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Abstract

We study computable Polish spaces and Polish groups up to homeomorphism. We
prove a natural effective analogy of Stone duality, and we also develop an effective
definability technique which works up to homeomorphism. As an application, we show
that there is a ∆0

2 Polish space not homeomorphic to a computable one. We apply
our techniques to build, for any computable ordinal α, an effectively closed set not
homeomorphic to any 0(α)-computable Polish space; this answers a question of Nies.
We also prove analogous results for compact Polish groups and locally path-connected
spaces.

1 Introduction

In this article we focus on the following general problem fundamental to computable math-
ematics:

Describe computably presentable mathematical structures.

Of course, to formally clarify the problem we need to restrict it to some natural class of
mathematical structures and agree on what we mean by a computable presentation for such
structures. For instance, Turing [Tur36, Tur37] suggested the following formal definition
of a computable real: A real r is computable if there is an effective procedure (Turing
machine) which, on input s, outputs a rational q such that ∣q − r∣ < 2−s. Turing’s definition
has a natural generalisation to functions. Similarly, we say that a function f ∶ [0,1] → R is
computable if there is an effective procedure which, on input s, outputs a tuple of rationals
⟨q0, . . . , qn⟩ such that supx∈[0,1]{∣f−∑n

i=0 qix
i∣} < 2−s. Using the formal notion of computability

for functions, we can use tools of computability theory to attack the general problem of
computable presentability informally stated above. For instance, Myhill [Myh71] showed
that there exists a computable function which is continuously differentiable, but its derivative
is not computable. In contrast, Pour-El and Richards [PER83] showed that if the second
derivative of a computable function f exists (but is not necessarily computable), then the
derivative of f has a computable presentation. Results of this kind belong to a field of
mathematics called computable analysis ; see books [PER89, BHW08].

The ideas of Turing can be naturally extended beyond the space of reals to define the clas-
sical notion of a computable Polish space [Wei00]. Recall that a metrized Polish space (M,d)
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has a computable Polish presentation if there exists a countable metric space ((xi)i∈ω, d̃)
whose completion is isometrically isomorphic to (M,d) and, given i, j and n, we can com-
pute d̃(xi, xj) with precision 2−n. In the case of a separable Banach space we also assume that
the standard Banach space operations are computable; we omit the definition (see [PER89]).
The study of computable presentations of metrized separable spaces has been central to com-
putable analysis for decades. See books [PER89, Wei00], a tutorial survey [BHW08], and
also, e.g., [BG09, NS15, GW07, CMS19, HRSS19] for recent results on computable Polish
and Banach spaces.

As was first noted in [Mel13], the study of separable spaces up to isometric isomorphism
can be viewed as a generalisation of (discrete) computable algebra [AK00, EG00]. With
some effort, the techniques and ideas from computable algebra can be adjusted to separable
spaces. Beginning with [Mel13] there have been several successful applications of effec-
tive algebraic techniques to separable spaces; see [CMS19, MN13, NS15, MS19, GMKT18,
GMNT18, McN17, MN16], a PhD thesis [Bro19], and a recent survey [DM20].

In the case of Polish groups the situation becomes more complex. We of course require the
standard group operations to be computable with respect to the computable dense set (to be
clarified), but this is not what makes the case of Polish groups different from Banach spaces.
Since topological groups are typically studied up to topological isomorphism, we require that
the completion of the computable presentation of G is merely algebraically homeomorphic
to G. The relaxation of isometry to homeomorphism makes it essentially impossible to apply
methods developed for Banach spaces and metric spaces up to isometry to Polish groups.

There were however some notable exceptions. For instance, working under the supervision
of Nerode, La Roche [LR81] proved that the correspondence between computable algebraic
number field extensions and profinite groups is uniformly effective. In particular, computable
presentability of a profinite group is completely reduced to the similar problem for the
corresponding field extension. Quite interestingly, the algorithmic techniques developed in
[LR81] allowed La Roche to prove a theorem on free profinite groups that was new even
in the purely algebraic (non-computable) setting, see [Jar74] for the earlier (and weaker)
purely algebraic result. Based on the work of La Roche, Smith [Smi81, Smi79] studied
“recursive presentations” of profinite groups; these are computable linear inverse systems
of finite groups. These results and notions are of course naturally limited to the class of
profinite groups, and there had been very little progress in computable topological groups
theory for several decades (but see [GR93]).

Beginning with [MM18], there have been a few successful applications of effective al-
gebraic techniques to topological group theory beyond profinite groups. If a group is not
profinite then we follow [MM18] and define its computable presentation to be a computable
Polish presentation of the underlying space which makes the group operations ⋅ and −1 com-
putable; see Definition 2.3 for formal details1. The main difficulty in such investigations is
that there is still no general machinery, so every result seems to require a new method. For
example, Melnikov [Mel18] used Pontryagin duality, computable pregeometries, and a result
of Dobrica [Dob83] to partially reduce the study of computable compact topological abelian

1We note here that every “recursive” profinite group (in the sense of computable inverse limits) can
naturally be viewed as a computably metrized Polish one, and passing from a computable Polish presentation
to a “recursive” one requires 0′, and this is sharp [Mel18].
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groups to the theory of computable discrete abelian groups (see surveys [Mel14, Khi98]).
Greenberg, Melnikov, Nies and Turetsky [GMNT18] used ideas from descriptive set theory,
the above-mentioned result of La Roche [LR81], methods of higher recursion theory [Sac90],
and the jump inversion technique from effective algebra to study computable totally discon-
nected groups.

One of the key obstacles here is that essentially nothing is known about computable
presentability of Polish spaces up to homeomorphism. The little that was known before the
publication of this paper can be found in the very recent short survey [Sel20]. For instance,
Selivanov [Sel20] introduced the notion of the degree spectrum of a Polish space up to home-
omorphism; however, Selivanov’s results for algebraic domains does not have implications for
Polish spaces since the notion of computability there is rather different. There are of course
some results in the literature on computable topological spaces (e.g. [WG09]) which naturally
hold up to homeomorphism, such as the effective metrization theorem [GW07], but until very
recently computable presentability of metrized Polish spaces up to homeomorphism remained
completely unexplored.

The main purpose of this paper is to establish the foundations of this new subject. Work-
ing simultaneously and independently, Kihara, Hoyrup and Selivanov [HKS] have recently
proven a number of important and fundamental results on degree spectra of Polish spaces up
to homeomorphism. We will indicate the connections between our results and [HKS] below.

We will prove several general results and will develop elements of definability which work
up to homeomorphism. Although these are only the first steps, our new techniques will allow
us to answer several fundamental questions, including:

(1) Is there a ∆0
2-presented Polish space not homeomorphic to a computable one?

(2) Is every effectively closed set homeomorphic to a computable Polish space?2

We will then apply our techniques to answer similar questions for Polish groups. Using differ-
ent methods, Takayuki Kihara, Mathieu Hoyrup and Victor Selivanov [HKS] have suggested
an independent solution to the first question for Polish spaces.

As we mentioned above, very little is known about computable presentability up to home-
omorphism. Nonetheless, the reader will perhaps be surprised that the two main questions
above were open since they are so fundamental and basic. Of course, the analogy of the
first question up to isometry is trivial: Just take two points at distance a real number α
coding the halting set. But the question is no longer straightforward up to homeomorphism.
For instance, Greenberg and Montalbán [GM08] showed that every hyperarithmetical com-
pact countable Polish space has a computable copy. The proof relies on the computability-
theoretic analysis of the Cantor-Bendixson process due to Friedman (unpublished notes); in
particular, for a countable space the Cantor-Bendixson rank must be hyperarithmetical, and
since a countable compact space is homeomorphic to an ordinal the result of Greenberg and
Montalbán follows from the similar classical result for ordinals (see, e.g., [AK00]). (We note
that [HKS] contains a detailed proof of this fact.) Thus, if we want to get an example of a ∆0

2

Polish space not homeomorphic to a computable one, the space must contain a non-trivial

2Thanks to Andre Nies for asking this question. We also thank Alex Galicki for several discussions related
to this topic. Alex is involved in a related project which is still in progress.
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perfect kernel. Regarding the second question, we will see that computable presentability
of an effectively closed set is related with the ability to decide whether a given open set
intersects it.

Now to the results.

