A(m) for all
m < n is already defined and let σ be the string A(0)A(1) . . . A(n − 1) (we
let σ be the empty string if n = 0). Now A(n) is defined as follows: find the
least e such that h(e,A(0)A(1) · · ·A(n)) is defined and there is no m < n with
h(e,A(0)A(1) · · ·A(m)) � A(0)A(1) · · ·A(n) and define

A(n) = h(e,A(0)A(1) · · ·A(n))(n).

The first step in the definition of A(n) can be satisfied since there are a t

and infinitely many programs e with W ∅′

e = W ∅′

e,t = {0, 1}n+2. The second step
is again satisfied since n = |σ| and h(e, σ) � σ. Thus h(e, τ) is so long that the
bit h(e, τ)(n) exists and can be copied into A(n). Therefore, the definition above
never runs into an undefined place. Obviously, A ≤T ∅′.

Now we verify that A is (∅′, f)-generic. For the sake of contradiction, as-
sume that there is an index e such that there are infinitely many n such that
W ∅′

e,f(n) contains an extension of A(0)A(1) · · ·A(n) but no element of W ∅′

e is
of the form A(0)A(1) · · ·A(n). Let e be the least such index. Then there is a
length n for which all e′ < e satisfy that h(e,A(0)A(1) · · · , A(n)) is defined and
either there is an m < n with A(0)A(1) · · ·A(m) ∈ W ∅′

e′,f(n+e′) or there is no

m ≥ n such that W ∅′

e′,f(n+e′) contains a proper extension of A(0)A(1) · · ·A(m).
At any m with n < m < |h(e,A(0)A(1) · · ·A(n))|, the first step of the algorithm
takes e as the parameter of the same name and then assigns to A(m) the value
h(e,A(0)A(1) . . . A(n))(m). This is done since h(e,A(0)A(1) . . . A(m − 1)) =
h(e,A(0)A(1) · · ·A(n)). Thus if k = |h(e,A(0)A(1) · · ·A(n))| then

A(0)A(1) · · ·A(k − 1) = h(e,A(0)A(1) · · ·A(n))

and this string is a member of W ∅′

e , contradicting our assumption on e. Hence
A is (∅′, f)-generic and the theorem is proved.

Following from Theorem 3.2 and Theorem 3.6, we have:

Theorem 3.7. There is degree a below 0′ such that 0 and 0′ are the only degrees
containing weakly computable reals and comparable with a.



Actually, the degree a in Theorem 3.7 occurs in every jump class. This gen-
earlize results in Wu [16] and Yates [15].

We end this section by stating the following result:

Theorem 3.8. If A, f ≤T ∅′ and A is nonlow2, then there are (∅′, f)-semigeneric
sets A0, A1 such that A ≡T A1 ⊕ A2. Particularly, every nonlow2 degree below
0′ is the join of nonbounding degrees.

4 Completely weakly computable degrees

In this section, we prove Theorem 1.5. First we need some background of Chaitin’s
Ω numbers.

In [2], Chaitin introduced Ω as the halting probability of a universal prefix-free
machine and Kučera and Slaman [11] showed these Ω-numbers cover indeed
all the left-r.e. Martin-Löf random sets. Indeed, it is sufficient for the further
investigations and definitions to fix Ω as one of these possible numbers as the
notions defined below turn out to be the same, independently of the choice of
Ω. Ω has the following properties:

– Ω has a recursive approximation Ω0, Ω1, · · · from the left as it is left-r.e..
– The convergence module cΩ defined as

cΩ(n) = min{s : ∀m ≤ n (Ωs(m) = Ω(m))}

dominates all total-recursive functions and furthermore cΩ(n) is larger than
the time for any terminating computation of the underlying universal ma-
chine needs on any input of length n or less.

– There are nonrecursive sets A such that Ω is random relative to A. These
sets are called low for Ω.

In particular the subclass of those sets low for Ω which are reducible ∅′ has
several natural characterizations [6,12]. Downey, Hirschfeldt, Miller and Nies
[5, Corollary 8.6] showed that every ∆0

2 degree low for Ω is completely weakly
computable, and that such degrees can be nonrecursive.

Theorem 4.1 [5]. (Downey, Hirschfeldt, Miller and Nies) If a set A ≤T ∅′ is
low for Ω then it is weakly computable.

One could generalize the notion “low for Ω” to the notion that cΩ dominates
every A-recursive function. This class of degrees is indeed an old friend and there
are several characterizations for it [6,9,5], one of which adapts “Ω is Martin-Löf
random relative to A” to “Ω is Schnorr random relative to A”. So for every r.e.
set A the following statements are equivalent:

– cΩ dominates every A-recursive function;
– Ω is Schnorr random relative to A;
– the Turing degree of A is array recursive;



– the Turing degree of A has a strong minimal cover;
– A is r.e. traceable, that is, for every f ≤T A and almost all n, the Kolmogorov

complexity of f(n) is at most n.

Theorem 1.5 provides another characterization of array recursive degrees.

Theorem 1.5. For any r.e. set A, the following are equivalent:

1. The Turing degree of A is array recursive;
2. Every B ≤T A is weakly computable;
3. The Turing degree of A is completely weakly computable.

