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Abstract. Reverse mathematics is primarily interested in what set existence axioms are
necessary and sufficient in a proof of a theorem. Much work has been done in classifying
graph colouring theorems, studying k-regular graphs, k-chromatic graphs and forests.
This paper takes inspiration from an old paper by Bean and studies graph colouring
theorems restricted to planar graphs. We show that for any natural number n > 3, the
n-colouring theorem for planar graphs is equivalent to WKL0. Further analysis of related
principles, obtained by restricting the planar graphs in question to be connected, or with
computable planar drawings also yield similar results. However, many of the proofs of
equivalence are non-uniform; utilising tools from the study of Weihrauch reducibility, we
show that in many instances such non-uniformity is necessary.

1. Introduction

Graph colourings have been widely studied classically. There are numerous results re-
garding existence of colourings for different classes of graphs. Some examples include
Brooks theorem, “every graph with maximum degree n is n + 1-colourable” [3], and the
famous four colour theorem “every planar graph is 4-colourable” [14]. In the classical set-
ting, most work has been focused on studying the colourings of finite connected graphs.
To obtain the same results in the infinite case, one can simply apply the De-Bruijn Erdos
theorem [5]. Nonetheless, colourings of infinite countable graphs might still be of interest in
the sense that such colourings could be ‘computationally hard’ to find. For example, Bean
showed that there exists a recursive planar graph with no recursive 4-colouring and that for
each n ≥ 3, there exists a n-colourable graph not recursively n-colourable [1]. Intuitively,
this means that even if an (infinite) graph is n-colourable, such a colouring cannot be found
algorithmically. In contrast, provided more colours are allowed, recursive colourings can
be found [1, 13]. A natural question that arises is whether algorithmic colourings exists
for certain classes of graphs, and if such colourings do not exist, how ‘computationally
difficult’ it is to find them.

To investigate the computational content of graph colourings, one possible approach is
to use reverse mathematics. Reverse mathematics is a systematic approach to classifying
mathematical theorems by matching them up with different levels of set existence axioms
(see [16] and [8] for reference texts). The idea is to search for the weakest set existence axiom
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necessary for the theorem of interest to hold. This then implies that the theorem cannot be
proved by any weaker set existence axiom. Most mathematical theorems fall in one of five
subsystems, listed in order of strength as follows, RCA0, WKL0, ACA0, ATR0,Π

1
1-CA0. Of par-

ticular interest to the present paper is the subsystem WKL0 which asserts that each infinite
binary tree has a path. Under the framework of reverse mathematics, Hirst showed that
the De-Bruijn Erdos theorem is equivalent to WKL0 over RCA0 and that every n-colourable
graph has a low n-colouring [10], thus providing an upper bound for the algorithmic con-
tent of graph colourings. Various studies have been conducted on other graph colouring
theorems and most have been shown to be equivalent to WKL0 over RCA0 [9, 12, 15].

Another possible approach is to utilise the tools of Weihrauch reducibility. Weihrauch
reducibility provides a framework to study Π1

2 statements (statements of the form ∀X∃Y φ;
X is generally referred to as an instance and Y a solution). Roughly speaking, if P,Q are
Π1

2 statements, and P is Weihrauch below Q, then it means that if for any Q-instance, we
are able to find a Q-solution, then we can do the same for P ; Q is algorithmically more
complex than P . While in most cases, an implication in the setting of reverse mathematics
corresponds to a Weihrauch reduction, there exists examples where an implication holds
but no Weihrauch reductions can be found [7, 4, 11].

Following this pattern, we study theorems about planar graph colourings under the
framework of reverse mathematics and Weihruach reductions. We show that for each
n ≥ 4, the existence of an n-colouring for planar graphs is equivalent to WKL0 over RCA0.
However, for each n > 4, some non-uniform arguments were used in the reversal. Using the
tools of Weihrauch reducibility, we show that for all n ≥ 7, such non-uniformity is necessary
by proving that no Weihrauch reduction exists. The cases for n = 5, 6 are left open but
a possible approach is suggested using Lemma 3.5; which characterises the existence of
Weihrauch reductions from COL(n) to DNR(k) (both to be defined later) as a finite graph
theoretic property.

1.1. The principles and formal definitions. Since the main objective of this paper is
to investigate the reverse mathematical strength of theorems on the colouring of planar
graphs, we shall start with the following definitions:

Definition 1.1 (RCA0). • A graph G = (V,E) is a countable set of vertices V =
{v0, v1, . . . } and a symmetric irreflexive binary relation E ⊆ V 2. We will only
consider simple undirected graphs in this paper. Note that we do not require a
graph to be locally finite or connected.

• A subgraph of G = (V,E) is a graph G′ = (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E.
A subgraph is not necessarily induced.

• A finite graph Ĝ is planar if neither K3,3 nor K5 is a minor of Ĝ. An infinite
countable graph G is planar iff every finite subgraph of G is planar.

• Given a graph G = (V,E), we say that h is a c-colouring of G iff h : V →
{0, 1, . . . , c− 1} and for any two vertices v, w, if h(v) = h(w), then {v, w} /∈ E. A
graph is said to be c-colourable if it has a c-colouring.
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We use G to denote infinite countable planar graphs, and Ĝ to refer to finite planar
graphs, unless explicitly stated otherwise.

Definition 1.2 (RCA0). Given a graph G = (V,E), a diagram of G is a pair of injective
functions ψ : V → Q2 and f : E → N satisfying the following.

• For each {u, v} ∈ E, f({u, v}) encodes some j-tuple of pairs of rational numbers
⟨⟨p0, q0⟩, ⟨p1, q1⟩, . . . , ⟨pj , qj⟩⟩ where ψ(u), ψ(v) are the first and last (or last and
first) entry respectively.

In addition, we say that a diagram is planar (or simply a plane diagram) iff it is a diagram
with the additional property that for each ⟨pi, qi⟩ ∈ f({u, v}) and ⟨p′j , q′j⟩ ∈ f({u′, v′})
(where {u, v} ̸= {u′, v′}) the line segments from (pi, qi) to (pi+1, qi+1) do not intersect
with those from (p′j , q

′
j) to (p′j+1, q

′
j+1), except possibly at the endpoints of f({u, v}) and

f({u′, v′}).1

The intention behind f in the definition above is to formalise embedding of edges by
finitely many straight line segments. We note that in the classical setting, having an
embedding of the graph into R2 is clearly equivalent to having a plane diagram in the
sense of the definition above.

Definition 1.3 (Faces). Given a plane diagram (ψ, f) of a finite connected planar graph

Ĝ, we wish to define an encoding of the faces of the diagram. Classically, an inner face
of the diagram can be defined as a bounded, non-empty, connected open region F of the
plane that is enclosed by a closed walk C taken in the diagram with the property that F
does not intersect the diagram. The outer face is the unbounded, connected open region
F of the plane with a closed walk C forming the boundary of F with the property that F
does not intersect the diagram.

Each face (inner and outer) of the plane diagram can be encoded by the closed walk
forming the boundary of the face. (Recall that this is just a finite list of rational coordi-
nates). A face-list of the plane diagram is a list of the codes of all faces of the diagram.
Obviously, the face-list of a plane diagram of a finite connected planar graph can be found
effectively from the plane diagram itself.

The common classical definition of a planar graph G is via the existence of a planar
embedding of G into the plane (or the sphere). Wagner [17] showed that this definition
is equivalent to the one given in Definition 1.2 for finite graphs. Erdős showed that the
two definitions are equivalent for infinite countable graphs (see [6, Dirac and Schuster]).
Note that in Definition 1.2 we do not put any other topological restrictions on the range
of the embedding. For instance, Dirac and Schuster [6] pointed out that there is a certain
countable planar graph G such that the range of every plane embedding of G into the plane
contains a limit point.

1Given two line segments with rational endpoints, note that they intersect (not necessarily at a rational
point) iff the following intersections of intervals (pi, pi+1) ∩ (p′j , p

′
j+1) and (qi, qi+1) ∩ (q′j , q

′
j+1) are both

non-empty. This can be checked effectively by comparing the ordering amongst the rationals.



4 HEER TERN KOH AND KENG MENG NG

As usual, the fact that the two definitions (of planarity) are classically equivalent cannot
be carried over to the effective setting. It is not hard to see that not every planar com-
putable graph has a computable plane diagram. In fact, in Proposition 2.1, we will show
that the statement “Every planar graph has a plane diagram” is equivalent to WKL0.

The main objective of this paper is to study the logical relationships between different
statements surrounding the colouring of planar graphs. The most famous result in this
area is the four colour theorem. This problem is widely believed to be first raised by
Francis Guthrie in 1852 while trying to colour a map of the counties of England, and
an incorrect proof of the four colour theorem was announced by Alfred Kempe in 1879.
Kempe’s proof was shown to be flawed by Percy Heawood eleven years later, who then
proved the five colour theorem based on Kempe’s incorrect proof. While these results are
about finite planar graphs, the corresponding statements for infinite planar graphs still
hold true classically, due to the well-known result of De Bruijn and Erdős [5].

This prompts us to consider the following principles, formalized in RCA0:

Definition 1.4 (RCA0). Let n ∈ N where n ≥ 4.

• COL(n) is the statement that every countable planar graph is n-colourable.
• COL∗(n) is the statement that every countable planar graph with a computable
planar diagram is n-colourable.

• ConnCOL(n) is the statement that every countable connected planar graph is n-
colourable.

Here, a connected graph is one where every two vertices is connected by a finite path.
Trivially, COL(n) implies both COL∗(n) and ConnCOL(n) for each n ≥ 4.

2. The Reverse Mathematics of Colouring Principles

We first begin by addressing the question of whether the two classical definitions of
planarity:

• G is planar if no finite subgraph of G contains K3,3 or K5 as a minor, versus
• G is “planar” if there is a planar embedding of G into the plane,

are equivalent from the point of view of reverse mathematics. Firstly, notice that if G
admits a plane diagram (refer to Definition 1.2), thenG is planar: For this, note that Euler’s
formula and therefore the planarity of K5 and K3,3 can be verified in RCA0. Therefore, the
principle of interest is “Every planar G admits a plane diagram”. We prove that this is
equivalent to WKL0:

Proposition 2.1. Over RCA0, the following are equivalent:

• WKL0.
• Every planar graph admits a plane diagram.

The “only if” direction is originally due to Erdős (again, see [6, Dirac and Schuster]),
and we include a proof of it here for completeness.

Proof. First, we prove the “only if” direction. Let G = (V,E) be a planar graph, and
{vi}i∈N be an enumeration of V . To obtain a plane diagram D, we encode for each n, all
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Figure 1. Reversal of Proposition 2.1

possible plane diagrams of the induced subgraph Ĝ of G containing v0, v1, . . . , vn−1, as a
node on a tree T . Clearly, the intuition should be that a node σ is extended by τ if the
diagram encoded by σ is a sub-diagram of the one encoded by τ . We provide the details
below.

Recall from Definition 1.3, that given any plane diagram of a finite graph Ĝ, we are
able to list all its faces. Given σ ∈ T encoding a plane diagram of the induced subgraph
containing vertices v0, v1, . . . , vn−1, since there are only finitely many vertices, then there
can be only finitely many faces. For a given face, embedding vn anywhere within that face
will result in an equivalent diagram; that is to say, there are only finitely many possible
extensions of σ. Of course, this is not to say that every choice of face to embed vn in results
in a valid plane diagram extending σ. In particular, if vn is adjacent to some vertex not
on the boundary of the face it was embedded in, this cannot be extended to a valid plane
diagram extending σ. Nevertheless, since there are only finitely many faces, and each face
corresponds to at most one valid choice to embed vn, then T is computably branching.