Stone spaces. Recall that compact and totally disconnected Polish spaces are also called
profinite spaces or Stone spaces. The well-known Stone duality states that a countable
discrete Boolean algebra B is dual to the profinite space B̂ of its ultrafilters, in the sense
that B ≅iso C iff B̂ ≅hom Ĉ. Greenberg and Montalbán [GM08] (essentially) observed that
Stone duality holds arithmetically. Passing from a computably metrized Stone space to the
respective Boolean algebra is of course the harder direction, and it seems to require at least
one Turing jump. Interestingly, we discovered that the duality holds computably:

Theorem 1.1. Let B be a (countable, discrete) Boolean algebra. Then the following are
equivalent:

(1) B has a computable copy;

(2) the Stone space B̂ of B has a computable Polish presentation.

The proof of the theorem is not difficult but is subtle, and it makes an essential use of
the well-known result of Downey and Jockusch [DJ94]. The proof of Theorem 1.1 implies
that every computable Stone space has a computable effectively compact presentation; recall
that a space is effectively compact if for every i we can computably cover the space with
balls having radii ≤ 2−i. This is because every computable Boolean algebra has a computable
presentation with a tree-basis represented as a computable binary subtree of 2<ω (folklore);
see Subsection 4.1 for more about spanning trees. It follows that Theorem 1.1 still holds if in
(2) we additionally require the space to be effectively compact; see [HKS] for an independent
proof of this fact that does not use Downey and Jockusch [DJ94].

Combine Theorem 1.1 with the classical theorem of Feiner [Fei70] to obtain:

Corollary 1.2. There exists a ∆0
2-presented profinite Polish space not homeomorphic to any

computable Polish space.

This answers the first main question. Theorem 1.1 essentially completely reduces the the-
ory of computable Stone spaces to computable Boolean algebras; see book [Gon97] for an
excellent but somewhat dated exposition of the latter. We state only one of the many
corollaries: Every low4 profinite Polish space is homeomorphic to a computable one (follows
from [KS00]).

Effectively closed subspaces. Recall that a closed subspace of a computable Polish space is Π0
1

or effectively closed if its complement is computably enumerable; i.e., there is a computably
enumerable set of open balls which makes up the complement. Effectively closed subspaces
of 2ω are called Π0

1-classes and have been studied extensively. However, not much is known
about effectively closed spaces of arbitrary spaces; see, e.g., [CR99, YMT99] for a few results.
Note that an effectively closed space does not have to contain a dense set computable in the
ambient space. If an effectively closed C does contain a dense uniformly computable sequence
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then C is called effectively overt. Equivalently, a closed set is effectively overt if the set of
basic open balls intersecting the set is computably enumerable (folklore; see, e.g., [HRSS19,
Mel18] for details). If a set is effectively overt then of course it has a computable presentation
under the induced metric. It turns out that effective overtness is essential in producing a
computable presentation of a Π0

1 closed set.

Theorem 1.3. For each computable ordinal α, there is a computable Polish space M and a
Π0

1 subspace C of M such that C is not homeomorphic to any 0(α)-computable metric space.

This answers the second main question raised above in a strong way. It also follows from
Theorem 1.3 that there exists a Π0

1 subspace C which is not 0(α)-overt. We leave open:

Question 1. Is there an effectively closed X not homeomorphic to any hyperarithmetically
represented space?

Locally connected spaces. Although we settled both main questions in general, we would
like to test these ideas on spaces from other natural classes. After all, Stone spaces are very
specific topological spaces, they are just representations of the well-studied class of countable
Boolean algebras. One would naturally expect that techniques required to build examples of
Stone spaces will likely be too specific to be of any use outside of this narrow class of spaces.

In particular, the classes of connected and locally connected spaces seem to be on the
other end of the technical “spectrum”. Recall that there is no logical implication between
connectedness and local connectedness. We focus on the locally connected case. As we
mentioned above, methods developed in the proof of Theorem 1.1 seem to be of little help.
However, the definability techniques developed in the proof of Theorem 1.3 for Π0

1 sets are
more versatile and will allow us to prove:

Theorem 1.4. There is a ∆0
2 locally compact and locally path-connected space which is not

homeomorphic to any computable Polish space.

In contrast with Corollary 1.2, the proof of the theorem above is much more direct, in
the sense that shows how to build such spaces “by hand” without outsourcing to effective
algebraic techniques. Its proof is a priority construction combined with definability, and the
complexity of guessing in the proof is at the level of Π0

3. We conjecture that any construction
of a locally connected space witnessing the theorem above must involve a difficult guessing.
This is because definability up to homeomorphism in such spaces seems to require at least
three quantifiers. The proof of the theorem above is the first example of a 0′′′ argument
in computable analysis that we are aware of, but the good news is that there will not be
much injury and therefore no special training in 0′′′ arguments is necessary to understand
the proof. We also strongly conjecture that one can modify the proof of Theorem 1.4 to
get a locally compact locally path-connected subspace of R2 witnessing the theorem; see
Remark 4.10. In fact, the space can be realised as an effectively closed ∆0

2-overt subset of
R2 thus also witnessing Theorem 1.3 for α = 0. We leave open:

Question 2. Is there a ∆0
2 connected Polish space not homeomorphic to a computable one?

What about compact connected spaces?
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Topological groups. We test our methods on the class of Polish groups. We apply techniques
similar to those used in Theorem 1.1 for Stone spaces to prove:

Theorem 1.5. There exists a ∆0
2 compact Polish abelian group not topologically isomorphic

to any computable Polish group.

The group witnessing the theorem is not profinite but all the information is coded into
the profinite factor. In particular, the group is not connected. We strongly suspect that
with some extra work one can design a profinite group witnessing the theorem above, but
we leave it for future work. The connected case seems more challenging.

Question 3. Is there a ∆0
2 connected Polish group not topologically isomorphic to any

computable Polish group?

Finally, we finish the introduction with the theorem which is a version of the second main
result Theorem 1.3 for Polish groups.

Theorem 1.6. For every computable α there exists an effectively closed compact (thus,
profinite) subgroup of S∞ not homeomorphic to a ∆0

α Polish group.

The proof of this theorem extends an argument from [GMNT18] and should not be
hard to understand to anyone familiar with the standard techniques of computable structure
theory [AK00].

2 Formal Definitions

Recall that a real α is computable (Turing [Tur36, Tur37]) if there exists a Turing machine
that, given n ∈ N, outputs a rational r within 2−n of α. A Polish space (M,d) is computable
if there exists a sequence (αi)i∈N of M -points which is dense in M and such that, for every
i, j ∈ N, the distance d(αi, αj) is a computable real, uniformly in i and j [Wei00]. Given a
computable presentation of a Polish space, we call the points (αi)i∈N special points.

Definition 2.1. Let f be a continuous function between Polish metric spaces M and N . A
name of f is any collection of pairs of basic open balls (B,C) such that f(B) ⊆ C, and for
every x ∈M and every ε > 0 there exists (B,C) ∈ Ψ such that B ∋ x and r(C) < ε.

Definition 2.2. A function f ∶M → N between computably presented Polish spaces M,N
is computable if it possesses a c.e. name.

A function is continuous iff it has an X-c.e. name for some oracle X.

In a metric space, we say that a Cauchy sequence (xi) is fast if d(xi, xi+1) < 2−i−1. The
above definition of a computable map is equivalent to saying that f is represented by a
Turing functional that maps fast Cauchy sequences to fast Cauchy sequences (folklore). The
definition below was first suggested in [MM18].

Definition 2.3. A computable Polish group is a triple (G,Φ,Ψ), where G is a computable
Polish presentation of the underlying metric space and Φ and Ψ are (indices for) c.e. names
of group-operations ⋅ and −1 upon G.
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3 Effectively closed subspaces

Theorem 3.1. For each computable ordinal α, there is a computable Polish space M and a
Π0

1 subspace C of M such that C is not homeomorphic to any 0(α)-computable Polish space.

Proof. The proof relies on a definability technique. To develop the technique we first need
to prove several lemmas. Some of these lemmas (such as the lemma below) are really
folklore, but for completeness sake we include their proofs. The problem with dealing with a
computable presentation of a Polish space is that we only really have access to a dense subset
of special points, so we cannot for example talk about a path from one point to another. We
can however approximate such a path by taking a discrete series of short steps.

Definition 3.2. Let (M,d) be a Polish space. Given special points x, y, an ε-path from x
to y is a sequence of special points x = u0, u1, . . . , un = y such that d(ui, ui+1) < ε.

The existence of a path yields the existence of an ε-path for every ε > 0.

