
COMPUTABLE LINEAR ORDERS AND PRODUCTS

ANDREY N. FROLOV, STEFFEN LEMPP, KENG MENG NG, AND GUOHUA WU

Abstract. We characterize the linear order types τ with the property that

given any countable linear order L, τ · L is a computable linear order iff L is

a computable linear order, as exactly the finite nonempty order types.

Contents

1. Introduction 1
2. The Main Theorem 2
3. The Proof of the Main Theorem 3
3.1. Notation used 3
3.2. Construction of L and gs 5
3.3. Facts about the construction 6
3.4. Verifying that the construction works 8
4. The case n = 1 18
References 18

1. Introduction

The study of effectiveness in the area of linear orders has a long history; we
refer to Downey [Do98] for a summary from the late 1990’s. One of the main
techniques used in the study of computable linear orders is the use of products by
fixed “simple” linear orders (on the left) to bootstrap the complexity by one or
more jumps. We will give some examples of this below; but the main purpose of
this paper is to study what effect of taking a product has on the computational
complexity of linear orders in general.

We thus consider the following general over-arching

2010 Mathematics Subject Classification. 03D45.

Key words and phrases. computable linear order, product.
The first author is supported by the grant of RF President MD-2721.2019.1. The second au-

thor’s research was partially supported by NSF grant DMS-1600228 and AMS-Simons Foundation
Collaboration Grant 209087. The third author is partially supported by the grants MOE2015-
T2-2-055 and RG131/17. The fourth author is partially supported by M4020333 (MOE2016-T2-
1-083), M4011672 (RG32/16) and M4011274 (RG29/14) from Ministry of Education Singapore.
The first and second authors wish to thank the New Zealand Mathematics Research Institute,

during the 2017 Summer School of which part of this research was carried out. The second author
also wishes to thank Nanyang Technological University where part of this research was carried
out.

1

2 FROLOV, LEMPP, NG, AND WU

Problem 1.1. Characterize, for any n > 0, the order types τ such that, for any
countable linear order L, L has a 0(n)-computable copy iff τ · L has a computable
copy.

This problem was touched in [Do98] (the discussion below Question 2.1). For
n = 1, Downey and Knight [DK92] constructed an example of such a τ . Namely,
they proved that, for any L, L has a 0′-computable copy iff (η + 2 + η) · L has a
computable copy. Frolov showed that, for any k ∈ ω, L has a 0′-computable copy iff
(η+k+2+η) ·L has a computable copy. Indeed, he proved [Fr06, Corollary 1] that
if τ has neither a least nor a greatest element, and a linear order L is 0′-computable,
then τ · L has a computable presentation. Later, Frolov noted in [Fr12] that the
latter can be improved to the following

Theorem 1.2. If τ does not contain a least element, or does not contain a great-
est element, and a linear order L is 0′-computable, then τ · L has a computable
presentation.

For n = 2, Fellner [Fe76] proved that, for any countable linear order L, L has
a 0′′-computable copy iff ζ · L has a computable copy. Ash and Knight [AK00]
showed the same for ω · L in place of ζ · L.

Alaev, Thurber and Frolov [ATF09] proved that if τ does not contain a least
element, or does not contain a greatest element, and there are no τ1, τ2, τ3 such
that τ = τ1 + τ2 + τ3 and τ1, τ3 ∈ {η, 1 + η, η + 1}, then τ · L has a computable
copy for any 0′′-computable linear order L. From this, some examples of τ for
Problem 1.1 can be deduced for n = 2. In particular, for any countable linear
order L, L has a 0′′-computable copy iff (η + ω∗) · L has a computable copy iff
(ω∗ + ω + ω) · L has a computable copy, among other results.

2. The Main Theorem

In this paper, we give a complete answer to Problem 1.1 for n = 0 and discuss
for the case n = 1. For the case n = 0, we prove the following

Theorem 2.1. The following are equivalent:

(1) τ is finite and nonempty.
(2) For any countable linear order L, L has a computable copy iff τ · L has a

computable copy.
(3) For any countably infinite linear order L, L has a computable copy iff τ · L

has a computable copy.

Proof. The direction “(2)⇒ (3)” is obvious. So we need to prove both “(3)⇒ (1)”
and “(1) ⇒ (2)”.

To prove “(3) ⇒ (1)”, we note first that τ must be computable1. Indeed, let L
be an infinite linear order with a least element and a greatest element. Then a
computable presentation of τ · L contains points t1, t2 such that [t1, t2] ∼= τ . So τ
has a computable copy. Obviously, τ is not empty.

For contradiction, we assume that τ is infinite, and we consider three cases.

Case 1: τ fails to contain a least, or a greatest, element.

1If L is arbitrary from Condition(2) then, to prove that τ is computable, it is enough to consider
L = 1.

COMPUTABLE LINEAR ORDERS AND PRODUCTS 3

Then if L is a 0′-computable linear order without computable copy, then, by The-
orem 1.2, τ · L has a computable copy, contradicting Condition(3).

Case 2: τ contains a limit point.

Suppose for definiteness that τ has a left limit point. Thus τ = τ1 + 1 + τ2, where
τ1 has no greatest element. Let L ∼= ζ · L0 be a 0′-computable linear order without
computable copy. Then, τ ·L ∼= τ ·(ζ ·L0) ∼= (· · ·+τ1+1+τ2+τ1+1+τ2+· · ·)·L0

∼=
(1 + τ2 + τ1) · (ζ · L0) ∼= τ0 · L, where τ0 = 1 + τ2 + τ1 is computable and has no
greatest element. From Theorem 1.2, it follows that τ0 · L, and hence that τ · L,
has a computable copy, again contradicting Condition (3).

Case 3: τ is infinite without limit point but with a least element and a greatest
element.

Thus τ is discrete and τ = ω+ ζ · τ0 +ω∗. Again, let L ∼= ζ · L0 be a 0′-computable
linear order without computable copy. Then, τ · L ∼= τ · (ζ · L0) ∼= (· · ·+ω+ ζ · τ0 +
ω∗+ω+ ζ · τ0 +ω∗+ · · ·) · L0

∼= (ω∗+ω+ ζ · τ0) · (ζ · L0) ∼= (ζ · (1 + τ0)) · L ∼= τ1 · L,
where τ1 ∼= ζ · (1 + τ0) has no least or greatest element. To apply Theorem 1.2, we
need to show that τ1 has a computable presentation.

It is easy to see that we can build a 0′′-computable presentation T1 of τ1 such
that the successor relation and the block relation of T1 are both 0′′-computable. By
the result of Alaev, Thurber, Frolov in [ATF09], τ1 has a computable copy. Again
by Theorem 1.2, it follows that τ1 · L ∼= τ · L has a computable copy, contradicting
Condition (3).

This concludes the proof of “(3) ⇒ (1)”.
It remains to prove “(1) ⇒ (2)”. We will show this in Theorem 3.1 in section 3

below. �

3. The Proof of the Main Theorem

We now finish the proof of Theorem 2.1 by proving the following

Theorem 3.1. For any m > 1 and any countable linear order A, if M is a
computable copy of m · A, then A is computable.

Proof. We will prove the theorem for the case m = 2 and the general case can be
proved in an analogous way.

Fix a computable injective enumerationM[s] ofM. Here, we useM[s] to denote
the enumeration ofM by stage s, and thus, we assume thatM[0] = ∅, and that at
each stage, exactly one new element is enumerated intoM. We build a computable
linear order L such that 2 · L ∼= M. We do this by defining a computable map
gs : L[s] 7→ M[s]<ω with the ∆0

2-limit g such that dom(gs) = L[s] and gs is order-
preserving for all s. Here order-preserving means that if max gs(a) < min gs(b), then
a < b. We will assume that the greatest and least elements of M (if they exist) are
in an infinite block; otherwise we simply remove the finite block(s) from M.

3.1. Notation used. We use x and y to denote points inM, and a and b to denote
points in L. For a tuple ~x ∈M<ω, we associate the set

g−1(~x) = {a ∈ L | g(a) ⊆ ~x}.

Each element a introduced in L will receive a target t(a) ∈ M. When a is first
introduced, we will define g(a) and keep t(a) undefined. When Rg(a) is removed
(if ever, i.e., g(a) is not an interval anymore, where Rg(a) is a requirement to be

4 FROLOV, LEMPP, NG, AND WU

introduced soon), we will redefine g(a) and assign t(a) as a target. Once assigned,
t(a) will not be redefined later; hence, t is a partial computable function.