Suppose to the contrary that T as described is finite. Then, there is some n such that for

all t ∈ T, |t| < n+ 1. For such an n, consider the induced subgraph Ĝ containing vertices

v0, v1, . . . , vn. Since G is planar, then Ĝ must also be planar; then Ĝ must have a plane
diagram D. For each i ≤ n, considering the positions of the vertices v0, v1, . . . , vi relative
to the faces, must produce some plane diagram equivalent to one encoded by some node
σ ∈ T of length i+1. Then there must be some node of length n+1 in T , a contradiction
to the assumption. Thus T is infinite. By bounded Konig’s lemma, there is a path h
through T . Furthermore, it is clear that a planar diagram of G can then be constructed
by considering h(n) at each n. Thus we have that WKL0 proves that every planar graph G
has a plane diagram.

Now we reason in RCA0 and assume that every planar graph G has a computable plane
diagram. Let T be an arbitrary infinite binary tree. Construct a countable planar graph,
G = ⟨V,E⟩ as follows. G will consist of countable many components, each corresponding
to some binary string τ . We thus refer to each component as the τ -th component. The
τ -th component will originally consist of six vertices, vτ,i for each i < 6. The vertices
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vτ,j for each j < 5 are connected as shown in Fig. 1 (note that the three drawings are all
isomorphic as graphs), and vτ,5 is connected to vτ,3. The idea is that in the τ -th component,
the position of vτ,5 in the diagram encodes which subtree extending σ is infinite. Since
there are only three distinct drawings (up to equivalence) of the first five vertices in a
component, the choice of embedding of vτ,5 will indicate the subtree extending τ which is
infinite.

(1) If vτ,5 is contained in Fi for some i < 2, then the subtree above τ⌢i is infinite.
(2) If vτ,5 is contained in F2, then both subtrees above τ⌢0 and τ⌢1 are infinite.

We provide the details below.
For convenience, we assume that at each stage, at most one node is enumerated into

T or its complement. We compute membership in T in increasing order of the length
and lexicographic order; ϵ, 0, 1, . . . . At stage s, if no new nodes are enumerated into the
complement of T , do nothing and proceed to the next stage. If some node is enumerated
into the complement, we may assume that it is of the form τ⌢x for some τ ∈ T (otherwise
ϵ /∈ T ), then search for the maximal σ such that σ ⊆ τ and the σ-th component has yet
to act. Also let y ∈ {0, 1} be such that σ⌢y ⊆ τ⌢x. Then act for the σ-th component as
follows. Enumerate a new vertex vσ,6 into the σ-th component and connect vσ,6 to vσ,5, vσ,2
and vσ,1−y. We will then say that the σ-th component has chosen σ⌢(1− y).

Proposition 2.2. For each τ⌢x enumerated into the complement of T and τ ∈ T , there
always exists a maximal σ ⊆ τ such that the σ-th component has not acted. Furthermore,
if the σ-th component has acted and chosen σ⌢(1− y), then the subtree extending σ⌢y is
finite.

Proof of Proposition 2.2. We proceed by induction on the order of nodes τ⌢x enumerated
into the complement of T for some τ ∈ T . Let τ⌢x be the first node discovered to be in the
complement of T . According to the construction, we must have picked the maximal σ ⊆ τ
that has yet to act. Since τ⌢x is the first node to be enumerated into the complement,
then no component could have acted yet and thus σ = τ . Furthermore, y would have been
chosen such that σ⌢y ⊆ τ⌢x, and thus y = x. It is also evident that the subtree extending
σ⌢y = τ⌢x is finite (empty).

Suppose inductively that the proposition holds for the first s many nodes discovered
to be in the complement of T . Let τ⌢x be the s + 1-th node discovered to be in the
complement of T , and suppose for a contradiction that for each ξ ⊆ τ , the ξ-th component
of G has already acted at some earlier stage. Since τ⌢x only just entered the complement
of T , when each of the ξ-th component acted, it must have been for the sake of some
subtree extending ξ⌢z ̸⊆ τ discovered to be finite. But this cannot be, as this would imply
that T is finite. Thus, there must be some prefix σ of τ that has not acted.

By the inductive hypothesis, for each ξ where σ ⊊ ξ ⊆ τ , the subtree extending ξ⌢z ̸⊆
τ⌢x must have been discovered to be finite. That is to say, any infinite path through
σ⌢y ⊆ τ⌢x must also be a path through τ⌢x. But since τ⌢x is found to be in the
complement of T , then the subtree extending σ⌢y must be finite. □
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It should be evident that G is planar in the sense of Definition 1.1 as each τ -th component
is finite and does not contain K5 or K3,3 as a minor. Then by the principle that every
planar graph has a plane diagram, there is some diagram D of G as described above. We
now extract a path h through T using G as follows. For each n, consider the h ↾ n-th
component.

• If vh↾n,5 is in F0 (as illustrated in Fig. 1), then let h(n) = 0.
• Otherwise, let h(n) = 1.

We claim that for each n, the subtree extending h ↾ n is infinite. The base case is trivial.
Suppose inductively that for some n, the subtree extending τ = h ↾ n is infinite. Consider
the following cases.

Case 1: h(n) = 0. Since h(n) = 0, then vτ,5 is contained in F0 of the τ -th component. If
the τ -th component never acts, then by applying Proposition 2.2, we obtain that
both subtrees extending τ⌢0 and τ⌢1 are infinite.

We may thus assume that the τ -th component acts at some finite stage. By
inductive hypothesis, we know that at least one of the subtrees extending τ⌢0 or
τ⌢1 should be infinite. Suppose for a contradiction that the one extending τ⌢0
is finite. Then the τ -th component must have acted at the stage where this was
discovered and connected vτ,6 to vτ,2, vτ,5 and vτ,1. However, if vτ,5 was indeed
contained in F0 (see Fig. 1), D cannot possibly be a planar diagram. Thus the
subtree above τ⌢0 must be infinite.

Case 2: h(n+1) = 1. There are two further possibilities here. First, if vτ,5 is contained in
F2 in the τ -th component, observe that the τ -th component never acts throughout
the construction. If the τ -th component ever acts, it enumerates a new vertex vτ,6
connected to both vτ,5 and vτ,2; this is impossible to do while keeping the edges
non-intersecting. Thus, the τ -th component never acts, and by Proposition 2.2,
both subtrees extending τ⌢0 and τ⌢1 are infinite.

Next, consider the possibility that vτ,5 is contained in F1. The argument here is
similar to Case 1 above and we conclude that the subtree extending τ⌢1 must also
be infinite.

Therefore, h is a path through T and h clearly exists by ∆0
1-comprehension. □

Observe that we can also arrange the components based on the string associated with
them as a full binary tree. By connecting the components via vτ,4, the graph constructed
in the proof above can be made connected without losing its planarity.

Corollary 2.3. • There is a planar computable graph with no computable plane
diagram.

• There is a planar connected computable graph with no computable plane diagram.
• For each k ≥ 4, the principles COL(k) and COL∗(k) are equivalent over WKL0.

Proposition 2.1 justifies the different formalizations of the k Colour Theorem in Defi-
nition 1.4, since COL(k) and COL∗(k) are not obviously computably equivalent: Given an
arbitrary planar computable graph G, we cannot simply extract a computable plane dia-
gram for G. This however does not rule out the possibility that COL(k) and COL∗(k) are
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still computably equivalent, for instance, in some non-uniform way. Interestingly, it actu-
ally turns out that they are equivalent over RCA0, and this shall be proved later on in this
section.

2.1. Recursive Comprehension Axiom. We first work in RCA0 to show that for each
n, RCA0 does not prove COL(n). This is clearly a weaker result than RCA0+ COL(n) WKL0
proved in Section 2.4, but some ideas and objects introduced here will become relevant in
Section 3.

As seen in the proof of Proposition 2.1, the gadgets that will be used in the proofs will
include enumerating some initial part of a graph before ‘extending’ it to a larger graph.
Since we are dealing with colourings, we would like to forbid ‘extensions’ of graphs adds
edges between two previously enumerated vertices. Since the graphs in this paper will all
be computable, given any finite subset of vertices, we should be able to compute the edge
relation between any two vertices. In this sense, we may assume that a new vertex is only
enumerated whenever its relation with all currently enumerated vertices have been decided.

Definition 2.4. Let G be a subgraph of G′. G′ is said to be an extension of G if G is an
induced subgraph of G′. Furthermore, we will denote this with G ⊆ G′.

Theorem 2.5. RCA0 ̸ COL(4).

Proof. We construct a planar computable graph that does not have a computable 4-
colouring. Let {φe}e∈N be an enumeration of the partial computable functions from N
to {0, 1, 2, 3}. We construct a graph G = ⟨V,E⟩ satisfying the following requirement for
each e ∈ N.

Re : If φe is total, then φe is not a colouring of G

We build G in stages, and say that a requirement Re is met when it has found some witness
v∗e such that there is some v adjacent to v∗e and φe(v) = φe(v

∗
e) ↓. In other words, φe fails

to be a 4-colouring of G.

Stage 0: Enumerate a K4 graph into G and let the vertices of this K4 be denoted as v0,i
for each i < 4. In addition to these vertices, also enumerate a single (temporarily)
isolated vertex v0,4 into G. The vertices v0,j for various j will be referred to as the

0th component of G.
Stage s > 0: Begin the sth component of G by enumerating 5 new vertices vs,j for each

j < 5 and connect vs,i for each i < 4 as a K4 graph.
For each e < s, if φe(ve,j) ↓ for all j < 5 and Re has yet to act, then enumerate

ve,5 into the eth component and connect ve,5 to ve,4 and ve,i for each i < 4 where
φe(ve,i) ̸= φe(ve,4). Then declare ve,5 as the witness for Re and proceed with the
construction.

Observe that if some requirement Re never acts, then there must be some i < 5 for
which φe(ve,i)[s] ↑ at every stage s. Then φe cannot possibly be total and thus Re is
satisfied. Suppose then that there is some stage at which Re is discovered to be ready.
Since there is no injury in the construction, (each requirement acts only on the component
reserved for it), then Re must act at some stage s. When it does, recall that ve,5 is then
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Figure 2. W1

enumerated into the eth component and connected with vertices ve,4 and ve,i for each i < 4
where φe(ve,i) ̸= φe(ve,4). Then φe must fail as a 4-colouring as the neighbours of ve,5 are
coloured 4 different colours. □

The main idea of the proof above was simply to wait until a potential colouring has used
up all of its allowable colours in a certain configuration and then enumerating a new vertex
connected to all the vertices coloured with the allowable colours. Since K4 is planar and
must be coloured with 4 colours, we can ensure that any potential 4-colouring uses all 4
colours available to it. Evidently, we cannot simply enumerate a new vertex and connect it
to all vertices currently in the K4 otherwise the resulting graph is no longer planar. Thus
we have an additional isolated vertex in each component to occupy the final colour. It is
not difficult to see that when the number of colours increases, the diagonalisation strategy
will become more complex as it has to be able to get any potential colouring to commit
to more colours. However, since every planar graph is 4-colourable, it is evident that each
component should become ‘layered’ in some way.