Lemma 3.3. Let (M,d) be a Polish space with special points ⟨qi⟩i∈ω. Suppose that there is
a path between special points r and s. Then for every ε > 0, there is an ε-path from r to s.

Proof. Let [0,1] be the unit line, let f ∶ [0,1] →M be a continuous path from r to s. Then
f is uniformly continuous. So for a sufficiently large rational q, we have that for each i,

d(f ( i
q
) , f (i + 1

q
)) < ε

4
.

Then choose x0 = r, xq = s, and for each i = 1, . . . , q − 1, choose a special point xi with
d(xi, f(i/q)) < ε/4. Then r = x0, . . . , xq = s is an ε-path from r to s.

The converse is not true in general. For example there might be two points r and s at
distance 1 from each other, such that for each n ∈ N there is a discrete set of n points at
distance 1/n from each other forming an 1/n-path from r to s; but no continuous path from r
to s. However, this is only possible due to a failure of compactness for the path-components
of r and s.

Lemma 3.4. Let (M,d) be a Polish space with special points ⟨qi⟩i∈ω. Suppose that each
path-component of M is compact and open. If special points r, s are not in the same path-
component, then there is an ε such that there is no ε-path between r and s.

Proof. Let C be the path-component of r. Since C is open, its compliment is closed, and
since C is compact there is a distance ε between C and Cc. Then there is no ε/2-path from
r to s, as given any path r = u0, u1, . . . , un = s there must be a first i such that ui ∈ C and
ui ∉ C, and so d(ui, ui+1) ≥ ε.

It is important that the path-components be open. If they were just compact, then for
sufficiently small ε one could not make an ε-path that went directly from the path-component
of r to the path-component of s, but one might be able to find an ε-path that travels via
some third path-component, with a different third path-component for each value of ε. The
main coding components in our proof will be designed using k-stars which are defined below.
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Definition 3.5. A k-star is a topological space homeomorphic to k copies of the interval
[0,1] all joined at one end in a single point. Note that a k-star is not homeomorphic to a
k′-star for k ≠ k′.

We say that a component is a star if it is a k-star for some k. The value of k will always be
finite, so that every star is compact. Stars with infinite branching would not allow us to use
Lemma 3.4.

We are ready to state and prove the main definability lemma.

Lemma 3.6. Let (M,d) be a Polish space with special points ⟨qi⟩i∈ω. Suppose that M is
homeomorphic to the disjoint union of stars, each of which is compact and open. A special
point r is contained within an n-star with n ≥ ` if and only if

(∗) there are distinct points p1, p2, . . . , p` in the same path-component as r and a δ > 0 such
that for each i, j, k and for every ε < δ there is an ε-path pi = u0, u1, . . . , un = pj from pi
to pj such that u0, . . . , un ∉ B̄δ(pk) = {x ∈M ∶ d(x, pk) ≤ δ}.

Moreover, the witnesses p1, . . . , p` are all on different arms of the star.

Proof. First we show that this is true of an n-star, n ≥ `. Let p1, . . . , p` be points on different
arms of the stars. Given pi, pj, and pk, let δ be sufficiently small that B̄δ(pk) does not
intersect the arms containing pi and pj, and also does not intersect the complement of the
star. Then there is a path between pi and pj in M − B̄δ(pk), so by Lemma 3.3, for every ε < δ
there is an ε-path from pi to pj which avoids B̄δ(xk).

Let S be an n-star in M . If n < `, then given any distinct special points p1, . . . , p`, two
of them are on the same arm of the star (or one of these points is the center of the star).
So we can choose pi, pj, pk such that by removing pk, the star divides into two connected
components, one containing pi, and the other containing pj. We must show that for every
δ, there is an ε < δ such that for every ε-path pi = u0, u1, . . . , un = pj from pi to pj, there is
some ui ∈ B̄δ(pk). We may assume that δ is sufficiently small that pi, pj ∉ B̄δ(pk) (otherwise
it is trivial).

Now we can write S as a disjoint union Ci ∪ Cj ∪ Bδ(pk) where Ci and Cj are closed
sets containing pi and pj respectively. Then Ci and Cj are compact, and so we can choose ε
smaller than the distance between Ci and Cj, and also smaller than the distance between S
and the compliment of S. Then any ε-path pi = u0, . . . , un = pj in M must have u0, . . . , un ∈ S
(since the distance between S and the compliment of S is greater than ε). Also, since u0 ∈ Ci,
un ∈ Cj, and the distance between Ci and Cj is greater than ε, for some s, us ∈ Bδ(pk) ⊆ B̄δ(pk).
So there is no ε-path from pi to pj avoiding B̄δ(pk).

For the computability-theoretic part of our proof we rely on the following simple lemma.

Lemma 3.7. Let R be a hyperarithmetic relation. Then there is a computable sequence of
trees Tn ⊆ ω<ω such that if n ∉ R, then Tn has a single path, and if n ∈ R, then Tn has no
path.

Proof. Let α be such that R is 0(α)-computable. It is well-known that for each computable
ordinal α, there is a computable tree T with a single path f ≡T 0(α). (By Proposition II.4.1
of [Sac90], 0(α) is a Π0

2 singleton, and following Theorem 3.1 of [JM69] we can replace 0(α)
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by a lexicographically least Skolem function f ≡T 0(α) such that f is a Π0
1 singleton.) Let Φ

be a Turing functional such that R = Φf . Then for each n, let Tn be a computable tree with
g ∈ [Tn] if and only if g ∈ [T ] and either Φg(n) ↑ or Φg(n) = 0. Then Tn has at most one
path since T has at most one path, and if Tn has a path, that path is f . If n ∉ R, then f is
still a path of Tn; and if n ∈ R, then Φf(n) = 1, and so f ∉ [Tn].

We return to the proof of the theorem. We will build M as a computable Polish space
with special points (qi)i∈ω and metric d. The Π0

1 subspace C of M will be the disjoint union
of stars, each of which is compact and open.

Given a presentation (X,d, (ri)i∈ω) of a Polish space which is a disjoint union of compact
open stars, we claim that the set S(X) = {n ∶ X has an n + 3-star} of sizes of stars in X is
Σ0

4 relative to this presentation of X. Indeed, n ∈ S(X) if and only if X contains a special
point r satisfying (∗) of Lemma 3.6 for ` = n + 3, but not satisfying (∗) of Lemma 3.6 for
` = n + 4. (In (∗), we ask that p1, . . . , p` are in the same path component as r; we express
this by saying that for each i and for every ε there is an ε-path from r to pi, as in Lemma
3.4.)

Let R be a relation which is not ∅(α+4)-computable. Using Lemma 3.7, let Tn ⊆ ω<ω be
a computable sequence of trees such that if n ∈ R then Tn has no path, but if n ∉ R then
Tn has a unique path. Let M be the disjoint union, over n ∈ ω, of ωω × Sn+3 where Sn+3 is a
particular chosen computable presentation of an n + 3-star. Set each component ωω × Sn+3
to be at distance 1 from each other such component. As a metric space, we use the sum
metric on each component ωω ×Sn+3, i.e., if (f, x) and (g, y) are in the same component, we
set d((f, x), (g, y)) = dωω(f, g) + dSn+3(x, y).

Now we will define the Π0
1 set C. Whenever we see σ ∉ Tn, put [σ]×Sn+3 ∉ C. To see that

we can do this effectively, we must note that we can write [σ] ×Sn+3 as an effective union of
basic open balls

⋃
n∈ω

⋃
p∈Sn+3

B2−∣σ∣(σˆn, p)

where p ranges over special points in the chosen computable presentation of Sn+3. If n ∈ R,
then C is disjoint from ωω × Sn+3, and so does not have an n + 3-star; and if n ∉ R, then
C ∩ωω ×Sn+3 = {f}×Sn+3 where f is the path through Tn, and so C has an n+ 3-star. Thus
C is homeomorphic to the the disjoint union of an n + 3-star for n ∉ R, and each of these
stars is compact and open. We have S(C) = R.

We claim that C is not homeomorphic to any 0(α)-computable metric X. Indeed, suppose
to the contrary that X was homeomorphic to C. Then R = S(C) = S(X) which is Σ0

4 relative
to 0(α), contradicting the choice of R.

