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Abstract. We prove that there exists a left-c.e. Polish space not homeomorphic to any right-c.e. space. Combined with

some other recent works (to be cited), this finishes the task of comparing all classical notions of effective presentability
of Polish spaces that frequently occur in the literature up to homeomorphism.

We employ our techniques to provide a new, relatively straightforward construction of a computable Polish space K

not homeomorphic to any computably compact space. We also show that the Banach space C(K;R) has a computable
Banach copy; this gives a negative answer to a question raised by McNicholl.

We also give an example of a space that has both a left-c.e. and a right-c.e. presentation, yet it is not homeomorphic

to any computable Polish space. In addition, we provide an example of a ∆0
2 Polish space that lacks both a left-c.e. and

a right-c.e. copy, up to homeomorphism.
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1. Introduction

The present article contributes to the program in effective topology initiated in the recent independent works [GKP17],
[HTMN20], and [HKS20]. This program aims to establish the foundations of effective topology, following a similar pat-
tern seen in computable structure theory [EG00, GK02] and computable real analysis [Abe80, Wei00]. In computable
structure theory, most of the results comparing different notions of presentability date back several decades and are
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generally regarded as classical or foundational. For example, Feiner [Fei70] showed that there is a c.e. presented Boolean
algebra without a computable presentation. As an application, Feiner demonstrated that the lattices of X-c.e. and
X ′-c.e. sets are not isomorphic, for any X. Khisamiev [Khi88] showed that every c.e. presented torsion-free abelian
group has a computable presentation, which easily implies a solution to a question about the integral cohomology of
finitely presented groups posed in [BDM83]. We see that comparing different notions of algorithmic presentability lead
to significant insights in computable algebra, and beyond. In computable analysis, over 70 years ago Specker [Spe49]
showed that the notions of Markov (Type 1) and Kleene (Type 2) computability are non-equivalent. Many other defi-
nitions that appear throughout the vast literature had been shown to be equivalent to one of these two notions; e.g.,
[Lac55a, Lac55b, Grz57, KLS57]. Similarly to the situation in computable algebra, Markov and Kleene computabil-
ity, along with the techniques accumulated in the process of their detailed investigation, form a solid foundation of
computable analysis; see the books [Abe80, Wei00, PER89].

In computable topology, there are at least six definitions of an effectively presented Polish space; they will be given
in Fig. 1 below. These classical notions have been around for a long time; see, e.g., Cěitin [Cei59a], Moschovakis
[Mos64], Spreen [Spr90], Nogina [Nog66], and Kalantari [KW85]. The problem of comparing these notions strikes us
as fundamental. Nonetheless, not all notions that frequently appear in the literature have yet been compared.

The primary aim of this article is to address this gap. Combined with the cited above papers and some further
recent results, our results finish the task of comparing all these notions up to homeomorphism. Before we give the
definitions and describe our results, we note that our techniques have already found applications beyond separating
the notions in Fig. 1. Using our techniques we answer a question of McNicholl by showing that Banach-Stone duality
fails effectively. We now turn to the more detailed description of the actual results.

1.1. The main definitions. To state the results formally we need a few well-known definitions. All our spaces are
Polish, and we view our spaces up to homeomorphism.

Definition 1 (Essentially Ceitin [Cei59b] and Moschovakis [Mos64]). A Polish presentation of a (Polish) space M is
given by a countable metric space X = ((xi)i∈ω, d) so that the completion of X is homeomorphic to M . A presentation
X is:

- right-c.e. if {r ∈ Q : d(xi, xj) < r} are c.e. uniformly in i, j;
- left-c.e. if {r ∈ Q : d(xi, xj) > r} are c.e. uniformly in i, j;
- computable if it is both left-c.e. and right-c.e.

The points xi are usually called special, rational, or ideal.

Both left- and right-c.e. Polish spaces form natural subclasses of ∆0
2 Polish spaces. It has been shown in [BMN] that

every ∆0
2 Polish spaces admits a computably topological presentation, which is another classical notion of presentability

in effective topology. We will not need the notion of a computable topological space, we only note that the implication
established in [BMN] cannot be reversed in general [MN23]. We will however need the exceptionally robust notion of
computable compactness. It admits over a dozen equivalent formulations [DM23, IK21]; one of the many equivalent
definitions is as follows.

Definition 2 (Mori, Tsuji, and Yasugi [MTY97]). A (compact) computable Polish space is said to be computably
compact if for every n we can produce a finite tuple of special points so that the open 2−n-balls centred in these points
cover the entire space.

The definition admits a natural generalisation to locally compact spaces which we omit; see [Pau16, XG09, WZ99,
KMN23, MNar].

The notions and the implications (up to homeomorphism) between them are summarised in Fig. 1 below.

1.2. Completing the diagram. As is carefully explained in [MN23], all the notions on the diagram with only one
exception have been separated in [GKP17, HTMN20, HKS20, LMN23, BHTM23]. It was left open in [MN23, Section
4.1] whether “left-c.e. Polish” implies “right-c.e. Polish” up to homeomorphism. Indeed, it was not known whether
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Computable topological

∆0
2 Polish

left-c.e. Polish right-c.e. Polish

computable Polish

computably (locally) compact

Figure 1. The diagram illustrates the most common notions of computable presentability of (compact) Polish
spaces in computable topology. Arrows illustrate the implications between these notions up to homeomorphism.
The implication between ∆0

2 Polish and computable topological is a recent result established in [BMN] while
the rest of the implications are trivial.

“∆0
2 Polish” implies “right-c.e. Polish”, but evidently a left-c.e counterexample would separate these notions as well.

One of the principal aims of the present article it to give such an example. We prove:

Theorem 1.1. There is a locally compact left-c.e. Polish space which is not homeomorphic to any right-c.e. Polish
space.

Together with the cited above results, it follows from the theorem that the only implications between these notions
are those shown in Fig. 1. The result also implies an earlier result [HTMN20, HKS20] that says that there exists a ∆0

2

Polish space not homeomorphic to any computable Polish space. Our proof of the stronger Theorem 1.1 is significantly
less combinatorially involved than the arguments in [HTMN20, HKS20]. Our proof uses the technique of limitiwise
monotonic sets to separate the recursion-theoretic combinatorics from definability. The notion of a limitiwise monotonic
set was first suggested by Khisamiev [His81] to characterise computable presentability of (discrete, countable) abelian p-
groups. It was later rediscovered by Khoussainov, Nies, and Shore in [KNS97] in the context of computable model theory,
and then much more recently (and independently) it was rediscovered again by Bosserhoff and Hertling [BH15]. For
many applications of limitwise monotonicity in effective algebra and computable model theory, see [KKM13, DKT11].

1.3. A bad closed subset of the unit square. Separating the notion of computable compactness from the notion of
a computable Polish space appears to be a non-trivial task. Obviously, one naturally seeks a compact counterexample.
There are two proofs in the literature; see [LMN23] and [DM23] (the latter based on an idea from [HKS20]). Both
proofs use a new way of calculating Čech cohomology of a compact space, and the former also used a computable
version of Pontryagin Duality. It was raised in [DM23] whether there is a more elementary ‘direct’ way to construct
such an example that, for instance, would not rely on the heavy machinery of algebraic topology or topological group
theory. We further extend our definability techniques established in the proof of Theorem 1.1 to prove:
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Theorem 1.2. There exists a computably enumerable closed subset K of the unit square [0, 1]2 that is not homeomorphic
to any computably compact space.

A closed set is computably enumerable (c.e.) if it contains a c.e. sequence of computable points that is dense in
the set. Clearly, K ⊆ [0, 1]2 from the theorem above can be viewed as a computable Polish space; just use the dense
set as the set of special points in K. Our proof of Theorem 1.2 utilises variety of techniques, including a subtle
definability lemma extending a result from [HTMN20], a new characterisation of computable compactness extending
another technical result from [DM23], and a lemma about limitwise monotonic sets established in [KNS97]. However,
our proof is certainly much more straightforward than all previously known proofs, our space is topologically very
tame, and the proof is also quite easy to ‘massage’. For instance, it is not hard to use K from Theorem 1.2 to illustrate
that Banach-Stone Duality is not effective in general; we discuss this next.

