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Abstract. We explore the computational strength of the hyperimmune-
free Turing degrees. In particular we investigate how the property of be-
ing dominated by recursive functions interact with classical computabili-
ty notions such as the jump operator, relativization and effectively closed
sets.

1. Introduction

The relative computational power between sets of natural numbers has
traditionally been measured by Turing reducibility: If A ≤T B we think of
B as containing at least as much algorithmic information as A. There have
been various other well-studied methods of calibrating computational pow-
er; for instance, by examining the effective enumerations of A, by looking
at the algorithmic randomness content of A, and by investigating the rate
of growth of functions computable from A. These studies have all yielded
deep results relating Turing reducibility with different aspects of computa-
tion. This paper is concerned with the last of these: The rate of growth of
functions computed by A. Hence a set A can be viewed as being computa-
tionally powerful if it is able to compute functions which grow fast enough
to dominate a certain other class of functions.

Domination properties have been studied extensively in the literature,
and many relationships between domination and Turing degrees have been
found. For instance it is easy to see that if B is r.e. in A then A ≥T B′

iff A computes a function dominating every B-partial recursive function.
In some cases a class of degrees is first defined in terms of a domination
property and subsequently results are then obtained about its computation-
al properties; the almost everywhere dominating degrees is an example of
such a class. It is more common to go the other way, for a class of degrees to
be first introduced without mentioning domination and then subsequently
characterized in terms of a domination property. For example, Martin [9]
characterized the high Turing degrees as the degrees which compute a func-
tion dominating every recursive function; the class of array non-recursive
degrees introduced by Downey, Jockusch and Stob [3] was shown in [4] to
be the same as the class of degrees a where every ω-r.e. function fails to
dominate some a-recursive function.
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The class studied in this paper is the class of hyperimmune-free (HIF)
degrees (i.e. the degrees which contain no hyperimmune set). We recall
that a set A is hyperimmune iff A is infinite and there is no disjoint strong
array of finite sets each of which has non-empty intersection with A. The
study of hyperimmune sets can be traced back to Post and attempts to
solve Post’s problem. Post [12] introduced the notion of a simple and a
hypersimple r.e. set (A is hypersimple if A is hyperimmune) and it turned
out that each hypersimple set is wtt-incomplete, but not necessarily Turing
incomplete. Indeed Dekker [1] showed that every non-recursive r.e. degree
is hyperimmune (i.e. not HIF), while Miller and Martin [10] showed that
every degree b satisfying a < b < a′ for some a is hyperimmune. Dekker
and Myhill [2] showed that every non-recursive degree contains an immune
set, hence it was rather surprising that Miller and Martin [10] were able to
construct a non-recursive HIF degree. Indeed they characterized the HIF
degrees using a domination property: a is HIF iff every function recursive in
a is dominated by some recursive function. This property asserts that a is
“almost recursive”’, in that a computes no fast-growing function (relative to
the class of recursive functions). However the fact that no non-recursive ∆0

2

degree possesses this property indicates that this notion of computational
feebleness is intrinsically hard to understand.

The main aim of this paper is to shed some light on this class by inves-
tigating how the domination related property of HIF degrees is related to
the other more traditional methods of measuring computational strength.
It is easy to see that each HIF degree is of array recursive degree and is
generalized low2, hence each HIF degree cannot be computationally strong
in this sense. On the other hand a HIF degree can be PA-complete.

The main difficulty that we face is how to translate between the infor-
mation contained in a fast-growing function and the ability to code into a
given set. The proofs given in this paper give various ways of doing this.

In section 2 we study the distribution of HIF degrees in Π0
1 classes. The

so-called “HIF basis theorem” of Jockusch and Soare [5] asserts that every
non-empty Π0

1 class contains a member of HIF degree. We construct an
uncountable Π0

1 class in which every member is generalized low (GL1) and
of HIF degree. This Π0

1 class we construct will necessarily have recursive
members (in fact, isolated paths).