4 ∆0
2 Polish spaces with no computable homeomorphic

copies

4.1 Totally disconnected spaces

Recall that a Polish space is profinite if it is compact and totally disconnected. The well-
known Stone duality states that a countable discrete Boolean algebra B is dual to the
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profinite space B̂ of its ultrafilters, in the sense that B ≅iso C iff B̂ ≅hom Ĉ; that is, the
isomorphism type of a countable discrete Boolean algebra is uniquely determined by the
homeomorphism type of its dual profinite space.

Theorem 4.1. Let B be a (countable, discrete) Boolean algebra. Then the following are
equivalent:

(1) B has a computable copy;

(2) the Stone space B̂ of B has a computable Polish presentation.

Proof. Given a computable Boolean algebraB, produce a computable tree-basis ofB [Gon97].
Recall that a tree basis is the set of generators of B which form a tree under the standard ≤
with root 1, such that every generator y in the tree has either no children (and then it is an
atom) or exactly two children whose disjoint union is equal to y. Interpret the tree basis as a
dense subset of closed subspace of 2ω under the usual ultrametric. This gives a computable
Polish presentation of B̂.

Now suppose the Stone space B̂ of B has a computable Polish presentation. We effectivize
the standard proof of Stone duality. The key lemma is:

Lemma 4.2. Suppose M is a computable compact Polish metric space. If M is not connected
then 0′ can produce a splitting of M into two disjoint clopen components. Furthermore, 0′

can compute two representations for each of the two components: one via a finite union of
basic open balls, and the other via a finite union of basic closed balls. Moreover, if x and y
are special points in distinct connected components of M , we can find a splitting with x in
one component and y on the other.

Proof. Suppose M0 and M1 are two non-intersecting clopen components of M such that
M0 ∪ M1 = M . Since M is compact and each Mi is closed, Mi is compact. Since Mi

is open and compact it is equal to a finite union of open balls, say M0 = ⋃i=1,...,kBi and
M1 = ⋃j=1,...,nDi, where Bi,Dj are basic open balls. Write B̄i and D̄i for the corresponding
closed balls, which are contained in but may not be equal to the closures of the open balls.
Then M0 = cl(M0) = ⋃i=1,...,k B̄i, and similarly for M1. Identify Mi with the respective finite
cover by closed balls.

Now we will show that 0′ can search for M1 and M2, as represented above. Suppose
we have two subsets M1 and M2 of M , represented by finite unions of balls Bi and Dj

respectively, but we do not know if M1 and M2 are disjoint and we do not know whether
they cover M .

We first claim that the property M0∪M1 =M becomes Π0
1. Indeed, to see if M0∪M1 =M

it is sufficient to search for a special point in the open set M ∖ (M0 ∪M1), i.e., outside of all
the finitely many closed balls. This is a Σ0

1 process which is of course uniform in the finite
tuple describing the balls Bi and Dj.

To guarantee that M0 and M1 are also disjoint we must check whether

⋃
i=1,...,k

B̄i ∩ ⋃
j=1,...,n

D̄j = ∅

10



which is reduced to verifying finitely many statements of the form B̄i ∩ D̄j = ∅. We suppress
i and j. Let Bε be the basic open ball with the same centre as B but having radius r(B)+ ε,
where ε is a positive rational number. Define Dε similarly. We claim that B̄ ∩ D̄ ≠ ∅ is
equivalent to

(∀ε > 0)Bε ∩Dε ≠ ∅.
One implication is trivial. For the other implication, assume xε is a point witnessing non-
emptiness for ε. By compactness, (x2−m)m∈N has a converging subsequence. The limit of this
sequence will be a point witnessing B̄ ∩ D̄ ≠ ∅. We have just shown that B̄ ∩ D̄ ≠ ∅ is a
Π0

2-property, which makes M0 ∩M1 = ∅ a Σ0
2-property.

It follows that 0′ can search for finitely many basic open Bi and Dj as above. If some
decomposition of M exists then we will eventually find (perhaps, some other) decomposition
of M . (For the moreover clause, we search for a decomposition containing x on one side and
y on the other.) Furthermore, for this fixed decomposition 0′ will be able to see the first
found ε for which the property (∀ε > 0)Bε ∩Dε ≠ ∅ fails. Then the clopen components can
be represented as unions of Bε

i and Dε
j rather than Bi and Dj.

We now return to the proof of the theorem. The idea is to iterate the lemma above to
get a 0′-computable presentation of B with a 0′-computable set of atoms. This is done as
follows. Given a computable Polish presentation of B̂ and using 0′, initiate the procedure
of splitting B̂ into clopen disjoint subsets. At every stage we will have a finite collection of
clopen subsets of B̂, and each of these sets will be represented as a union of finitely many
open balls as well as a finite union of closed balls. In particular, although the procedure
of splitting the space is merely 0′-computable, at every stage each of the components will
naturally be a computable Polish space. To see why, list all special points of the ambient
space which belong to the finitely many open balls describing the space. Since the space
is also closed, the completion of this set of points will be equal to the whole component.
Therefore, we can apply the lemma again to each of the components. At the ith stage of
iterating this process, we must make sure that we separate the ith pair of special points of
B̂ into separate components, if they have not been already.

The iterated procedure ensures that the set-theoretic inclusion between the produced
clopen components is decidable relative to 0′. Since the space B is totally disconnected, each
pair of points must belong to disjoint clopen sets. In particular, whenever we are given a
clopen subspace X represented as a finite union of basic balls, X is an isolated point iff it
contains exactly one special point. This property can be decided using 0′.

It follows that we can produce a ∆0
2 copy of the Boolean algebra of the clopen subsets

of B̂, which furthermore has the atom relation of complexity ∆0
2. It remains to apply the

well-known theorem of Downey and Jockusch [DJ94] who showed that every ∆0
2 Boolean

algebra with ∆0
2 atom relation is isomorphic to a computable one.

Thus we obtain:

Corollary 4.3. There exists a ∆0
2-presented profinite Polish space not homeomorphic to any

computable Polish space.

Proof. By Feiner [Fei70], there is a ∆0
2 Boolean algebra B with no computable copy. By the

previous theorem, the Stone space B̂ of B is a ∆0
2-presented Polish space not homeomorphic

to any computable Polish space.
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4.2 The locally path-connected case

We say that a Polish space is an LCPC space if it is both locally compact and locally path-
connected. Such spaces are more reflective of physical geometry and are in some sense the
opposite of totally disconnected spaces. We prove:

Theorem 4.4. There is a ∆0
2 LCPC space which is not homeomorphic to any computable

Polish space.

We begin by proving a computational lemma about building computable spaces depend-
ing on the answer to a Π0

3 question.

Lemma 4.5. Let R and S be Π0
3 sets and (kn)n∈ω a computable sequence of natural numbers

≥ 3. Then there is, uniformly in n, a ∆0
2 separable metric space (Mn, dn) such that:

• if n ∉ R, then (Mn, dn) is the disjoint union of a point and kn + 1 closed line segments;

• if n ∈ R and n ∉ S, then (Mn, dn) is the disjoint union of a kn-star and a closed line
segment;

• if n ∈ R and n ∈ S, then (Mn, dn) is a (kn + 1)-star.

Proof. Let
n ∈ R⇐⇒ ∀x∃y∀zR∗(x, y, z, n).

We may assume that for each x, there is at most one y with ∀zR∗(x, y, z, n), and that if
x′ < x, and there is no witness y for x′, then there is no witness y for x (folklore). Similarly,
let

n ∈ R ∩ S ⇐⇒ ∀x∃y∀zS∗(x, y, z, n).

Fix n and let k = kn. We will define M = Mn as a subspace of a (k + 1)-star. Let the
(k+1)-star have a center point c and arcs A1, . . . ,Ak+1 with Ai = fi[0,1] and fi(0) = c. Then
we let

M = {c} ∪⋃{fi[1/x,1] ∶ 1 ≤ i ≤ k, x ∈ N, and ∃y∀zR∗(x, y, z, n)}
∪⋃{fk+1[1/x,1] ∶ x ∈ N and ∃y∀zS∗(x, y, z, n)} .

More formally, this description of M gives a Σ0
2 way of deciding which special points of the

(k + 1)-star to include in M ; then as M is ∆0
2, we can build a computable copy of this

subspace of (k + 1)-star.

Now we prove the theorem.