1.4. Banach-Stone Duality is not effective. Recall that one way to state Banach-Stone Duality is as follows. For
compact K0,K1, the Banach spaces C(K0;R) and C(K1;R) are linearly isometric if, and only if, K0 and K1 are
homeomorphic. It is clear that when K is computably compact, C(K;R) admits a computable Banach presentation.
The latter is a computable Polish presentation of the associated metric space d(x, y) = ||x − y|| in which the point 0
and the operation + are computable. In fact, computability of 0 follows easily from computability of +. (An equivalent
formulation can be found in the book [PER89].) A few years ago McNicholl asked whether the converse is also true,
i.e., whether computable presentability of the Banach space C(K;R) implies that K is homeomorphic to a computably
compact space. In [BHTM23] it has been shown that if K is a Stone space, then the answer to McNicholl’s question
is positive. In other words, Banach-Stone Duality holds computably for Stone spaces. The general case was left open.
We prove:

Theorem 1.3. There exists a computable Banach space linearly isometric to C(K;R) where the compact domain K
is not homeomorphic to any computably compact Polish space.

This result is perhaps unexpected since it contrasts greatly with the case of Stone spaces discussed above, and
with the recently announced effective Gelfand duality between compact K and the respective computable C∗-algebras
C(K;C) [BEF+ar]. However, modulo Theorem 1.2, the proof of Theorem 1.3 is actually not difficult at all. It essentially
suffices to take the space K from the proof of Theorem 1.2 and observe that we can easily construct a computable
Banach presentation of C(K;R). (For a further discussion, see Remarks 1 and 2 .)

1.5. Two counterexamples. To finish the paper, we give two more applications of our techniques. The results that we
present next are mainly motivated by the search for a general enough recursion-theoretic sufficient condition for a space
to be computably presented. In computable structure theory, it is sometimes possible to show that if a structure in some
natural broad class has a presentation ‘close to being computable’, then the structure has a computable presentation;
e.g., [KS00, MM17, Khi88]. In contrast, Wehner [Weh98] and Slaman [Sla98] built examples of structures having
X-computable presentations for any non-computable X, but having no computable presentation. Also, Chisholm and
Moses [CM98] constructed a linear order that is n-decidable for all n ∈ ω, but has no decidable isomorphic copy.
Further results of this sort can be found in the survey [FHM14]. A similar program in topology has been proposed by
Selivanov in [Sel20]. There are still very few results of this sort that can be found in the literature. For example, every
left-c.e. Stone space admits a computably compact copy [MN23, HTMN20]. There exists a compact Polish space that
has a X-computable Polish presentation for any non-low2 set X, but has no low2 Polish copy [Mel21]. A few more
results can be found in [HKS20, DM23]. We establish the following, in our opinion rather surprising, result that fits
well into this framework.

Theorem 1.4. There exists a locally compact Polish space M such that M is both right-c.e. presentable and left-
c.e. presentable, however M is not homeomorphic to any computable Polish space.

The theorem simultaneously implies several earlier theorems established in [MN23], [BHTM23], and [HTMN20]. As
we explain in Remark 2, the locally compact space M from Theorem 1.4 can be used to show that the extension of the
effecive Banach-Stone Theorem to locally compact spaces fails “even more”: this time our locally compact space is not
even computable Polish, let alone locally computably compact.
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Finally, utilising the definability framework established in the paper, we prove another result that, in a way, com-
plements the theorem above:

Theorem 1.5. There exists a ∆0
2 compact Polish space M that is neither homeomorphic to any left-c.e. Polish space

nor to any right-c.e. Polish space.

This theorem too implies the main result in [HTMN20] and, compared to the argument in [HTMN20], its proof is
much less combinatorially involved. Limitwise monotonic functions once again play a crucial role in sorting out the
combinatorics. We leave open whether examples of this sort exist inside the unit interval (cf. Question 1).

The remainder of the paper is dedicated to proving our results. To avoid the need for a technical preliminaries
section, we have chosen to provide the necessary auxiliary technical definitions and results as needed throughout the
paper. We however expect that the reader has some background in recursion theory [Rog87, Soa87] and is familiar with
the terminology of (elementary, point-set) topology and metric space theory. The titles of the sections and subsections
should be self-descriptive enough to facilitate easy navigation through the paper.

2. A left-c.e. space with no right-c.e. copy

In this section we prove Theorem 1.1.

2.1. Star-spaces and ε-paths. The definability technique based on ‘n-stars’ was invented in [HTMN20].

Definition 3. A k-star is a topological space homeomorphic to k copies of the interval [0, 1] all joined at one end in a
single point (the Wedge sum of k copies of [0, 1] via 0.). A 0-star is an isolated point.

Note that 1-star and 2-star are homeomorphic, but otherwise a k-star is not homeomorphic to a k′-star when k 6= k′.
In what follows next, we always assume that k 6= 1 since we identify 1-stars and 2-stars. We say that a space (a closed
set) is a star if it is a k-star.

Definition 4. A nice space is a Polish space in which every path-component is either a singleton, or clopen and is
homeomorphic to a star.

We will essentially need only two kinds of nice spaces: a disjoint union of stars and the one-point compactifications
of such spaces. We now verify that, in a nice space, we can express the existence of a path between points by saying
that for every ε > 0, there is an “ε-path” between these points (to be clarified). Thus, we can arithmetically express
that a nice space contains a k-star. The lemma below clarifies this intuition. (But of course, the main challenge is to
make the complexity of this statement optimal.)

Let (M,d) be a Polish space. Given special points x, y, an ε-path from x to y is a sequence of points x =
u0, u1, . . . , un = y such that d(ui, ui+1) < ε. An ε-chain between points x and y in a Polish space is a sequence
of open balls B0, B1, . . . , Bk having radii < ε such that:

(1) Bi ∩Bi+1 6= ∅, for all i ≤ k;
(2) x ∈ B0 and y ∈ Bk.

Lemma 2.1. Let (M,d) be a Polish space such that each path-component of M is compact and open. The following
are equivalent for points r, s ∈M :

(1) there is a path between r and s;
(2) there is an ε-path between r, s, for any ε > 0;
(3) there is an ε-chain between r, s, for any ε > 0.

(The implications (1)→ (2)↔ (3) hold without any extra assumptions about the Polish space M .)

Proof. It is easy to see that an ε-path can be viewed as an 2ε-chain, and conversely the centres of the balls forming an
ε-chain give rise to a 2ε-path. This gives the equivalence of (2) and (3).
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Assume (1), so there is a path between r and s. Let f : [0, 1] → M be a continuous path from r to s. Then f

is uniformly continuous. For a sufficiently large rational q, we have that for each i, d(f
(
i
q

)
, f
(
i+1
q

)
) < ε

4 . Choose

x0 = r, xq = s, and for each i = 1, . . . , q−1, choose a special point xi with d(xi, f(i/q)) < ε/4. Then r = x0, . . . , xq = s
is an ε-path from r to s.

We now assume (1) fails, and we show there is an ε > 0 such that there is no ε-path between r and s. Let C be the
path-component of r. Since C is open, its complement is closed, and since C is compact, the distance between C and
Cc is ε > 0. Then there is no ε/2-path from r to s, as given any path r = u0, u1, . . . , un = s there must be a first i
such that ui ∈ C and ui /∈ C, and so d(ui, ui+1) ≥ ε. �

The elementary lemma above will sometimes be used without explicit reference. Note also that every nice space
satisfies the premises of the lemma.

