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THE IMPORTANCE OF Π01 CLASSES IN EFFECTIVE RANDOMNESS

GEORGE BARMPALIAS, ANDREW E.M. LEWIS, AND KENG MENG NG

Abstract. We prove a number of results in effective randomness, using methods in which Π01 classes

play an essential role. The results proved include the fact that every PA Turing degree is the join of two

random Turing degrees, and the existence of a minimal pair of LR degrees below the LR degree of the

halting problem.

§1. Introduction.

1.1. Π01 classes in computability and effective randomness. Many arguments in
computability theory and algorithmic randomness involve Π01 sets of reals and
techniques specific to such sets in an essential way. Two major references to such
arguments in computability theory and in particular the degrees of unsolvability,
are the well known Jockusch-Soare papers [JS72a, JS72b] on degrees of theories and
members of Π01 classes. In this work, Jockusch and Soare introduced the method
of forcing with Π01 classes, proved the now classic low basis theorem and showed a
number of degree theoretic results using compactness arguments withΠ01 sets. For a
survey of results concerningΠ01 classes in computability theorywe refer the reader to
Cenzer [Cen99]. In algorithmic randomness, Kučera’s early papers [Kuč85, Kuč86]
(partly inspired by some questions in the above papers of Jockusch and Soare) are a
demonstration of how central Π01 classes are in the study of the degrees of complete
extensions of Peano Arithmetic (PA degrees) and effective randomness. In this
work he also introduced fundamental methods for coding into PA degrees (using
universal Π01 classes) and coding into effectively random sets (using Π

0
1 classes of

positive measure). The importance of Π01 sets in arguments can be seen in a lot
of recent work. As an example we mention the construction of a low bound for
the ideal of K-trivial degrees by Kučera and Slaman [KS07] which uses Π01 sets for
coding in a very essential way.
In this paper we show a number of results about PA degrees and relative random-
ness demonstrating the applicability of methods with Π01 classes to the solution of
some problems in this area, which do not currently have a known solution via differ-
ent methods. Firstly we show that every PA degree is the least upper bound of two
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Martin-Löf random degrees, thus revealing more connections between these two
classes of degrees, in the spirit of Kučera’s work (see background below). Secondly,
we study relative randomness and in particular the LR degrees using (for the first
time in the literature) methods based on Π01 sets. The main result of this approach
is the construction of a minimal pair of LR degrees below the LR degree of the
halting problem. This was a problem in the area of relative randomness which had
resisted other techniques.

1.2. Background: PA and Martin-Löf random degrees. The collection of sets
separating two disjoint c.e. sets is a natural Π01 class. Hence the set of complete
extensions of a consistent theory forms a Π01 class, which is universal in some
sense. A Turing degree is called PA if it is the degree of a complete extension of
Peano Arithmetic. One of the standard characterizations of the PA degrees (due
to Scott and Solovay, see e.g., [Odi89]) says that a Turing degree a is PA iff the
degrees below a form a basis for Π01 classes. In [JS72a, JS72b] Jockusch and Soare,
partly motivated by the study of PA degrees, demonstrated how Π01 classes and
compactness arguments can be used in order to prove results about the Turing
degrees. One of the most popular definitions of algorithmic randomness is the one
given by Martin-Löf in [ML66], according to which a set is (Martin-Löf ) random1

if it does not belong in any ‘effectively null’ set in the Cantor space. Effectively
null sets were defined to be those of the form ∩jEj where (Ej) is a uniformly c.e.
sequence of Σ01 classes such that ì(Ej) < 2

−j−1.
Kučera was the first to see the strong connection between the PA degrees and the
Martin-Löf random degrees. In particular, in his well known early paper [Kuč85]
he demonstrated how coding techniques based on Π01 classes of positive measure
can be applied in order to show results about the degrees of Martin-Löf random
sequences. A distinctive feature of Kučera’s work has always been that the theory of
Martin-Löf randomdegrees is developed in parallel to the theory of PAdegrees, with
the techniques in the two topics being intrinsically connected. A definitive result
about the relation between the PA degrees and the Martin-Löf random degrees
(extending previous work of Kučera) was shown by Frank Stephan in [Ste06] and
says that a PA degree is Martin-Löf random iff it computes the halting problem.
As discussed in [Ste06] this result strongly suggests a dichotomy of the Martin-Löf
random degrees to the ones which contain a lot of information (they compute the
halting problem) and the ones which are computationally weak, in the sense that
they are not PA. In Section 2 we reveal another connection between these classes
of degrees: every PA degree is the least upper bound of two Martin-Löf random
degrees. The techniques involved in the proof are based on properties of Π01 classes
and Π01 classes of positive measure.