Proof. (1 ⇒ 2): Assume that A is r.e. and domination low for Ω. Let B ≤T A.
B has a recursive approximation β0, β1, · · · of rationals such that the convergence
module

cB(n) = min{t : ∀s ≥ t∀m ≤ n (βs(m) = βt(m))}

is A-recursive. Furthermore define the recursive function g inductively by g(0) =
0 and g(s + 1) being the minimal element of Ωs+1 − Ωs which, by choice, is
indeed the first element where these two numbers differ; without loss of generality
such an element always exists. Since cΩ dominates the function n → cB(2n),
with a change of finitely many βn, one can achieve that cΩ actually majorizes
this function. Now define a subsequence γ0, γ1, · · · of β0, β1, · · · by the following
recursive algorithm:

1. Let t = 0. Let s = 0.
2. Let γt = βs.
3. While ∃m ≤ 2g(s + 1)− 2 (βs+1(m) 6= γt(m)) Do s = s + 1.
4. Let t = t + 1. Let s = s + 1. Goto 2.

First one shows by induction that for all n and all s = cΩ(n) there is a t with
γt = βs.

If cΩ(0) = 0 then γ0 = β0 and the assumption holds; if cΩ(0) > 0 then
Ω(0) = 1, g(cΩ(n)) = 0 and the existential quantifier in step 3 becomes false
when s = cΩ(0)− 1, thus the while loop stops and βcΩ(0) is added into the γe.

Assume now that the assumption is true for n, so there is a t′ with γt′ =
βcΩ(n). If cΩ(n+1) = cΩ(n) then there is nothing to show. If cΩ(n+1) > cΩ(n)
then let s, t be the values of the variables of the same name in the algorithm
when s = cΩ(n + 1)− 1. In this case g(s + 1) = n + 1, t ≥ t′ and γt(m) = B(m)
for all m ≤ 2n = g(n + 1)− 2 since γt equals to some βs′′ with s′′ ≥ cB(2n). So
βs+1(m) = γt(m) for all m ≤ g(s + 1) and the loop in Step 3 terminates. Thus
βs+1 will become γt+1 and the assumption is verified again.

So it follows that the sequence of all γt is infinite and converges to B. Fur-
thermore, for every t there is unique s with γt+1 = βs+1 and ∀m ≤ g(s +
1)− 2 (γt+1(m) = γt(m)). Thus |γt+1 − γt| ≤ 23−g(s+1) and

∑
t∈N |γt+1 − γt| ≤∑

s∈N 2g(s+1)−2 ≤
∑

n∈N 2n · 23−2n ≤ 16 and the sequence γ0, γ1, · · · witnesses
that B is weakly computable.



(2 ⇒ 3): Obviously.

(3 ⇒ 1): Let f ≤T A be a strictly increasing function. Define a set B ≡T A
as follows: B(0) = 0; B(2n) = A(n); B(2n + m) = Ωf(2n+3)(2n+1 + m) for
m = 1, 2, · · · , 2n − 1.

Since f ≤T A, it is obvious that B ≡T A. Thus B is weakly computable.
Suppose that B = β0 − β1 for two left-r.e. reals β0 and β1. Now one has the
following four facts:

(1) ∃c0∀n C(β0(0)β0(1) · · ·β0(n)|Ω(0)Ω(1) · · ·Ω(n)) ≤ c0;
(2) ∃c1∀n C(β1(0)β1(1) · · ·β1(n)|Ω(0)Ω(1) · · ·Ω(n)) ≤ c1;
(3) ∃c2∀n C(B(0)B(1) · · ·B(n)|Ω(0)Ω(1) · · ·Ω(n)) ≤ c2;
(4) ∀c3∀∞n (Ω(2n+1+1)Ω(2n+1+2)...Ω(2n+1+2n−1)|Ω(0)Ω(1)...Ω(2n)) > c3.

Here the first two statements follow from the fact that Ω is complete among
the left-r.e. sets with respect the so called rK-reducibility, that third statement
follows from the fact that B = β0 − β1 and the fourth statement from the fact
that Ω is Martin-Löf random and that the digits between 2n+1 and 2n+1 + 2n

cannot be predicted from those up to 2n+1. Therefore, for almost all n, there
is an m ∈ {1, 2, · · · , 2n − 1} with B(2n + m) 6= Ω(2n+1 + m). Thus, for almost
all n, f(2n+3) < cΩ(2n+1 + 2n − 1). The fact that both functions are monotone
gives the following inequality:

∀∞m∃n (2n+2 ≤ m < 2n+3 and f(m) < f(2n+3) < cΩ(2n+1+2n−1) < cΩ(m)).

So cΩ dominates f .

There are r.e. sets such that their Turing degree is array-recursive and low2 but
not low; thus these sets are not low for Ω. So one has that the above character-
ization shows that there are more completely weakly computable degrees than
those found in [5].

Corollary 4.2. There is a completely weakly computable and r.e. Turing degree
which is not low for Ω.

We note that in the proof of Theorem 1.5, the proof of the direction (1 ⇒ 2)
needs that A has r.e. Turing degree, while the directions (2 ⇒ 3) and (3 ⇒ 1)
work for all sets A ≤T ∅′.
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