The general gadget will be as follows. Start by enumerating sufficiently many K4 graphs.
By pidgeonhole principle, there will be at least two, say K0

4 ,K
1
4 , that are coloured the same

4 colours. Now connect a new vertex ▲ to two vertices each from K0
4 and K1

4 all of different
colours. As shown in Fig. 2, this is still a planar graph. Furthermore, ▲ cannot be coloured
any of the 4 colours used to colour K0

4 ,K
1
4 . We shall refer to the configuration in Fig. 2 as

W1 and ▲ as the special vertex of W1.
We refer the reader to Fig. 3 for the illustration of the general gadget. To construct

Wn+1, start by enumerating a large number of K4 graphs and wait for the colouring c,
to converge on these graphs. Once it does, there must be sufficiently many K4 graphs all
coloured the same 4 colours, which we may assume to be 0, 1, 2, 3. Then extend the K4

graphs (in the sense of Definition 2.4) into W1 graphs by pairing them up and enumerating
the special vertices.

Notation 2.6. Let l ≤ 4 and i ∈ N be given. We write Kl(Wi) to denote l many Wi

graphs, where the special vertices of the Wi graphs are connected as a Kl graph. For
convenience, we also use W0 to denote a single vertex; K4(W0) is isomorphic to K4.

In addition, extend the resulting W1 graphs into K4(W1) graphs by connecting the
special vertices of four W1 graphs as a K4. The idea here is that since the special vertex
of each W1 cannot be coloured any of 0, 1, 2, 3, then the new K4(W1) configuration forces
the colouring to use the next four colours.
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Figure 3. Wn+1

In general, once the colouring has converged on the vertices of all the K4(Wn) graphs, we
extend it toWn+1 by enumerating a special vertex ▲ and connecting it to two copies each of
K4,K4(W1), . . . ,K4(Wn) as shown in Fig. 3. We may assume that each pair of K4(Wi) are
coloured with 4i, 4i+ 1, 4i+ 2, and 4i+ 3 (by pidgeonhole principle). Then by connecting
▲ the special vertices of these various K4(Wi), each coloured 4i, 4i + 1, 4i + 2, 4i + 3, the
colouring cannot use any of the first 4n many colours to colour ▲. Now take four copies
of Wn+1 which are coloured the same 4n colours (except the special vertex) and connect
the special vertices as a K4 graph to form K4(Wn+1). Evidently, for a fixed computable
k-colouring φ, Wn cannot be coloured by φ for any n ≥ ⌈k/4⌉.

Notation 2.7. Since Wn will generally be defined based on some colouring, to emphasise
this, we will write the function used to define Wn in the superscript. In particular, if φ is
a k-colouring, then for any n ≥ ⌈k/4⌉, Wφ

n cannot be coloured by φ.

Theorem 2.8. For each n ≥ 4, RCA0 ̸ COL(n).

Sketch of proof. Let some n ≥ 4 be given and let {φe}e∈N be a listing of the computable
functions φe : N → {0, 1, . . . , n− 1}. Once again we aim to construct a graph G satisfying
the conditions below.

Re : If φe is total, then φe is not a colouring of G.

The graph will be constructed in components where each component aims to satisfy a single
Re. The action on the eth component will depend solely on the behaviour of φe.

Fix some e ∈ N. In the eth component, we aim to construct a Wφe
m where m is the

least such that m ≥ ⌈n/4⌉. Since we know exactly how many K4,K4(W1), . . . ,K4(Wm−1)
are needed, the required starting amount of K4 graphs can be found recursively. Begin by
enumerating a sufficiently large number of K4 graphs into the eth component. Proceed to
construct Wφe

m as described previously; wait for φe to converge on the vertices in K4(W
φe

i )
before extending them to Wφe

i+1.

If φe is total, it must converge on every vertex within the eth component. Then we must
succeed in constructing Wφe

m . However, in order for φe to successfully colour Wφe
m , 4m+1
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colours are needed. By choice of m, we obtain that 4m + 1 ≥ k + 1 > k; φe cannot be a
computable k-colouring. □

Remark 2.9. By changing the requirements to

R⟨e,n⟩ : If φe is total, then φe is not an n-colouring of G,

essentially the same ideas can show that RCA0 does not prove the principle “every planar
graph G has some n-colouring”. However, the techniques used in this paper generally
depend on the number of colours allowed, and might not extend easily to a proof of the
same results for this principle. We leave the question of the axiomatic strength of this
principle open.

2.2. Reversing the 4 colour theorem. To show that COL(4) and WKL0 are equivalent
over RCA0, we first that show WKL0 COL(4). Going through the proof of the four colour
theorem in [14], one can verify that the proof can be done with at most Σ0

1-induction
and thus RCA0 proves that every finite planar graph is 4-colourable. Thus, the remaining
ingredient to complete the proof of COL(4) would be the ability to extend colourings of
finite planar graphs to obtain COL(4). This can be done using the following theorem.

Theorem 2.10. (De Bruijn-Erdös theorem) Given a graph G, if all finite subgraphs of G
are k-colourable, then G is k-colourable.

Remark 2.11. For our purposes, restricting G to be countable and planar is sufficient.

The first ingredient required in the proof of WKL0 COL(4) (and in fact for COL(n)), would
thus be that Theorem 2.10 holds in WKL0.

Theorem 2.12 (Hirst, [10]). Over RCA0, the following are equivalent:

• Weak König’s lemma,
• De Bruijn-Erdõs theorem.

Theorem 2.13. Over RCA0, the following are equivalent:

• WKL0,
• COL(4).

Proof. It is known that WKL0 proves De Brujin-Erdös theorem. Putting this together with
the fact that RCA0 produces a 4-colouring for every finite planar graph, we obtain that WKL0
produces a 4-colouring for every countable planar graph.

All that remains is the reversal. We reason in RCA0 and assume that every countable
planar graph has a 4-colouring. Let T ⊆ 2<N be an infinite tree. We construct a countable
planar graph, G = ⟨V,E⟩ in stages as follows. An illustration of G can be found in Fig. 4.
The vertex set V will contain the following type of vertices.

• W = {wτ , vτ | τ ∈ 2<N}
• F = {fτ | τ ∈ 2<N}.
• N = {nτ | τ ∈ 2<N}.
• A, some infinite set of vertices to be used in the construction.



12 HEER TERN KOH AND KENG MENG NG

•
nτ00

•
nτ01

•
vτ0 •

wτ0
•
fτ0

•
nτ0

•
nτ10

•
nτ11

•
vτ1 •

wτ1
•
fτ1

•
nτ1•

fτ

•
nτ

•vτ •wτ

The τ -th, τ0-th and τ1-th component.

•
nσ

•
nσ0 •

nσ1

•
fσ

• vσ •wσ

▲▲
▲

Acting in the σth component.

Figure 4. Reversal of COL(4).

Stage 0: Enumerate fϵ, wϵ, vϵ, nϵ, n0 and n1. Connect them as shown in Fig. 4 (take τ = ϵ).
Stage s > 0: For each τ ∈ 2<N of length s, enumerate the vertices nτ0, nτ1, fτ , vτ , and wτ ,

and connect them as shown in Fig. 4. We shall refer to this as the τ -th component
of the graph.

We say that the σ-th component has acted when a vertex from A has been
enumerated and connected to the vertices in the σ-th component. We once again
refer the reader to Fig. 4 for an illustration, where the vertices from A are denoted
by the triangular vertices. Furthermore, once the σ-th component has acted, we
also say that it has chosen σx if there is only one vertex from A between wσ or vσ
and nσx. As an example, the σ-th component in Fig. 4 has chosen σ1.

For convenience, we assume that at each stage, we compute the value of T (τ)
for the next τ . If at stage s, τx is found to be in the complement, then pick the
maximal prefix σ ⊆ τ such that the σ-th component has yet to act. Let y be such
that σy ⊆ τx and act for the σ-th component, choosing σ⌢(1− y).

Since each (diagonalisation) component is clearly planar and they are connected as shown
in Fig. 4, the graph as defined above is connected and planar. Applying Proposition 2.2
allows us to conclude that whenever some τx is discovered to be in the complement of T ,
the maximal prefix σ ⊆ τ that has yet to act can always be found. Furthermore, if the
σ-th component acts and kills σy, then the subtree above σy is finite.

By COL(4), there is a colouring c : V → {0, 1, 2, 3} of G. We extract a path h through T
using c as follows. Let τi = h ↾ i.

• If c(vτi) = c(nτi0), then let h(i) = 0.
• Otherwise, let h(i) = 1.

We proceed by induction on i to verify that τi ∈ T for every i. Base case is trivial since
τ0 = ϵ. Suppose inductively that τi ∈ T and consider the following cases.

Case 1: h(i) = 0. If the τi-th component never acts, since τi ∈ T , then both subtrees
extending τi0 and τi1 must be infinite (by Proposition 2.2). We may thus assume
for a contradiction that the τi-th component has acted and kills τi0; there are two



COLOURING OF PLANAR GRAPHS 13

vertices from A between vτi and nτi0. However, by definition of h, we also have
that c(vτi) = c(nτi0). This leads to a contradiction since c has only one colour to
colour the two adjacent vertices from A between vτi and nτi .

Case 2: h(i) = 1. Once again, we may assume for a contradiction that the τi-th component
acts and kills τi1. In other words, there is exactly one vertex from A between vτi
and nτi0 (the τ -th component chooses τi0). Since h(i) = 1, then c(vτi) ̸= c(nτi0);
the vertex from A between vτi and nτi0 is connected to four vertices all coloured
different colours by c. Therefore, c cannot be a valid colouring of G.

Thus, h must be a path through T . Since h depends only on c, then h exists by ∆0
1-

comprehension as desired. □

Remark 2.14. Notice that the graph G constructed in the proof of the theorem above has
a computable plane diagram and is also connected. Therefore, the principles ConnCOL(4)
and COL∗(4) are also able to produce a 4-colouring of G.

Corollary 2.15. Over RCA0, the following are equivalent:

• WKL0,
• COL(4),
• ConnCOL(4),
• COL∗(4).

2.3. Reversing to DNR(k). As discussed in Section 2.1, allowing the colouring access to
more than 4 colours adds some level of complexity to the required proof. In particular, the
proof as presented for Theorem 2.13 will not work if the principle is COL(5). The gadget
used to obtain the reversal for COL(4) mainly uses the property that 4 colours are required
to colour K4. However, a graph that requires 5 colours to colour is obviously not going
to be planar. In order to obtain reversals for the weaker colouring principles (n > 4), we
consider the following principles.

Definition 2.16. The following definitions can be made in RCA0. Let {φx}x∈N be a listing
of the partial computable functions.

• DNR is the principle:

∀f, ∃g : N → N such that ∀x, g(x) ̸= φf
x(x).

• DNR(k) is the principle:

∀f, ∃g : N → {0, 1, 2, . . . , k − 1} such that ∀x, g(x) ̸= φf
x(x).

It is known that WKL0 and DNR(2) are equivalent (uniformly) over RCA0 [11]. As noted
earlier, allowing more colours gives the ‘opponent’ more options to colour the gadgets that
we use. In order to obtain the reversals for the colouring principles in general, we instead
reverse to DNR(k) which are known to be equivalent to WKL0 (non-uniformly). Before we
prove the general case for n ≥ 4, we attempt to find the strongest principle DNR(k) that
we are able to obtain a uniform reversal for in the cases n = 5, 6, 7. The results of this
section can be found in Fig. 5; the arrows P → Q represent implication over RCA0 uniformly
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ConnCOL(4)

COL(4)

COL∗(4)

ConnCOL(5)

COL(5)

COL∗(5)

ConnCOL(6)

COL(6)

COL∗(6)

ConnCOL(7)

COL(7)

COL∗(7)

Thm. 2.17

Thm. 2.18

Thm. 2.19

Thm. 2.20

Thm. 3.14

Thm. 3.14

Cor. 2.15

Cor. 2.15

Cor. 2.15

Cor. 2.15

DNR(2) DNR(3)

DNR(2) DNR(3)

DNR(6)

DNR(4) DNR

DNR

×

×

DNR

COL(8)

DNR(2)

DNR(8)

Thm. 3.6

Thm. 2.21

×

×Thm. 3.2

Figure 5. Hierarchy of Principles

(in fact Q ≤sW P , to be defined later), while a crossed out arrow represents that a non-
uniform proof is necessary (see Section 3). Since DNR(2), DNR(3), DNR(6), DNR(8) are known
to be equivalent to WKL0, this allows us to obtain reversals for COL(7) and all the colouring
principles for n ≤ 6.