1.3. Background: relative randomness, prefix-free complexity and LR degrees. In
Sections 3, 3.2wedemonstrate howmethods that are based onΠ01 classes canbeused
to prove results about relative randomness. Martin-Löf randomness is equivalent
to the so-called Chaitin-Levin randomness, which is based on Kolmogorov’s idea
of incompressibility of binary strings 2. Let K denote the prefix-free complexity

1in the following when a set is said to be random, we mean Martin-Löf random.
2Given a prefix-freemachineM (a Turingmachinewith prefix-free domain) the prefix-free complexity

of a string ó relative toM is the length of the shortest string ô such thatM (ô) = ó. There is a universal
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relative to a fixed universal prefix-free machine. A set X is called Chaitin-Levin
random if its initial segments all have high K-complexity, i.e., K(X ↾ n) ≥ n − c
for all n ∈ N and a constant c. A standard measure of relative compressing power
of oracles is the LK reducibility ≤LK introduced in [Nie05b]. We say thatA ≤LK B
if the prefix-free complexity of any string relative to B is less than the prefix-free
complexity relative to A, modulo a constant: KB(ó) ≤+ KA(ó) for all ó ∈ 2<ù ,
where 2<ù denotes the set of finite binary strings. This definition formalizes the
intuitive idea of B compressing more efficiently than A (modulo a constant). It is
clear that if A ≤LK B then every random set relative to B is also random relative
to A, which was denoted by A ≤LR B in [Nie05b]. The converse was shown
by Miller in [Mil], so that the relations ≤LK ,≤LR are identical. The equivalence
classes induced by these relations are often called LR degrees. The least LR degree
consists of the low for random sets (sets A such that every Martin-Löf random is
also Martin-Löf random relative toA), which coincide with the low for K sets (sets
A such that K(ó) ≤+ KA(ó)) or even the K-trivial sets (sets A whose prefix-free
complexity is less than the prefix-free complexity of a computable sequence, modulo
a constant). The equivalence of these three notions is one of the most important
recent results in the area of algorithmic randomness and was shown in [Nie05b].
The structure of the LRdegrees was studied in [BLS08a, BLS08b, Sim07] and one
of the questions thatwas not answeredwith the techniques developed in these papers
was about the existence of minimal pairs of LR degrees. Miller [Mil] later showed
that there exist such minimal pairs by using a cardinality argument in conjunction
with some properties of low for Ω sets, where Ω =

∑
U (ó)↓ 2

−|ó| is Chaitin’s halting

probability of a universal prefix-freemachineU (a set is low forΩ if Ω isMartin-Löf
random relative to it). He actually showed that every pair of relatively 2-random
sets form a minimal pair in the LR degrees.
In Section 3.1 we use arguments based on Π01 classes to show that there is a
minimal pair of LR degrees, LR below ∅′. This result cannot be obtained with
previously knownmethods, and was themain motivation for introducing Jockusch-
Soare (as in [JS72a, JS72b]) type of arguments for the study of the LR degrees.3

We also get a number of useful facts about upper cone avoidance in the LR degrees
in relation with Π01 classes, which can be used in order to derive other results
about ≤LR. In Section 3.2 we discuss a number of other applications of Jockusch-
Soare arguments to the study of the LR degrees. In Section 3.3 we discuss how the
samemethodology can give results about the connection between hyperarithmetical
complexity and ≤LR.
Finally in Section 4 we give a simple proof of a result in [Bar06] on cupping with
random sets. The first result in this topic was given in Nies [Nie07] and was later
simplified by Hirschfeldt and Miller using a more general argument with Π02 null
classes. We use the actual construction of Hirschfeldt and Miller as a ‘black box’
to give a very short proof of the result in [Bar06], which was originally given as a
generalization of the non-cupping result of Nies [Bar06].

prefix-free machine, i.e., one that gives optimal descriptions to every string, modulo a constant. For
more background on prefix-free complexity, see [Nie09].
3these include the compactness arguments they used, for example, in their proof that every Π01 class