We use a < b to denote that (a, b) ∈ L, similarly x < y to denote that (x, y) ∈M.
We use i <N j to denote the ordering of the natural numbers. We define the distance
between distinct elements x and y at stage s, denoted by d(x, y)[s], as the number
of points currently strictly between x and y (hence d(x, y) = 0 iff x and y are
adjacent). If y 6∈ ~x, then d(~x, y) = minz∈~x d(z, y) (if y ∈ ~x then d(~x, y) = 0). If
~x ∩ ~y = ∅, then d(~x, ~y) = minz∈~x,z′∈~y d(z, z′); as we will only apply d(~x, ~y) to
tuples which are currently intervals, the condition ~x ∩ ~y = ∅ implies that ~x lies
completely to the left or completely to the right of ~y. If ~x∩~y 6= ∅, then the distance
is 0. Given tuples ~x and ~y, we say that ~y is ~x-near if d(~x, ~y) ≤ 〈~x〉〈~x〉+2; otherwise
we say that ~y is ~x-far. (Here, we fix an encoding 〈·〉 of all tuples with the usual
properties.) Given tuples ~x and ~y, we will sometimes say informally that ~x lies to
the left of ~y if max ~x < min ~y.

We will need to satisfy the requirements R~x:

R~x: If ~x is a maximal finite block, then #g−1(~x) =
#~x

2
,

where #A is the size of A, and ~x ranges over all finite intervals of even length.
We will ensure that if ~y ⊂ ~x, then R~y is of higher priority than R~x (hence the
construction always attends to all the sub-tuples before attending to a larger tuple).
We will assume here that if ~x is of higher priority than ~y, then 〈~x〉〈~x〉 < 〈~y〉. This
property may imply that the coding of tuples is not a bijection.

As we are assuming that M receives exactly one new point at every stage, we
will generate new tuples ~y for the intervals containing the new point, and add R~y
to the end of the list of requirements. Also the requirement R~x is removed from
the list whenever we see that ~x is no longer an interval.

A tuple ~x is said to be active if R~x has been added to the list of requirements
and has not removed from it yet.

Say that R~x requires attention at a stage s, if the following hold.

(i) #g−1(~x) < #~x
2 .

(ii) If #~x > 2, then there are at least 〈~x〉〈~x〉+2 many points to the left and to the
right of ~x.

(iii) If #~x > 2, then d(~y, ~x) > 〈~x〉〈~x〉+2 for every higher-priority R~y with ~y∩~x = ∅.
(In other words, every disjoint tuple with higher-priority is ~x-far.)

(iv) For every b ∈ L[s], either g(b) (~x, or g(b) ∩ ~x = ∅ and

d(g(b), ~x) >


〈~x〉〈~x〉+2, if #~x > 2,

min
{
〈~x〉〈~x〉+2, 〈g(b)〉〈g(b)〉+2

}
, if #~x = 2 and #g(b) > 2,

4, if #~x = #g(b) = 2.

(v) If #~x = 2, then for each ~y such that R~y is of higher priority and that ~x is
~y-near, either
• there is no a such that g(a) is ~y-near and g(a) 6⊆ ~y, or
• there exists some b such that g(b) is ~y-near, g(b) 6⊆ ~y and g(b) is of higher

rank than ~y.
Here we say that g(b) is of higher rank than ~y if one of the following holds:
• g(b) is of higher priority than ~y, or
• ĝ(b) is of higher priority than ~y, or

COMPUTABLE LINEAR ORDERS AND PRODUCTS 5

• at the stage when ĝ(b) was defined, there existed some c such that g(c)
is of priority higher than ~y, g(c) 6⊆ ~y and g(c) is ~y-near, or

• at the stage when ĝ(b) was defined, there was no c such that g(c) 6⊆ ~y
and g(c) is ~y-near.

Here ĝ(b) is the very first definition of g assigned to b. Note that ĝ(b) is always
defined under Phase 2, and ĝ(b) = g(b) if and only if t(b) has no definition.

(vi) If #~x = 2, then there is no ~y such that R~y is of higher priority and that ~x is
~y-near, and one of the following holds for ~y:
• There exists some d such that g(d) 6⊆ ~y, g(d) is ~y-near, and every such
g(d) is of lower priority than ~y. Furthermore, max ~x > max ~y and
max g(a0) < min g(a1), where g(a0) and g(a1) are the first and the last
points, respectively, among {g(b) | g(b) ⊆ ~y} to be defined.
• There exists some d such that g(d) 6⊆ ~y and g(d) is ~y-near, and every

such g(d) is of lower priority than ~y. Furthermore, min ~x < min ~y and
min g(a0) > max g(a1), where g(a0) and g(a1) are the first and the last
points, respectively, among {g(b) | g(b) ⊆ ~y} to be defined.

We remark that clause (vi) will be activated if putting ~x into the range of g
causes ~x to be not of higher rank than some ~y.

3.2. Construction of L and gs.

Stage 0: Do nothing at this stage, and there is no requirement on the list (as
M[0] = ∅).
Stage s: The construction is in two phases.

Phase 1: Remove all the requirements R~x from the list such that ~x is no
longer an interval.

For a ∈ L[s], if Rg(a) is removed, we will need to redefine g(a), and if t(a)
is defined, then we redefine g(a) as an active 2-tuple with the highest priority
containing t(a).

For all the remaining a, we will need to find a suitable t(a). Define t(a) as some x
(in a compatible position) such that:

(i) x is not in g(b) for any b ∈ L[s].
(ii) For b ∈ L[s] with #g(b) = 2, d(x, g(b)) > 4.
(iii) For b ∈ L[s] with #g(b) > 2, d(x, g(b)) > 〈g(b)〉〈g(b)〉+1.

If t(a) is found, then define g(a) to be the highest-priority 2-tuple containing
t(a) which is still active. Otherwise, keep t(a) and g(a) both undefined.

Remark 3.2. In Lemma 3.6, we will prove that t(a) can always be found. In fact,
Lemma 3.6 will prove that we will generally have many choices for t(a), and we will
pick t(a) to avoid

[
min~z − 〈~z〉〈~z〉+2,max~z + 〈~z〉〈~z〉+2

]
for as many ~z as possible.

The proof of Lemma 3.6 will provide details on how this is done.

End Phase 1 once all t(a) and g(a) have been (re)defined (if possible).

Phase 2: Find the highest-priority requirement R~x which is currently active
and requires attention.

We will introduce
#~x

2
− #g−1(~x) many new points into L. Let amin < amax

be the leftmost and rightmost points of L[s], respectively, such that g(a) ⊂ ~x,

6 FROLOV, LEMPP, NG, AND WU

i.e., of g−1(~x). Let xmin and xmax be the leftmost and rightmost points of ~x,
respectively, that is contained in some g(a). (We remark here that it is possible for
min g(amin) > xmin.)

• If xmin = min ~x and xmax = max ~x, and max ~x <N min ~x, then we
put all the new points immediately to the left of amin; i.e., put all the
#~x

2
−#g−1(~x) many new points between the current predecessor of amin

and amin. Otherwise, if max ~x >N min ~x, we put all the new points imme-
diately to the right of amax.
• If xmin = min ~x and xmax < max ~x, then put all the new points immediately

to the right of amax.
• If xmin > min ~x and xmax = max ~x, then put all the new points immediately

to the left of amin.
• If xmin > min ~x, xmax < max ~x, and amax <N amin, then put all the new

points immediately to the right of amax. Otherwise, if amax >N amin, put
all the new points immediately to the left of amin.

For all the new points c introduced at this phrase, set g(c) = ~x. Obviously, if
one or both of amin and amax isn’t defined, insert the new points in any compatible
position.

If no such a requirement R~x can be found at this phrase, then do nothing, and
go to the next stage.

This ends the construction.

3.3. Facts about the construction.
We start with some easily verifiable facts.

Fact 3.3. (i) lims gs(a) exists for each a.
(ii) If t(a) is defined then g(a) is defined and is a 2-tuple containing t(a).

(iii) If t(a) and t(b) are both defined then t(a) < t(b) if and only if a < b. Further-
more if a 6= b then d(t(a), t(b)) > 4.