Theorem 2.17. RCA0 COL∗(5) → DNR(3).

Proof. We reason in RCA0. Fix some f , and let
{
φf
e

}
e∈N

be an enumeration of the f -

computable functions. G will consist of components, each consisting of six K3 graphs

originally, labelled Kj
3 for each j < 6. At each stage s, check if φf

e (e)[s] ↓. If φf
e (e)[s] ↑,

then do nothing. Otherwise, enumerate vertices into the eth component and connect them
as illustrated in Fig. 6, where ◦ represents the newly enumerated vertices, and the numbered

K3 graphs correspond to Kj
3 for j < 6.

G as constructed above is clearly planar, and has a computable planar drawing, and thus
by COL∗(5) has a 5-colouring c. For convenience, in the eth component, define Ae = {c(v) |
v ∈ Kj

3 for j < 3} and Be = {c(v) | v ∈ Kj
3 for 3 ≤ j < 6}. Then define g as follows.

• Define g(e) = 0 if |Ae| = 3 or |Be| = 3.

We now claim that if this is the case, g(e) ̸= φf
e (e). Suppose otherwise, then

φf
e (e) = g(e) = 0, and hence it must be that one of the sets Ae or Be has size

3. Referring to Fig. 6, observe that in either case, c cannot possibly extend to a
5-colouring of the eth component.

• Define g(e) = 1, if Ae = Be and |Ae| = |Be| = 4.

Once again, we check that g(e) ̸= φf
e (e). Suppose to the contrary that φf

e (e) ↓ =
g(e) = 1. Then the two new vertices v, w enumerated in this case cannot be coloured
any of the 4 colours in Ae, Be. However, as v is also adjacent to w, c cannot colour
both v, w with the single remaining colour.

• Define g(e) = 2 if both of the above cases do not hold.
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• •
•
0

• •
•
3

• •
•
1

• •
•
4

• •
•
2

• •
•
5

• •
•
0

• •
•
3

• •
•
1

• •
•
4

• •
•
2

• •
•
5

• •
•
0

• •
•
3

• •
•
1

• •
•
4

• •
•
2

• •
•
5

• •
•
0

• •
•
3

• •
•
1

• •
•
4

• •
•
2

• •
•
5

If φf
e (e) ↑ or φf

e (e) ↓ > 2: If φf
e (e) ↓ = 0:

If φf
e (e) ↓ = 1: If φf

e (e) ↓ = 2:

Figure 6. The gadget for Theorem 2.17.

Assume for a contradiction that φf
e (e) = g(e) = 2, then a single vertex v must

have been enumerated into the eth component. Furthermore, this vertex is con-
nected to all other vertices in the eth component. But c is assumed to have already
used up all 5 colours to colour the original vertices in the eth component, leaving
it no colour for v.

Thus g as defined above satisfies DNR(3) and must exist by ∆0
1-comprehension; we are able

to compute the sets Ae, Be using c as an oracle. □

To obtain the reversal for ConnCOL(5), we simply need to modify the gadget in a way
that makes it connected. For each K3 graph enumerated as the initial part of a gadget, we
enumerate a single vertex and connect it to a vertex of the K3. Now connect all of these
new vertices as an infinite path. Observe that this results in a planar connected graph. As
a result, ConnCOL(5) can therefore produce a 5-colouring of this new graph and g can be
defined in the same way as before. We thus obtain the following as a corollary.

Theorem 2.18. RCA0 ConnCOL(5) → DNR(3).

We now address the case for n = 6. The key ingredients in the proof for the case
n = 5 was to have some base configuration that can be extended (recall Definition 2.4)
into three different graphs with the following property. Any colouring of the extended
graphs, when restricted back to the original configuration, results in different colourings.

This allows us to successfully avoid the value of φf
e (e) by considering the colouring of the

base configuration. We adopt a similar idea for the remaining cases. For COL∗(6), we use a
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•

•
•4i + 1

•

•
•4i + 2

•

•
•4i + 3 •

•

•
4i

If φf
e (e) ↓ = 0, then for each i < 6:

Ki
3 Ki+1

3 Ki+2
3 Ki+3

3

Ki+4
3 Ki+5

3 Ki+6
3 Ki+7

3

Ki+8
3

Ki+9
3

Ki+10
3

Ki+11
3

. . .

. . .

...

If φf
e (e) ↓ = 1, then for each i < 2:

Figure 7. The gadget for Theorem 2.19. We use ‘· · · ’ to replace the edges
to avoid cluttering the diagram.

base configuration that can be extended into four different graphs such that any colouring
of the base configuration fails to extend to at least one of the four graph extensions. We
specify the details below.

Theorem 2.19. RCA0 COL∗(6) → DNR(4).

Proof. We reason in RCA0. Fix some f , and let
{
φf
e (e)

}
e∈N

be an enumeration of the

f -computable functions. Once again, G will be made up of components, each of which now

contains 24 K3 graphs, denoted as Kj
3 for each j < 24.

At each stage s, do the following.

Stage s: Enumerate the new sth component by enumerating 24 new K3 graphs into G.
For each e < s, which is not yet declared satisfied, do the following.

• If φf
e (e)[s] ↓ = 0, then enumerate 24 new vertices, vj , for each j < 24, into the

eth component. For each j, connect vj to all vertices in Kj
3 , and then for each

i < 6, connect the vertices vj where 4i ≤ j < 4(i + 1) in a K4 graph. (See
Fig. 7 for an illustration; the labels of the K3 graphs correspond to j and the
newly enumerated vertices are represented by ◦.)

• If φf
e (e)[s] ↓ = 1, then enumerate 6 new vertices, vj for each j < 6, into the

eth component and connect vj to all vertices of Ki
3 for each 4j ≤ i < 4(j + 1).

Then connect v0, v1, v2 and v3, v4, v5 as two K3 graphs respectively. (See Fig. 7
for an illustration.)

• If φf
e (e)[s] ↓ = 2, then enumerate 2 new vertices, v0, v1 into the eth component.

Connect v0 to v1 and all vertices in Kj
3 for each j < 12, and connect v1 to all

vertices in Kj
3 for each j ≥ 12.

• If φf
e (e)[s] ↓ = 3, then enumerate 1 new vertex v0 into the eth component and

connect v0 to all vertices in each Kj
3 for every j < 24.

In any of the cases, once the new vertices are enumerated, we declare e to be
satisfied.
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The graph G as described above is easily seen to be planar and having a computable
plane diagram. Thus, a 6-colouring c may be obtained by applying COL∗(6). Using c, define
define the following sets (via ∆0

1-comprehension using c). Fix some e ∈ N,

• Let Ai = {c(v) | v ∈ Kj
3 for some 4i ≤ j < 4(i+ 1)} for each i < 6.

• Let Bi = {c(v) | v ∈ Kj
3 for some 12i ≤ j < 12(i+ 1)} for each i < 2.

We are now ready to define g(e) satisfying DNR(4) as follows.

• If there is some i for which |Ai| = 3, then define g(e) = 0.

Suppose now for a contradiction that φf
e (e) ↓ = g(e) = 0. By the construction,

vertices vj for each 4i ≤ j < 4(i+ 1) must have been enumerated into the eth and

component and each vj is connected to all the vertices in Kj
3 . Since |Ai| = 3 and

c is a colouring, we have that c(vj) /∈ Ai for each 4i ≤ j < 4(i + 1). But the four
vertices v4i, v4i+1, v4i+2, v4i+3 are connected as a K4 graph. Then c cannot possibly
be a valid 6-colouring.

• If the previous case does not hold and there is some i such that |Bi| = 4, then
define g(e) = 1.

Once again, suppose that φf
e (e) ↓ = g(e) = 1. Since the previous case does not

hold, then it must be that for each j < 6, we have that |Aj | ≥ 4. An analysis of the
second case of the construction would allow us to conclude that the 6 new vertices
enumerated, vj for each j < 6 is such that c(vj) /∈ Aj . In particular, since Aj ⊆ Bi

for each 3i ≤ j < 3(i+ 1), and |Bi| = 4, then c(vj) /∈ Bi for each 3i ≤ j < 3(i+ 1).
Then c must fail as a 6-colouring as the vertices v3i, v3i+1, v3i+2 are connected as a
K3.

• If neither of the previous cases hold and B0 = B1, then define g(e) = 2.

Assume that φf
e (e) ↓ = 2. Then the 2 new vertices v0, v1 enumerated into the eth

component are respectively connected to all vertices in Kj
3 for each j < 12 and K l

3

for each 12 ≤ l < 24. In particular, c(v0) /∈ B0 and c(v1) /∈ B1. Since the previous
cases all do not hold and B0 = B1, then |B0| = |B1| ≥ 5. c cannot possibly be a
6-colouring.

• If none of the previous cases hold, then define g(e) = 3.
If none of the previous cases hold, then |B0|, |B1| ≥ 5 and B0 ̸= B1. This means

that |B0 ∪ B1| = 6. If φf
e (e) ↓ = 3, then in the eth component, a vertex v0 must

have been enumerated into the eth component and connected to all other vertices
within the component. In particular, c(v0) /∈ B0 ∪ B1, and hence c fails to be a
colouring.

Since the sets Ai and Bj can be computed using c, then by ∆0
1-comprehension, g exists.

Thus, RCA0 COL∗(6) → DNR(4). □

Unfortunately, it is not clear how the proof above can be easily modified to make the
resulting graph connected while retaining a computable plane diagram. The main issue
lies in using K4 as a subgraph of the components (which was not required in the proof of
Theorem 2.17). We thus present the reversal for ConnCOL(6) separately below.
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K6j
4

• ▲
K6j+1

4

• ▲
K6j+2

4

• ▲
K6j+3

4

• ▲
K6j+4

4

• ▲
K6j+5

4

• ▲

If φf
e (e) ↓ = 0, then for each j < 48:

K24j
4 , . . . , K24j+5

4 K24j+6
4 , . . . , K24j+11

4

K24j+12
4 , . . . , K24j+17

4 K24j+18
4 , . . . , K24j+23

4

• ▲ • ▲

• ▲ • ▲

If φf
e (e) ↓ = 1, then for each j < 12:

K48j
4 , . . . , K48j+23

4

K48j+24
4 , . . . , K48j+47

4

• ▲

• ▲

If φf
e (e) ↓ = 2, then for each j < 6:

K144j
4 , . . . , K144j+47

4 K144j+48
4 , . . . , K144j+95

4

K144j+96
4 , . . . , K144j+143

4

• ▲ • ▲

• ▲

If φf
e (e) ↓ = 3, then for each j < 2:

Figure 8. The gadget for Theorem 2.20. To reduce clutter, we use • and ▲
to represent all the non-special and special vertices of the Km

4 respectively.

Theorem 2.20. RCA0 ConnCOL(6) → DNR(6).