with no computable paths contains two paths which form a minimal pair in the Turing degrees.
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§2. PA and random Turing degrees. In a number of widely cited papers [Kuč85,
Kuč86] Kučera developed some theory about the PA, the dnr and the Martin-Löf
random Turing degrees. In particular, he treated these classes of degrees using
similar approaches, while often commenting on the differences between the coding
methods available for the PA degrees and the Martin-Löf random degrees. Coding
into PA degrees was seen to be much more flexible than coding into a Martin-
Löf random degree, and this is also reflected in [KS07] where all the K-trivial
degrees are coded into a low PA degree, while it is not known whether there is a
low random degree with this property. The relation between the PA degrees and
the Martin-Löf random degrees was clarified by the following result of Stephan:
a PA degree is Martin-Löf random iff it computes the halting problem. This is a
clear demonstration of a well-known dichotomy in theMartin-Löf randomdegrees.
There is a sharp qualitative distinction between the complete Martin-Löf random
degrees and the incomplete ones. The former are random because they have a lot
of information (indeed all complete degrees are random [Kuč85]) while the latter
are often branded the true Martin-Löf random degrees (see [DHNT06]) and they
have, as a matter of fact, low information content. For example, by the above
mentioned theorem of Stephan, they cannot compute any complete extension of
Peano arithmetic.
In this section we provide a further relation between these two classes.

Theorem 2.1. Every PA degree is the join of two random degrees.

This result, combined with the above mentioned theorem of Stephan, gives a
plethora of pairs of Martin-Löf random degrees which join to a degree which
is not Martin-Löf random; we just need to apply the result to any incomplete PA
degree and get a pair with this property. In fact, this was the original motivation
for this result.

Corollary 2.2. Incomplete PA degrees are non-random degrees which are the join
of two random degrees.

The category version of theorem 2.1 is not true, however. Recall that a sequence
is weakly 1-generic if every dense Σ01 set of strings contains a prefix of it, and is
1-generic if for every Σ01 set of strings which does not contain a prefix of it there is a
prefix of the sequence which is not a prefix of any string in that set.

Proposition 2.3. There exists a PA degree which is not the join of two (weakly)
1-generic degrees.

Proof. By the hyperimmune-free basis theorem applied to the complete Π01 class
containing only complete extensions of PA, there is a hyperimmune-free PA degree.
This cannot be the join of two (weakly) 1-generics as such sequences are hyperim-
mune by a result of Kurtz [Kur81] (also presented in [DH09]) and hyperimmune
degrees are upward closed. ⊣

2.1. Introduction to the proof of Theorem 2.1. Let C be a set of PA degree. We
wish to find randoms A,B such that C ≡T A ⊕ B. We would like to start with a
Π01 class P of randoms and findA,B inside P. The plan is to use a perfect tree T of
paths in P in order to code C into the join of two of its paths A, B, thus achieving
C ≤T A⊕B. The coding will be done in such a way that if C can compute the tree
T , then A⊕B ≤T C . In order to achieve this, we will define a class of trees T such
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PA

random random

not random

random random

Figure 1. Every PA Turing degree is the least upper bound of
two random Turing degrees. Incomplete PA Turing degrees are
non-random degrees which are joins of two random degrees.

that [T ] ⊆ P, which can be defined by a Π01 formula. In other words, there is a Π
0
1

set of reals which effectively represent the trees in this class. Then we can use the
fact that C is of PA degree to get a tree in that class which is computable from C ,
and then use it in order to do the coding for C ≤T A ⊕ B. Before we go into the
details of the argument, let us give a formal definition of a tree.

Definition 2.4. If T is a partial function from 2<ù to 2<ù we say that T is a tree
if for every ó ∈ 2<ù and i ∈ {0, 1} such that T (ó ∗ i) ↓:

• T (ó) ↓⊂ T (ó ∗ i);
• T (ó ∗ (1− i)) ↓ |T (ó ∗ i).

A tree T is perfect if T (ó) ↓ for all ó. A finite tree T of level n is the restriction of
a tree (as a map) to strings of length n.

A first attempt would be (and indeed was) to use an (infinite) indifferent set on a
random sequence (with respect to theMartin-Löf random sequences) in order to get
the required tree of randoms for coding (see figure 2). In [FMN] a set of positions
was called indifferent for a sequence with respect to a classA if any alteration of the
digits of the real in these positions produces a sequence in A . It was proved (also
see [Nie09]) that every random sequence has an indifferent set (with respect to the
Martin-Löf random sequences). To find randoms A,B such that C ≤T A ⊕ B we
can take any random X and define

• A to be the random we get if we let the digit in the nth indifferent position of
X be C (n)

• B to be the random we get if we let the digit in the nth indifferent position of
X be 1− C (n).

Now the indifferent set is computable in A⊕B (as it consists of the positions where
A,B differ) and so is C . However the class of trees of this type cannot be expressed
as a Π01 class in the Cantor space. The reason for this is that 2

ù is compact while the
space of perfect trees of definition 2.4 (even the restricted class of figure 2) with the
natural topology generated by the finite trees4, is not. So although we can achieve
C ≤T A ⊕ B we cannot achieve Turing equivalence through this approach. The
solution is to work in a compact subspace of the space of trees.