2.2. The definability lemma for right-c.e. spaces. Our next definability lemma is a generalisation of the main
definability result from [HTMN20]. The lemma will be central to the proof of Theorem 1.1.

Lemma 2.2. Let ((αi)i∈ω, d) be a right-c.e. Polish presentation of a nice space M. Then

“a special point α ∈M is part of a (≥ n)-star”

can be expressed as a Σ0
3 predicate (in α and n).

Proof. The idea is as follows. If we have points p0, p1, p2 at separate ‘arms’ of the star, then there is a δ > 0 for every
sufficiently small ε there must be an ε-path between p0 and p1 which is at distance at least δ from p2, and the same
is true for any permutation of these three points. The generalisation of this idea to n > 2 can be used to describe the
property claimed in the lemma; this is verified in [HTMN20]. However, the issue is that in a right-c.e. space stating
this property directly, as in [HTMN20], would give a mere Σ0

4 upper bound for the complexity. To circumvent this
difficulty, we use compactness. In the notation above, there has to be a fixed δ-path x1, . . . , xm between p0 and p1
which is 2δ-far from p2 and so that, for any sufficiently small ε, there is an ε-path (essentially) inside this fixed δ-path.
This way we rearrange the quantifiers so that, in a right-c.e. space, we get the complexity for the predicate down to
Σ0

3.
We prove that a special point α ∈M is part of a (≥ n)-star iff the following statement holds:
∃p1, . . . , pn special points and a rational δ > 0 such that

∀i, j, k ≤ n ∃x1, x2, . . . , xm special with the properties
(a) d(pk, xs) > 2δ for every s ≤ m;
(b) ∀ε < δ, ∃ε-path pi = u1, u2, . . . , ul = pj such that ∀r ≤ l ∃s ≤ md(ur, xs) < δ.

Let S be a (≥ n)-star. Let P1, P2, . . . , Pn be distinct arms of S. For each 1 ≤ i ≤ n pick pi ∈ Pi at some distance
from the ‘centre’ of the star. We can assume therefore that pi ∈ P ◦i which is the interior of Pi homeomorphic to (0, 1).
Also pick δ = 1

4 min {d (pi, S \ P ◦i ) | 1 ≤ i ≤ n} ∪ {∆}, where ∆ is the isolating distance of S (i.e, the distance from S
toM\ S). Fix i, j, k ≤ n. Since Pi ∪Pj is compact, there is a finite δ-cover of Pi ∪Pj by balls centred in some special
x1, x2, . . . , xm. Observe also that by choice of δ, d(xs, pk) > 2δ for any 1 ≤ s ≤ m as xs ∈ S \ P ◦k . Recall Lemma 2.1.
Since pi, pj are connected in Pi ∪ Pj , for any ε < δ there is an ε-path pi = u1, u2, . . . , ul = pj where each ur ∈ Pi ∪ Pj .
It follows that ∀r ∃s d(ur, xs) < δ.

Now assume the property holds. It follows from Lemma 2.1 that the points p1 . . . pk lie in the same path component.
Thus, the path-connected component S has to be a star. Suppose then that S is not a (≥ n)-star, that is S has < n
arms. Then by the pigeonhole principle, for any choice of p1, p2, . . . , pn, there are at least two of the chosen points
which lie on the same arm, say p1, p3 ∈ P1. Let δ > 0 be given, and we pick from p1, . . . , pn the points p1, p2 and p3. If
p2 ∈ P1, then we can induce an ordering on p1, p2, p3 by considering their preimage in [0, 1], as P1 is the homeomorphic
image of [0, 1]. Then one of the special points must be between the other two with respect to this ordering. Let this
point be pk. (In the case when p2 /∈ P1, then let either p1 or p3 be pk depending on which has the preimage closer to
0 in [0, 1].) Without loss of generality, we assume that p3 is chosen to be pk.

Now let x1, x2, . . . , xm be given such that d(p2, xs) > 2δ for each s. If p1 ∈ Bδ(p3) or p2 ∈ Bδ(p3), then fix any
ε-path p1 = u1, u2, . . . , ul = p2, where ε < δ. It cannot be that ∀r ∃s d(ur, xs) < δ. In the case when p1 ∈ Bδ(p3), we
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have d(p3, xs) < 2δ, and in the case when p2 ∈ Bδ(p3), we have that d(ul, xs) < 2δ for some s. Thus we can assume
that S = Bδ(p3)tF1tF2 where F1, F2 are disjoint compact sets of S \Bδ(p3) containing p1 and p2, respectively. Then
pick ε = 1

4 min{δ, d (F1, F2) ,∆}, and fix an ε-path p1 = u1, . . . , ul = p2. Since F1 ∩ F2 = ∅, there must be some first
index r for which ur /∈ F1. By the choice of ε, it follows that ur ∈ Bδ(p3), which is to say that ∃s, d(ur, xs) < δ, a
contradiction. �

2.3. Proof of Theorem 1.1. Fix Σ0
3 sets R,S ⊆ ω and the standard computable pairing function 〈·, ·〉. We will define

a locally compact space

M = M∞ t
⊔
i∈ω

Mi

where Mn,M∞ are clopen components in M with the following properties:

i M∞ is a countable discrete subspace with all points at distance ≥ 10 from each other.
ii For each i ∈ ω, Mi ⊆ [0, 1]2 under the standard Euclidean metric on [0, 1]2.
iii For α, β from different clopen components Mi (i ∈ ω), d(α, β) = 2. The distance from any point in Mi to any

point in M∞ is ≥ 10.

We now describe the clopen components Mi in a bit more detail. For that, fix the standard computable pairing
function 〈·, ·〉.

iv If n /∈ R, then M〈n,j〉 is finite for every j.
v If n ∈ R and n /∈ S, then there is a unique j such that M〈n,j〉 is a (n+ 3)-star, and when j 6= j′ the component
M〈n,j′〉 is finite.

vi If n ∈ R and n ∈ S, then there is a unique j such that M〈n,j〉 is a disjoint union of (n+ 3) line segments, and
when j 6= j′ the component M〈n,j′〉 is finite.

In iv - vi, the exact cardinality of finite components will depend on the effective approximation of the Σ0
3 sets. In

fact, these cardinalities are not important to us since they will not effect the properties of the space that we need to
prove the theorem. The exact definition of the distance in i and iii is also not important and will depend on S and R
as well.

Lemma 2.3. There is a uniform procedure that, given (indices of) Σ0
3 sets R,S outputs a locally compact left-c.e. Polish

space M =MR,S satisfying the properties i -vi.

Proof. We represent R(n) as ∃j∃∞mU(j,m, n) and S(n) as ∃j∃∞mV (j,m, n), where U, V are computable predicates.
We can further assume that the predicate U satisfies the unique witness property, i.e., if ∃j∃∞mU(j,m, n) then there
is a unique j. For V , we assume that if ∃∞mV (j,m, n), then for all j′ > j, we also have ∃∞mU(j′,m, n).

For every j, we build the component M〈n,j〉 as follows. We monitor U(j,m, n) and act in the M〈n,j〉-component only
when a fresh witness m is discovered for n. In particular, if there are only finitely many such m for the fixed n and j,
then M〈n,j〉 will remain finite.

Assuming U(j,m, n) keeps providing us with m-witnesses, we proceed to build M〈n,j〉 ⊆ [0, 1]2 as follows. We put

more points into n+ 3 arms of (some fixed ahead of time) presentation of a (n+ 2)-star inside [0, 1]2. The procedure
with which points are put into the arms of the star is additionally controlled by the predicate V . We subdivide each
arm into sub-intervals (2−j

′−1, 2−j
′
] and monitor V . Every time we discover a new V -witness m for j′, we move all

points that we put so far into (2−j
′−1, 2−j

′
] to the component M∞ making the distances between these points (and the

distances from these points to the rest of the points present so far in the space) larger than any number seen so far in
the construction.