(iv) If g(a) and t(b) are both defined and max g(a) < t(b) (and similarly if t(b) <
min g(a)), then a < b and d(g(a), t(b)) > 3.

(v) g is order preserving.
(vi) If g(a) and t(b) are both defined and t(b) ∈ g(a) then g(b) ⊆ g(a).

(vii) If g(a) = g(b) and a 6= b, then #g(a) > 2.

Proof. (i)–(iii): For each a, if t(a) is defined, then the highest-priority 2-tuple
containing t(a) must exist, as every finite block has size > 1.

(iv): An obvious induction, applying (iii).
(v): A straightforward induction, applying (iv).
(vi): At the stage when g(a) receives this definition, t(b) must already be defined,

otherwise if t(b) is defined later then we certainly cannot have t(b) ∈ g(a). Since
t(b) is already defined, g(a) must receive its current definition under Phase 2 (unless
a = b), in which case we certainly have g(b) ⊂ g(a), and g(b) cannot break up unless
g(a) breaks up as well.

(vii): Suppose g(a) = g(b) and a 6= b and #g(a) = 2. If t(a) and t(b) are both
defined, apply (iii). If t(a) and t(b) are both undefined, then g(a) and g(b) are both
set under Phase 2, which is impossible unless they are both defined by the same
action. But this is also impossible because a single action in Phase 2 will never
introduce more points than necessary. Therefore, without loss of generality, we

COMPUTABLE LINEAR ORDERS AND PRODUCTS 7

have that t(a) is undefined and t(b) is defined. Now consider the two possibilities
when g(a) is defined before t(b) or after t(b). �

Lemma 3.4. Suppose that g(a) and g(b) are both defined at the same time. Then:

(i) g(a) and g(b) are either disjoint or comparable under ⊆.
(ii) Suppose that g(a) ∩ g(b) = ∅, and Rg(b) has lower priority. Then,

• If #g(b) > 2 then d(g(a), g(b)) > 〈g(b)〉〈g(b)〉+2.
• If #g(a) > 2 and #g(b) = 2 then d(g(a), g(b)) ≥ 〈g(a)〉〈g(a)〉+1.
• If #g(a) = #g(b) = 2 then:

– If t(a) and t(b) are both undefined then d(g(a), g(b)) > 4.
– If t(a) and t(b) are both defined then d(g(a), g(b)) > 2.
– Otherwise, d(g(a), g(b)) > 3.

(iii) If g(a) (g(b) then g(a) is defined before g(b). Furthermore b > max{c :
g(c) (g(b)} or b < min{c : g(c) (g(b)}.

Proof. (i): Suppose g(a) is defined before g(b). Apply Fact 3.3 (iv) and (vi) in the
case when g(b) is defined under Phase 1.

(ii): Suppose #g(b) > 2. Then g(b) is defined under Phase 2. It is easy to check
that no matter which (g(a) or g(b)) is defined first, we always have d(g(a), g(b)) >
〈g(b)〉〈g(b)〉+2.

Suppose #g(a) > 2 and #g(b) = 2. Then g(a) is defined under Phase 2. All
cases are obvious except for the case where t(b) is defined and g(b) is defined after
g(a). In that case, note that t(b) 6∈ g(a), and consider the two possibilities when
t(b) is defined before g(a), and when t(b) is defined after g(a).

Now assume that #g(a) = #g(b) = 2. If t(a) and t(b) are both undefined then
g(a) and g(b) are both defined under Phase 2 and obviously d(g(a), g(b)) > 4. If
t(a) and t(b) are both defined, then d(t(a), t(b)) > 4. If exactly one of t(a) or t(b)
is defined, then observe that d(g(a), t(b)) > 4 or d(g(b), t(a)) > 4.

(iii): Suppose g(a) is formed after g(b), and at that time, t(a) ↓∈ g(b). Therefore
t(a) must be involved in some 2-tuple ~z which is removed at the beginning of the
stage (and g(a) being the new 2-tuple containing t(a) replacing ~z). Obviously t(b)
is undefined as #g(b) > 2, and so by (i), it follows that ~z ⊂ g(b). But this is
impossible because the removal of R~z would also cause Rg(b) to be removed.

Now since #g(b) > 2, it is obvious that g(b) has to be defined under Phase 2.
As g(a) is already defined, the construction will put the new point b on the outside
of {c : g(c) (g(b)} 6= ∅. After the definition of g(b), it is impossible for {c : g(c) (
g(b)} to increase. �

Lemma 3.5. For each active ~x, #g−1(~x) ≤ #~x
2 .

Proof. We prove the lemma by induction on the construction. At the beginning
obviously #g−1(~x) = 0 for every ~x. Now consider an action in the construction
which defines g(a). This has no effect on g−1(~x) unless g(a) ⊆ ~x. Now it is easy to

check that if ~x = g(a) then #g−1(~x) > #~x
2 is impossible; apply Fact 3.3(vii) for the

case #g(a) = 2. Now consider any active ~x) g(a). Fix a0 = a, a1, · · · , ak such that
g(ai) ⊂ ~x are all the distinct maximal tuples contained in ~x. (By Lemma 3.4(iii)
there is no b such that g(b)) g(a) and so g(a) is maximal.) By Lemma 3.4(i)
these are pairwise disjoint. By the induction hypothesis, it is clear that #g−1(~x) =∑k
i=0 #g−1(g(ai)) ≤ #~x

2 . �

8 FROLOV, LEMPP, NG, AND WU

Lemma 3.6. We can always find t(a) in Phase 1 of the construction.

Proof. We are assuming that at each stage of the construction exactly one new
point is introduced into M. If this new point is to the left or to the right of
the existing points of M, then Phase 1 of the construction will not do anything
and so the Lemma is trivially satisfied. Hence we may assume that exactly one
2-tuple becomes inactive at this stage. We consider the point in the construction
when we have removed all requirements which are no longer active, and we have
just redefined g(a∗) for some a∗ such that t(a∗) is defined. (There can only be at
most one a∗, since exactly one 2-tuple is removed from the requirements.) We are
about to define t(a) for all the remaining a; call this (substage) s1. We refer to the
beginning of this stage before any action is taken as (substage) s0. Our goal is to
prove that at time s1, there are enough points inM in the correct position for us to
define t(a) for all the a ∈ L which are associated with some requirement removed
at this stage. Call these elements bad. For each bad a, denote by ĝ(a) the value of
g(a) at s0, i.e., ĝ(a) = g(a)[s0]; of course, Rĝ(a) is now inactive. For the rest of the
proof of the lemma, when we write g(d) we mean g(d)[s1] as measured at s1.

For each maximal element ~x in the range of g[s1], denote by a and b the least
and greatest elements in g−1(~x), respectively. (Of course, a = b is possible. In fact,
a = b iff #g(a) = 2, but we will not need this here.) Since the maximal elements
have to be pairwise disjoint, we will write a0 < b0 < a1 < b1 < · · · < ak < bk to
be all the elements associated with some maximal element; ~xi is associated with ai
and bi. Notice that ~xi = g(ai) or g(bi). By Lemma 3.4(iii), g(a∗) is maximal at s1,
so let k0 be such that ak0 = bk0 = a∗. We write ~xi[s0] to denote the value at s0:
Clearly ~xi[s0] = ~xi for every i except for ~xk0 . We distinguish between ~xk0 and
~xk0 [s0] because it is possible that for some bad element a, we have g(a∗)[s0] ⊂ ĝ(a),
but after the new definition of g(a∗), we end up with g(a∗) 6⊂ ĝ(a). Obviously every
element of L[s1] is either bad, or lies between ai and bi for some i.

Claim 3.7. For each bad element a ∈ L,

(i) Either a < a0, or a > bk, or bi < a < ai+1 for some i.
(ii) If a < a0 then min ĝ(a) ≤ min ~x0[s0]. If a > bk then max ĝ(a) ≥ max ~xk[s0].

(iii) For i = 0, · · · k − 1, if bi < a < ai+1, then either max ~xi[s0] < min ĝ(a) ≤
min ~xi+1[s0] or max ~xi[s0] ≤ max ĝ(a) < min ~xi+1[s0].