In section 3 we investigate when a degree can be HIF relative to another.
We introduce the notion of being HIF relative to 0n, for n > 0. We show
that there are uncountably many sets which are simultaneously HIF and
HIF relative to 0′′, but surprisingly we discover that no non-recursive set is
both HIF and HIF relative to ∅′. On the other hand, we construct a perfect
closed set of reals which are simultaneously HIF and HIF relative to every
low r.e. set. We also obtain another characterization of the K-trivial sets
as the ∆0

2 sets A where some HIF set is A-random.
In section 4 we study the degrees which are the jump of some HIF degree.

From folklore it is known that each degree above 0′′ is the double jump of
a HIF degree. However the degrees which are the jump of a HIF degree is
not at all well-understood. Kučera and Nies [8] showed that each degree r.e.
in and strictly above 0′ computes a′ for some HIF degree a, while it follows
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from Jockusch and Stephan [6] that the jump of each HIF degree cannot be
PA-complete relative to 0′. We will show that for each 2-generic degree c,
there is a HIF degree a such that a′ = c ∪ 0′. We conjecture that this is in
fact a characterization of the degrees which are the jump of a HIF degree.

2. HIF and closed sets

Nies and Miller (unpublished) observed that no real can simultaneously
be GL1, HIF and of diagonally non-recursive (DNR) degree, although any
combination of two are possible. It is a natural question to ask to what
extent can these properties be reflected in Π0

1 classes. We first show that
there is an uncountable Π0

1 class where every non-isolated path is GL1 and of
DNR degree. Hence GL1 and DNR can be simultaneously realized by every
non-recursive path in an uncountable Π0

1 class. We note that the isolated
paths are necessary, since every perfect Π0

1 class contains a path of high
degree, and clearly no set if HIF degree can be high.

Lemma 2.1. Given any tree T ≤T ∅′ there exists a recursive tree Q such
that every path of T is Turing equivalent to a non-isolated path of Q, and
vice versa.

Proof. Let T = lims Ts for a recursive sequence {Ts} of recursive trees.
Define the partial recursive function f(σ) to be the first stage s such that
σ � i ∈ Ts for every i ≤ |σ|. Now define the Turing functional ΨX to output

X(0)2f(X�1)X(1)2f(X�2) · · · . Here 2s is the symbol 2 repeated s many times.
If f(X � k) is partial for some k then the functional outputs a sequence with
a tail of 2s, otherwise ΨX is a ternary sequence with X coded. If A is on T
then f(A � n) is convergent for all n, so clearly A ≡T ΨA.

Now let Q = Ψ applied to 2ω. Clearly Q is a recursive tree of rank 1. If
A is on T then clearly ΨA is a non-isolated path of Q. On the other hand
if A is not on T then let σ ⊂ A be minimal such that σ ̸∈ T . For all large
enough s and every η ⊇ σ of length s, f(η) ↑. Thus every infinite branch of
Q extending Ψσ is isolated. �

Theorem 2.2. There is an uncountable Π0
1 class P such that every nonre-

cursive path of P is GL1 and computes a DNR function.

Proof. Let T ≤T ∅′ be a tree containing only 2-random reals. By Lemma 2.1
there exists a recursive tree P such that every path of P is either isolated
or Turing equivalent to a 2-random. P is clearly uncountable, and every
2-random is DNR and GL1. �

Next we argue that there can be no Π0
1 class where every non-recursive

path is HIF and DNR

Theorem 2.3. Suppose P is a Π0
1 class where every path is HIF. Then P

cannot contain a path of DNR degree.

Sketch of proof. Suppose A ∈ P and A is of DNR degree. By Kjos-Hanssen,
Merkle and Stephan [7], there exists a function f ≤T A such that C(f(n)) ≥
n for every n. Since A is HIF, f ≤tt A. The set

Q = {X ∈ 2ω | ∃nC(fX(n)) < n}
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is an open set. Observe that P − Q is a non-empty Π0
1 class as it contains

A. Every path of P − Q is of HIF degree and non-recursive. Applying the
Low Basis Theorem gives a contradiction. �

Finally we turn to the apparently most difficult combination. We show
that there is a rank 1 uncountable Π0

1 class such that every path is GL1 and
HIF. Again rank 1 is the best possible, since the isolated paths are necessary.
We also note that every path in P has a strong minimal cover.