It is evident that the resulting space is locally compact, left-c.e., and satisfies i -vi. �

A set of natural numbers X is limitiwise monotonic if

X = range sup
y

g(x, y),

where supy g(x, y) <∞ for each x, and g is a computable function.
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Lemma 2.4. Suppose MR,S constructed in the previous lemma has a right-c.e. presentation. Then the set

X = {n :MR,S has a (n+ 3)-star component}
is limitiwise monotonic relative to 0′′.

Proof. First, note that the space is nice (Def. 4). Fix a right-c.e. presentation of MR,S . Apply Lemma 2.2 to build a
0′′-computable g with X = range sups g(y, s) as follows. For a fixed special point py, initially keep g(y, s) undefined.
Apply Lemma 2.2 to 0′′-effectively guess whether y is in an l-star component for some l ≥ n ≥ 3. If we see such an n
at stage t, we define g(y, t) = n− 3 and proceed to the next stage. �

To finish the proof of the theorem, we need the following:

Lemma 2.5 (Khisamiev). There is a d-c.e. set (i.e., a difference of two c.e. sets) that is not limitiwise monotonic.

A relatively modern proof of this fact can be found in [KNS97] where a d-c.e. set X with this property is constructed.
Relativise this result to 0′′ and fix Σ0

3 sets R,S such that X = R\S. LetMR,S be the left-c.e. space built in Lemma 2.3.
By Lemma 2.4 the space has no right-c.e. presentation.

3. A bad c.e. subset of [0, 1]2

In this section we give a detailed proof of Theorem 1.2. We assume that the reader is familiar with the classical
concept of Alexandroff’s 1-point compactification of a space.

Definition 5. A star-space is the 1-point compactification of the disjoint union of stars.

In a star-space, the connected components are exactly the path-components, they are clopen, and also they are
exactly the n-stars that occur in M . In particular, every star-space is ‘nice’ (Def. 4).

Definition 6. Let M be a compact space. A system of open 2−k-covers of the space is a sequence (Ck)k∈ω of finite
sets Ck of open balls in M such that

(1) Ck is a cover of M , and
(2) every ball in Ck has radius at most 2−k.

Our next lemma is a modification of a lemma established in [HTMN20].

Lemma 3.1. Suppose that M is a star-space, and let (Ck)k∈ω be a system of finite open 2−k-covers of the space. A
special point r is contained within an s-star with s ≥ ` > 1 if and only if

(?) there exist B(p1, γ1), . . . , B(p`, γ`) ∈
⋃
k Ck and m ∈ N, and with the properties:

p0, . . . , p` lie in the same connected component as r and

∀n > m and any i, j, k < `, there is a 2−n-chain ⊆ Cn from pi to pj avoiding B(pk, γk).

Proof. If r is the point of infinity used in the definition of the 1-point compactification, then we cannot possibly find
p1, p2, . . . , p` in the path-component as r (recall ` > 1). Thus, we may assume r comes from one of the star-components.

We show that (∗) holds when r lies in an n-star S, n ≥ `. Fix small enough balls B(p1, γ1), . . . , B(p`, γl) in the
system of covers which are centred in p1, . . . , p` that belong to different arms of the star S, which is the connected
clopen component of r. Given pi, pj , and pk, we can assume their radii γk are so small that B(pk, γk) does not intersect
the arms containing pi and pj , and also does not intersect the clopen (thus, compact) complement of the star. Then
there is a path P between pi and pj in M −B(pk, γk).

The path P is compact, thus the distance between P and the closure of B(pk, γk) is non-zero; say it is θk. Let
2−n < θk/2. The finite set of 2−n-balls Cn is a cover of M , and thus of S and of P as well. If we remove all balls in
Cn that do not intersect P , then each remaining ball cannot possibly intersect B(pk, γk). The resulting cover U can
be further refined to a 2−n-chain from pi to pj that does not intersect B(pk, γk).

Take any ball in U that contains pi; denote it B1. Consider the compact set P \ B1, and note that U \ {B1} has to cover this set.

At least one ball in U \ {B1} has to intersect B1 since P is connected; let this ball be B2. Continue in this way to define B3, B4, . . .
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until P \ ∪i<tBi = ∅. Since U is finite and is a cover of P , this process must terminate. Let U0 ⊆ U be the collection of balls constructed

by this iterated process. There exists a ball Bk ∈ U0 so that pj ∈ Bk. Consider the graph in which the balls in U0 are the vertices and

the edge relation holds between Bi and Bj iff P ∩ Bi ∩ Bj 6= ∅. The graph is connected, and there must be a path between B1 3 pi and

Bk 3 pj . The balls along this path in the graph form an ε-chain.

It remains to fix any m > maxk≤`(− log2 θk/2).

Now let S be an s-star in M with s < `. Suppose B(p1, γ1), . . . , B(p`, γl) ∈
⋃
n Cn having their centers in S.

For some i, j, k, after removing pk, the star splits into two connected components, one containing pi, and the other
containing pj . We may assume that γk is sufficiently small that pi, pj /∈ B(pk, γk); otherwise there is nothing to prove.
It is sufficient to show that for every δ, there is an ε < δ such that for every ε-path pi = u0, u1, . . . , un = pj from pi
to pj , there is some ui ∈ B(pk, γk). By Lemma 2.1, it will imply that ε′-chains for sufficiently small ε′ will also have
to intersect B(pk, γk) (indeed, we could just take ε′ = 2ε). In fact, any such ε′-chains will have this property, not just
those made up from balls in

⋃
n Cn.

The star S splits into the disjoint union Ci t Cj t B(pk, γk) where Ci and Cj are closed sets containing pi and pj
respectively. Then Ci and Cj are compact, and so we can choose ε smaller than the distance between Ci and Cj , and
also smaller than the distance between S and the complement of S. Then any ε-path pi = u0, . . . , un = pj in M must
have u0, . . . , un ∈ S (since the distance between S and the complement of S is greater than ε). Also, since u0 ∈ Ci,
un ∈ Cj , and the distance between Ci and Cj is greater than ε, for some s, us ∈ Bδ(pk). �

3.1. Computably compact star-spaces. We return to the analysis of star-components, but this time in a compact
space. Recall that a computable Polish space is computably compact if there is an effective enumeration of (finite
tuples coding) all finite covers of the space by basic open balls. Recall that a star-space is the 1-point compactification
of the disjoint union of n-stars, for various n 6= 1 (perhaps with repetition).

Proposition 3.2. Let M be a computably compact presentation of a star-space. Then the set

{n > 1 : M has an n-star component}
is 0′-limitwise monotonic.

Proof. Recall that a basic computable ball is a ball centred in a special points and having a computable radius (as
opposed to rational radius represented as a fraction in a basic ball). It has been shown in [DM23] that every computably
compact Polish space admits a uniformly computable system of finite 2−n-covers (Cn), n = 1, 2, 3 . . ., consisting of
computable basic balls with the following properties:

(1) each ball in Cn has radius at most 2−n;
(2) each Cn is (uniformly) represented by a finite tuple of indices coding these centres and the radii of the balls

making up Cn;
(3) for any finite collection of balls X0, . . . , Xk ∈

⋃
n Cn (represented by their indices) we can uniformly decide

whether
X0 ∩ . . . ∩Xk 6= ∅.

We follow the terminology in [DM23] and say that such a system of cover (Cn) is strongly ∩-decidable.

Lemma 3.3. Let M be a computably compact Polish space with special points (xi). There is a strongly ∩-decidable
system of covers (Cn) for which the relation ‘xi ∈ X’ is uniformly decidable for any X ∈

⋃
n Cn and i ∈ ω.