Proof of claim. Fix a bad element a. At s0 it must be that ĝ(a) is comparable with
or disjoint from g(d)[s0] for every d. If ĝ(a) does not contain ~xi[s0] for any i, then
it has to lie between ~xi[s0] and ~xi+1[s0] for some i (obviously we are allowing ±∞
as one of the two tuples). Since g[s0] is order-preserving, it is easy to verify the
claimed properties. Now if ĝ(a) contains ~xi[s0] for at least one i, the verification of
the claimed properties are similar; obviously we have to consider the tuples ~xj [s0]
which are closest to ĝ(a) but disjoint from ĝ(a), and apply Lemma 3.4(iii). �

3.4. Verifying that the construction works. Putting all the trivialities to-
gether, the picture of L[s1] is as follows: Every element of L[s1] lies between ai
and bi for some i if and only if it is not a bad element. Now fix i and consider
all the bad elements between bi and ai+1. To ensure that g is order-preserving,
clearly t(a) must be picked to be some element x such that max ~xi < x < min ~xi+1.
Therefore we must argue that there are enough elements x (which we will later call
suitable) compared to the number of bad elements between bi and ai+1.

COMPUTABLE LINEAR ORDERS AND PRODUCTS 9

Towards this end, we fix i and assume that there is some bad element between bi
and ai+1. We wish to show that d(µ0, µ1) is sufficiently large, where µ0 = max ~xi
and µ1 = min ~xi+1. (We will also use µ0[s0] and µ1[s0] with the obvious meaning.)
Note that |d(µ0, µ1) − d(µ0, µ1)[s0]| ≤ 2. Notice that for each bad element a, t(a)
is undefined, which means that ĝ(a) was previously defined under Phase 2. Now
call an element x between µ0 and µ1 suitable for ~y if d(x, ~y) > 4 for #~y = 2, and
d(x, ~y) > 〈~y〉〈~y〉+1 for #~y > 2. It is not hard to see that if x is suitable for both µ0

and µ1, then x is suitable for g(b) for every b ∈ L[s1], which means that x will be
a possible choice for t(a) for a bad element a ∈ (bi, ai+1).

Firstly, suppose that there is only one bad element a and furthermore that
#ĝ(a) = 2. In this case, ĝ(a) must lie strictly between µ0[s0] and µ1[s0]. Now as
ĝ(a) is the unique tuple of size 2 being made inactive, this means that both µ0 and µ1

are unchanged, i.e., µ0 = µ0[s0] and µ1 = µ1[s0]. We only have to find a suitable
image for a in the interval (bi, ai+1). Let x0 be the new element enumerated intoM.
We claim that x0 is a suitable choice for t(a): This is because d(x0, µ0)[s1] =
d(ĝ(a), µ0)[s0] + 1 and similarly for µ1. Apply Lemma 3.4(ii) to see that x0 is
suitable for both µ0 and µ1 (again, noting that t(a) is undefined).

Now suppose that there are at least two bad elements in (bi, ai+1), or that
#ĝ(a) > 2 for the unique bad element a. Fix a bad a such that ĝ(a) has the lowest
priority where #ĝ(a) > 2; this exists since there is exactly one unique tuple of size 2
being made inactive. (Observe that in this case, if ĝ(a′) is the unique tuple of size 2
being made inactive, we must have ĝ(a′) ⊂ ĝ(a) and so ĝ(a′) is of higher priority
than ĝ(a).)

We will now argue that there are at least 〈ĝ(a)〉3 many x between µ0 and µ1

that are suitable. There are several cases to consider (for each of the below, we
apply Lemma 3.4(ii)).

#µ0 = #µ1 = 2: Then no matter whether ĝ(a) contains µ0[s0], or contains
µ1[s0], or is in between, it is obvious that d(µ0[s0], µ1[s0]) ≥ 〈ĝ(a)〉〈ĝ(a)〉+1.
Hence d(µ0, µ1) ≥ 〈ĝ(a)〉〈ĝ(a)〉+1 − 2, which certainly means that there are
at least 〈ĝ(a)〉3 many suitable elements between µ0 and µ1.

#µ0 = 2 and #µ1 > 2: Then µ1[s0] = µ1. If µ1 has higher priority than
ĝ(a), it is easy to see that d(µ0, µ1) ≥ 〈ĝ(a)〉〈ĝ(a)〉+1 − 2 (no matter what
the position of ĝ(a) is relative to µ0 and µ1). If µ1 has lower priority than
ĝ(a), then ĝ(a) cannot contain µ1 (recall our convention that sub-tuples
always have higher priority), and so d(µ0, µ1) > 〈µ1〉〈µ1〉+2 − 2. In either
subcase, it is obvious that there are at least 〈ĝ(a)〉3 many suitable elements
between µ0 and µ1.

#µ0 > 2 and #µ1 = 2: Symmetric case.
#µ0 > 2 and #µ1 > 2: Without loss of generality, assume that µ1 has lower

priority than µ0. If ĝ(a) has lower priority than µ1, then obviously
d(µ0, µ1) > 〈ĝ(a)〉〈ĝ(a)〉+2 − 2 > 〈µ1〉〈µ1〉+2. On the other hand, if µ1

has lower priority than ĝ(a), then, of course, d(µ0, µ1) > 〈µ1〉〈µ1〉+2− 2. In
either subcase, it is obvious that there are at least 〈ĝ(a)〉3 many suitable
elements between µ0 and µ1.

So we conclude that there are at least 〈ĝ(a)〉3 many suitable elements between µ0

and µ1. How many bad elements are there in the interval (bi, ai+1)? Since ĝ(a) has
the lowest priority (with the only possible exception of the unique 2-tuple being
removed), by the usual convention that 〈~z〉 > #~z and by Lemma 3.5, we see that

10 FROLOV, LEMPP, NG, AND WU

there are at most 1 +
∑
j≤〈ĝ(a)〉

j
2 < 2〈ĝ(a)〉2 many bad elements in the interval

(bi, ai+1). Since the definition of t(a) for all these elements has to be picked from
one of the suitable elements between µ0 and µ1, and with a distance of at least 4
between each choice of t(a), we need at least 5 · 2〈ĝ(a)〉2 < 〈ĝ(a)〉3 many suitable
elements, which we do have.

Finally, we consider bad elements a < a0 and a > bk. Then we proceed similarly
to the above by considering the two cases where we have exactly one bad element
with #ĝ(a) = 2, and otherwise. This time, however, instead of using Lemma 3.4(ii),
we use the fact that when ~z receives attention for #~z > 2, we have at least 〈~z〉〈~z〉+2

many points to the left and right of ~z.
Before we conclude the proof of the lemma, we give details on how exactly the

construction should pick t(a), given that there are usually many more suitable
elements than the number of bad elements. In the first case, when #ĝ(a) = 2
for the unique bad element a, we set t(a) = x0; recall that x0 is suitable in this
case. In the second case, we conclude that there are at least 〈ĝ(a)〉3 many suit-
able elements, and out of the all the different combinations of choices of t(c) for
the bad elements c, we pick a combination so that the highest-priority ~z such that[
min~z − 〈~z〉〈~z〉+2 − 1,max~z + 〈~z〉〈~z〉+2 + 1

]
contains some g(c) has the lowest pos-

sible priority. (That is, we wish to avoid as many intervals as possible.) �

Lemma 3.8. If ~x is a maximal finite block of M then g−1(~x) is eventually stable

with #~x
2 many elements.

Proof. That g−1(~x) is eventually stable follows from Lemma 3.5 and the fact that
if g(a) is a stable tuple of M then g(a) is never redefined. First notice that every
requirement R~z will only receive attention at most once (under Phase 2), after
which g−1(~z) will contain the correct number of elements. Suppose the stable

g−1(~x) has fewer than #~x
2 many elements. We wish to argue that R~x must require

and eventually receive attention under Phase 2.
Since ~x is a maximal block, min ~x is a left limit point and max ~x is a right limit

point, and therefore the first three conditions for R~x to require attention must
eventually hold. (Recall our assumption that the greatest and least elements ofM
are not included in ~x.) Therefore the only obstruction for R~x to require attention
under Phase 2 must eventually come from condition (iv). (Note that conditions (v)
and (vi) are not a problem because if ~y is of higher priority then ~x and ~y are
incomparable under ⊆.)