Proof. We reason in RCA0. Fix some f and let
{
φf
e (e)

}
e∈N

be an enumeration of the

f -computable functions. Once again we construct the graph via components. Each com-
ponent will consist of 288 K4 graphs indexed with j < 288. For each K4 graph, we pick an
arbitrary vertex and label it the special vertex.

We proceed with the construction as follows.

Stage s: For each e < s not yet declared satisfied, consider the following cases. (Refer
to Fig. 8 for an illustration. The nodes ◦ represent the newly enumerated vertices
whilst ▲ and • represent the special and non-special vertices respectively.)

• If φf
e (e)[s] ↓ = 0, then for each j < 48, enumerate vertices v3j , v3j+1, v3j+2

connected as a K3 graph. In addition, for each i < 3, connect each v3j+i to

the special vertex of K6j+2i
4 and the non-special vertices of K6j+2i+1

4 .

• If φf
e (e)[s] ↓ = 1, then for each j < 12, enumerate vertices v2j , v2j+1 and

connect v2j to v2j+1. We also connect v2j to all the special vertices of K24j+i
4

and all the non-special vertices of K24j+i+6
4 for each i < 6. Similarly, connect

v2j+1 to all the special vertices of K24j+i+12
4 and all the non-special vertices of

K24j+i+18
4 for each i < 6.
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• If φf
e (e)[s] ↓ = 2, then for each j < 6, enumerate a vertex vj and for each

i < 24, connect vj to all the special vertices of K48j+i
4 and to all the non-

special vertices of K48j+i+24
4 .

• If φf
e (e)[s] ↓ = 3, then for each j < 2, enumerate v3j , v3j+1, v3j+2 connected as

a K3 graph. Also connect v3j+i to the non-special vertices of K144j+48i+l
4 for

each l < 48.
• If φf

e (e)[s] ↓ = 4, then enumerate v0, v1 and connect them. Connect v0 to
all the non-special vertices of Ki

4 for each i < 144 and connect v1 to all the

non-special vertices of Kj
4 for each 144 ≤ j < 288.

• If φf
e (e)[s] ↓ = 5, then enumerate a single vertex v0 and connect it to all the

non-special vertices of Ki
4 for each i < 288.

If one of the above cases hold, then declare e satisfied.

To maintain connectedness of the graph described above, we can arrange the various K4

graphs in a ‘row’, and for each K4, enumerate some vertex and connect it to one of the
outer vertices. Then connect these newly enumerated vertices as a path. It is clear that
planarity is preserved and the resultant graph is now connected. Hence by ConnCOL(6),
there is a 6-colouring c of G. It remains to prove that there exists a g satisfying DNR(6).

Using ∆0
1-comprehension, define the following sets. Fix some e, and within the eth

component, for each i < 288, let

• Ni = {c(v) | v ∈ Ki
4 and v non-special},

• Si = {c(v) | v ∈ Ki
4 and v special}.

Now consider the following cases.

(1) If there exists some j such that |
⋃

48j≤i<48(j+1)Ni| = 3, then we consider the

following subcases.
(a) If there exists some i such that 8j ≤ i < 8(j + 1) and |

⋃
l<6 S6i+l| = 1, then

define g(e) = 0. In other words, for each l < 6, N6i = N6i+l and S6i = S6i+l.
(b) If the previous subcase does not hold and there exists some i such that 2j ≤

i < 2(j + 1) and |
⋃

l<24 S24i+l| = 2, then define g(e) = 1. Since the previous
subcase does not hold, then |

⋃
l<6 S24i+6m+l| > 1 for eachm < 4. In particular,

it must be exactly 2. Therefore, we obtain that for each m < 4,⋃
l<6

S24i+l =
⋃
l<6

S24i+6m+l and
⋃
l<6

N24i+l =
⋃
l<6

N24i+6m+l.

(c) If neither of the previous subcases hold, then define g(e) = 2. In particular, it
must be the case that for each i such that 2j ≤ i < 2(j+1), |

⋃
l<24 S24i+l| = 3

since c is a 6-colouring. Therefore,⋃
l<24

S48j+l =
⋃
l<24

S48j+24+l and
⋃
l<24

N48j+l =
⋃
l<24

N48j+24+l.
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Combining the conclusions above with the corresponding actions taken during the

construction if φf
e (e) = k ≤ 2 allows us to conclude that c cannot possibly extend

to a 6-colouring if g(e) = φf
e (e) = k ≤ 2.

(2) Suppose that the previous case does not hold; for every j, |
⋃

48j≤i<48(j+1)Ni| ≥ 4.

Now consider the following subcases.
(a) If in addition, there is some j for which |

⋃
144j≤i<144(j+1)Ni| = 4, then define

g(e) = 3. This implies that for each m < 3,⋃
l<48

N144j+l =
⋃
l<48

N144j+48m+l.

(b) If the previous subcase does not hold and |
⋃

j<288Nj | = 5, then define g(e) =
4. Note that we have ⋃

l<144

Nl =
⋃

l<144

N144+l.

(c) Otherwise, define g(e) = 5. If neither of the previous subcases hold, we must
have that |

⋃
l<288Nl| = 6.

A simple analysis of the actions taken during the construction if φf
e (e) = k ≥ 3

allows one to conclude that it cannot be that g(e) = φf
e (e) = k ≥ 3.

Thus, g satisfying DNR(6) exists by ∆0
1-comprehension. □

Observe that in the proof above, the graph constructed need not have a computable
plane diagram. In particular, we cannot compute whether or not the special vertex in each
K4 should be embedded as the ‘inner’ or one of the ‘outer’ vertices in a standard drawing
of K4.

When n = 7, the principles separate even more in the sense that we are only able to
obtain a uniform proof of RCA0 COL(7) → DNR(k) for some k. For the other principles,
in particular RCA0 ConnCOL(7) → DNR(k) and RCA0 COL∗(7) → DNR(k), a non-uniform
proof is necessary (see Theorem 3.14).

Theorem 2.21. RCA0 COL(7) → DNR(8).

Proof. Reasoning in RCA0, fix some f and let
{
φf
e

}
be an enumeration of the f -computable

functions. We adopt a similar gadget as before and construct the graphG in diagonalisation
components. Each component will contain 9216 K4 graphs (indexed in the superscript).

Now construct G as follows.

Stage s: For each e < s not yet declared satisfied, do the following.

• If φf
e (e)[s] ↓ = 0, then for each j < 1152, enumerate vertices 4j + i for each

i < 4 connected as a K4 into the eth component. For each i < 4, connect each

v4j+i to the special vertex of K8j+2i
4 and the non-special vertices of K8j+2i+1

4 .
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• If φf
e (e)[s] ↓ = 1, then for each j < 192, enumerate vertices 3j + i for each

i < 3 connected as a K3. For each i < 3, and l < 8, connect each v3j+i to all

the special vertices of K48j+16i+l
4 and the non-special vertices of K48j+16i+8+l

4 .

• If φf
e (e)[s] ↓ = 2, then for each j < 48, enumerate vertices v2j , v2j+1 and

connect v2j to v2j+1. For each i < 2, and l < 48, connect v2j+i to all the special

vertices of K192j+96i+l
4 and all the non-special vertices of K192j+96i+48+l

4 .

• If φf
e (e)[s] ↓ = 3, then for each j < 24, enumerate a vertex vj into the eth

component. In addition, for each l < 192, connect vj to all the special vertices

of K384j+l
4 and all the non-special vertices of K384j+192+l

4 .

• If φf
e (e)[s] ↓ = 4, then for each j < 6, enumerate vertices v4j+i for each i < 4

connected as a K4. In addition, for each i < 4 and l < 384, connect v4j+i to

all the non-special vertices of K1536j+384i+l
4 .

• If φf
e (e)[s] ↓ = 5, then for each j < 2, enumerate vertices v3j+i for each i < 3

connected as a K3. Also connect for each i < 3 and l < 1536, v3j+i to all the

non-special vertices of K4608j+1536i+l
4 .

• If φf
e (e)[s] ↓ = 6, then enumerate vertices v0 and v1 adjacent to each other. For

each l < 4608, connect v0, v1 to all the non-special vertices of K l
4 and K4608+l

4
respectively.

• If φf
e (e)[s] ↓ = 7, then enumerate a single vertex v0 and connect it to all the

non-special vertices of K l
4 for each l < 9216.

We note here that if we were to make a similar modification to the gadgets above by at-
tempting to connect them as before, the graph will no longer be planar. In fact there
should be no easy modification of the gadget which would make the proof work for
RCA0 ConnCOL(7) → DNR(k) for some k (as proved formally in Theorem 3.14). Simi-
larly, this graph G also might not have a computable plane diagram since we are unable
to compute if a special vertex is the ‘inner’ or ‘outer’ vertex in a standard drawing of K4.

It follows from the construction above that the graph is computable and planar. Thus,
by COL(7), there exists a 7-colouring c of the graph. In order to define g(e), we define the
following sets using the behaviour of c in the eth component.

• Ni = {c(v) | v ∈ Ki
4 and v non-special},

• Si = {c(v) | v ∈ Ki
4 and v special}.

Consider the following possibilities.

(1) First suppose that there exists j such that |
⋃

384j≤i<384(j+1)Ni| = 3. We have the

following subcases.
(a) If there also exists i such that 48j ≤ i < 48(j + 1) and |

⋃
l<8 S8i+l| = 1, then

define g(e) = 0. In this subcase, it is easy to see that for each l < 8,

S8i = S8i+l and N8i = N8i+l.

(b) If the previous subcase does not hold and there exists i such that 8j ≤ i <
8(j + 1) and |

⋃
l<48 S48i+l| = 2, then define g(e) = 1. Since the previous
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subcase does not hold, for each m < 6, |
⋃

l<8 S48i+8m+l| > 1 and thus must
be exactly 2. Therefore, for each m < 6,⋃

l<8

S48i+l =
⋃
l<8

S48i+8m+l and
⋃
l<8

N48i+l =
⋃
l<8

N48i+8m+l.

(c) If both the previous subcases does not hold and there exists i such that 2j ≤
i < 2(j + 1) and |

⋃
l<192 S192i+l| = 3, then define g(e) = 2. Since Case (1b)

does not hold, then for each m < 4, |
⋃

l<48 S192i+48m+l| > 2. That is, it must
be exactly 3. We thus obtain that for each m < 4,⋃
l<48

S192i+l =
⋃
l<48

S192i+48m+l and
⋃
l<48

N192i+l =
⋃
l<48

N192i+48m+l.

(d) If none of the previous subcases hold, then define g(e) = 3. Since we also
have that c is a 7-colouring, then for each i such that 2j ≤ i < 2(j + 1),
|
⋃

l<192 S192i+l| = 4. Which is to say that⋃
l<192

S384j+l =
⋃

l<192

S384j+192+l and
⋃

l<192

N384j+l =
⋃

l<192

N384j+192+l.

Once again, using the conclusions obtained above and some careful analysis of the

cases in the construction, we can conclude that if g(e) = φf
e (e) = k ≤ 3, c fails to

7-colour the eth component.
(2) Now suppose that for each j, |

⋃
384j≤i<384(j+1)Ni| ≥ 4. We consider the following

subcases.
(a) If in addition, there exists j such that |

⋃
l<1536N1536j+l| = 4, then define

g(e) = 4. With the assumption made in Case (2), we obtain the following. For
each m < 4 ⋃

l<384

N1536j+l =
⋃

l<384

N1536j+384m+l.

(b) If there exists j such that |
⋃

l<4608N4608j+l| = 5 and the previous subcase
does not hold, then define g(e) = 5. Using a similar analysis as before, for
each m < 3, ⋃

l<1536

N4608j+l =
⋃

l<1536

N4608j+1536m+l.