Theorem 2.4. There is a rank 1 uncountable Π0
1 class P such that every

member of P is GL1 and of HIF degree.

We sketch the proof here. The requirements are

• Re: For all X in P , there exists recursive function h such that ΦX
e

is dominated by h, provided it is total.

Strategy for a single requirement We use R0 as an example to illustrate
the strategy in isolation.

We start with T−1 = 2<ω – the full binary tree. Recursive in k, we
define h(k) and modify the tree. The modification tree includes: Trimming
(creating some dead ends), restrict/unrestrict certain portion of the tree.
Temporarily let’s refer k as level k and we process level by level.

Level 0: At stage s, check whether there exists a node σ ∈ Ts such that
|σ| ≤ s and Φσ

0 (0)↓. If no, go to next stage; otherwise, let σ be the left most
one, and define h(0) = Φσ

0 (0)+1 and define Ts+1 = {τ ∈ Ts : τ is compatible
with σ}. Declare all other nodes dead, i.e., all nodes α on Ts − Ts+1 which
have length s become dead ends. Level 0 is finished.

Level 1: When we finish level 0, we have had a node σ. We look for two
nodes τ0 ⊇ σˆ⟨0⟩ and τ1 ⊇ σˆ⟨1⟩ such that Φτ0

0 (1)↓ and Φτ1
0 (1)↓. We search

them one by one. Temporarily, let’s refer them as cycles. We have cycle 0
and cycle 1.

In cycle 0, first isolate σˆ⟨1⟩. The precise meaning of isolating a node

α is: For each stage t, αˆ⟨0t−|α|⟩ is the only node extending α of length t
on Tt. (Need to state it in the context of isolating a node on a given tree.)
Focus on the basic open set indexed by σˆ⟨0⟩ (informally referred as current
playground).

If we never find any node τ0 ⊇ σˆ⟨0⟩ such that Φτ0
0 (1)↓, then ΦX

0 is partial
for all X in that open set. Because we isolate σˆ⟨1⟩, which gives rise to a
recursive path. Thus we satisfied R0 globally. We often refer the discovery
of an open set in which for all X, ΦX

0 is partial as a Σ0
2-outcome for R0.

If at some stage t, we find a node τ0 ⊇ σˆ⟨0⟩ such that Φτ0
0 (1) ↓, then

we isolate τ0 and shift the playground to the open set indexed by σ′ =
σˆ⟨1⟩ˆ⟨0t−|σ|−1. This means we no long isolate σˆ⟨1⟩. And we look for τ1 ⊇
σ′ such that Φτ1

0 (1)↓. As argued before, if we never see such a convergence,
then we win R0 in a Σ0

2-way. Now suppose we find such a τ1 at t′ > t,
then we modify the tree by defining Tt = {α : α is compatible with either

τ0ˆ⟨0t
′−|τ0|⟩ or τ1}, and define h(1) = max{Φτ0

0 (1),Φτ1
0 (1)} + 1. (We made

one more Π0
2 instance true.)
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Level k + 1: In general, suppose we have completed k Π0
2 instances and

have defined h(0), h(1), · · · , h(k). We then need to look for N = 2k+1 in-
compatible strings τ0, τ1, · · · , τN−1 such that Φτi

0 (k + 1)↓. We use the same
strategy as above, except we now have N cycles. There are two outcomes:

• We stuck at finding some convergent computation Φτi
0 (k+ 1). Then

all N − 1 other τj ’s are isolated forever; and the playground will
be the open set indexed by τi (possible extended by certain zeros).
Since ΦX

0 is partial for all X is this open set, we win R0.
• Otherwise, we could complete N cycles eventually and we are able
to define h(k + 1) and obtain a size 2k perfect tree (so to speak).

Thus the eventual outcomes for R0 (after completing all levels) are as
follows:

• We stuck at the i-th cycle in some k-th level. Let us use (k, i) to
indicate this outcome. The final tree looks like a perfect tree which
is the open set index by some τi, together with 2k − 1 many isolated
paths.

• Or succeed in all levels, we then get a perfect subtree T0 and a
recursive function h which uniformly dominate all ΦX

0 for all X ∈
[T0].