Fix a stage s2 large enough. First of all, observe that there cannot be any b such
that g(b) = ~x, otherwise g−1(~x) must have the correct number of elements. Next,
we also assume that at every stage (just before the start of Phase 2) after s2, there
is some d such that g(d) is ~x-near and g(d) 6⊆ ~x; otherwise condition (iv) of Phase 2
will apply and R~x will receive attention.

We argue by proving the following sequence of statements.

(i) After s2 there cannot be a new definition of a g(c), where g(c) is ~x-near,
g(c) ∩ ~x = ∅ and #g(c) > 2.

As g(c) is defined under Phase 2 and is of lower priority than ~x (since s2 is
large enough), clause (ii) of Phase 2 will preventRg(c) from requiring attention.

By the fact that ~x is a maximal block, it is easy to see that we can assume
that s2 is large enough so that at every stage after s2, and for every c, if g(c)
is ~x-near, then either g(c) (~x or g(c) is not of higher rank than ~x.

COMPUTABLE LINEAR ORDERS AND PRODUCTS 11

(ii) After s2 there cannot be a new definition of a g(c) under Phase 2, where
#g(c) = 2 and g(c) is ~x-near (this, of course, includes the case where g(c) ∩
~x 6= ∅).

Consider the first time after s2 where some g(c) = ~y is defined as in the
statement above. As s2 is large enough we assume that ~y 6⊆ ~x. Under Phase 2
when g(c) is defined, clause (v) ensures that there is no d 6= c such that g(d) is
~x-near and g(d) 6⊆ ~x. But this means that the construction at Phase 2 would
have attended to R~x instead of R~y.

By (i) and (ii) and the fact that ~x is a maximal block, we can fix s3 > s2
large enough so that at every stage after s3, and for every c, if g(c) is ~x-near
then either #g(c) = 2 and t(c) is defined, or #g(c) > 2 and g(c) ∩ ~x 6= ∅, or
g(c) (~x.

(iii) After s3 there cannot be a new definition of t(c) under Phase 1 if d(t(c), ~x) ≤
〈~x〉〈~x〉+2 + 1.

Again consider the first time after s3 when some t(c) too close to ~x receives
definition. We follow the notation and analysis in the proof of Lemma 3.6. We
argue that at s1 > s3, it is impossible to assign any t(c) such that d(t(c), ~x) ≤
〈~x〉〈~x〉+2 + 1. At s1, if there is a unique bad element a and #ĝ(a) = 2 then,
of course, d(ĝ(a), ~x) > 〈~x〉〈~x〉+2. In this case, t(a) is taken to be x0, which
means that d(t(a), ~x) > 〈~x〉〈~x〉+2 + 1.

On the other hand, if at s1 we are able to fix a bad a such that ĝ(a)
has lowest priority with #ĝ(a) > 2, then ĝ(a) is of lower priority than ~x
(as we assume that s2 is large enough). The proof of Lemma 3.6 tells
us that there are at least 〈ĝ(a)〉3 many suitable elements, and at most
2〈ĝ(a)〉2 many bad elements competing for these spots. If additionally we
wish to avoid the intervals

[
min~z − 〈~z〉〈~z〉+2 − 1,max~z + 〈~z〉〈~z〉+2 + 1

]
for

every ~z of priority no lower than that of ~x, then this eliminates at most∑
q≤〈~x〉 2q

q+2 + q + 2 <
∑
q≤〈~x〉 〈~x〉

q+3
< 〈~x〉〈~x〉+4 < 〈ĝ(a)〉2 many suitable

elements. Since we need 5 ·2〈ĝ(a)〉2 many suitable elements, we can (and will)
pick an assignment of t so that we do not assign any suitable element in the
interval

[
min ~x− 〈~x〉〈~x〉+2 − 1,max ~x + 〈~x〉〈~x〉+2 + 1

]
to a new definition of t.

Now, in view of (iii), we assume s4 > s3 is large enough so that at every
stage after s4, and for every c, if g(c) is ~x-near then either g(c) (~x, or
#g(c) > 2 and g(c) ∩ ~x 6= ∅.

(iv) After s4, if g(c) is defined and g(c) is ~x-near then g(c) ⊃ g(d) for some g(d)
defined before s4, and where g(d) is ~x-near and g(d) 6⊆ ~x.

Consider the definition of some g(c) = ~y after s4, where ~y is ~x-near. Then
#~y > 2 and so g(c) is defined under Phase 2, and of lower priority than ~x.
Suppose ~y does not contain g(d) for any d such that g(d) is ~x-near and g(d) 6⊆
~x. Since d(~y, g(d)) > 〈~y〉〈~y〉+2 for every g(d) disjoint from ~y, it then follows
that before the definition of g(c) = ~y, we must have that g(d) is ~x-far for
every d such that g(d) 6⊆ ~x, which is a contradiction since R~x would be
attended to instead of the lower-priority R~y. So ~y must (properly) contain
g(d) for some d such that g(d) is ~x-near and g(d) 6⊆ ~x. By induction, g(d) is
either defined before s4, or contains some g(d′) defined before s4.

We are now ready to finish the proof of the lemma. At s4, for every c such that
g(c) is ~x-near, we have g(c)∩ ~x 6= ∅. Now consider a stage s5 > s4 when every one
of these g(c) is inactive (except, of course, those strictly contained in ~x). By (iv),

12 FROLOV, LEMPP, NG, AND WU

it must be the case that at s5, g(d) is ~x-far whenever g(d) 6⊆ ~x. Since Phase 1 of
stage s5 also cannot define an ~x-near g(d), we get a contradiction to our original
assumption. Therefore at Phase 2 of s5, we must attend to R~x . �

Lemma 3.9. Suppose A ⊂ L is an infinite set, and c ∈ L.

• If for every a, b ∈ A we have min g(a) = min g(b) (for the final values of g),
and g(c) ⊆ g(a), then c < b for some b ∈ A.
• If for every a, b ∈ A we have max g(a) = max g(b) (for the final values

of g), and g(c) ⊆ g(a), then c > b for some b ∈ A.

Proof. We prove the first statement; the second statement follows by a symmetric
argument. Suppose min g(a) = x for every a ∈ A. First pick some a ∈ A such
that g(a) is formed after g(c), and some b ∈ A such that g(b) is formed after
g(a). By Lemma 3.4(iii) we have g(b)) g(a) and so g(b) is defined under Phase 2.
As A is infinite, we may assume that max g(b) >N x; if it is not, then we simply
consider some b′ ∈ A so that g(b′) is formed after g(b). However, by examining the
construction, we see that we will put the new point b to the right of c. �

Lemma 3.10. If B is an infinite block of M of order type ω or ω∗, then g−1(B) =
{a ∈ L | g(a) ⊂ B} has the same order type as B.

Proof. Suppose that B has order type ω. We have to prove that g−1(B) is infinite,
and that every element of g−1(B) has finitely many elements of g−1(B) on its left.
First we assume that g−1(B) is finite.

Fix a block ~x ⊂ B satisfying the following conditions:

• #~x = 2.
• For every a ∈ g−1(B), we want d(~x, g(a)) > 〈g(a)〉〈g(a)〉+2, and that ~x is of

lower priority than g(a).
• For every ~y ⊂ B such that ~y is of higher priority than g(a) for some
a ∈ g−1(B), we want d(~x, ~y) > 〈~y〉〈~y〉+2.

• d(~x,minB) > 4.

Notice that the argument below will apply even if g−1(B) = ∅, or if minB is the
least element of M; the reader should keep these possibilities in mind. Also, we
remark here that most of the work done below is necessary because it is possible
that min ~x− 〈~x〉〈~x〉+2 < minB no matter how we pick ~x, and therefore we cannot
simply proceed by assuming that the interval

[
min ~x− 〈~x〉〈~x〉+2,max ~x + 〈~x〉〈~x〉+2

]
has no further activity.

Now we fix ~x0 = [minB,max ~x]. We fix a stage s6 large enough such that at
every stage after s6:

• For every b such that g(b) is ~x-near, if g(b) is of higher priority than ~x,
then g(b) ⊂ B (and hence d(g(b), ~x) > 〈g(b)〉〈g(b)〉+2).

• The interval
[
minB,max ~x0 + 〈~x0〉〈~x0〉+2

]
is stable, i.e., does not receive

new points.
• No requirement of priority higher than R~x0

ever acts again.