(c) If |
⋃

l<9216Nl| = 6 and neither of the previous subcases hold, then define
g(e) = 6. Since the assumption in Case (2b) fails, then⋃

l<4608

Nl =
⋃

4608≤l<9216

Nl.

(d) Otherwise, define g(e) = 7. It is evident that in this subcase, |
⋃

l<9216Nl| = 7.

A similar analysis as before can be done to conclude that if g(e) = φf
e (e) = k ≥ 4,

c must fail to be a 7-colouring of the eth component.

Therefore, g satisfying DNR(8) exists by ∆0
1-comprehension. □
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2.4. Reversing the n colour theorem. As suggested in Fig. 5, when n = 7, 8, the
colouring principles seem to weaken considerably as compared to n < 7. In fact, COL(8)
does not even reverse uniformly to any DNR(k) principle (Theorem 3.2). In order to obtain
the reversal to WKL0 over RCA0, we use the following.

Definition 2.22. The following definitions can be made in RCA0.

• A trace {Tn}n∈N is a sequence of sets. In RCA0, we can interpret such an object as
an effective listing of the indexes of the c.e. sets required.

• Given a function h, a trace is h-bounded if for each n, |Tn| ≤ h(n).
• A trace {Tn}n∈N is a c.e. trace if there exists some computable g such that Tn =
Wg(n) = {x | φg(n)(e) ↓} for all n. A universal c.e. trace is a c.e. trace where every
c.e. set A is equal to Tn for some n.

As usual, the definition above can be relativised to any oracle f .

Definition 2.23. The following definitions can be made in RCA0.

• A function g is approximated by g̃ iff for every x, lims→∞ g̃(x, s) = g(x).
• We say that g̃ is a l-approximation of g if g̃ approximates g and

|{s | g̃(x, s) ̸= g̃(x, s+ 1)}| < l + 1.

Definition 2.24. Let {Tx}x∈N be the universal l + 1-bounded c.e. trace, then DNR(k, l) is
the principle:

∀f, ∃g̃ : N2 → {0, 1, 2, . . . , k − 1} an l-approximation such that ∀x, lim
s→∞

g̃(x, s) /∈ T f
x .

Recall that in Section 2.1, in order to diagonalise against the n-colourings when n is
large, we use a ‘layered’ gadget. More specifically, we wait for the colouring to first commit
on some initial part of the gadget which has been revealed before extending the gadget.
Each extension forces the colouring to use up more of its available colours before we finally
obtain a diagonalisation. This lends itself nicely into the idea behind using l-approximable
functions; roughly speaking, each ‘layer’ in the gadget will correspond to a stage at which
the approximation changes. In order to obtain the reversal of COL(n) over RCA0 to WKL0,
we will first reverse COL(n) to some DNR(k, l) and reverse DNR(k, l) to WKL0. As such, we
first prove that for each k, l, RCA0 DNR(k, l) → WKL0.

Theorem 2.25. RCA0 DNR(k, 1) → DNR(k).

Proof. Fix some function f and an enumeration of the computable functions {φe}e∈N. Let{
T f
x

}
x∈N

be a universal 2-bounded c.e. trace. Define p a computable function such that

T f
p(e,x) =


∅, if φf

x(x) ↑{
φf
x(x)

}
, if φf

x(x) ↓∧φf
e (e) ↑{

φf
x(x), φ

f
e (e)

}
, if φf

x(x) ↓∧φf
e (e) ↓
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By DNR(k, 1), there exists some g : N → {0, 1, . . . , k − 1} such that for all e, x, g(p(e, x)) /∈
T f
p(e,x), and g has a computable 1-approximation g̃. Define g∗ (non-uniformly) satisfying

DNR(k) as follows.

Case 1: If there is some e such that for every x, g̃(p(e, x), 0) ̸= φf
x(x), then define g∗(x) =

g̃(p(e, x), 0). g∗ clearly exists via ∆0
1-comprehension and it is evident that g∗(x) ↓ ≠

φf
x(x) for every x.

Case 2: If for every e, there is some x such that g̃(p(e, x), 0) = φf
x(x), then define g∗(e) =

g̃(p(e, x), se) where se is the first stage at which g̃(p(e, x), se) ̸= g̃(p(e, x), 0).
Since g̃ is a 1-approximation to g (satisfying DNR(k, 1)), then there must be some

stage at which g̃(p(e, x), s) ̸= g̃(p(e, x), 0). Otherwise g̃(p(e, x), s) = g̃(p(e, x), 0) =

φf
x(x) ↓ at every stage s which contradicts the assumption that g(p(e, x)) /∈ T f

p(e,x).

Since s must exist, then there is always a least one and thus g∗ exists by ∆0
1-

comprehension.

Suppose now for a contradiction that φf
e (e) ↓ = g∗(e) = g̃(p(e, x), se). Since g̃ is

a 1-approximation to g, that means that g(p(e, x)) = g̃(p(e, x), se). Then we have

that g(p(e, x)) = φf
e (e) ↓ a contradiction. Thus g∗ satisfies DNR(k).

In any case, we have that g∗ exists and satisfies DNR(k). □

Theorem 2.26. For any l > 1, RCA0 DNR(k, l + 1) → DNR(k) ∨ DNR(k, l).

Proof. Fix some function f and an enumeration of the computable functions {φe}e∈N.
Let

{
T f
x

}
x∈N

and {Uf
x }x∈N be a l + 1-bounded and l + 2-bounded universal c.e. trace

respectively. Define p a computable functions such that

Uf
p(e,x) =

{
∅, if φf

x(x) ↑{
φf
x(x)

}
∪ T f

e , if φf
x(x) ↓

By DNR(k, l + 1), there must exists g such that for all e, x, g(p(e, x)) /∈ Uf
p(e,x) with a

computable l+1-approximation g̃. We proceed non-uniformly and aim to define a function
h which satisfies DNR(k) ∨ DNR(k, l).

Case 1: If there is some e such that for every x, g̃(p(e, x), 0) ̸= φf
x(x), then define h(x) =

g̃(p(e, x), 0). h clearly exists via ∆0
1-comprehension and satisfies DNR(k).

Case 2: If for every e, there is some x such that g̃(p(e, x), 0) = φf
x(x), then define

h(e) = lims→∞ g̃(p(e, x), s+ se) where se is the first stage at which g̃(p(e, x), se) ̸=
g̃(p(e, x), 0). By assumption that g satisfies DNR(k, l + 1), then g(p(e, x)) /∈ Uf

p(e,x).

That is, h(e) = g(p(e, x)) /∈ T f
e . It remains thus to show that there is some com-

putable h̃ which is an l-approximation of h.
For similar reasons as before, se exists and thus by defining h̃(e, s) = g̃(p(e, x), s+

se), h̃ exists via ∆0
1-comprehension. Since we have that g̃ is a l + 1-approximation

and g̃(p(e, x), se − 1) ̸= g̃(p(e, x), se), then it is clear that h̃ is a l-approximation.

Thus we have that the h defined satisfies either DNR(k) or DNR(k, l). □
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• • • • • • • • • • • •

• • • •

• •

0th layer

1st layer

2nd layer

Figure 9. Reversal of COL(n). The dashed lines represent some number of
vertices and edges; the 0th layer is a path.

Corollary 2.27. For any k, l, RCA0 DNR(k, l) → DNR(k)

We are now ready to prove the main result of this section.

Theorem 2.28. Over RCA0, the following are equivalent

• Weak König’s lemma,
• COL(n), ConnCOL(n), COL∗(n).

Proof. We already have that WKL0 COL(n). Since COL(n) trivially implies both ConnCOL(n)
and COL∗(n), it remains to show the reversal. In order to do so, we show that for each n,
ConnCOL(n) proves DNR(kn, ln) where kn and ln are constants dependent on n.

We define the following:

• ln =
⌊
n
2

⌋
− 1.

• qn,ln+1 = 2, the number of vertices in the ln + 1-th layer of a component (both
properly defined in the construction).

• Proceed recursively for each i < ln + 1 and define qn,i−1 as follows. Let pln+1 = 2,

and let pi−1 =
∑ln+1

j=i 2pj . Then define qn,i−1 = (pi−1−1)C(n, 2)+1, where C(x, y)
is the binomial coefficient. Observe that by pidgeonhole principle, qn,i−1 is the
number of pairs of vertices that when coloured with some valid n-colouring, at
least pi−1 many pairs of vertices have the same two colours.

• Define kn = max {⟨i, p∗i ⟩ | i < ln + 1} + 1, where p∗i is an encoding of a possible
pi-tuple of pairs of vertices in the ith layer (to be defined later).

Fix some function f and the ln+1-bounded universal trace {T f
e }. The rough idea is that

in order to obtain the DNR(kn, ln) function, we build the gadget in layers. Each time some
new element is enumerated into the universal trace, we extend (in the sense of Definition
2.4) the gadget to the next layer, ensuring that any valid colouring encodes information
regarding the element which just entered the universal trace. We now construct the graph
in (diagonalisation) components as before.

Stage s: Begin the sth component by enumerating 2qn,0 many vertices and connecting

them as a path. These vertices shall be referred to as the 0th layer of the sth

component.
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For each e < s, let i be the least such that the ith layer has been defined in the
eth component and do the following.

For each t ∈ T f
e [s], check if t = ⟨i, p∗i ⟩ for some p∗i , an encoding of a pi-tuple

consisting of entries < qn,i. If there are no t ∈ T f
e [s] which satisfy the desired

condition, then do nothing and attend to the next e < s or proceed to the next
stage if there are no more e < s to attend to.

If there is some ti ∈ T f
e [s] such that ti = ⟨i, p∗i ⟩ for some p∗i , then enumerate new

vertices vj for each j < 2qn,i+1 into the eth component. We refer to these vertices

as the i + 1-th layer of the eth component. For each j < 2qn,i+1, and for each

r < i+ 1, connect vj to some pair of vertices encoded by p∗r in the rth layer, where

⟨r, p∗r⟩ ∈ T f
e [s] (see Fig. 9 for an illustration2). Finally, within the i + 1-th layer,

connect v2j to v2j+1 for each j < qn,i+1. Note that this procedure is well-defined

as the i+ 1-th layer can only exist at the sth stage if for each r ≤ i, some element

in T f
e [s] is of the form ⟨r, p∗r⟩. By some careful arrangement of the connections as

illustrated in Fig. 9, each component can be made planar.
Once we are done acting for each e < s, proceed to stage s+ 1.

It is easy to see that the graph can be made connected with a computable plane diagram.
By the choice of qn,i, there is always ’sufficient space’ to connect each new layer to the
previous ones.

Applying ConnCOL(n), there is a n-colouring c of the graph G as described in the con-
struction (we could also use COL(n) or COL∗(n) in place of ConnCOL(n)). Now we attempt
to define a ln-approximation g̃ satisfying DNR(kn, ln).

To define an ln-approximation, the intuitive idea is that each layer aims to ‘block’ off
two colours and corresponds roughly to each change in the approximation. In the case that
all the colours are used up, we then show that the final value must avoid the trace. We
provide the details as follows.

Fix some e ∈ N and consider the colouring c within the eth component. Define g̃(e, 0) =
⟨0, p∗0⟩, where p∗0 is the encoding of the first qn,0 many pairs in the 0th layer of the eth

component that is coloured the same two colours by c. Without loss of generality, we may
assume that these two colours are 0 and 1. Now suppose inductively that g̃(e, s) is some
pair ⟨i, p∗i ⟩ where p∗i is an encoding of a pi-tuple with entries < qn,i. Furthermore, this

pi-tuple encoded by g̃(e, s) is coloured 2i, 2i + 1 by c and the ith layer exists in the eth

gadget. We now aim to define g̃(e, s+ 1).