Interaction between two strategies Consider now two requirements R0 and
R1, we will have different versions of R1.

If R0 has Σ0
2-outcome (k, i), then eventually only the R1 which guesses

(k, i) correctly is active. This R1 will work on a perfect tree (the open
neighborhood indexed by certain σ) which is its playground; and work in
a similar fashion as R0 above. There is one extra caution though. We
do not want the R1 shift the root of the tree (in other words, we don’t
want the combined effort of Re to eventually trim the tree into a single
branch, even though for any fixed e, we have a perfect tree surviving.)
Therefore, we artificially fix a split for R0 and have two copies of R1: R1,0

and R1,1, R1,0 works on the left subtree of T0 (the tree produced by R0)
and produces h1,0 possibly and R1,1 works on the right subtree in a similar
fashion. This will reduce the uniformity of the dominating function h. By
breaking the uniformity of h and adding extra splits, it is easier to argue
the uncountability of the resulting Π0

1-class.
Back to the discussion on interactions, suppose that R0 has Π2-outcome,

then R1 would receive a perfect tree (piecewise, level by level) from R0.
Then R1 can exert its power to that tree, e.g., isolating certain nodes and
treat some open set as its playground. Note that R1’s action will have an
impact on the (Π2-strategy of) R0. R0 may hand to R1 a size 2k perfect tree
and R1 may turn it into “an active playground” plus a few isolated paths,
let T ∗ temporarily denote the resulting damaged tree. (The Π2) R0 has to
work on T ∗ instead of the small perfect tree which it passes to R1. The
interaction is the reason that we have to use stage by stage construction
instead of forcing by Π0

1-classes.
This modified R0 will take over the finite tree T ∗ (after all, R0 still have

the highest priority). R0 will still run cycles, and in each cycle look for
convergent computations Φτ

0(k + 1). The cycles now will be ranging over
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the leaves of T ∗ (whose number is less than 2k+1 most likely). If R0 is able
to complete the whole (modified) cycle, it then defines h(k + 1) and passes
to R1 (who will immediately damage it almost surely). If R0 gets stuck at
certain cycle, then R0 would have Σ2-outcome, the version of R1 would be
irrelevant.

The full details of the construction will appear in the journal version of
the paper.

Corollary 2.5. There exists a perfect tree T ≤T ∅′′ with no dead ends such
that every path of [T ] is HIF and GL1.

3. HIF and relativization

Definition 3.1. We say that X is HIF relative to A if every function re-
cursive in X ⊕ A is dominated by an A-recursive function. For n ≥ 0 we
call A an (n+ 1)-HIF if every function recursive in A(n) is dominated by a

∅(n)-recursive function.

Fact 3.2. A is (n+ 1)-HIF implies that A is HIF relative to ∅(n).

Fact 3.3. 2-HIF is equivalent to being GL1 and HIF relative to ∅′.

Example 3.4. Every low2 HIF is (n+ 3)-HIF for every n ≥ 0.

Proposition 3.5. There exists uncountably many reals which are both HIF
and 3-HIF.

Proof. For every C ≥T ∅′′ there is a HIF A such that A′′ ≡T C. Relativize
the construction of a HIF real to ∅′′, we get uncountably many reals C which
are HIF relative to ∅′′. �

We can show that there are sets which are HIF relative to every low r.e.
set:

Theorem 3.6. There exists uncountably many HIF sets which are HIF
relative to every low r.e. set.

The proof of this constructs an uncountable tree combined with the
Robinson’s technique for guessing Σ0

1 facts about low sets. We refer the
reader to the full paper for further details.

Lemma 3.7. Suppose that C is PA-complete and B is r.e so that C ̸≥T B,
then C ⊕B ≥T ∅′.

Proof. Suppose that C is PA and B is r.e so that C ̸≥T B. We may assume
that for any r.e. set We and number n, if n ∈ We,s+1 \We,s, then s = 2e · 3t
for some t. Fix a recursive bijection ⟨, ⟩ : ω2 → ω.