We now assume, towards a contradiction, that at every stage (just before
Phase 2) after s6, there is always some g(b) such that g(b) is ~x0-near and g(b) 6⊆ ~x0.

It is straightforward to see (following (i), (ii) and (iii) in the proof of Lemma 3.8,
we omit repeating the details) that we can fix s7 > s6 such that at every stage
after s7, if g(c) is ~x0-near, then either g(c) (~x0, or #g(c) > 2 and g(c) ∩ ~x0 6= ∅.

COMPUTABLE LINEAR ORDERS AND PRODUCTS 13

Now following (iv) in the proof of Lemma 3.8, it is easy to see that if a new
definition of g(c) is made after s7 when g(c) is ~x0-near, then #g(c) > 2 and g(c) ⊃
g(d) for some g(d) defined before s7 and g(d) is ~x0-near and g(d) 6⊆ ~x0. However,
each g(d) of this kind (by choice of s7) must satisfy #g(d) > 2 and g(d) ∩ ~x0 6= ∅.
Now as g(d) 6⊆ ~x0, we also have g(d) 6⊂ B, but as g(d) ∩ B 6= ∅, it follows that
g(d) must be eventually made inactive. When all such g(d) defined before s7 have
been made inactive, say at the least s8 > s7, we see that there cannot be any g(b)
such that g(b) is ~x0-near and g(b) 6⊆ ~x0, a contradiction to our original assumption
(note that Phase 1 of s8 cannot introduce any ~x0-near g(b)).

We would now like to proceed as in the proof of Lemma 3.8 and argue that R~x0

must now receive attention in Phase 2 of stage s8. Unfortunately, R~x0
might not

be able to do so because condition (ii) might not hold; this depends on how the
elements of M are enumerated and there does not appear to be an obvious way to
use R~x0

. Therefore, we are forced to turn to R~x at stage s8.
We now argue that at stage s8, R~x will receive attention under Phase 2. First

of all, R~x will be chosen to receive attention if all conditions are met, as all higher-
priority requirements have stopped acting. Let’s examine condition (iv) and fix
some g(b) 6⊆ ~x. By the choice of ~x we cannot have d(g(b), ~x) ≤ 4 so (iv) is
obviously true if #g(b) = 2. Suppose #g(b) > 2, then we have to show that
d(g(b), ~x) > min

{
〈~x〉〈~x〉+2, 〈g(b)〉〈g(b)〉+2

}
. This is true if g(b) is of higher priority

than ~x by the choice of stage s6, and if g(b) is of lower priority, use the properties
of stage s8 (note that if g(b) ⊂ B then g(b) is of higher priority than ~x). Hence
condition (iv) for R~x is met at s8.

We turn to conditions (v) and (vi). At stage s8, consider a higher-priority ~y
such that ~x is ~y-near. This means that I~y ⊆ I~x ⊆ I~x0

, where we set I~z =[
min~z − 〈~z〉〈~z〉+2,max~z + 〈~z〉〈~z〉+2

]
. By choosing s8 large enough, we can assume

that ~y ⊂ B. By the choice of ~x, we have that ~y is of lower priority than g(a) for
every a ∈ g−1(B). By the properties of s8, it follows that for any b, if g(b) is ~y-near
then it is also ~x0-near and hence b ∈ g−1(B). By considering the two scenarios
where there is some b such that g(b) 6⊆ ~y and g(b) is ~y-near, and otherwise, it fol-
lows that (v) and (vi) hold for each such ~y (noting that ~y is of lower priority than
g(a) for every a ∈ g−1(B)). Hence conditions (v) and (vi) for R~x are met at s8,
and hence R~x must receive attention at s8. This shows that g−1(B) is infinite.

Now we wish to see that every element of g−1(B) has finitely many elements
from g−1(B) to its left. We fix a ∈ g−1(B) and assume that a has infinitely many
elements a0, a1, · · · ∈ g−1(B) to the left of a. Since g is order preserving, it must
be that min g(ai) < max g(a) for every i, and hence g(a) and g(ai) have to be
comparable. By Lemma 3.5, for all but finitely many i we must have g(ai) ⊇ g(a).
Therefore, for an infinite subset X ⊆ g−1(B) we must have min g(ai) = min g(aj)
for every ai, aj ∈ X. Apply Lemma 3.9 for a contradiction. Thus g−1(B) has order
type ω.

If B has order type ω∗ then a symmetric argument applies. �

Lemma 3.11. If B is an infinite block of M of order type ω∗ +ω, then g−1(B) =
{a ∈ L | g(a) ⊂ B} has also order type ω∗ + ω.

Proof. We now assume that B has order type ω∗+ω. We first show that g−1(B) is
infinite. Suppose the contrary. Fix ~x ⊂ B such that #~x = 2 and for every ~y ⊂ B
such that ~y is of higher or equal priority than g(a) for some a ∈ g−1(B), we have

14 FROLOV, LEMPP, NG, AND WU

d(~x, ~y) > 〈~y〉〈~y〉+2. Then it is straightforward to check that R~x must eventually
receive attention under Phase 2 of the construction (follow the argument at stage s8
in the proof of Lemma 3.10). Thus we assume that g−1(B) is infinite.

Fix x ∈ B. We next wish to show that there is some a ∈ g−1(B) such that
max g(a) > x. Suppose no such a exists. We first argue that for every a ∈ g−1(B),
there is some b ∈ g−1(B) such that g(a) ⊆ g(b) and g(b) is maximal. If g(a) is
not included in some maximal g(b), then we can fix an infinite sequence b0, b1, · · ·
such that g(a) (g(b0) (g(b1) (· · · (B. As max g(bi) ≤ x we may assume that
max g(bi) = max g(bj) for every i, j. Consider ~x where #~x = 2 consisting of the
next two elements of B after max g(b0); hence d(g(bi), ~x) = 0 but g(bi) ∩ ~x = ∅.
Since #g(bi) > 2, we have that g(bi) is defined under Phase 2, so we see that this
is impossible if g(bi) is of lower priority than ~x. (Note that this phenomenon is
impossible unless max g(b0) or its successor is a right limit point.)

Hence, for every a ∈ g−1(B), there is some b ∈ g−1(B) such that g(a) ⊆ g(b)
and g(b) is maximal. Fix a0 ∈ g−1(B) such that g(a0) is maximal and contains
the first g(d) ⊂ B to be defined. Since g−1(B) is infinite, fix a1 ∈ g−1(B) such
that g(a1) is maximal and lies to the left of g(a0), and which is formed after
g(b) ⊂ B for every g(b) to the right of g(a0), as well as g(a0) itself. Denote
C0 =

{
b ∈ g−1(B) | g(b) ⊆ g(a1) or g(b) is to the right of g(a1)

}
. Also denote C ={

b ∈ g−1(B) | g(b) ⊆ g(a2) or g(b) is to the right of g(a2)
}

for some a2 ∈ g−1(B)
where g(a2) is maximal and lies to the left of g(a1), and with the property that
if any z ∈ B is enumerated into M before some g(c) with c ∈ C0 is defined, then
z > max g(a2). Note that C0 ⊂ C are both finite.

Now fix ~x ⊂ B with the following properties:

• #~x = 2 and min ~x > x.
• ~x is of lower priority than g(c) for every c ∈ C.
• For every ~y ⊂ B such that ~y is of equal or higher priority than g(c) for

some c ∈ C, we have d(~x, ~y) > 〈~y〉〈~y〉+2.

Now we fix a stage s0 large enough such that at every stage after s0:

• For every b such that g(b) is ~x-near, if g(b) is of higher priority than ~x,
then g(b) ⊂ B.

• The interval [
min
c∈C

g(c),max ~x + 〈~x〉〈~x〉+2 + 1

]
∪[

min ~x− 〈~x〉〈~x〉+2 − 1,max ~x + 〈~x〉〈~x〉+2 + 1
]
⊂ B

is stable, i.e., does not receive new points, and no more g-definitions in
them.

• No requirement of priority higher than R~x ever acts again.

We now assume for a contradiction that at every stage (just before Phase 2) af-
ter s0, there is always some g(b) such that g(b) is ~x-near and g(b) 6⊂ B. After s0
suppose we define g(c) where g(c) is ~x-near. Then #g(c) > 2 since the interval[
min ~x− 〈~x〉〈~x〉+2 − 1,max ~x + 〈~x〉〈~x〉+2 + 1

]
is already stable. Thus g(c) is de-

fined under Phase 2, and hence g(c) ⊃ g(d) for some g(d) defined before s0 and
where g(d) is ~x-near and g(d) 6⊂ B.