Proof of Theorem 4.4. Let (Mn, dn)n≥1 be a list of all the (possible partial) computable Polish
spaces. We will construct a ∆0

2 Polish space (M∗, d∗) while diagonalizing against each
(Mn, dn)n∈ω. The space (M∗, d∗) will be the disjoint union of infinitely many stars, points,
and line segments, each separated from the others by open sets. (For example, for any star,
there will be an open set containing it and nothing else.) We will make sure that (M∗, d∗)
is not isomorphic to (Mn, dn) by either having, for some k, a k-star in (M∗, d∗) when there
is no k-star in (Mn, dn), or vice versa.
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The space (M∗, d∗) will be built entirely by constructing Π0
3 sets R and S, and a com-

putable sequence kn, and then letting (M∗, d∗) be the disjoint union of the sequence obtained
by Lemma 4.5, with each space in the union set at distance one from the others. The resulting
space will be LCPC since each component is.

Recall from Lemma 3.6 that, in a space homeomorphic to a disjoint union of stars, points,
and line segments, each of which is compact and open, a special point r is contained within
an n-star with n ≥ ` if and only if:

(∗) there are distinct points p1, p2, . . . , p` in the same path-component as r and a δ > 0 such
that for each i, j, k and for every ε < δ there is an ε-path pi = u0, u1, . . . , un = pj from pi
to pj such that u0, . . . , un ∉ Bδ(pk).

We call such a space nice.
Saying that p1, . . . , p` are in the same path-component as r is Π2, as we must say that

for every ε there is an ε-path from r to these points. Thus for a fixed `, asking whether a
point r is contained within an n-star with n ≥ ` is Σ0

3.
We write Θ≥`(p1, . . . , pk) for the relation which holds if there are distinct points pk+1, . . . , p`,

also distinct from p1, . . . , pk, and a δ > 0 such that for each i, j, k and for every ε < δ there
is an ε-path pi = u0, u1, . . . , un = pj from pi to pj such that u0, . . . , un ∉ Bδ(pk). This relation
is Σ0

3. It expresses (in nice spaces) that p1, . . . , pk are distinct arms of a (≥ `)-star. With no
parameters, e.g. Θ≥`(−), it expresses that there is a (≥ `)-star.

We also write Γ≥`(p1, . . . , p`, δ) for the relation which holds if for each i, j, k and for every
ε < δ there is an ε-path pi = u0, u1, . . . , un = pj from pi to pj such that u0, . . . , un ∉ Bδ(pk). This
relation is Π0

2. It expresses (in nice spaces) that p1, . . . , p` are distinct arms of a (≥ `)-star,
with parameter δ. We have that p1, . . . , p` are distinct arms of a (≥ `)-star if and only if
there is δ such that Γ≥`(p1, . . . , p`, δ).

To begin, we will describe how to make (M∗, d∗) non-homeomorphic to a single com-
putable metric space (M,d). It will be easiest to think about (M,d) being a nice space; if it
is not nice then it cannot be homeomorphicto the nice space (M∗, d∗). If (M,d) is not nice,
then we follow the same procedure interpreting the predicates Γ and Θ literally even though
they perhaps do not have their intended meaning in (M,d). For instance, we say “(M,d)
has a (≥ 3)-star” but we really mean that the respective predicate holds in (M,d).

First, ask whether (M,d) has a (≥ 3)-star at all, i.e., whether Θ≥`(−) holds in (M,d). In
the Π0

3 case where Θ≥`(−) does not hold, using Lemma 4.5 we can build a 3-star in (M∗, d∗),
and so (M∗, d∗) is not homeomorphic to (M,d); if Θ≥`(−) does hold and (M,d) does have
such a star, then Lemma 4.5 builds a point and three line segments. This is enough to make
(M∗, d∗) non-homeomorphic to (M,d), but we want our diagonalization to be more robust;
for, if (M,d) has a (≥ 3)-star, it would be very limiting to say that we can never build any
star in (M∗, d∗).

So we need to do some additional work in the case where (M,d) has a (≥ 3) star. The
idea is to guess at where the (≥ 3)-star is, and then diagonalize against it. List the tuples
(x1i , x2i , x3i , δi)i∈ω of three points from (M,d) and a rational δi > 0; these are guesses at (≥ 3)-
stars.

For i = 0, using Lemma 4.5, build:
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• a 3-star (and a line segment) if Γ≥3(x10, x20, x30, δ0) and Θ≥4(x10, x20, x30);

• a 4-star if Γ≥3(x10, x20, x30, δ0) but not Θ≥4(x10, x20, x30); and

• a point and 4 line segments if Γ≥3(x10, x20, x30, δ0) does not hold.

(Note that we can do this because Θ≥4, which is the negation of S from Lemma 4.5, is Σ0
3

and Γ≥3, which is R, is Π0
2.) So if x10, x

2
0, x

3
0 are arms of a (≥ 3)-star as witnessed by δ0 in

(M,d), then: if they are part of a 3-star then (M∗, d∗) has a 4-star but no 3-star; and if
they are part of a (≥ 4)-star then (M∗, d∗) has a 3-star but no (≥ 4)-star.

If we were in one of the first two cases for x10, x
2
0, x

3
0, δ0, then we do not want to build

stars for any other x1i , x
2
i , x

3
i , δi; so if Γ≥3(x10, x20, x30, δ0) holds, then when acting for the sake

of x11, x
2
1, x

3
1, δ1 we build a point and 4 line segments. Otherwise, we want to do the same

thing for x11, x
2
1, x

3
1, δ1 that we did for x10, x

2
0, x

3
0, δ0. So we build, using Lemma 4.5:

• if Γ≥3(x10, x20, x30, δ0) holds:

– a point and 4 line segments

• if Γ≥3(x10, x20, x30, δ0) does not hold:

– a 3-star (and a line segment) if Γ≥3(x11, x21, x31, δ1) and Θ≥4(x11, x21, x31);
– a 4-star if Γ≥3(x11, x21, x31, δ1) but not Θ≥4(x11, x21, x31); and

– a point and 4 line segments if Γ≥3(x11, x21, x31, δ1) does not hold.

(Here, the S of Lemma 4.5 is ¬Θ≥4(x11, x21, x31) and the R is the conjunction of Σ0
2 and Π0

2

predicates Γ≥3(x10, x20, x30, δ0) ∧ ¬Γ≥3(x11, x21, x31, δ1).) Then we want to do the same thing for
x12, x

2
2, x

3
2, δ2, and so on, with each x1i , x

2
i , x

3
i , δi only having the potential to build a star if

the previous ones did not. So, for example, for x12, x
2
2, x

3
2, δ2, if either Γ≥3(x10, x20, x30, δ0) or

Γ≥3(x11, x21, x31, δ1) holds, we will build a point and 4 line segments; otherwise we may build
a star. There will be some least i, if any exist, with Γ≥3(x11, x21, x31, δ1)—the least witness to
the existence of a (≥ 3)-star—and for this i we will build a star in (M∗, d∗).

If (M,d) is a nice space, then either:

• it has no (≥ 3)-star, in which case the very first action we took built a 3-star in (M∗, d∗);
or

• for some least i, x1i , x
2
i , x

3
i , δi is part of a 3-star in (M,d) as witnessed by δi, and then

we built no 3-star in (M∗, d∗); or

• x1i , x
2
i , x

3
i is part of a (≥ 4)-star in (M,d), say a k-star, and we built only a 3-star in

(M∗, d∗) and no k-star.

So (M∗, d∗) is not homeomorphic to (M,d).
In the first two cases above, there is not much additional complication in diagonalizing

against more computable metric spaces, as long as we work with e.g. 5-stars and (≥ 6)-stars
for the next computable metric space. The third case will require a little more work, because
the diagonalization was due to not building a k-star in (M∗, d∗), but we do not actually know
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what the value of k is. We must make sure to never add a k-star to (M∗, d∗) by having other
diagonalization modules guess at the value of k and avoid adding k-stars.

Now we are ready to describe the entire construction. To organize the Π0
3 sets we feed

into Lemma 4.5, we will build a tree. The nth level of the tree will contain attempts to
diagonalize against (Mn, dn). At the nth level of the tree, a node σ with predecessors
σ1, . . . , σn−1, consists of the following:

(1) a label which is either ∞ or f (for finite);

(2) for each i < n with σi labeled f , a value kσ[i] which is either the symbol “≥ 4n” or a
natural number 3 ≤ kσ[i] < 4n;

• if kσ[i] is “≥ 4n” then there are also elements y1σ[i], . . . , y4nσ [i] ∈Mi and δσ[i] ∈ Q,
and

• if kσ[i] ≤ 4n then there are elements y1σ[i], . . . , y
kσ[i]
σ [i] ∈Mi and δσ[i] ∈ Q;

(3) a number `σ which is the least odd number < 4n such that {`, ` + 1} is disjoint from

{`τ , `τ + 1 ∶ τ is a predecessor of σ} ∪ {kσ[i] ∶ i < n};

(4) if the label is f , elements x1σ, . . . , x
`σ
σ ∈Mn and ρσ ∈ Q.