Now define a Π0
1 set P so that A ∈ P if and only if

(1) For any n, n ∈ A implies n = ⟨2e0 · 3m0 , 2e1 · 3m1⟩; and
(2) For any e0,m0 and e1,m1, either ⟨2e0 · 3m0 , 2e1 · 3m1⟩ ∈ A or ⟨2e1 ·

3m1 , 2e0 · 3m0⟩ ∈ A; and
(3) For any e0,m0, e1,m1 and e2,m2, if ⟨2e0 · 3m0 , 2e1 · 3m1⟩ ∈ A and

⟨2e1 · 3m1 , 2e2 · 3m2⟩ ∈ A, then ⟨2e0 · 3m0 , 2e2 · 3m2⟩ ∈ A; and
(4) For any e0,m0, e1,m1 and s, ⟨2e0 ·3m0 , 2e1 ·3m1⟩ ∈ A and m0 ̸∈ We0,s,

then m1 ̸∈ We1,s



COMPUTATIONAL ASPECTS OF THE HYPERIMMUNE-FREE DEGREES 7

By (2) and (3), every A ∈ P codes a linear order. By (4), ω is as an order
type of an initial segment of A. Moreover, the initial segment of A is exactly
the set {2e · 3m | m ∈ We}.

Obviously P is not empty. So there is a set A ∈ P recursive in C.
Now suppose that B = We0 for some e0. Were there exist some e1,m1 so

that n ∈ We0 if and only if ⟨2e0 ·3n, 2e1 ·3m1⟩ ∈ A, then B would be recursive
in A, a contradiction to the assumption.

Now suppose that ∅′ = We1 . Then for any m, m ̸∈ We1 if and only if
there exists some n ̸∈ We0 so that ⟨2e0 · 3n, 2e1 · 3m⟩ ∈ A. ω \ ∅′ is r.e. in
B ⊕A. In other words, ∅′ ≤T A⊕B ≤T C ⊕B. �
Theorem 3.8. No PA-complete set can be both HIF and HIF relative to
some non-recursive r.e. set.

Proof. Let C be a PA-complete HIF and B be a non-recursive r.e. set..
such that C is HIF relative to B. Since C forms a minimal pair with ∅′,
by Lemma 3.7 we have C ⊕ B ≥T ∅′. Hence C ⊕ B computes the function
c∅′ where c∅′(n) = least stage s such that ∅′s � n = ∅′ � n. Since C is HIF
relative to B, this is dominated by some function g ≤T B. Hence B ≡T ∅′.
By Theorem 3.11 we get that C is recursive, a contradiction. �
Lemma 3.9. If a tree T ≤T ∅′ contains a HIF path A then there is a
recursive tree Q containing A such that [Q] ⊆ [T ].

Theorem 3.10. If A is HIF and HIF relative to some PA-complete set
B ≤T ∅′ then A is recursive.

Proof. Assume that a non-recursive A and a B exist as above. There exists
a uniformly B-recursive sequence {Be}e∈ω of reals such that for every e,
either the eth Π0

1 class is empty or Be is a member of the eth Π0
1 class. Let

fA⊕B(e) be the first x found such that Be � x ̸= A � x. Then fA⊕B is total
since B ≤T ∅′ and so A cannot be recursive in B. This is majorized by
some B-recursive function gB. It is easy to see that there is a B-recursive
and hence ∅′-recursive tree T containing exactly the paths X such that for
every e, X � g(e) ̸= Be � g(e). Clearly T contains the HIF path A and so
by Lemma 3.9 there is a recursive tree Q such that [Q] ⊆ [T ]. Since [Q] is
a non-empty Π0

1 class, examining its index gives a contradiction. �
We obtain the following pleasing corollary, which says that every non-

recursive HIF set must not be HIF relative to ∅′:

Corollary 3.11. If A is HIF and HIF relative to ∅′ then A is recursive.

We now turn to investigating the interactions of HIF and randomness. By
the HIF basis theorem, there are random sets of HIF degree. For which sets
A are there A-random HIF sets? In the case for A ≤T ∅′ we get exactly the
class of K-trivial sets, yielding yet another characterization of K-triviality.

Theorem 3.12. Let A ≤T ∅′. Then A is K-trivial iff some HIF set is
A-random.