Proof. We first discuss the informal idea. The key observation is that all conditions that are sufficient to satisfy to
prove the lemma are effectively open sets. Note, for example, that every intersection of the form X0 ∩ . . .∩Xk 6= ∅ has
to be witnessed by a special point. Thus, (slightly) decreasing the radii will still preserve X0 ∩ . . . ∩Xk 6= ∅. On the
other hand, if we had X0 ∩ . . . ∩Xk = ∅, then decreasing the radii will obviously preserve this property as well. Also,
‘being formally included in’ is an open property of the real parameters describing the balls, thus slightly changing the
radii will preserve the formal inclusion between members of Cn+1 into Cn. We will therefore search for small enough ε
so that all these properties of Cn are preserved after decreasing the radii of all balls in Cn by ε, and so that the new
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radii are not equal to one more real in the list (d(xi, xj))i,j , to make sure ‘xi ∈ X’ is uniformly decidable. We proceed
in this way diagonalising against each d(xi, xj) for each member in Cn, for every n, one at a time.

We now give formal details.

For a basic open B, we write Bc for the basic closed ball with the same centre as B, and we write B to denote the
closure of B that does not have to be equal to Bc in general.

Claim 3.4. Suppose M is computably compact. Then, for basic closed balls Bci and Bcj , the property Bci ∩ Bcj = ∅ is
c.e. uniformly in i, j. The same is true for any finite collection of basic closed balls.

Proof. The open set M \Bci is c.e.. Indeed, we just list all the basic open balls that are formally disjoint from Bci via
the following standard argument. Every point in M \ Bci has the property d(cntr(Bi), y) > r(Bi) = r, and if we take
B(y, q) where

0 < q <
d(cntr(Bi), y)− r(Bi)

2
then d(cntr(Bi), y) > r+ q. Thus, the union of the complements, which is the complement of the intersection Bci ∩Bcj ,
is also c.e. open. It covers the space if, and only if, the intersection is empty. By computable compactness of M , this
is c.e. The case of finitely many balls is similar. �

In the lemma below, K ′ plays the role of Cn and δ should be thought of as small enough so that when we ‘shrink’
each ball in K ′ by δ, it remains a cover; and parameter γ will allow us to iterate the claim. We fix a computably
compact M .

Claim 3.5. For every ε > 0 and δ > 0 and any finite cover K ′ consisting of basic open balls, and a finite collection of
computable reals Ξ = {ξ0, . . . , ξs} we can effectively find a finite basic open ε-cover K, a rational γ > 0, and a finite
cover K ′′ such that:

(i) Every ball in K ′′ has the same centre as some ball in K ′ but its radius is at most δ-smaller;
(ii) for each basic open B1, . . . , Bk ∈ K ′′ ∪K, either

⋂
i≤k B

c
i = ∅ or

⋂
i≤k Bi 6= ∅ holds.

(iii) The radii of all balls in K ′′ ∪K do not lie in Ξ.
(iv) The rational γ > 0 is so that the properties (i)− (iii) are invariant under at most γ-change of the radii of all

balls in K ′′ ∪K.

Proof of Claim 3.5. Fix a finite ε/2-cover of the space by basic open balls, and replace each ball in the cover with a
ε-ball with the same centre. Let S be this new ε-cover. Recall that Bc denotes the basic closed ball with the same
centre as B.

For each tuple of basic open B1, . . . , Bk ∈ S ∪K ′ (exactly) one of the possibilities is realised:

(a)
⋂
i≤k B

c
i = ∅, or

(b)
⋂
i≤k Bi 6= ∅, or

(c)
⋂
i≤k B

c
i 6= ∅ but

⋂
i≤k Bi = ∅.

Note that there are only finitely many conditions in total, and that both (a) and (b) are c.e. conditions (Claim 3.4).
If we shrink the radii of all B ∈ S by a δ′ < min{δ, ε/2} (but keep the same centres), then the conditions of the form

(a) will still hold, and the smaller balls will still cover the space because the ε/2-balls do. If δ′ is small enough, then
the conditions of the form (b) will also still be satisfied, since there are only finitely many conditions like that involved.
Note that the third alternative must be witnessed only by points y such that, for some Bi = B(ci, r), d(y, ci) = r.
This means that, after we shrink the radii by ε/2 > δ′ > 0, (b) will still hold for each tuple of balls, but we completely
exclude the third alternative. Clearly, a rational γ claimed in (iv) also exists, since we could further slightly shrink or
expand the balls and still have the same properties satisfied for the resulting balls after this variation. We can search
for a γ so that any parameter within a γ-interval of the found ones still do the job; this is done simply by looking at
the extremes of the respective γ-intervals defining the radii. Since there are only finitely many computable reals in Ξ,
its complement is dense open in R, thus we can effectively avoid Ξ. Define K ′′ to be the balls in K ′ after the shrinking,
and K is the shrunken balls from S. �
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The rest of the proof proceeds by induction; we iteratively apply Claim 3.5 to produce a system of covers that
satisfies the required properties. For that, we fix an effective enumeration Ξ =

⋃
s Ξs of all reals of the form d(xi, xj),

where xi, xj range over all special points. We begin with any cover at the first iteration of the procedure. In each
consequent iteration of the claim, we also additionally choose the parameters γ and δ are so small that all conditions
achieved at the previous stages are maintained at the next stage. �

To this end, we fix a strongly ∩-decidable system of covers of M with the additional property provided by Lemma 3.3.
Note that the non-singleton clopen components in M are exactly the k-stars (k > 1) that occur in M .

Lemma 3.6. Using 0′, we can effectively enumerate all special points in M that are contained in non-singleton clopen
components of M .

Proof. Using a computable list of covers, it not difficult to effectively enumerate all clopen components; e.g., [DM23,
Lemma 4.21]. Each such component is represented in this list as a finite union of basic open (or closed) balls. For a
tuple of balls representing a component, we can use 0′ ask whether it splits further. We can also check using 0′ whether
it contains more than one special point; since it is open, this is equivalent to checking whether it is a singleton. �

Working effectively in 0′, we produce a list of all special points coming from n-stars, n > 1. In this list, each special
r also comes with the finite open name of its component. When r is one such point from this list, by Lemma 3.1, it is
contained in a k-star for some k ≥ ` > 1 if and only if:

(?) there exist B(p1, γ1), . . . , B(p`, γ`) ∈
⋃
k Ck and m ∈ N, and with the properties:

p0, . . . , p` lie in the same connected component as r and

∀n > m and any i, j, k < `, there is a 2−n-chain ⊆ Cn from pi to pj avoiding B(pk, γk).

Recall that parameter r comes with a finite union of basic open balls making up the connected clopen component
of r. Thus, we can list all special points in this component given r and the finite parameters describing its compoent.
Since (Cn) is strongly ∩-decidable and also satisfies Lemma 3.3, we claim that we can effectively verify whether

there is a 2−n-chain chosen from the balls in Cn from pi to pj avoiding B(pk, γk).

Indeed, this property fails if, and only if, after removing all balls from Cn that intersect B(pk, γk), we end up with two
disjoint finite sets of balls, one containing pi and the other pj . This can be checked effectively, and thus

r is contained in a k-star for some k ≥ ` > 1

is a Σ0
2-relation uniformly in `; denote this relation by Θ≥`. For future reference, we state it in the form of a claim.

Claim 3.7. In a computably compact star-space, the relation

r is contained in a k-star for some k ≥ ` > 1

is Σ0
2 (in r and `), where r is special and ` ∈ ω

Finally, given r, define

g(r) = sup
`>1
{Θ≥`(r) holds}.

Using 0′, we can effectively approximate g from below; cf. Lemma 2.4. When r ranges over all special points, g(r)
ranges over

{n > 1 : M has an n-star component},

witnessing that the latter set is 0′-limitwise monotonic. �
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3.2. Proof of Theorem 1.2, completed. We build a c.e. closed subset K ⊆ [0, 1]2 that is not homeomorphic to any
computably compact Polish space. Modulo the definability techniques developed in the previous subsection, the proof
of this proposition is elementary. (We will need some properties of the simple construction of K to simplify our proof
of Theorem 1.3.)