However, note that if g(d) is defined before s0 and where g(d) is ~x-near and
g(d) 6⊂ B, then g(d) contains some element of the interval I~x ⊂ B which is stable

COMPUTABLE LINEAR ORDERS AND PRODUCTS 15

at s0, hence g(d) must be made inactive after s0. At the least stage s1 > s0 when
every such g(d) is made inactive, there cannot be any g(c) which is ~x-near and
g(c) 6⊂ B. Since Phase 1 of stage s1 only introduces g(c) where #g(c) = 2, it
cannot introduce a new g(c) which is ~x-near. Hence we get a contradiction to our
assumption.

We claim that at stage s1, R~x must receive attention under Phase 2. Recall
that s1 at Phase 2 has the property that for every c, if g(c) is ~x-near then g(c) ⊂ B.

First consider condition (iv), and fix g(b) 6⊆ ~x. If g(b) is ~x-far then we are
done, so assume that g(b) is ~x-near. By the properties of s1, we have g(b) ⊂ B.
Now if #g(b) = 2 then we are also done since d(g(b), ~x) > 4. Thus assume that
#g(b) > 2. Let a3 ∈ g−1(B) be such that g(a3) is maximal and the rightmost such,
that is, g(b) ⊆ g(a3) or g(b) lies to the left of g(a3). Since a3 ∈ C we have that
d(~x, g(a3)) > 〈g(a3)〉〈g(a3)〉+2, and so we are also fine if g(b) ⊆ g(a3). Suppose g(b)
is to the left of g(a3). If g(b) is of lower priority than g(a3) then, by Lemma 3.4,
d(g(b), ~x) > d(g(b), g(a3)) > 〈g(b)〉〈g(b)〉+2. On the other hand, if g(b) is of higher
priority than g(a3), then d(g(b), ~x) > d(g(a3), ~x) > 〈g(a3)〉〈g(a3)〉+2 > 〈g(b)〉〈g(b)〉+2.
Hence condition (iv) for R~x is satisfied at s3.

We now turn to conditions (v) and (vi) for R~x. We fix ~y such that R~y is of higher
priority than R~x and such that ~x is ~y-near. Note that at s1, we have I~y ⊂ I~x ⊂ B.
We claim that one of the following holds for ~y:

• There is no a such that g(a) is ~y-near and g(a) 6⊆ ~y, or
• such a exists where a ∈ C, or
• g(a) ⊆ ~y for every a ∈ C.

This is certainly true if g(a) is ~y-near for every a ∈ C (via the second or third
option). Suppose g(a)∩ I~y = ∅ for some a ∈ C. Since max I~y > x, this means that
I~y lies to the right of g(a). Now for any g(b), if g(b) is ~y-near then g(b) ⊂ B (by s1)
and so b ∈ C (since C is “right-closed”). This implies that the first or second option
holds.

Now, in particular, we examine condition (v) for R~x and ~y. By the properties
of ~x, we see that ~y is of lower priority than g(c) for every c ∈ C. Hence (v) holds
if the either of the first two options for ~y holds. Therefore, let us assume that
g(a) ⊆ ~y for every a ∈ C, and assume that (v) fails for this ~y. In particular, fix b0
such that g(b0) is ~y-near and g(b0) 6⊆ ~y and g(b0) is not of higher rank than ~y.
There are now several cases to consider:

ĝ(b0) = g(b0) and #ĝ(b0) > 2: At stage s1, as g(b0) is ~y-near, it is also ~x-near
and hence g(b0) ⊂ B. As g(b0) 6⊆ ~y, but g(a0) ⊆ ~y, we have that g(b0) ∩
g(a0) = ∅ (as g(a0) is maximal). When g(b0) earlier receives its definition
under Phase 2, g(a′0) must already exist for some g(a′0) ⊆ g(a0). However,
at that time, condition (iv) demands that d(g(a′0), g(b0)) > 〈g(b0)〉〈g(b0)〉+2,
which is impossible as g(a′0) and g(b0) are both ~y-near and ~y is of higher
priority than g(b0) (by the “not of higher rank” assumption).

ĝ(b0) = g(b0) and #ĝ(b0) = 2: At the earlier stage, say t0 when g(b0) receives
definition under Phase 2, there must be some d such that g(d) 6⊆ ~y and g(d)
is ~y-near, and every such g(d) is of lower priority than ~y (this follows by
the “not of higher rank” assumption). As ~y ⊇ g(a3) and g(b0) ⊂ B and
g(b0) 6⊆ ~y, it follows that min g(b0) < min ~y. Since g(b0) lies to the left of
g(a2), this means that at stage t0, g(d) must already be defined for every
d ∈ C0. But this means that when evaluating condition (vi) at stage t0,

16 FROLOV, LEMPP, NG, AND WU

the first g(d0) ⊆ ~y to be defined must lie to the right of the last g(d1) ⊆ ~y
to be defined. So condition (vi) must fail via ~y, and so g(b0) cannot receive
definition under Phase 2 at t0 after all.

ĝ(b0) 6= g(b0) and #ĝ(b0) > 2: Then t(b0)[s1] is defined. Let t1 < s1 be the
stage when t(b0) receives definition; thus at the beginning of t1, ĝ(b0) is
made inactive and t(b0) is found during Phase 1 of t1. Looking back at the
proof of Lemma 3.6, since b0 is a bad element at stage t1 and #ĝ(b0) >
2, we must be in the second case where there are at least 〈ĝ(b0)〉3 many
suitable elements in a compatible position for t(b0). Since ĝ(b0) is of lower
priority than ~y (again by the “not of higher rank” assumption), by the
same computations in Lemma 3.8(iii), the action of Phase 1 at t1 will not
assign t(b0) inside the interval

[
min ~y − 〈~y〉〈~y〉+2 − 1,max ~y + 〈~y〉〈~y〉+2 + 1

]
(notice also that ~y is of higher priority than ĝ(b0) and so R~y is certainly
active at t1). Thus g(b0)[s1] (at a stage after t1) cannot possibly be ~y-near,
a contradiction.

ĝ(b0) 6= g(b0) and #ĝ(b0) = 2: We also have t(b0)[s1] is defined. Let t2 be the
stage when t(b0) receives definition. At t2 if we are in the second case and
we find at least 〈ĝ(b0)〉3 many suitable elements in a compatible position
for t(b0), then t(b0) will not be assigned to something inside the interval[
min ~y − 〈~y〉〈~y〉+2 − 1,max ~y + 〈~y〉〈~y〉+2 + 1

]
, as in the previous case. So

let’s assume that when t(b0) is defined at t2, we are in the first case, where b0
is the unique bad element in the corresponding interval (again refer to
Lemma 3.6). In this case we pick t(b0) to be the new element enumerated
into M[t2]. More specifically, if ĝ(b0) = (z0, z1) with z0 < z1, then t(b0) is
the (new) element such that z0 < t(b0) < z1.

Clearly, at stage s1 we must have

t(b0) ∈
[
min ~y − 〈~y〉〈~y〉+2 − 1,max ~y + 〈~y〉〈~y〉+2 + 1

]
,

as g(b0)[s1] is ~y-near, hence t(b0) ∈ B. In fact, as g(b0)[s1] is ~y-near, hence
g(b0)[s1] ⊂ B and recall also that g(b0)[s1] 6⊆ ~y. Thus g(b0)[s0] lies to the
left of g(a2), which means that t(b0) ≤ max ~y (this inequality will suffice
for our purpose, but in fact, t(b0) must be much closer to min ~y). This is
also true when measured at t2 and so we conclude that z1 ≤ max ~y. But
now we have t(b0) < z1 ≤ max ~y where t(b0),max ~y ∈ B. Hence z1 ∈ B.