Proof. Left to right follows trivially from the existence of HIF random reals.
Suppose that A is not low for Ω, and some HIF set B is A-random. Then
there exists a Π0

1 class relative to A which contains B and only contains
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A-random reals. This class contains no left-r.e. path since A is low for Ω.
This contradicts Lemma 3.9. �

Attempts to generalize this globally to obtain a characterization of low
for Ω fails. Any HIF set A cannot be low for Ω, yet by the relativized HIF
basis theorem, there exists an A-random which is HIF relative to A and
hence HIF.

We now study the situation when we replace “random” with “complex”.
Recall that a set B is complex if there exists a recursive function f such
that C(B � m) > n whenever m > f(n). B is A-complex if the same
holds for an A-recursive f and CA. A set B is autocomplex if there is a
B-recursive function f such that C(B � m) > n whenever m > f(n). B is
A-autocomplex if the same holds for a A⊕B-recursive f and CA.

Theorem 3.13. Let A ≤T ∅′.
(i) If A is K-trivial then some HIF set is A-complex.
(ii) If some HIF set is A-complex then A is low.
(iii) If A is a low r.e. set then some HIF set is A-autocomplex.

Proof. (i): Trivial.
(ii): Let B be a HIF A-complex set. By [7] Theorem 2.3 relativized to

A, B ⊕ A computes a function ΦB⊕A which is DNR relative to A, where
the functional ΦX⊕A converges for every X. The set of all X such that
ΦX⊕A(n) = ΦA

n (n) for some n is Σ0
1(A), so there exists an A-recursive tree

T containing B, where for every path X of T , ΦX⊕A is an A-DNR function.
By Lemma 3.9 T must contain some left-r.e. path. Hence ∅′ computes an
A-DNR function, and by Rupprecht, Miller and Ng [11] implies that A is
low.

(iii): Suppose A is a low r.e. set. If A is recursive then we are done, so
assume that A is non-recursive. Take B to be any HIF PA-complete set.
By Lemma 3.7 we have B ⊕A ≥T ∅′. B ⊕A is able to compute for each n,
a length f(n) such that no string of length f(n) or more has A-Kolmogorov
complexity below n, since it is Π0

1(A) to test each possible length. Hence B
is A-autocomplex. �

We remark that by [11], the class of setsA ≤T ∅′ where ∅′ isA-autocomplex
is exactly the low sets.

4. HIF and the jump operator

The aim of this section is to investigate the degrees which are the jump
of a non-recursive HIF. We first note that every HIF set preserves highness:

Proposition 4.1. Every HIF set preserves highness. That is, if A is HIF
and B is a high set then (A⊕B)′ ≥T A′′.

Let JH = {C ∈ 2ω | C ≥T ∅′ and there exists a non-recursive HIF A with
A′ ≡T C}. Let JR be defined similarly with recursively traceable in place
of HIF.

By Folklore, every degree computing 0′′ is the double jump of a HIF.
However the situation for the single jump appears to be much more difficult.
It is known (Jockusch and Stephan [5]) that no degree PA-complete relative
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to 0′ is in JH . By Theorem 3.8 the only sets in JH which are HIF relative
to 0′ are sets of degree 0′.

Theorem 4.2 (Kučera, Nies [8]). If C >T ∅′ is Σ0
2 then C computes a set

in JH .

It is easy to modify their construction to make C compute a set in JR

(this will also follow from Theorem 4.4 below). However in contrast we show
that no degree in JH can compute a properly Σ0

2 set.

Theorem 4.3. Suppose A is HIF and A′ ≥T C where C is a Σ0
2 set. Then

C ≤T ∅′.
Proof. Let f be an A recursive function and R a recursive predicate such
that for every x, lims f(x, s) = 1 iff (∃s)(∀t > s)R(x, t). Define g(x, s) to
be the first t > s found such that ¬R(x, t) or f(x, t) = 1. Then g(x, s) is
a total function recursive in A. Let g̃ be a recursive function majorizing

g. Let R̃(x, s) =

g̃(x,s)∏
t=s

R(x, t). For each x, lims R̃(x, s) exists. To see this,

suppose that R̃(x, s) = 0 for infinitely many s. Then x ̸∈ C and hence
lims f(x, s) = 0. Hence for almost every s. there is some s < t ≤ g(x, s) for

which ¬R(x, t) holds. Hence R̃(x, s) = 0 for almost every s. Finally it is easy

to check that lims f(x, s) = 1 iff lims R̃(x, s) = 1, and hence C ≤T ∅′. �
Theorem 4.4. Let C be 2-generic. Then there is a recursively traceable set
A such that A′ ≡T A⊕ ∅′ ≡T C ⊕ ∅′.
Proof. We build a recursive sequence of total recursive functions Ts : 2