Proof. Relativise Lemma 2.5 to 0′ and fix a Σ0
3 set X that is not 0′-limitiwise monotonic. Without loss of generality,

assume that 0 ∈ X and 1 /∈ X. Fix a computable predicate P such that

n ∈ X ⇐⇒ ∃z∃∞yP (z, y, n).

For each k = 〈n, z〉, reserve a square region Sk of diameter 2−k in [0, 1]2; arrange it so that, as k goes to infinity, these
regions converge to the point (0, 0). In each such fixed Sk, where k = 〈n, z〉, initiate an approximation of (a dense
sequence whose closure is homeomorphic to) an n-star. Initially, place a special point representing the ‘center’ of the
star, and place n points at the opposite ‘end’ of its ‘arm’.

Every time P (z, y, n) ‘fires’ (i.e., one more witness y is discovered for the fixed n, z), place one more point inside each
arm in such a way that, if P ‘fires’ infinitely often then we end up with Sk homeomorphic to the n-star. Otherwise,
we end up with finitely many points inside Sk. Let Xk be the subset of Sk enumerated by this procedure.

The resulting compact set K = cl(∪k∈ωXk) ⊆ [0, 1]2 is evidently c.e. closed, and it is homeomorphic to a star-space
with the point (0, 0) playing the role of the point of infinity.

Further, we evidently have

X = {n > 1 : K has an n-star component},
which is not 0′-limitwise monotonic. By Proposition 3.2, K is not homeomorphic to any computably compact Polish
space. �

In view of the discussed above results of Bosserhoff and Hertling [BH15], we would like to know the answer to:

Question 1. Is there a c.e. closed subset of [0, 1] not homeomorphic to any computably compact space?

We leave the question open, and we suspect that new ideas and techniques will be necessary to attack this question.

4. Applications

4.1. A ‘bad’ ∆0
2 space. In this subsection we apply our techniques and results to prove Theorem 1.5. Recall that the

theorem claims that there exists a ∆0
2 compact Polish space that is neither homeomorphic to any left-c.e. Polish space

nor to any right-c.e. Polish space.
The key lemma is as follows.

Lemma 4.1. Suppose M is a left-c.e. presentation of a compact Polish space. Then M is 0′-computably compact.

Proof. As explained in [DM23] in much detail, it is sufficient to 0′-effectively produce at least one 2−n-cover for each
n ∈ ω. Given a finite collection of basic open balls B0, . . . , Bk of radius 2−n−1 represented by their special centres (and
−n − 1), check whether there is a special point outside of all these open balls. Since the space is left-c.e., it is a Σ0

1

condition that can be decided using 0′. If there is such a special point, then B0, . . . , Bk is not a cover. On the other
hand, if no such special point exists then the 2−n-balls with the same centres as B0, . . . , Bk is a cover of the entire
space. It is clear that going through all possible finite tuples of basic open 2−n−1-balls we will eventually find at least
one such tuple that covers all special points. �

If M is a left-c.e.-presentable star-space then, by Lemma 4.1 and Claim 3.7 (relativised to 0′), we have that the
relation

r is contained in a k-star for some k ≥ ` > 1

is Σ0
3 (in r and `), where r is special and ` ∈ ω. Similarly, in a right-c.e. presented star-space this relation is also Σ0

3,
by Lemma 2.2. In both cases we can conclude that the set of all n > 3 so that the space contains an n-star has to be
limitiwise monotonic relative to 0′′.
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The rest of the proof is very similar to the proof of Lemma 2.3, with only two elementary modifications. Recall that
in Lemma 2.3 we constructed a left-c.e. presentation of a space of the formM = M∞ t

⊔
i∈ωMi. This was done using

approximations to Σ0
3 sets R,S ⊆ ω so that R \ S is not 0′′-limitiwise monotonic. We repeat the same proof but this

time:

(1) We do not have M∞.
(2) We arrange Mi on [0, 1]2 (shrinking their diameters) so that they converge to, say, the point (0, 1).
(3) In the proof, instead of moving finitely many points to M∞ we simply erase them from the space. (We may

reintroduce these points later again.)

This way we construct a Σ0
2-closed subspace of [0, 1]2 that evidently also gives a ∆0

2-Polish presentation of the space.
However, since the sizes of the stars in the space code a set that is not 0′′ limitwise monotonic, the space cannot
possibly have a left c.e. presentation nor a right-c.e representation.

4.2. The effective Banach-Stone duality fails. Let K be the c.e. subset of [0, 1]2 constructed in Subsection 3.2;
it has no computably compact copy. It has the form {(0, 0)} ∪

⋃
kXk, where each Xk is either a dense subset of an

n-star for (where k = 〈n, z〉 for some z), or is an ‘incomplete’ n-star, i.e., a finite subset on an n-star that contains the
centre, the end-points of its arms, but only finitely many points in-between these points on the arms.

Let Xk,s ⊆ Xk be the part of Xk produced at the end of stage s of the construction in Subsection 3.2. Since each
Xk,s can be thought of as a subset of a copy of the n-star (which may or may not become a part of K in the limit), it
makes sense to talk about generalised piecewise linear functions f : Xk,s → R, which are defined as follows. A function
is generalised piecewise linear on an n-star if it is linear when restricted to each arm of the star. Then we say that
a function is generalised piecewise linear on Xk,s if it is the restriction of a generalised piecewise linear function with
support the respective n-star ⊆ [0, 1]2 reserved for Xk. (We also assume its support does not exceed Xk.)

We add special points in C(K;R) to represent the following functions:

(1) All piecewise linear functions on Xk,s with rational parameters that have their extrema at points in Xk,s, and
0 on all other points in Xk′,s for k′ 6= k.

(2) All functions of the form f(x) = sup{0, q − d((0, 0), x)}, where q ∈ Q, (0, 0) ∈ K can be assumed special in K,
and furthermore q is chosen so that the support of the function either include an entire region Sk ⊇ Xk or is
disjoint form it, for every k. (This is simply a ‘tooth-function’ with its ‘pointy end’ over the exceptional point
(0, 0) of K, and so that its support is clopen in K.)

(3) All rational finite linear combinations of functions from (1) and (2).

Of course, there are infinitely many functions satisfying (1) − (3); we initiate their enumeration. Note each such
function can be naturally (linearly) extended to a function K → R even though lots of points in K are still perhaps
missing at stage s.

The following observation is crucial:

Lemma 4.2. The functions described in (3) above achieve their maxima and minima at special points (0, 1)∪
⋃
nXn,s

of Ks even when naturally interpreted as functions K → R on the set K.

Proof. This is simply a generalisation of the well-known fact that every piecewise linear function on [0, 1] achieves its
maximum at one of its breaking points. Also, piecewise linear functions (on [0, 1]) are closed under taking finite linear
combinations. In this case, their breaking points form a subset of the union of the breaking points of the summands.

If the maximum of a linear combination of functions f1, . . . , ft defined in (1)− (2) is not already achieved at (0, 0),
it has to be among Xn1,s1 , . . . , Xnt,st that are used in the definition of some f1, . . . , ft at stages s1, . . . , st; these sets
will contain their breaking points even after the construction of K is ‘finished’. �

Such a collection of linear combinations of functions from (3) above form a separating set for K. For any two points
x 6= y of K, consider their Cauchy names (xn)n, (yn)n ⊆

⋃
sXk,s. By (1), for each n, there must exist a function fn

satisfying (1) − (3), such that fn(xn) = 1 6= 0 = fn(yn). Evidently, the uniform limit of fn (which exists by a careful
choice of fn) separates the points x and y, and thus, the collection of functions satisfying (1)−(3) are dense in C(K;R).
Furthermore, these points of extrema of a fixed linear combination (from the lemma above) will not change as new
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functions are introduced in the construction of C(K;R). Hence, the norm in C(K;R) is uniformly computable. In
other words, it is a computable Banach presentation of C(K;R). However, K has no computably compact presentation,
up to homeomorphism. This finishes the proof of Theorem 1.3.