Definition 2.5. Letf : N → Nbe an increasing function. The functionf defines
a partition on any given infinite string A. Let (óA(i)) be the unique sequence of

4In this topology the basic open sets are indexed by the finite trees F of definition 2.4 and the basic
open set corresponding to a particular F is the collection of perfect trees T which have F as an initial
segment.
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⋆

⋆

⋆

⋆

(a) Random real. (b) Tree of random reals.

Figure 2. (a) Indifferent set of positions ⋆ in a random sequence.
(b) The associated tree of random sequences that we get if we put
0 (represented by a white ball) or 1 (represented by a black ball)
into the indifferent positions on the real.

strings such that |óA(0)| = f(0), |óA(i + 1)| = f(i + 1)− f(i) and

A = óA(0) ∗ óA(1) ∗ · · · (2.1)

Say that A,B are piecewise f-different from level n if óA(i) 6= óB (i) for all i ≥ n.

Now given A,B which are piecewise f-different from level n, define the tree Tf,nAB
as follows (for convenience we let f(−1) = 0):

Tf,nAB (∅) = A ↾ f(n − 1),

Tf,nAB (ô ∗ 0) = T
f,n
AB (ô) ∗min{óA(n + |ô|), óB (n + |ô|)},

Tf,nAB (ô ∗ 1) = T
f,n
AB (ô) ∗max{óA(n + |ô|), óB (n + |ô|)}

and consider the space

T
f,n = {Tf,nAB | A,B are piecewise f-different from level n}.

(a) (b)

Figure 3. (a) The segments of piecewise f-different from level
n reals A,B. Solid and dashed lines represent lexicographically
larger and smaller corresponding segments respectively. (b) The

tree Tf,nAB .
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Now it is not hard to see thatT f,n is compact and f-effectively homeomorphic to
the Cantor space. If f is computable then the set

C
n
f = {A⊕ B | A,B are piecewise f-different from level n and [Tf,nAB ] ⊆ P}

(where P is a Π01 class consisting entirely of random sequences) is Π
0
1 which is

exactly what we wanted. It suffices to show the following.

Lemma 2.6. There exists a computable function f such that, if P is a Π01 class of
positive measure, then C nf 6= ∅ for some n ∈ N.

We need to work with finite approximations to the notion of piecewise different
pairs of reals, therefore we introduce the following terminology.

Definition 2.7 (Switching reals inside Π01 classes). Letf : N → N be an increas-
ing function and P a Π01 class. We say that A can be f-switched (or just switched)
at [n,m] inside P if it belongs to P and there exists B such that óA(i) 6= óB (i) for
all i ∈ [n,m] and for every sequence (xi) ∈ {A,B}ù with xi = A for i /∈ [n,m], the
real óx0(0) ∗ óx1(1) ∗ · · · is in P. In this case B is a switching partner of A at [n,m]
inside P. We say that A can be f-switched (or just switched) from level n inside P
if it belongs to P and there is B such that óA(i) 6= óB (i) for all i ≥ n and for every
sequence (xi ) ∈ {A,B}ù with xi = A for i < n, the real óx0(0)∗óx1(1)∗ · · · belongs
to P.

If Cn,m(A) denotes the class of switching partners of A at [n,m] inside P then
Cn(A) = ∩mCn,m(A) is the class of switching partners of A from level n inside P.
Note that Cn,m(A) is clopen and Cn(A) is closed. Let Dn,m (for 0 ≤ n ≤ m) denote
the set of reals which cannot be switched at [n,m] inside P. So Dn,m ⊆ Dn,m+1 and
it is clear that the classes Dn,m are Σ01 uniformly in f. Let Dn be the set of reals
which cannot be switched from level n inside P.

Lemma 2.8. Dn = ∪mDn,m for all n.

Proof. It is enough to show thatDn = ∩mDn,m for all n. Indeed, if A ∈ ∩mDn,m
by compactness we have that Cn(A) = ∩mCn,m(A) 6= ∅ and so A ∈ Dn (the other
direction is trivial). ⊣

We are going to show the following, which is stronger than lemma 2.6 since, by
[Kuč85], a Π01 class of positive measure contains a final segment of every Martin-
Löf random real.

Lemma 2.9. There exists a computable function f such that if P is a Π01 class and
X ∈ P is sufficiently random (weakly 2-random suffices) then for some n ∈ N and

some Y piecewise f-different to X from level n we have [Tf,nXY ] ⊆ P.