<ω 7→
2<ω such that for each s, Ts satisfies the usual definition of a tree and for
every s and σ, there is some τ ⊇ σ such that Ts+1(σ) = Ts(τ). Provided
that each σ is moved finitely often, we get that T = limTs exists and is a
Π0

1 class.
We start with T0 the identity function. For each s and σ, we say that

σ requires attention if there exists some τ ⊃ σ and i, j < |σ| such that

Φ
Ts(τ)
i (j) ↓ but Φ

Ts(σ)
i (j) ↑. At s pick the lexicographically least σ requiring

attention, and let Ts+1(σ ∗ η) = Ts(τ ∗ η) for every η ∈ 2<ω. If there is more
than one pair (i, j) we move σ for the sake of the least pair in some fixed
ordering of pairs of numbers. If no σ requires attention at s, set Ts+1 = Ts.

Clearly each σ requires attention only finitely often. Hence T ≤T ∅′. Let
C be 2-generic, and A = T (C). Clearly A⊕∅′ ≡T C⊕∅′. It remains to verify
that A is recursively traceable and A′ ≤T C ⊕ ∅′. To see the former, fix e,
and let V = {σ | |σ| > e and Φe(i)

T (σ) ↑ for some i ≤ |σ|} ≤T ∅′. Hence C
must meet or strongly avoid V . If C meets V then by construction ΦA

e is
not total. Otherwise there exists η ⊂ C such that |η| > e and no extension

of η is in C. This means that for every σ ⊇ η, Φ
T (σ)
e (|σ|) ↓. Assume that

η is never moved again. To compute a trace for ΦA
e (i), i > e, we run the

construction until a stage s is found such that Φ
Ts(σ)
e (i) ↓ for every σ ⊇ η of

length i. There are at most 2i many such values. Furthermore since Ts is
an approximation to a Π0

1 class, we have that A ⊃ Ts(σ) for one such σ.
Finally to see that A′ ≤T C ⊕ ∅′, note that e ∈ A′ if and only if

Φ
T (C�e+1)
e (e) ↓. �
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Question 4.5. Do the degrees a ∪ 0′ where a is 2-generic characterize the
class JH?

Question 4.6. Is the jump of each HIF degree also the jump of a recursively
traceable degree?
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[8] A. Kučera and A. Nies. Demuth randomness and computational complexity. Annals
of Pure and Applied Logic, 162(7):504–513, 2011.

[9] D. A. Martin. Classes of recursively enumerable sets and degrees of unsolvability.
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 12:295–310,
1966.

[10] W. Miller and D. A. Martin. The degrees of hyperimmune sets. Zeitschrift für Math-
ematische Logik und Grundlagen der Mathematik, 14:159–166, 1968.

[11] N. Rupprecht, J. Miller and K. M. Ng. Notions of effectively null and their covering
properties. In preparation.

[12] E. L. Post. Recursively enumerable sets of positive integers and their decision prob-
lems. Bulletin of the American Mathematical Society, 50:284–316, 1944.

(Ng) School of Physical & Mathematical Sciences, Nanyang Technological
University, 21 Nanyang Link, Singapore

E-mail address: kmng@ntu.edu.sg

(Stephan) Department of Mathematics, National University of Singapore,
Singapore 119076

E-mail address: fstephan@comp.nus.edu.sg

(Yang) Department of Mathematics, National University of Singapore, Sin-
gapore 119076

E-mail address: matyangy@nus.edu.sg

(Yu) Institute of Mathematical Science, Nanjing University, Nanjing, Jiang-
su Province 210093, China

E-mail address: yuliang.nju@gmail.com