Now let t3 < t2 be the stage when ĝ(b0) receives definition (under
Phase 2). We wish to follow the argument in the previous case (where
ĝ(b0) = g(b0) and #ĝ(b0) = 2) to obtain a contradiction, by examining the
construction in Phase 2 at stage t3. As before we certainly have some d such
that g(d) 6⊆ ~y and g(d) is ~y-near, and every such g(d) is of lower priority
than ~y (this only uses the “not of higher rank” assumption). Since ĝ(b0) is
of lower priority than ~y, we cannot have ĝ(b0) ⊆ ~y, so they have to be in-
comparable. Since z1 ≤ max ~y we must still have min ĝ(b0) = z0 < min ~y,
which means that z1 ≤ min ~y. Thus z1 6> max g(a2) which means that
at t3, g(d) must be already be defined for every d ∈ C0. Thus as above,
condition (vi) must fail via ~y at stage t3, which means that ĝ(b0) cannot
receive definition at t3 after all.

This contradiction shows that b0 cannot exist and hence (v) holds for this ~y.

COMPUTABLE LINEAR ORDERS AND PRODUCTS 17

Now we turn to condition (vi) for R~x at stage s1. Consider again ~y such that
R~y is of higher priority than R~x and such that ~x is ~y-near. Recall from above that
at s1 we have I~y ⊂ I~x ⊂ B, and that one of the following holds for ~y:

• There is no a such that g(a) is ~y-near and g(a) 6⊆ ~y, or
• such a exists where a ∈ C, or
• g(a) ⊆ ~y for every a ∈ C.

Since ~y is of lower priority than g(c) for every c ∈ C, it follows that (vi) is not
a problem for ~y if the first or second option above holds. So, let’s assume the
third option for ~y holds. As ~y is of higher priority, we certainly have ~x 6⊆ ~y.
Hence max ~y < max ~x and we certainly also have min ~y < min ~x. When evaluating
condition (vi) at stage s1, the first g(d0) ⊆ ~y to be defined must lie to the right of
the last g(d1) ⊆ ~y to be defined (the same argument as above). So condition (vi)
is not a problem for ~y. This shows that R~x must receive attention at stage s1 in
Phase 2. �

We are now ready to complete the proof of Theorem 3.1. Given a linear order A,
denote by C(A) the condensation of A, and [x] to be all the elements of the same
block as x ∈ A. (Recall that the condensation of a linear order A is the set
{[x] | x ∈ A} ordered in the obvious way). The following fact is immediate:

Fact 3.12. Let A and B be linear orders. Then A ∼= B if and only if there exists
an isomorphism ϕ : C(A) 7→ C(B) such that for every x ∈ A, [x] has the same
order type as ϕ([x]).

Now let us see why the statement of Theorem 3.1 is true. Suppose M is a
computable copy of 2 · L′. The entire proof up to now constructs a computable L
and an order preserving g : L 7→M<ω. Let g∗ : C(L) 7→ C(M) be the map induced
by g, i.e., g∗([a]) = [min g(a)]. Let us now verify that g∗ is an isomorphism. If
[a] = [b] but g(a) and g(b) are in different blocks, then by Lemma 3.10 and 3.11
and the fact that g is order preserving, we can assume that if x lies between g(a) and
g(b) then [x] is finite. By Lemma 3.8, g−1([x]) is nonempty, and contains elements
between a and b. This is impossible as there are infinitely many such x, but only
finitely many elements between a and b. Hence g∗ is well-defined.

Now suppose that a and b are in different blocks but g(a) and g(b) are in the
same block. Assume a < b. If there exists some a < c < b such that g(c)) g(a) and
g(c)) g(b), then by Lemma 3.4(iii) we have c > b or c < a, which is impossible. So
we assume that this is not the case. Since a < b we have that g(a) lies to the left
of g(b), or g(a) and g(b) are comparable. First assume that g(a) lies to the left of
g(b). Now g(c) has to be comparable with either g(a) or g(b), or it lies in between,
but only finitely many c can have g(c) in between, so we can apply Lemma 3.9 to
get a contradiction. Now assume, without loss of generality, that g(a) ⊆ g(b). But
now g(c) must be comparable with g(a), and as we assumed g(c) 6) g(b), we get a
contradiction to the fact that there are infinitely many such c. Hence g∗ is injective.

That g∗ is surjective obviously follows from Lemmas 3.8, 3.10 and 3.11. As g
is order preserving and g∗ is injective, hence g∗ is order preserving. Hence g∗ is
an isomorphism. Since C(2 · L) ∼= C(L) and from Lemmas 3.8, 3.10 and 3.11, and
the fact that g∗ is injective and well-defined, we see that [x]2·L and g∗([x]L) have
the same order type. Hence 2 · L ∼= M ∼= 2 · L′. Since C(2 · L) ∼= C(L) and
C(2 · L′) ∼= C(L′), it follows from Fact 3.12 that L ∼= L′. Hence, L′ is computable,
completing the proof of Theorem 3.1. �

18 FROLOV, LEMPP, NG, AND WU

4. The case n = 1

Let τ be a nonempty computable strongly η-like linear order. It means that τ
does not contain infinite blocks. Let k be the size of a largest block of τ . Suppose
that τ contains only finitely many k-blocks. Thus, if τ · L has a computable copy
for some L, then it is easy to see that k · L has a 0′-computable copy. Now, by
Theorem 2.1 L has also a 0′-computable copy. We guess that such type τ gives the
answer for Problem 1.1 in the case n = 1. Namely, our conjecture is

Conjecture 4.1. Let τ be computable. The following are equivalent:
(1) τ is strongly η-like with finitely many largest blocks and nonempty.
(2) For any countable linear order L, L has a computable copy iff τ · L has a

computable copy.
(3) For any countably infinite linear order L, L has a computable copy iff τ · L

has a computable copy.

References

[ATF09] Alaev, Pavel E.; Thurber, John J.; Frolov, Andrey N., Computability on linear orderings
enriched with predicates, Algebra and Logic 48 no. 5 (2009), 313–320.

[AK00] Ash, Christopher J.; Knight Julia F., Computable structures and the hyperarithmetical

hierarchy, Studies in Logic and the Foundations of Mathematics, 144, North-Holland, Ams-
terdam, 2000.

[Do98] Downey, Rodney G., Computability theory and linear orders, In: “Handbook of Recursive

Mathematics, Vol. 2”, Ershov, Yuri L.; Goncharov, Sergey S.; Nerode, Anil; Remmel, Jeffrey
B., (eds.), Studies in Logic and the Foundations of Mathematics, Elsevier, Amsterdam, 1998,

pp. 823–976.
[DK92] Downey, Rodney G.; Knight, Julia F., Orderings with α-th jump degree 0(α) Proc. Amer.

Math. Soc. 114 (1992) 545–552.

[Fe76] Fellner, Stephen M., Recursive and finite axiomatizability of linear orderings, Ph. D. Thesis
(Rutgers, New Brundswick, NJ, 1976).

[Fr06] Frolov, Andrey N., ∆0
2-copies of linear orderings, Algebra and Logic 45 no. 3 (2006),

201–209.
[Fr12] Frolov, Andrey N., Linear orderings. Coding theorems, Uchenye Zapiski Kazanskogo Univ.

154 mo. 2 (2012), 142–151. (English translation forthcoming in Lobachevskii J. Math., as

The coding theorems of linear orderings)

(Frolov) Higher Institute of Information Technology and Intelligent Systems, Kazan
Federal University, Kazan 420008, RUSSIA

Email address: a.frolov.kpfu@gmail.com

(Lempp) Department of Mathematics, University of Wisconsin, Madison, WI 53706-

1388, USA

Email address: lempp@math.wisc.edu

URL: http://www.math.wisc.edu/~lempp/

(Ng, Wu) School of Physical and Mathematical Sciences, Nanyang Technological
University, Singapore 637371, Republic of Singapore

Email address: kmng@ntu.edu.sg

URL: http://www3.ntu.edu.sg/home/kmng/

Email address: guohua@ntu.edu.sg

URL: http://www3.ntu.edu.sg/home/guohua/

mailto:a.frolov.kpfu@gmail.com
mailto:lempp@math.wisc.edu
http://www.math.wisc.edu/~lempp/
mailto:kmng@ntu.edu.sg
http://www3.ntu.edu.sg/home/kmng/
mailto:guohua@ntu.edu.sg
http://www3.ntu.edu.sg/home/guohua/

	1. Introduction
	2. The Main Theorem
	3. The Proof of the Main Theorem
	3.1. Notation used
	3.2. Construction of L and gs
	3.3. Facts about the construction
	3.4. Verifying that the construction works

	4. The case n=1
	References