We suppress σ in `σ and kσ[i]. The number ` is the size of star that σ will be building;
σ will try to build either an `-star or an (` + 1)-star, just as in the procedure for a single
diagonalization described previously we built either a 3-star or a 4-star. The values k[i] are
the guesses at the sizes of the stars used to diagonalize against (Mi, di); and we must choose `
so that building an `-star or an (`+1)-star for σ would not interfere with the diagonalization
against (Mi, di). The label is a guess at whether (Mn, dn) will have a star of size ≥ `; the
label ∞ corresponds to having no such star, and the label f corresponds to having such a
star. The value < 4n is simply chosen so that there will be some odd ` with ` < 4n such that
{`, ` + 1} is disjoint from

{`τ , `τ + 1 ∶ τ is a predecessor of σ} ∪ {kσ[i] ∶ i < n}.

For each node σ of the tree at level n, and each possible choice of these parameters at
level n + 1, there is a single child τ of σ at level n + 1 with those parameters. At each level,
order the children of each node from left to right, with order type ω (so that each node has
finitely many other nodes to its left).

To each node σ∗ which is a child of σ, we associate Π0
3 predicates Rσ∗ and Sσ∗ ; the

definitions of these will depend on the label, from {∞, f}, of σ∗. If σ∗ has label ∞, then
Rσ∗ will be of the form Rσ ∧ Pσ∗ ∧ Tσ∗ where Pσ∗ and Tσ∗ are Π0

3 and Rσ is the predicate
associated to the parent σ of σ∗. If σ∗ has label f , then Rσ∗ will be of the form

Rσ ∧ Pσ∗ ∧ (¬Qτ∗1 ) ∧⋯ ∧ (¬Qτ∗t ) ∧Qσ∗

where Pσ∗ is Π0
3, Qσ∗ is Π0

2, and Qτ∗1 , . . . ,Qτ∗t are the Π0
2 predicates associated to the other

children τ∗1 , . . . , τ
∗

t of σ which are to the left of σ∗ and which have the same parameters,
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except that they might have different values of x1, . . . , x`, ρ`, as σ∗. The predicate Pσ∗ is
defined in the same way for nodes labeled ∞ and f , and does not depend on the values of
x1σ∗ , . . . , x

`σ∗
σ∗ , ρσ∗ .

We must define these predicates inductively, defining the predicates associated to a parent
before its children, and to nodes at a single level from left to right. We will also write down
the interpretations of these predicates in nice spaces. Let σ∗ be a node at level n + 1, with
predecessors σ1, σ2, . . . , σn at levels 1, . . . , n. We define, if σ∗ has label ∞:

• Pσ∗ is the Π0
3 predicate that says:

(1) for i ≤ n with σi labeled f , if kσ[i] is “≥ 4n” then:

– in Mi, for every ε < δ, and each j, j′ there is an ε-path from xjσi to yj
′
σ∗[i]:

these are all in the same connected component;

– Γ≥4n(y1σ∗[i], . . . , y4nσ∗[i], δσ∗[i]) holds in Mi: y1σ∗[i], . . . , y4nσ∗[i] are arms of a
(≥ 4n)-star;

(2) for i ≤ n with σi labeled f , if kσ[i] < 4n then:

– in Mi, for every ε < δ, and each j, j′ there is an ε-path from xjσi to yj
′
σ∗[i]:

these are all in the same connected component;

– Γ≥kσ[i](y1σ∗[i], . . . , y
kσ∗ [i]
σ∗ [i], δσ∗[i]) holds in Mi: y1σ∗[i], . . . , y

kσ∗ [i]
σ∗ [i] are arms

of a (≥ kσ[i])-star;

– ¬Θ≥kσ[i]+1(y1σ∗[i], . . . , y
kσ∗ [i]
σ∗ [i]) holds in Mi: y1σ∗[i], . . . , y

kσ∗ [i]
σ∗ [i] are not arms

of a (> kσ[i])-star.

• Tσ∗ is the Π0
3 predicate that says that ¬Θ≥`σ∗(−) holds in Mn+1: there is no (≥ `σ∗)-star.

• Sσ∗ is �, i.e. always false.

If σ∗ has label f , we define:

• Pσ∗ is defined in the same way as above.

• Qσ∗ is the Π0
2 predicate that says that Γ≥`σ∗(x1σ∗ , . . . , x

`σ∗
σ∗ , ρσ∗) holds inMn+1: x1σ∗ , . . . , x

`σ∗
σ∗

are arms of a (≥ `σ∗)-star.

• Sσ∗ is the Π0
3 predicate that says that ¬Θ≥`σ∗+1(x1σ∗ , . . . , x

`σ∗
σ∗ ) holds inMn+1: x1σ∗ , . . . , x

`σ∗
σ∗

are not arms of a (> `σ∗)-star.

Note that Pσ∗ does not depend on the values of x1σ∗ , . . . , x
`σ∗
σ∗ , ρσ∗ . The predicates are all

expressed using the formulas Θ and Γ and have their intended meaning in nice spaces.

Now let (M∗, d∗) be obtained from Lemma 4.5 using the Π0
3 predicates Rσ and Sσ, and

the sequence (`σ). Write M∗

σ for the component built for σ, so that:

• if Rσ is false, then M∗

σ is the disjoint union of a point and `σ line segments;

• if Rσ is true and Sσ is false, then M∗

σ is the disjoint union of an `σ-star and a line
segment;
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• if Rσ and Sσ are both true, then M∗

σ is an (`σ + 1)-star.

We prove that M∗ is not homeomorphic to any Mn through the following sequence of claims.

Claim 4.6. For each σ with Rσ true, Rσ∗ is true for exactly one child σ∗ of σ.

Proof. Let n be the height of σ, and σ1, . . . , σn−1 the predecessors of σ = σn.
First we argue that Rσ∗ cannot be true for two different children σ∗ of σ. First, if two

children σ∗ and σ∗∗ disagree about the value of kσi[i] for some σi labeled f , then it cannot
be that R is true for both of them; indeed, (1) of P is incompatible with (2) of P , and
(2) cannot be true for two different values of k. So if R is true for both σ∗ and σ∗∗, then
they agree on the values of kσi[i] and hence also on `. If both σ∗ and σ∗∗ are labeled f ,
then R can be true of only the one which is to the left. They cannot both be labeled ∞,
as then they would have the same parameters, and there is only one child of σ with each
set of parameters. Finally, if σ∗ is labeled f and σ∗∗ is labeled ∞, then Qσ∗ being true is
incompatible with Tσ∗∗ .

Now we will show that Rσ∗ is true for at least one child σ∗ of σ. For each i with σi
labeled f , since Rσi is true, Γ≥`σi

(x1σi , . . . , x
`σi
σi , ρσi) holds. Let k[i] be “≥ 4n” if there are

y1[i], . . . , yk[i][i], δ[i] such that:

• in Mi, for every ε < δ, and each j, j′ there is an ε-path from xjσi to yj
′[i];

• Γ≥4n(y1[i], . . . , y4n[i], δ[i]) holds in Mi.

Otherwise, let k[i] < 4n be greatest such that there are y1[i], . . . , yk[i][i], δ[i] such that:

• in Mi, for every ε < δ, and each j, j′ there is an ε-path from xjσi to yj
′[i];

• Γ≥kσ[i](y1[i], . . . , yk[i][i], δ[i]) holds in Mi;

In the second case, by choice of k[i], we also have

• ¬Θ≥kσ[i]+1(y1[i], . . . , yk[i][i]) holds in Mi.

These are just the conditions from (1) and (2) of Pσ∗ , so (1) and (2) of Pσ∗ are true of any
σ∗ with these parameters.

Let ` be the least odd number ≤ 4n such that {`, ` + 1} is disjoint from

{`τ , `τ + 1 ∶ τ is a predecessor of σ∗} ∪ {k[i] ∶ i < n}.