Remark 1. The anonymous referee pointed out that perhaps a stronger version of Theorem 1.3 should hold, and
we completely agree. For example, there may be a compact K such that K is not homeomorphic to a computable
Polish space, or perhaps even to a right-c.e. space, but C(K;R) still has a computable Banach presentation. However,
it appears that proving a stronger result of this form would require a new construction, as one must preserve the
norm while transforming the domain K (for the sake of diagonalisation). This preservation was automatic in our
construction, since the suprema were achieved at special points that furthermore never leave the space (in contrast with,
e.g., the space from Theorem 1.5).

We wonder whether K must be arithmetical if C(K;R) has a computable Banach presentation. On the other hand,
is there a computable Polish (compact) K so that C(K;R) does not have a computable Banach presentation? Such
a pathological K, if it exists, must also not be homeomorphic to any computably compact Polish space. To keep the
article concise, we shall be satisfied with Theorem 1.3 and leave its generalisations to future investigations (but see also
Remark 2).

5. An almost computable space. Proof of Theorem 1.4

Recall that we need to prove that there is a locally compact Polish space M that is homeomorphic to a left-c.e. space
and to a right-c.e. space, however, M is not homeomorphic to any computable Polish space. We split the proof into
several lemmas which we then put together at the end of the section to define our space. We begin with a technical
definition

Definition 7. Let X = (X, d) be a compact metric space with at least two points. Then define the space X ? = (X∪I, d∗)
as follows.

• I is a countable set of isolated points.
• d∗ �X= d, and ∀a ∈ I, ∀b ∈ X ∪ I, d∗(a, b) = sup{d(x, y) | x, y ∈ X}.

Evidently, X ? is locally compact.

Recall that for a given countable Boolean algebra B, the space B̂ is the Stone space whose algebra of clopen subsets
are isomorphic to B.

Lemma 5.1. Let B be a countable Boolean algebra. If B is c.e. presentable, then B̂
?

is left-c.e. Polish presentable.

Proof. Since B is c.e. presentable, then by a result of [BHTM23], we can fix some co-c.e. presentable pruned tree T
such that B is isomorphic to the algebra of clopen subsets of [T ]. Let (Ts)s∈ω be a computable sequence of computable
pruned trees satisfying the following properties.

• T0 = 2<ω.
• ∀s ∈ ω, Ts ) Ts+1 and

⋂
s∈ω Ts = T .

• ∀s ∈ ω, ∃σ ∈ Ts \ Ts+1 such that τ ∈ Ts \ Ts+1 =⇒ σ � τ .

We can assume that ∀s ∈ ω, Ts ) Ts+1 otherwise T is computable and thus giving that [T ] can be computably
presented. For each σ ∈ Ts, define fsσ as the left-most path of Ts extending σ, then it follows that fσ := lims f

s
σ is the

left-most path in T extending σ ∈ T . We aim to construct a left-c.e. Polish presentation ((ασ)σ∈2<ω , d) of [T ] as a

subspace of (2ω)
?
. In fact, [T ] will be isometric to a subspace of ((ασ)σ∈2<ω , d).

Proof idea: The strategy to build such a space is as follows. For each string σ ∈ 2<ω, let ασ be a special point
associated with σ. The idea is to let ασ represent fσ ∈ [T ], whenever σ ∈ T and some isolated point separated

from the rest if σ /∈ T . We would then obtain that ((ασ)σ∈T , d) ∩ ((ασ)σ/∈T , d) = ∅, and thus ((ασ)σ∈2<ω , d) ∼=
[T ]? ∼= B̂

?
. However, since T is co-c.e., for some σ ≺ τ it could be the case that in Ts, f

s
σ 6= fsτ , and so we

should define ds(ασ, ατ ) > 0. Then at some later stage s′, it could become the case that fs
′

σ = fs
′

τ , which
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means that ds′(ασ, ατ ) = 0. Then d cannot be left-c.e., and so we instead simulate each fσ by a sequence of
special points (αiσ)i∈ω.

Consider now the situation as presented before; we have currently defined ds(α
s
σ, α

s
τ ) > 0 for some σ ≺ τ ,

but at some stage s′ > s, we discover that fs
′

σ = fs
′

τ . Then define ds′
(
αsσ, α

s′

τ

)
= 0, and move αsτ away by

defining ds′ (α
s
σ, α

s
τ ) = 1. In other words, we shift the ’old’ version of ατ away into the set of isolated points

and introduce a ’new’ version of ατ and let that be equal to ασ. Observe that the longer string is the one
shifted away, which allows us to define the isometry h later.

During the construction, at each stage s, we will introduce αsσ for each σ ∈ 2<ω where |σ| ≤ s. That is, we will need to
define ds

(
αiσ, α

j
τ

)
for each σ, τ ∈ 2<ω of length at most s and for each i, j ≤ s. To simplify the actions taken, we write

αsσ ∼ αs−1σ to mean that ds
(
αsσ, α

s−1
σ

)
= 0 and also, for any other τ , and any i < s, ds

(
αsσ, α

i
τ

)
= ds−1

(
αs−1σ , αiτ

)
.

Here we note that multiple special points will all have distance 0, in particular, for (possibly) cofinitely many αiσ will
have distance 0 from some αsσ. However, since testing of equality is co-c.e. in a left-c.e. space, the repetitions of special
points can be eliminated in the usual way, and are only introduced for convenience in the construction. We also say
to move αsσ to I to mean ds

(
αiσ, α

j
τ

)
= 1 for any i, j ≤ s and for any αjτ 6= αiσ introduced thus far in the construction.

Furthermore, once some αsσ is moved to I, then its subsequent distance with any other special point will be defined as
1.

Once a node σ is discovered to leave T , say at stage s, then all subsequent ’versions’ of the special point; αtσ for
any t > s will also be moved to I the moment they are introduced. By choice of (Ts)s∈ω, we know that once a node
leaves T at stage s, it will never be a member of Ts′ for any s′ > s. In particular, during an arbitrary stage s in the
construction, we need only define ds between nodes currently still in Ts. The formal construction is as follows.

Stage 0: Introduce α0
ε and do nothing else.

Stage s > 0: At each stage s, we will only work with strings of length at most s, that is, when we write Tn (during
stage s) we really mean the set {σ ∈ Tn | |σ| ≤ s}. For each δ, ξ ∈ Ts, define

ds
(
αsδ, α

s
ξ

)
= max

{
2−i | fsδ �s (i) 6= fsξ �s (i)

}
∪ {0}.

For all other δ /∈ Ts, move αsδ to I. Let σ ∈ Ts−1 \ Ts be the common prefix of all strings removed from Ts−1
and fix λ ∈ Ts to be such that either λ ∗ 0 = σ or λ ∗ 1 = σ.

If λ ∗ 0 = σ, we do the following.
(1) For each δ � λ and δ ∈ Ts, let αsδ ∼ α

s−1
δ .

(2) For each δ � λ ∗ 1, move αs−1δ to I. Note here that fs−1λ �s 6= fs−1λ∗1 �s but fsλ �s= fsλ∗1 �s. Thus we move
the old versions of αδ to I and define ds (αsλ, α

s
λ∗1) = 0.

(3) For each δ � λ ∗ 0, move αsδ to I.
If λ ∗ 1 = σ, then do the following.
(1) For each δ � λ ∗ 1 and δ ∈ Ts, let αsδ ∼ α

s−1
δ .

(2) For each δ � λ ∗ 1, move αsδ to I.

Let d = lims ds and we now show that
(
(αiσ)σ∈2<ω,i∈ω, d

)
is a left-c.e. Polish presentation of B̂

?
.

Lemma 5.2. If σ ∈ T , then ∃s such that ∀t ≥ s, dt (αsσ, α
t
σ) = 0.