If g̃(e, s) /∈ T f
e [s+1], then let g̃(e, s+1) = g̃(e, s). In particular, observe that the desired

property is satisfied. If we instead have that g̃(e, s) ∈ T f
e [s + 1], then some element t

must have entered T f
e at stage s + 1 and must be equal to ⟨i, p∗i ⟩ (the value of g̃(e, s)).

When this happens in the construction, the i+1-th layer consisting of qn,i+1 many pairs of

2The dashed lines in the figure represent some unknown number of nodes and edges. The nodes chosen
to be connected to higher layers are based solely on the action of the c.e. trace as described.
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vertices must have been enumerated into the eth component. Furthermore, each vertex in
the i+ 1-th layer is connected to some pair of vertices in each layer ≤ i, which is encoded

by some tr = ⟨r, p∗r⟩ ∈ T f
e [s + 1] for each r ≤ i as described in the construction. By the

inductive hypothesis, this means that each vertex in the i+1-th layer is adjacent to vertices
coloured 0, 1, . . . , 2i, 2i + 1. In order for c to be a valid colouring, none of the vertices in
the i+ 1-th layer can be coloured with the first 2i+ 2 colours. In addition, the vertices in
the i + 1-th layer are also connected as pairs, and by pidgeonhole principle, there are at
least pi+1 many pairs coloured the same two colours. Without loss of generality, we may
assume that these colours are 2i+ 2, 2i+ 3 as desired.

Since we are defining g̃, in order to make it a ln-approximation, we simply stop changing
its value once it has used up all ln many changes. Now suppose for a contradiction that

lims→∞ g̃(e, s) ∈ T f
e . Let s0 = 0 and si be the least stage such that g̃(e, si−1) ̸= g̃(e, si).

Since g̃ is an ln-approximation, we obtain that

{s | g̃(e, s− 1) ̸= g̃(e, s)} = {si | 1 ≤ i ≤ ln}.

By choice of si, we also have that g̃(e, si) = ⟨i, p∗i ⟩ for each i. This implies that

T f
e = {si | 0 ≤ i ≤ n},

because g̃(e, s) ̸= g̃(e, s− 1) only if g̃(e, s− 1) ∈ T f
e [s]. We also have that g̃(e, si) = ⟨i, p∗i ⟩

encodes pi many pairs of vertices in the ith layer coloured with 2i, 2i + 1. Consider the
ln + 1-th layer (consisting of a pair of vertices) in the eth component. Each vertex in this
layer is connected to a pair of vertices from each previous layer; in order for c to be a valid
colouring, the vertices in the ln+1-th layer cannot be coloured with colours 0, 1, . . . , 2ln+1.
However, by choice of ln, we obtain that 2ln + 1 ≥ n− 2. Then c has only one remaining
colour left to colour the two adjacent vertices in the ln + 1-th layer. Thus, it must be

that lims→∞ g̃(e, s) /∈ T f
e . Furthermore, by choice of kn, it is also evident that for each s,

g̃(e, s) < kn. Therefore, g̃ satisfies DNR(kn, ln). □

Under the framework of reverse mathematics, Theorem 2.28 implies the theorems in
Section 2.3. However, in this more general reversal of the colouring principles, we note
that the proof is rather inefficient with the parameters. In particular, for the cases of
n = 5, 6, 7, one can easily compute that we reverse the principles COL(n), ConnCOL(n), and
COL∗(n) to some DNR(kn, ln) for ln ≥ 1, and a rather large kn. In order to reverse these
principles to WKL0 over RCA0, we utilise non-uniform proofs as presented in Theorems 2.25
and 2.26. In some sense, the proofs presented in Section 2.3 are ‘closer’ to uniform reversals
to WKL0 than the proof presented above. In order to analyse the level of (non-)uniformity
of the reversals, we apply the tools of Weihrauch reductions to investigate where this
non-uniformity is necessary.
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3. Weihrauch Reducibility

In this section, we shall attempt to show where non-uniformity is necessary. Indeed,
we shall succeed in doing so for the principles COL(n), ConnCOL(n) and COL∗(n) whenever
n ≥ 7. We leave the cases for n = 5, 6 open.

The following definition is from [7], following ideas from [18, 2].

Definition 3.1. Let P and Q be Π1
2 statements of second-order arithmetic. We say that

• P is Weihrauch reducible to Q, P ≤W Q, if there exists Φ,Ψ where Φ,Ψ are Turing
reductions such that whenever A is an instance of P , B = Φ(A) is an instance of
Q and if T is a solution to B, then S = Ψ(T ⊕A) is a solution of P .

• P is strongly Weihrauch reducible to Q, P ≤sW Q, if there exists Φ,Ψ where Φ,Ψ
are Turing reductions such that whenever A is an instance of P , B = Φ(A) is an
instance of Q and if T is a solution to B, then S = Ψ(T ) is a solution of P .

It follows from the definition that certain parallels can be drawn between Weihrauch
reducibility and reverse mathematics. If P ≤W Q, then in most cases RCA0 Q→ P . The
uniformity of proofs can be formalised via the notion of Weihrauch reductions as follows.
P ≤W Q represents a uniform way of proving Q→ P if they are Π1

2 sentences. Conversely,
if P ̸≤W Q, then Q→ P cannot be proved in a uniform way.

Referring to the proofs presented in Sections 2.2 and 2.3, one can easily obtain the
following positive results summarised in Fig. 5.

• COL(4), ConnCOL(4), COL∗(4) and WKL0 are all strongly Weihrauch equivalent.
• DNR(3) ≤sW COL∗(5) and DNR(3) ≤sW ConnCOL(5).
• DNR(4) ≤sW COL∗(6).
• DNR(6) ≤sW ConnCOL(6).
• DNR(8) ≤sW COL(7).

The rest of this section will be dedicated to providing proofs of the negative results pre-
sented in Fig. 5, and comparing the (strong) Weihrauch degrees of the different colouring
principles.

3.1. Basic colouring principles. We first analyse the uniformity of reductions between
the DNR principles and COL principles. Recall (Definition 2.4) that we use G ⊆ G′ to denote
that G is an induced subgraph of G′, equivalently, we say G′ is an extension of G. We shall
continue to use this notation for the rest of this section.

Theorem 3.2. DNR ̸≤W COL(8).

Proof. Suppose to the contrary that DNR ≤W COL(8). Let f = 0ω and for each s, let
fs = 0s. Then there exists some Φ such that Φ(f) produces (the code) of some countable
computable planar graph G. Furthermore, there is some Ψ such that for any 8-colouring
h of G, Ψ(h⊕ f) satisfies DNR.

Define ψf (x) as follows. Search for an s and σ such that σ is a 4-colouring of Φ(fs) ⊆ G
and Ψ(σ⊕fs)(x)[s] ↓. Then ψf (x) outputs the value of the computation. Since Gs = Φ(fs)
is computable in f , and also a finite graph, then for each s, we can search through all
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possible 4-colourings, σ, of Gs and check if Ψ(σ⊕fs)(x)[s] ↓. By the recursion theorem, we

may assume that the index of ψ is x, i.e. ψf = φf
x. We claim that ψf (x) ↓. Since G = Φ(f)

is planar, there should exists some 4-colouring g of Φ(f). Then, there must be some s such
that Ψ(g ↾ s ⊕ fs)(x)[s] ↓ as Ψ(g ⊕ f) is assumed to be total provided g is an 8-colouring
of Φ(f). Thus, ψf (x) will converge by the time it finds g ↾ s.

Evidently, the σ found by ψf (x) might not extend to a 4-colouring of G; in particular σ
need not be g ↾ s. In order to preserve the computation Ψ(σ ⊕ fs)(x), we instead extend
σ to an 8-colouring of G as follows. Since G \ Gs is also planar, then there exists some
4-colouring c of G \Gs. It follows that

h(v) =

{
σ(v), if v ∈ Gs

c(v) + 4, otherwise

is an 8-colouring of G which extends σ. As a result, we obtain that

φf
x(x) = ψf (x) = Ψ(σ ⊕ fs)(x)[s] ↓ = Ψ(h⊕ f)(x).

A contradiction to the assumption that Ψ(h ⊕ f) satisfies DNR for any 8-colouring h of
Φ(f). □

Theorem 3.3. For any n > 0 and for any i < 4, COL(4n+ i) ̸≤W COL(4(n+ 1)).

This theorem is a natural extension of Theorem 3.2 (take i = 0 and n = 1). We extend
the ideas used in the proof earlier as follows. Define a graph G using the same gadgets as
in Theorem 2.8, and colour some initial part of H = Φ(G) with some 4-colouring h. Once
g = Ψ(h ⊕G) has converged on the initial part of the gadget, then we extend the gadget
in the same way as before, ensuring that g now has 4 less colours available to it to colour
the rest of the gadget. In order to preserve this initial part of g, we then extend h to a 8
colouring. As long as we are always able to extend h ‘more than’ g, then g must fail as a
colouring. We formalise this idea with the lemma below.

Lemma 3.4. Let H be a finite planar graph. If h is a k-colouring of H, then for any
countable planar graph H ′ ⊇ H, there is some k + 4-colouring h′ of H ′ such that h′ ⊇ h.

Proof of Lemma 3.4. Let H be a finite planar graph with a k-colouring h. Suppose that
H ′ is some countable planar graph with H as a subgraph. Since H ′ is planar, then so is
H ′ \H and it must thus have a 4-colouring c. We then define a k+4-colouring h′ of H ′ as
follows.

h′(v) =

{
h(v), if v ∈ H

c(v) + k, if v /∈ H.

It is clear that h′ ⊇ h is a valid k + 4-colouring of H ′. □

Proof of Theorem 3.3. Suppose to the contrary that COL(4n + i) ≤W COL(4(n + 1)) for
some i < 4. We aim to construct a graph G such that for some 4(n + 1)-colouring h of
H = Φ(G), g = Ψ(h ⊕ G) fails to be a 4n + i-colouring of G. We will follow the proof
of Theorem 2.8 closely. Begin by enumerating sufficiently many K4 graphs to construct a
Wm (as described in Section 2.1) where m is the least such that m ≥ ⌈(4n+ i)/4⌉.
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During the construction, we will attempt to define some appropriate colouring σ of
Hs = Φ(Gs) while waiting for Ψ(σ ⊕ Gs) to converge on certain vertices within Gs. For
stages during which we are waiting, let Gs+1 be the union of the graph Gs with a single
isolated vertex. It is clear that if we wait forever,

⋃
sGs is a countable planar graph

and thus so is H = Φ(
⋃

sGs). Fix some 4-colouring h0 of H. By the assumption that
COL(4n + i) ≤W COL(4(n + 1)) is witnessed by Φ,Ψ, g = Ψ(h0 ⊕ G) must be some 4n + i
colouring of G. In particular, since we are only waiting for g to converge on the finitely
many vertices of Wm enumerated thus far, there must be some finite stage at which it
happens. Let this stage be s0 and let Gs0+1 be the graph where the appropriate K4 graphs
(those coloured the same 4 colours) are extended into K4(W

g
1 ) graphs (recall Notation 2.6

and 2.7; W1 depends on the colouring g). Furthermore, let σ0 = h0 ↾ Φ(Gs0) be the finite
initial segment such that Ψ(σ0 ⊕ Gs0) converges on the required vertices. Obviously, for
any extension h ⊇ σ0 and G ⊇ Gs0 , we will have that Ψ(h⊕G) also extends Ψ(σ0 ⊕Gs0).