If Θ≥`(−) does not hold in Mn+1 (there is no (≥ `)-star), then the node σ∗ with the param-
eters described above and labeled ∞ has Rσ∗ true. Otherwise, Θ≥`(−) holds in Mn+1; let
x1, . . . , x`, ρ be a witness to this such that the corresponding child σ∗ of σ is the leftmost
such child. Then Qσ∗ is true, but Q is not true of any child to the left of σ∗.

Let σ1, σ2, σ3, . . . be the sequence of nodes at level 1, 2, and so on for which R holds. We
call σ the true path.
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Claim 4.7. Fix n < m. Suppose that Mn is homeomorphic to the disjoint union of stars,
points, and line segments, each of which is compact and open. Suppose that σn is labeled f ,
and m > n. Then if kσm[n] is “≥ 4m” if and only if x1σn , . . . , x

`σn
σn is part of a (≥ 4m)-star,

and otherwise x1σn , . . . , x
`σn
σn is part of a kσm[n]-star.

Proof. This is immediate from the definitions of the predicate P .

Claim 4.8. Fix n. Suppose that Mn is homeomorphic to the disjoint union of stars, points,
and line segments, each of which is compact and open. Then:

• if σn has label ∞, then Mn has no ≥ `-star but M∗ has an `-star.

• if σn has label f , then:

– if x1, . . . , xk are arms of an `-star, then M∗ has no `-star;

– if x1, . . . , xk are arms of a (> `)-star, then M∗ has no star of the same size.

Proof. First suppose that σn has label ∞. Then from Tσn we see that Mn does not have an
r-star, r ≥ `σn . But M∗

σn is an (`σn + 1)-star.
Now suppose that σn has label f . The stars present in M∗ are as follows, and no more:

for each m, either an `σm-star or an (`σm + 1)-star, where `σm is the least odd number < 4m
such that {`σm , `σm + 1} is disjoint from

{`σi , `σi + 1 ∶ i <m} ∪ {kσm[i] ∶ i <m}.

Since Qσn is true, x1σn , . . . , x
`σn
σn are arms of a (≥ `σn)-star in Mn.

If they are arms of an `σn-star, then Sσn is true, and M∗

σn is an `σn + 1-star; for any i, j,
{`σi , `σi + 1} and {`σj , `σj + 1} are disjoint, and so M∗ does not have an `σn-star.

If x1σn , . . . , x
`σn
σn are arms of a t-star for some t > `σn , then Sσn is false, and M∗

σn is an
`σn-star. We claim that t ∉ {`σi , `σi + 1} for any i ≠ n, so that M∗ does not have a t-star.
For i < n, `σi + 1 < `σn < t. For i > n, `σi < 4i is chosen so that if kσm[i] < 4i, then
kσm[i] ∉ {`σi , `σi + 1}.

It follows from this claim that M∗ is not homeomorphic to Mn for any n; indeed, if M∗

was homeomorphic to Mn, then Mn would be the disjoint union of stars, points, and line
segments, each of which is compact and open. Then either Mn has no (≥ `)-star but M∗

does, or Mn has an `-star but M∗ does not, or Mn has a t-star for some t > ` but M∗ does
not have a t-star.

Remark 4.9. The reader perhaps suspects that we could simplify the proof if we used “infinite
stars”. Indeed, we can make “infinite stars” compact by making the nth branch twice shorter
than the (n+1)th branch and then putting them together carefully into a star-like object (we
omit details). If we could use infinite stars then we would not have to worry about correcting
errors too much; we could introduce an infinitary outcome under which an infinite star would
be produced. This would significantly simplify the recursion-theoretic combinatorics of the
proof by absorbing or completely eliminating some of the complex outcomes we we use in
our proof. It seems that the resulting space will no longer be path-connected, but perhaps
this construction (if it worked) would have some independent value.
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Unfortunately, there is a fundamental technical issue with this idea which is actually
quite subtle. More specifically, if we allow infinite stars then the analogy of Lemma 4.5
can potentially produce a finite star which is not open in the ambient space. (This will
also make the space not locally path-connected.) This is because the “junk” left over from
unsuccessful approximations to the infinitely many potential branches will be left arbitrarily
close to the resulting finite star. The proof of the main definability Lemma 3.6 relies on
Lemma 3.4 which requires each finite star to be also open. Informally, we could have the
undesired situation when an ε-path jumps off a star to one of the junk elements and then
returns back to some other star or to some other part of the same star; for a smaller ε0 some
other ε0-path would jump off to a different piece of junk, etc. This completely breaks down
both the intuition and the mathematical arguments used to justify the ε-paths technique.
Even though the definability techniques developed in this paper can perhaps be adjusted to
cover spaces with infinite stars which are not open, at the moment it is not clear.

Remark 4.10. With a bit of extra care, the space constructed in the theorem above can be
realised as an effectively closed ∆0

2-overt subset of R2 thus also witnessing Theorem 1.3 for
α = 0. (Recall that the space witnessing α = 0 of Theorem 1.3 was not even ∆0

4-overt.) For
that, work inside R2 and use a careful ∆0

2-approximation of the space. Make sure that every
part of a component which is ever erased stays out of the space; if we ever have to reintroduce
points to the space, we can use a new version of this erased part instead of reintroducing the
old version which was erased. We leave the precise details to the reader.

Furthermore, by taking Alexandroff one-point extension of the space, we can produce
a compact space witnessing the theorem. It will not be locally path-connected around the
extra point adjoined in the process of compactification, but in contrast with Remark 4.9 the
definability technique will still work. More specifically, we can arrange the construction so
that all components are located inside the unit disc in R2. The components introduced later
in the construction will be located closer to the centre of the disc. Of course, when we take
the completion it will also force the centre of the disc to be in the space; the centre is the
“one point” in the above-mentioned one-point compactification. It is not difficult to see that
every point of the space, with the exception of the centre, belongs to a clopen star, while the
connected component of the centre is a singleton which is not open. Although the resulting
space is not nice according to the terminology introduced in the proof, we strongly conjecture
that the definability technique that we developed is still sufficient to diagonalise against all
computable spaces. This is because, e.g., in Θ≥`(p1, . . . , pk) points p1, . . . , pk cannot all lie in
the singleton connected component of the centre-point; we can of course assume k > 1. Then
at least one point pi must belong to a clopen compact star C, and if some other pj happens
to be the centre-point then, for ε smaller than the distance between C and M∗ ∖ C, there
cannot be an ε-path between pi and pj. We leave the exact details to the reader.

5 Groups

Theorem 5.1. There exists a 0′-computable compact Polish group not topologically isomor-
phic to any computable Polish group.

Proof. The following lemma is a consequence of Lemma 4.2 in a compact group.
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Lemma 5.2. There exists a uniformly 0′-computable procedure which, on input a computable
compact Polish group G enumerates (the Cayley/multiplication table of) all finite groups K
of the form G/N , where N ranges over (clopen) normal subgroups of A.

Proof. The proof is similar to the proof of Cor. 4.8 from [Mel18]. We give details.
By Lemma 4.2, with the help of 0′ we can enumerate all clopen subsets of G. Furthermore,

these clopen subsets will be represented as finite unions of basic open balls. It also follows
from the proof of Lemma 4.2 that the same clopen set N will also be described by a finite
union of slightly smaller closed basic balls, and 0′ can uniformly produce both the closed
and the open description of N .

Since both operations ⋅ and −1 are computable in G and N has two descriptions, checking
whether N forms a normal subgroup requires merely 0′. For example, (∃x)(x ∈ N&x−1 ∉ N)
is a Σ0

1-property because we can use the open description of N to check x ∈ N and the
closed description to verify x−1 ∉ N . Note that we can restrict the quantifier to special
points because x ∈ N&x−1 ∉ N describes an open set. Using a similar trick we can see that
normality, emptiness, and that N is closed under × are also 0′-decidable properties.

Since G is compact, for a fixed clopen N the quotient group G/N is finite. Note that
every coset of the form x̃N is open and thus contains a special point x, thus is of the form
xN for some special x. We claim that, given such an N , 0′ can find finitely many special
points x0 = e, x1, . . . , xn such that {xiN} is a disjoint cover of G. To see why, note that
xiN ∩ xjN ≠ ∅ iff for some special y, yx−1i ∈ N and yx−1j ∈ N , both events are c.e. because
N has a finite open description. Also, since left-translation is a self-homeomorphism of G
onto itself and N is clopen, each xiN is clopen as well. Thus, {xiN} is a closed cover iff
for every special y there is an i such that yx−1i ∈ N ; if we view the latter as a finite union
of closed balls then the statement becomes Π0

1 and thus can be decided using 0′. Similarly,
the group structure upon {xi} mod N can be reconstructed effectively and uniformly, in N .
Simply search for an xk such that xixjx−1k ∈ N (this is an effective search in the open name
of N) and then declare xixj =N xk in G/N . Note that the procedure above is uniform in the
description of N .