Proof of Lemma 5.2. Let σ ∈ T be given, then ∀s, σ ∈ Ts. During the construction, as long as σ ∈ Ts, then αsσ is not
moved to I at stage s. However, it is entirely possible that at some later stage s′ > s, αsσ could be moved to I. But
this only happens if σ � λ ∗ 1 where λ is such that λ ∗ 0 is the minimal (under �) string removed from Ts′ . Since σ
is finite, then there can only be finitely many λ0, λ1, . . . , λn for which σ � λi ∗ 1. Then fix a stage s∗ large enough
such that ∀i, λi ∗ 0 /∈ Ts∗ . Observe then that for all stages t > s∗, the construction always defines αtσ ∼ αt−1σ . That is,
∀t ≥ s∗, dt

(
αs
∗

σ , α
t
σ

)
= 0. �

Lemma 5.3. d = lims ds is a left-c.e. metric.
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Proof of Lemma 5.3. Let αiσ and αjτ be given. Let t = max{i, j} be the first stage at which dt
(
αiσ, α

j
τ

)
is defined. We

run through the possible actions in the construction and show that ds
(
αiσ, α

j
τ

)
≥ ds−1

(
αiσ, α

j
τ

)
for any s > t. Let some

stage s > t be given.
If at stage s, at least one of αiσ or αjτ is moved to I, then ds

(
αiσ, α

j
τ

)
= 1. Since this is the maximum possible

distance between any two points in the construction, then it follows that ds
(
αiσ, α

j
τ

)
≥ ds−1

(
αiσ, α

j
τ

)
.

Then we can suppose that neither αiσ nor αjτ is moved to I at stage s. It then remains to verify that when the action
αsσ ∼ αs−1σ and αsτ ∼ αs−1τ is executed, ds (αsσ, α

s
τ ) ≥ ds−1

(
αs−1σ , αs−1τ

)
. By our assumption that neither αiσ and αjτ

has been moved to I, the latter is equal to ds−1
(
αiσ, α

j
τ

)
. Therefore it suffices to check that

max
{

2−n | fs−1σ �s−1 (n) 6= fs−1τ �s−1 (n)
}
∪ {0} ≤ max

{
2−n | fsσ �s (n) 6= fsτ �s (n)

}
∪ {0}.

If ds−1
(
αs−1σ , αs−1τ

)
= 0 then the statement is trivial. So we may assume that ds−1

(
αs−1σ , αs−1τ

)
= 2−n > 0 for some

n < s− 1. Note also that n < max{|σ|, |τ |}, otherwise fs−1σ �s−1= fs−1τ �s−1. Then if ds (αsσ, α
s
τ ) < ds−1

(
αs−1σ , αs−1τ

)
,

it must be that ∀m ≤ n, fsσ �s (m) = fsτ �s (m). This can only happen if for some λ � τ or λ � σ of length n, the
string λ ∗ 0 or λ ∗ 1 is removed from T at stage s. If λ ∗ 0 is removed, then either αiσ or αjτ must have been moved to I
because respectively, λ � τ or λ � σ. In the case that λ ∗ 1 is removed at stage s, as neither αiσ nor αjτ is moved to I,
then it must be that fs−1σ �n+1= λ ∗ 0 = fs−1τ �n+1 which is a contradiction.

Thus d = lim ds is left-c.e.. To see that d is a metric, for αiσ and αjτ not in I,

d
(
αiσ, α

j
τ

)
= max{2−n | fσ(n) 6= fτ (n)}.

In the case that one of the points is in I, d
(
αiσ, α

j
τ

)
= 1. It is easy to verify that triangle inequality is satisfied.

Furthermore, by eliminating repetition of special points, d then becomes a metric. �

For each σ ∈ T , by Lemma 5.2, we can fix an sσ ∈ ω such that ∀t ≥ sσ, dt (αsσσ , α
t
σ) = 0. Then define the map

h
(
αiσ
)

=

{
left-most path in T through σ if i ≥ sσ,
some currently unoccupied point in I otherwise.

It is clear then that the set B =
{
h
(
αiσ
)
| σ ∈ T, i ≥ sσ

}
⊆ [T ] is dense in ([T ], d). Furthermore, since d

(
B, I

)
= 1,

then B ∩ I = ∅. This implies that (B ∪ I, d) ∼= B̂
?
. �

The result below is essentially due to [BHTM23].

Lemma 5.4. Let B be a countable Boolean algebra. If B is c.e. presentable, then B̂
∗

is right-c.e. Polish presentable.

Proof. In [BHTM23], it is proven that for a c.e. presentable Boolean algebra B, its Stone space B̂ is right-c.e. presented.

The metric on B̂ is induced by the standard ultra-metric on 2ω, and by compactness, the diameter of the space has to
be of the form 2−n for some n (since the supremum is achieved at some x, y ∈ B̂). This induces a right-c.e. presentation

of B̂
∗

= B̂ ∪ I; see Definition 7. �

Lemma 5.5. Let B be a countable Boolean algebra such that B̂
∗

is computable Polish presentable. Then B is computably
presentable.

Proof. Let ((αi)i∈ω, d) be a computable Polish presentation of B̂
?

=
(
B̂ ∪ I, d

)
. We have that d(B̂, I) = δ > 0. In

particular,
⋃
αi∈B̂ Bδ(αi) is a cover of B̂ and disjoint from I. Since B̂ is compact, then there is some finite subcover⋃

i<nBδ(α
∗
i ) of B̂. Without loss of generality, fix (non-uniformly) the isolating distance δ and such α∗i as β0, β1, . . . , βn.

We now prove that B̂, as a subspace of B̂ ∪ I is computable Polish presentable. Then by the following result of
[HTMN20], we can conclude that B is computably presentable: A Boolean algebra is computable presentable if, and
only if, its Stone space is homeomorphic to a computable Polish space. (The sketch in [HTMN20] contains a misleading
but easily fixable error. For a detailed and complete exposition, see the technical survey [DM23].)
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Since d(B̂, I) > 0, B̂ ∼= ((αi)i∈W , d) where W = {i | αi ∈ B̂}, and thus it suffices to show that W is c.e., as d is
already computable. For each i ∈ ω, let i ∈ W iff ∃j ≤ n, d(αi, βj) < δ. Since d is computable, then the predicate

d(αi, βj) < δ is Σ0
1 and hence W is c.e.. Furthermore, it is easy to see that αi ∈ B̂ iff i ∈W . �

Proof of Theorem 1.4. Let B be a countable c.e. presentable Boolean algebra that does not have a computable pre-

sentation. Then by Lemmas 5.1 and 5.4, the space M = B̂
∗

is both left-c.e. and right-c.e. Polish presentable. But we
also have that by Lemma 5.5, M is not computably presentable. �

Remark 2. We remark that, more generally, the Banach–Stone Theorem holds for locally compact L and C0(L;R) (or
C0(L;C)), which consist of continuous functions that vanish at infinity, under the supremum norm. It is not difficult
to show that if L is computably locally compact (as defined in, e.g., [MN23, MNnd]), then C0(L;R) has a computable
Banach presentation. (For example, use the computable compactness of the 1-point compactification L ∪ {∞}, where
∞ is actually a special point; see [MNnd].) Thus, the easier implication in the (generalised) Banach–Stone Theorem
still holds in the locally compact case.

We strongly conjecture that the space B̂
?

constructed in the proof of Theorem 1.4 has the property that C(B̂
?
,R) has

a computable Banach presentation. Indeed, consider the (continuous) characteristic functions for the basic clopen sets

at stage s. When a point is moved away from the B̂-component, it appears to not upset the norm if we just declare the
(corrected) functions naively. The resulting collection of functions will still separate points of the domain, and thus (by

the Stone–Weierstrass Theorem) will form a computable dense linear sequence in the Banach space C(B̂
?
,R).
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