2.2. Proof of lemma 2.9. It suffices to inductively define a computable function
f such that

ì(D̂n) ≤ O (2
−n), where D̂n = Dn ∩ P. (2.2)

Indeed, in that case the class ∩i D̂i is Π02 and is null. So for every weakly 2-random

X ∈ P there some n such that X 6∈ Dn, which means that [T
f,n
XY ] ⊆ P for some Y .

For (2.2) it suffices to make

ì(D̂n,n) ≤ 2
−n−1, (2.3)

ì(D̂n,m+1 − D̂n,m) ≤ 2
−n−m−2 (2.4)
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for all n and all m ≥ n, where D̂n,m = P ∩Dn,m. We show that

ì(D̂n,n) ≤ 2
f(n−1) · 2−f(n), (2.5)

ì(D̂n,m+1 − D̂n,m) ≤ 2
f(m) · 2f(m)−f(n−1) · 2−f(m+1) (2.6)

for an arbitrary increasing f, and then choose a computable f appropriately. For
(2.5), fix ó of lengthf(n−1) and for each ô of lengthf(n)−f(n−1) letMóô(n, n)
be the set of reals B such that ó ∗ ô ∗ B ∈ D̂n,n. By the definition of D̂n,n we have
thatMóô(n, n) ∩Móñ(n, n) = ∅ for any strings ô 6= ñ of length f(n) − f(n − 1).

Hence
∑
ô∈2f(n)−f(n−1) ì(Móô(n, n)) ≤ 1 and so ì(D̂n,n ∩ [ó]) ≤ 2

−f(n). Given that

there are 2f(n−1) such strings ó, we get (2.5).
For (2.6), say that a string ô of length f(m)− f(n − 1) is a switching string for
A ∈ P at [n,m] inside P if for some (equivalently, for all) ç of length f(n − 1) and
B ∈ 2ù the real ç ∗ ô ∗ B is a switching partner for A at [n,m] inside P. For any
string ô of length f(m) − f(n − 1) let Lô be the set of reals in P for which ô is a
switching string at [n,m]. Since every A ∈ P − D̂n,m belongs to some Lô we have

D̂n,m+1 − D̂n,m = ∪{D̂n,m+1 ∩Lô ∩ [ó] | ó ∈ 2f(m) ∧ ô ∈ 2f(m)−f(n−1)}. (2.7)

Fix strings ó, ô of lengths as in (2.7) and for each string ñ of lengthf(m+1)−f(m)
letMóñ,ô(n,m + 1) be the set of all B such that ó ∗ ñ ∗ B ∈ D̂n,m+1 ∩Lô . As before
we have that Móñ,ô(n,m + 1) ∩Móñ′,ô(n,m + 1) = ∅ for any ñ 6= ñ′ of length
f(m + 1)− f(m). Hence

∑

ñ∈2f(m+1)−f(m)

ì(Móñ,ô(n,m + 1)) ≤ 1

and so ì(D̂n,m+1 ∩ Lô ∩ [ó]) ≤ 2−f(m+1). Then from (2.7) we get (2.6). Now if we
let

f(0) = 1, f(n + 1) = 2f(n) + n + 2 (2.8)

then (2.5) and (2.6) give (2.3) and (2.4) respectively. This concludes the proof of
the lemma.

2.3. Proof of Theorem 2.1. Let P be a Π01 class which contains only Martin-Löf
random reals, fix f as defined in (2.8) and consider n such that C nf 6= ∅. If C is of

PA degree it computes some member Tf,nAB of C
n
f . Without loss of generality we can

assume that A ↾ f(n − 1) = B ↾ f(n − 1) and that for each i ≥ n the string óA(i)
is lexicographically smaller than óB(i) iff C (i) = 0. Then A,B ∈ P and so they are
random reals. We claim thatC ≡T A⊕B. It is clear thatA ≤T C andB ≤T C . On
the other hand for every i ,C (i) = 0 iff óA(i) is lexicographically smaller than óB(i).

§3. LR minimal pairs and Jockusch-Soare arguments with Π01 classes.