Consider the discrete countable group GS = ⊕p∈S Zp ⊕⊕i∈ω Z, where S is a set of primes
(which is not necessarily the set of all primes). We use Zp for the cyclic group of order p.
The Pontryagin dual of GS is the compact Polish group AS = ∏p∈S Zp ×∏i∈ω T, where T is
the unit circle group. For this proof we only need one fact from Pontryagin duality: the
finite quatients of AS by its clopen subgroups are isomorphic to finite subgroups of GS. This
property can be seen directly for GS and AS, and therefore we will not give further details;
see book [Pon66] for Pontryagin duality theory.

If we can list all finite factors of AS, then we can also enumerate the set S. Using Lemma
5.2 above, to prove the theorem is sufficient to produce a 0′-computable Polish presentation
of AS for a Π0

2-complete set of primes S; then if AS had a computable presentation, by
Lemma 5.2 and the fact stated about Pontryagin duality we would be able to use 0′ to
enumerate the set S; but since S is not Σ0

2, there is no enumeration of S relative to 0′, and
so AS has no computable presentation.

Let (pi)i∈ω be the natural enumeration of all primes. Fix such a Π0
2-complete set S and

a computable predicate R such that pi ∈ S ⇐⇒ ∃∞yR(i, y).
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The 0′-presentation of AS will be a closed subgroup of the natural computable Polish
presentation of ∏i∈ω T. In this presentation, the special points are ω-tuples of rational
numbers having finite support (i.e., zero almost everywhere).

For the i-th prime pi, we reserve the i-th unit circle in ∏i∈ω T. We intend to make the
point 1/pi in this circle isolated iff there are infinitely many y with R(i, y). To do this, start
with the set of fractions {1/pj ∶ j ≥ i}. We will keep 1/pi in the set regardless of the outcome.
We will however extract 1/pi+1, . . . ,1/pi+t from the set when we find that there are at least
t numbers y with R(i, y). If for i there are infinitely many such y, and thus pi ∈ S, we will
end up with {1/pi}. Otherwise we will be left with {1/pi} ∪ {1/pj ∶ j ≥ t} for some t. Note
that in the latter case the completion of the subgroup of T generated by the set is equal to
the whole circle. In the former case the set generates a subgroup of T isomorphic to Zpi .

For each fixed j, 0′ can uniformly decide whether 1/pj will be permanently kept in the
set. Therefore, 0′ can enumerate a dense subset of T whose completion is equal to T iff
pi ∉ S, and furthermore the completion is isomorphic to Zpi iff pi ∈ S. Since S is Π0

2-complete
it must be coinfinite, and therefore the product of the resulting uniformly 0′-computable
closed subgroups (sitting within their respective copies of the unit circle) will be isomorphic
to AS = ∏p∈S Zp ×∏i∈ω T, as desired. This subgroup has a 0′-computable Polish presentation
which is naturally given by the 0′-enumerable set of ω-tuples of special points with finite
support, and with non-zero components corresponding to those fractions which have already
been 0′-effectively listed in the respective circle.

Theorem 5.3. For every computable α there exists an effectively closed compact (thus,
profinite) subgroup of S∞ not homeomorphic to any ∆0

α Polish group.

Proof. As in the previous theorem, a ∆0
α-computable Polish presentation of the group AS =

∏p∈S Zp gives rise to a ∆0
α+1-enumeration of S. The theorem would follow if for each com-

putable successor ordinal β we could produce an effectively closed subgroup of S∞ isomorphic
to AS, where S is Σ0

β-complete. (To witness the theorem for α take β > α + 1.)
To do that, we will construct a computable structure M with domain ω and automor-

phism group Aut(M) ≅ AS. Since the automorphism groups of such computable algebraic
structures are effectively closed subgroups of S∞ (see [GMNT18]), the theorem will follow.

The structure M will consist of infinitely many disjoint gadget-substructures Mi, each
working with the respective prime pi. The automorphism group of M will naturally be the
Cartesian product of the automorphism groups of all these Mi.

It remains to produce a uniformly effective sequence of computable structures (Mi)i∈ω
with the property:

Aut(Mi) ≅ Zpi ⇐⇒ i ∈ S,
where S is the Σ0

β-complete set we fixed above, and Mi is rigid if i ∉ S.
Using the standard technique due to Ash (see [Ash86] and, for the specific result, see [GK02])

on input i we can uniformly produce a computable ordinal γi such that γi ≅ δ if i ∈ S and
γi ≅ δ′ if i ∉ S, where δ /≅ δ′ are computable ordinals which depend on β. The structure Mi

consists of a loop of size pi realised using a unary function u:

u(xi,j) = xi,j+1modpi .

In Mi, each point xi,j will be computably associated with a “box”; more formally, using
another unary function s we isolate the set Yi,j = {y ∶ s(y) = xi,j} which will be disjoint from
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Yi′,j′ whenever j ≠ j′. On each such set Yi,0, using the aforementioned result of Ash and
a special binary relational symbol, we will uniformly construct a computable well-ordering
which will be isomorphic to δ if i ∈ S, and δ′ if i ∉ S. On each other set Yi,j, j ≠ 0, we
construct a computable copy of δ.

For each fixed i, we will end up with all xi,j being automorphic to each other if and only
if i ∈ S; if i ∈ S, then they each have a copy of δ in their associated “box”, and if i ∉ S, then
xi,0 has a copy of δ′ while each other xi,j has a copy of δ. Furthermore, since ordinals are
rigid, Aut(Mi) ≅ Zpi if i ∈ S, and Mi is rigid otherwise, as desired.
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[NS15] André Nies and Slawomir Solecki. Local compactness for computable polish
metric spaces is Π1

1 -complete. In Evolving Computability - 11th Conference
on Computability in Europe, CiE 2015, Bucharest, Romania, June 29 - July 3,
2015. Proceedings, pages 286–290, 2015.

[PER83] Marian Boykan Pour-El and Ian Richards. Computability and noncomputability
in classical analysis. Trans. Amer. Math. Soc., 275(2):539–560, 1983.

[PER89] Marian B. Pour-El and J. Ian Richards. Computability in analysis and physics.
Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1989.

[Pon66] L. S. Pontryagin. Topological groups. Translated from the second Russian edition
by Arlen Brown. Gordon and Breach Science Publishers, Inc., New York-London-
Paris, 1966.

24



[Sac90] Gerald E. Sacks. Higher recursion theory. Perspectives in Mathematical Logic.
Springer-Verlag, Berlin, 1990.

[Sel20] Victor L. Selivanov. On degree spectra of topological spaces. Lobachevskii Jour-
nal of Mathematics, 41:252259, 2020.

[Smi79] Rick L. Smith. THE THEORY OF PROFINITE GROUPS WITH EFFECTIVE
PRESENTATIONS. ProQuest LLC, Ann Arbor, MI, 1979. Thesis (Ph.D.)–The
Pennsylvania State University.

[Smi81] Rick L. Smith. Effective aspects of profinite groups. J. Symbolic Logic, 46(4):851–
863, 1981.

[Tur36] Alan M. Turing. On computable numbers, with an application to the entschei-
dungsproblem. Proceedings of the London Mathematical Society, 42:230–265,
1936.

[Tur37] Alan M. Turing. On Computable Numbers, with an Application to the Entschei-
dungsproblem. A Correction. Proceedings of the London Mathematical Society,
43:544–546, 1937.

[Wei00] Klaus Weihrauch. Computable analysis. Texts in Theoretical Computer Science.
An EATCS Series. Springer-Verlag, Berlin, 2000. An introduction.

[WG09] Klaus Weihrauch and Tanja Grubba. Elementary computable topology. J.UCS,
15(6):1381–1422, 2009.

[YMT99] Mariko Yasugi, Takakazu Mori, and Yoshiki Tsujii. Effective properties of sets
and functions in metric spaces with computability structure. Theor. Comput.
Sci., 219(1-2):467–486, 1999.

25


	Introduction
	Formal Definitions
	Effectively closed subspaces
	02 Polish spaces with no computable homeomorphic copies
	Totally disconnected spaces
	The locally path-connected case

	Groups