3.1. LRminimal pairs andΠ01 classes. A basic question that one can ask about a
reducibility on 2ù or a degree structure is whether there exist minimal pairs. These
are pairs of non-trivial (with respect to the particular reducibility) reals with the
property that every real below both of them is trivial. Minimal pairs usually (for
example with respect to the Turing reducibility) formalize the basic idea that two
reals have no non-trivial common information. The same intuition applies to other
reducibilities like LK, only that the notion of triviality is now weaker: a real is
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trivial with respect to ≤LK if it does not help a prefix free machine to compress
more efficiently than when it works without an oracle. A minimal pair with respect
to ≤LK is a pair of reals such that for every non-trivial real X at least one of them
does not compress more efficiently than X .
Minimal pairs of LR (and so, LK) degrees were first constructed by Miller
[Mil] via a measure theoretic argument (this proof also appears in [Nie09, Exercise
8.1.12]). He showed that for every low for Ω real A the set {X | X ≤LR A}
is countable hence, given that non-trivial LR upper cones are null, he deduced the
claim by the fact that a countable union of null sets is null.5 With a similar argument
(see [Mil, Nie09]) he also showed that every pair of relatively 2-random reals form a
minimal pair in the LR degrees (this was also observed by Yu Liang). Since there is
a pair of 0′′-computable relatively 2-random reals6, this implies that there two reals
Turing below 0′′ which form a minimal pair in the LR degrees.
In this section we present another method of obtaining minimal pairs of LR
degrees, which allows to construct them inside null sets, for example LR below ∅′.
This methodology involves Π01 sets of reals and compactness arguments and goes
back to [JS72b, JS72a] where it was used to derive results about the Turing degrees.
Before we start the formal argument we recall the characterization of ≤LR given in
[KH07]: A ≤LR B iff there exists V B which is a Σ01(B) class of measure < 1 such
thatUA ⊆ V B whereUA is a member of the universalMartin-Löf test relative toA;
also, A ≤LR B iff every Σ

0
1(A) class of measure< 1 is contained in a Σ

0
1(B) class of

measure < 1. From now on U will always denote a fixed member of the universal
oracle Martin-Löf test and the term bounded Σ01(X ) will refer to a Σ

0
1(X ) class of

measure < 1. We often use the term oracle Σ01 class to refer to a c.e. operator which
takes a set X to an X -c.e. set W X of strings, which is seen as the Σ01(X ) class of
reals consisting of the infinite binary extensions of the strings inW X .
The following is an atomic version of LR cone avoidance inside a Π01 class.

Lemma 3.1. Let P be a nonempty Π01 class, V an oracle Σ
0
1 class such that

∀Z ∈ 2ù , ì(V Z) < 1, and A 6≤LR ∅. Then there exists some B ∈ P such that
UA 6⊆ V B .

Proof. Suppose that for all B ∈ P we have UA ⊆ V B . We define a Σ01 class E
such that ì(E) < 1 and UA ⊆ E, which shows that A ≤LR ∅. Let

E = {ó | [ó] ⊆ V Z for all Z ∈ P}.

By hypothesis we have UA ⊆ E and by compactness E is a Σ01 class. Now take
Z ∈ P which exists since P 6= ∅. Then E ⊆ V Z and hence ì(E) ≤ ì(V Z) < 1. ⊣

Now we are ready to show the full LR cone avoidance theorem inside a Π01 class.

Theorem 3.2. Given a nonemptyΠ01 class P and a countable sequence (Ci) of sets
such that Ci 6≤LR ∅ for all i ∈ N, there exists B ∈ P such that Ci 6≤LR B for all i .

Proof. We show this for one C as it is clear how to generalize to (Ci). Let
(Ve) be an effective enumeration of all oracle Σ

0
1 classes of bounded measure. We

force with Π01 classes and use lemma 3.1. First note that if U
A 6⊆ V Ze then by the

5The same argument gives minimal pairs in the Turing degrees, but in that case it is much easier since
all Turing lower cones are countable.
6This follows by the low basis theorem relativised to ∅′ and the existence of a Π01(∅

′) class which

contains only 2-randoms.
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compactness of computations7 there is n ∈ N such that UA↾n 6⊆ V Ze . So if Qe is a
Π01 class containing Z such that U

A 6⊆ V Ze then there is some n ∈ N such that the
Π01 subclass

Me,n = {Z ∈ Qe | U
A↾n 6⊆ V Ze }

is nonempty. Now let P0 = P and inductively suppose that Pi ↓ and Pi 6= ∅. By
lemma 3.1 and the previous discussion there is ni ∈ N such that the Π01 class

{Z ∈ Pi | U
C↾ni 6⊆ V Zi }

is nonempty. Let Pi+1 be this class. Now if we take B ∈ ∩iPi , then by construction
we have B ∈ P andUC 6⊆ V Bi for all i ∈ N. ⊣

An application of Theorem 3.2 gives the following, in analogy with the line of
argument in [JS72b] for the Turing degrees.

Theorem 3.3. Every nonempty Π01 class contains two paths with greatest lower
bound 0 in the LR degrees.

Proof. Let P be a nonempty Π01 class. If it contains a low for random path, the
claim is immediate. Otherwise, by the low for Ω basis theorem of [DHMN05] pick
C ∈ P which is low for Ω. By [Mil] the lower cone

{Z | Z ≤LR C}

is countable, so let (Ci) be an enumeration of it. Now apply Theorem 3.2 and get
B ∈ P such that Ci 6≤LR B for all i ∈ N. Then B,C form a minimal pair in the LR
degrees. ⊣

Now a combination of Theorem 3.3 with a result from [BLS08b] gives the minimal
pair LR below ∅′ that we mentioned above.

Corollary 3.4. There are A,B ≤LR ∅′ which form a minimal pair in the LR
degrees.

Proof. In [BLS08b] it is shown that there is Π01 class P such that Z ≤LR ∅′ and
Z 6≤LR ∅ for all Z ∈ P. If we apply Theorem 3.3 to P we get the claim. ⊣

All known minimal pairs in the LR degrees have the property that one member of
the pair has countable lower cone and, indeed, is low for Ω.8 It is therefore natural
to ask the following.

Question 3.5. Are there sets A,B which have uncountable LR lower cones and
form a minimal pair in the LR degrees?

3.2. More Jockusch-Soare arguments with ≤LR. The methodology introduced
in [JS72a, JS72b] for the study of the Turing degrees through Π01 classes and
compactness arguments can also be applied to the study of randomness (weak)
reducibilities—for example, the study of ≤LR. We give a number of examples of
such an approach, omitting proofs in the interest of space.9 Recall that the degree
spectrum (with respect to some notion of degrees) of a Π01 class is the set of the

7that is, the fact that oracle computations only use a finite segment of the oracle. This is also known
as the use principle.
8by definition the property low for Ω is downward closed with respect to≤LR .
9The proofs for the results presented in this Sections 3.2 and 3.3 were removed from an earlier version

of the paper, after a request by the referee. They are available from the authors.
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degrees of its members. We can show that the LR degree spectrum of aΠ01 class with
no K-trivial members contains an antichain of size 2ℵ0 . Moreover this antichain can
be chosen disjoint from any given countable sequence of non-trivial LR upper cones.
This can be seen as an analog for ≤LR of Theorem 2.5 in [JS72b] which referred to
the Turing degrees. Notice that a collection of reals that form an antichain of LR
degrees also forms an antichain in the Turing degrees. In connection to this result,
it is well known (see Sacks [Sac63]) that the Turing degree spectrum of every perfect
set of reals contains an antichain of size 2ℵ0 . We do not know if the same holds for
the LR degrees.
In relation to category, we can show that the LR upper closure of a Π01 class
which does not contain K-trivials is meager. This can be seen as the LR analogue of
Theorem 5.1 in [JS72b]. The latter result states that the Turing upper closure of aΠ01
class with no computable members is meager. Naturally, results about the spectra
of Π01 classes have consequences in the study of theMedvedev andMuchnik lattices
of Π01 classes. Motivated by these connections, Cole and Simpson showed in [CS07]
that given any special Π01 class P (i.e., one containing no computable paths) we can
find another special nonempty Π01 classQ such thatX 6≤T Y for allX ∈ P, Y ∈ Q.
The analog of this result for the LR degrees is also true: given aΠ01 class containing
no K-trivials we can find another nonemptyΠ01 class Q containing no K-trivials, such
that X 6≤LR Y for all X ∈ P, Y ∈ Q. Since every Π01 class contains a path of c.e.
Turing degree, this implies that: if P is a Π01 class with no K-trivial members then
there exists a c.e. set A which is not K-trivial and X 6≤LR A for all X ∈ P. Finally,
we can show the following, which can be seen as a strengthening of Theorem 4.7 of
[JS72b]. There is a perfect Π01 class such that any two distinct members of it are LR
incomparable.

3.3. Hyperarithmetical complexity LR below ∅′. The Jockusch-Soare methodol-
ogy discussed above is also a very useful tool for the study of features of ≤LR that
do not have an analogue in the Turing degrees. For example, we can show that
there is a proper hyperarithmetical hierarchy of LR degrees below the LR degree of
the halting problem. An LR degree is ∆02 if it contains a ∆

0
2 set. Similarly, it is ∆

0
α

(where α is a computable ordinal) if it contains a set in ∆0α . For the definition of
the hyperarithmetical hierarchy we refer the reader to [AK00]. Recall from [AK00]
that given Kleene’s O as a system of notations for the computable ordinals we can
define the sets H (a) for a ∈ O by recursion, in such way that H (x) ≡T H (y) for
notations x, y ∈ O representing the same ordinal. Given a computable ordinal α,
let ∅(α) be someH (a) for a notation a ∈ O such that a represents α. For an infinite
ordinal α we let ∆0α be the class of oracles which are computable from ∅(α); for finite
ordinals n let ∆0n be the usual arithmetical class Σ

0
n ∩Π

0
n (notice the non-uniformity

in the transition from the finite to the infinite case). We can show that for each
computable ordinal α ≥ 2 there is an LR degree below the LR degree of ∅′, which is
∆0α and is not ∆

0
ã for any ã < α. The proof is a forcing argument with Π

0
1 classes. It

uses a Π01 class with no K-trivial paths, such that all of its paths are ≤LR ∅′. This
was constructed in [BLS08b]. Also, it uses certain features of ≤LR like those used
in Section 3.1.
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§4. Random non-cupping revisited. The property of joining a random degree to
∅′ was first addressed by Kučera in a meeting in Cordoba in 2004. The first result
was produced by Nies in [Nie07] where he constructed a promptly simple set which
cannot be joined with a random to ∅′. Such sets with the latter property were called
Martin-Löf non-cuppable. He also observed that such a set has to be K-trivial
and showed that the above result holds even if we replace ∅′ with an arbitrary ∆02
random set. Shortly after this proof was circulated, Barmpalias [Bar06] produced
a different proof, which shows the stronger result that ∅′ in the above statement can
be replaced by an arbitrary ∆02 set. In fact, he showed the following.

Theorem 4.1 (Barmpalias [Bar06]). For every ∆02 noncomputable set Y there is a
promptly simple set A such that Y ≤T A⊕R⇒ A ≤T R for every random set R.

Later Hirschfeldt showed that if ∅′ ≤T A⊕R for a K-trivial A and aMartin-Löf
random set R then ∅′ ≤LR R, and Miller and Hirschfeldt (see [Nie05a] or [Nie09])
showed that for every null Σ03 class there exists a promptly simple set which is Turing
below all Martin-Löf random members of the class. Given that the class of LR-
complete sets is Σ03 and null, and it contains Turing incomplete Martin-Löf random
sets, it follows that there is a promptly simple Martin-Löf non-cuppable set.
Let (We) be the standard effective sequence of all c.e. sets and let (Φe) be the
standard effective sequence of all Turing functionals. In the following we give
a simple proof of Theorem 4.1 given the proof of the above mentioned result of
Hirschfeldt and Miller. Their proof is effective and produces a c.e. set. It can
also easily be combined with lowness requirements, so that it uniformly produces a
lowness index for the constructed set. In other words, this modified argument can
be seen as a pair of computable functions f1, f2 which take an index of a Σ03 class

10

S and return a c.e. index f1(e) of a c.e. setW (i.e., a number k such thatW =Wk)
and a lowness index f2(e) ofW (i.e., a number t such thatW ′ = Φ∅′

t ) such that

• W is Turing below all Martin-Löf random members of S,
• if S is null thenW is promptly simple.

Notice that by the properties off1, f2 we also haveW ′
f1(e)

= Φ∅′

f2(e)
for all e. Given

a non-computable ∆02 set Y with a computable approximation (Ys ) the class

Se = {X | Y ≤T X ⊕We} = ∪m ∩s0,n ∪s>s0{X | ΦX⊕Wem,s ⊃ Ys ↾ n}

(where Φm,s denotes the finite approximation to the Turing functional Φm at stage s)
is Σ03(We). Also, Se is null in the case that Y 6≤T We , and it is Σ03 in the special case
whereWe is low. In fact, there is a computable function g such that if n is a lowness
index of a low set We then g(e, n) is a Σ03 index of Se . By the double recursion
theorem there exist e, k ∈ N such that

Wf1(g(e,k)) =We and Φ
∅′

f2(g(e,k))
= Φ∅′

k =W
′
e . (4.1)

The set We is not computable, because otherwise Y 6≤T We , so by [Sti72] Se
is null and therefore Wf1(g(e,k)) is promptly simple (by the properties of f1), a
contradiction. If Y ≤T We ⊕ R for any Martin-Löf random set R, then R ∈ Se
and by the properties of f1 we haveWe ≤T R.

10as usual, we can assume that every number is the index of some Σ03 class. Recall that a (Σ
0
3) index of

a Σ03 class S is the index of a Turing machine which, given a triple (i, j, k), outputs a clopen set of reals

Vi,j,k such that S = ∪i ∩j ∪kVi,j,k .
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