Suppose recursively that σl, sl have been defined such that

• σl is a 4l-colouring of Φ(Gsl), and
• sl is the stage such that Ψ(σl ⊕Gsl) converges on the finitely many vertices of Wm

enumerated thus far.

Let Gsl+1 be the graph where the gadget Wm has been extended to the l + 1-th layer
(see Section 2.1) based on the colouring Ψ(σl ⊕ Gsl). Now let G be the union of Gsl+1

with countably many isolated vertices and consider H = Φ(G). By Lemma 3.4, there is a
4(l + 1)-colouring hl+1 of H extending σl. Clearly, as long as l < m ≤ n + 1, there exists
some finite stage sl+1 such that Ψ(σl+1 ⊕ Gsl+1

) converges on the l + 1-th layer of Wm,

where σl+1 = hl+1 ↾ Φ(Gsl+1
). Furthermore, on the vertices up to the lth layer of Wm,

Ψ(σl+1 ⊕Gsl+1
) agrees with Ψ(σl ⊕Gsl).

Repeat this procedure untilWm has been successfully constructed and let hm be the 4m-
colouring of Φ(G) where G is the union of Gsm−1+1 with countably many isolated vertices.
Since m ≤ n+ 1, then hm is a 4(n+ 1)-colouring of H = Φ(G). However, Ψ(hm ⊕G) has
the property that for each layer j of Wm, Ψ(hm ⊕ G) colours the vertices of the jth layer

of Wm in the same way as Ψ(σj ⊕Gsj ). In other words, Wm =W
Ψ(hm⊕G)
m (recall Notation

2.7) and thus cannot be (4n+ i)-coloured by Ψ(hm ⊕G). □

Considering the proofs of Theorems 2.17, 2.19, 2.21, we propose the following lemma
that characterises the existence of a uniform reduction of a DNR principle to COL principle
as a (finite) graph theoretic property.

Lemma 3.5. The following are equivalent.

(1) DNR(k) ≤sW COL(n).
(2) DNR(k) ≤W COL(n).
(3) There exists finite planar graph G,G0, G1, . . . , Gk−1 such that for each i < k, Gi ⊇

G and for any n-colouring h of G, there is some i < k such that h does not extend
to a n-colouring of Gi.
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Proof. (1) implies (2) is obvious. We first prove the implication from (2) to (3). Suppose
that DNR(k) ≤W COL(n). Then there exists Φ,Ψ such that for any oracle f , Φ(f) = H is a
countable planar graph and given a n-colouring h of H, Ψ(h⊕ f) = g satisfies DNR(k).

Consider a tree T defined as follows. T contains elements of the form ⟨σ, f⟩ where σ is
a finite n-ary string and f is a finite binary string of the same length. In addition, the
ordering between two elements is given by ⟨σ, f⟩ ≤ ⟨σ′, f ′⟩ iff σ ⊆ σ′ and f ⊆ f ′. Now
generate T recursively as follows.

• ⟨⟩ ∈ T .
• If ⟨σ, f⟩ ∈ T , then ⟨τ, f⌢j⟩ ∈ T provided τ ⊇ σ and τ is a valid n-colouring of
Φ(f⌢j).3 We also require that τ has length the number of vertices enumerated by
Φ(f⌢j).

Given any n-colouring σ of Φ(f), there is only a finite number of colourings τ ⊇ σ that
colours Φ(f⌢j). Futhermore, such τ can be computably determined. Therefore, T is a
computable finite branching tree. For a given e, define the subtree Te ⊆ T as containing
all nodes ⟨σ, f⟩ ∈ T for which Ψ(σ ⊕ f)(e)[|f |] ↑. Since T is finite branching, if Te ⊆ T is
infinite, then there must be a path through Te. Let this path be given by ⟨σ, f⟩, where f
is an infinite binary string. Observe that σ, f , has the following properties.

• Since Φ is total, then Φ(f) must be a countable planar graph. Therefore, σ must
also be of infinite length by the second condition in the definition of T . Furthermore,
σ is an n-colouring of Φ(f).

• For each s, Ψ(σ ⊕ f)(e)[s] ↑. That is, Ψ(σ ⊕ f) is not a total function and cannot
possibly satisfy DNR(k).

This contradicts the assumption that Φ,Ψ witnesses DNR(k) ≤W COL(n). Thus Te must be
finite. In other words, there can only be finitely many nodes of T for which Ψ(σ⊕f)(e)[|f |] ↑.
Therefore, there is a finite s, such that for every f of length s, and every possible n-colouring
σ of Φ(τ), Ψ(σ ⊕ τ)(e)[s] ↓. Furthermore, we note that such an s can be found recursively
in e. For any given input e, we denote such an s as se.

Consider the partial computable function ψf (x) defined as follows. On any input x, ψ
outputs the number of consecutive zeros between the first two non-zero bits of f . Let the

index of ψ be e, that is, ψf = φf
e . Fix such an e and let G = Φ(0se). Note that there are

only finitely many possible n-colourings of G. We list these colourings as σ0, σ1, . . . , σm.
For each i < k, let ri ≥ 0 be the least number satisfying the following. For any l ≤ m,
if Ψ(σl ⊕ 0se)(e)[se] = i (note that Ψ(σl ⊕ 0se)(e)[se] ↓ by choice of se), then for any
τ ⊇ σl, ⟨τ, 0se10i10ri⟩ /∈ T .

Suppose for a contradiction that ri does not exist. That is, for every j ∈ ω, there
exists some τ ⊇ σl such that ⟨τ, 0se10i10j⟩ ∈ T . Then, the subtree consisting of nodes
⟨τ, 0se10i10j⟩ must be infinite, and thus have a path, say ⟨τ̂ , 0se10i10ω⟩, where τ̂ ⊇ σl. As
explained previously, since Φ is total, then τ̂ must be of infinite length and a n-colouring

3As usual, we assume that Φ(f⌢j) only enumerates the vertices whose edge relations with existing
vertices have been completely decided. Furthermore, note that it could be that Φ(f) = Φ(f⌢j), in which
case ⟨σ, f⌢j⟩ would also be in T .
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of Φ(0se10i10ω). Hence, we obtain that

Ψ(τ̂ ⊕ 0se10i10ω)(e) = Ψ(σl ⊕ 0se)(e)[se] ↓ = i = ψ0se10i10ω(e) = φ0se10i10ω

e (e).

Contradicting the assumption that Φ,Ψ witnesses DNR(k) ≤W COL(n). Thus ri must exist;
there is some finite depth such that the subtree extending ⟨σl, 0se10i1⟩ is witnessed to be
finite. For each i < k, define Gi = Φ(0se10i10ri). Evidently, for any colouring h of G,
h = σl for some l. Let Ψ(σl ⊕ 0se)(e) = i. Then h cannot extend to an n-colouring of Gi,
otherwise there must be some τ such that ⟨τ, 0se10i10ri⟩ ∈ T where τ ⊇ σl.

It remains to prove the implication from (3) to (1). Suppose that there is some finite
planar graph H, and finite planar extensions of H, H0, H1, . . . ,Hk−1 such that for any
k-colouring h of H, there is some i < k where h does not extend to a n-colouring of Hi.
The idea is to build G in diagonalisation components, one for each e. Each component will
initially consist of H and potentially be extended to one of the Hi. It is important to note
that H and Hi are completely independent of f (the oracle to DNR(k)), and thus we may
fix (beforehand) some encoding of the initial vertices of H in the eth component.

For any oracle f , define G as follows.

Stage s: Enumerate a new copy of H into G and refer to this as the initial part of the sth

component. If φf
e (e)[s] ↓ for some e < s and the eth component has not yet acted,

then extend H to Hi provided φ
f
e (e)[s] = i < k. Once H has been extended to Hi,

we say that the eth component has acted.

Now let h be any n-colouring of G as defined above. In order to define Ψ(h)(e), we
consider the eth component. Wait for h to converge on all the vertices of H in the eth

component. Once it does so, we know that there exists some i such that h cannot be
extended to a n-colouring of Hi. Since there are only finitely many possible colourings of
each Hj for j < k, we can find such an i computably. If there are multiple such i, pick the

least one and let Ψ(h)(e) = i. Then Ψ(h)(e) ↓ ≠ φf
e (e), otherwise h cannot be a n-colouring

of G. In particular, it fails to colour the eth component of G. □

Applying Lemma 3.5, we can easily obtain that for any planar graph G and any number
of planar extensions G0, . . . , Gk, there is an 8-colouring of G (use only 4 colours) that can
be extended to an 8 colouring of any Gi (Lemma 3.4). Thus, for any k, DNR(k) ̸≤W COL(8).
This is not too surprising considering the stronger result in Theorem 3.2. We can however
obtain an improvement to the result in Theorem 3.2, in the sense that the non-uniformity
is necessary even for RCA0+ COL(7) WKL0.

Theorem 3.6. DNR(2) ̸≤W COL(7).

Proof. By Lemma 3.5, it suffices to show that for any finite planar graph G, and finite
planar extensions G0, G1, there exists g, a 7-colouring of G such that g extends to a 7-
colouring of both G0 and G1. Since G0 and G1 are both finite planar extensions of G, then
it must be that there are 4-colourings g0, g1 of G0, G1 respectively. Now we construct a
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7-colouring, h, of G as follows.

h(v) =

{
g0(v), if g0(v) ∈ {0, 1, 2}
g1(v) + 3, if g0(v) = 3

It follows that h(v) < 7 for each v. We check that h is a 7-colouring of G. Let u, v ∈ G
be arbitrarily chosen such that {u, v} ∈ EG. Suppose to the contrary that h(u) = h(v).
Then either g0(u) = g0(v) or g1(u) + 3 = g1(v) + 3, in either cases, it implies that g0 or g1
is not a colouring of G, which cannot be the case. since G ⊂ Gi for each i < 2. Thus h is
a 7-colouring of G. It remains to show that h can be extended to a 7-colouring hi of Gi,
for each i = 0, 1.

h0(v) =

{
h(v), if v ∈ G

g0(v), if v ∈ G0 \G

and

h1(v) =

{
h(v), if v ∈ G

g1(v) + 3, if v ∈ G1 \G

It remains to check that each hi is a 7-colouring of Gi. We first check for i = 0. Let
u, v ∈ G0 such that {u, v} ∈ EG0 . The case for u, v ∈ G has already been checked, since h
is a valid colouring of G. Also, if both u, v ∈ G0 \G, h0(u) = g0(u) ̸= g0(v) = h0(v). So we
may assume without loss of generality that u ∈ G and v ∈ G0 \G with the property that
h0(u) = h0(v). Following the definition of h0, since v ∈ G0 \G, then h0(v) < 4. Then we
must also have that h0(u) < 4. It is evident that if h0(u) = 0, 1, 2, then h0(u) = g0(u). On
the other hand, if h0(u) = 3, then it can only be that g0(u) = 3 and g1(u) = 0. In particular,
if h0(u) < 4, then h0(u) = g0(u). Therefore, we obtain g0(v) = h0(v) = h0(u) = g0(u),
contradicting the fact that g0 is a 4-colouring of G0.

For the case i = 1, let u, v ∈ G1 be such that {u, v} ∈ EG1 . Once again, if both u, v ∈ G
or both u, v /∈ G, then it must be that h1(u) ̸= h1(v), otherwise g0 or g1 respectively fails
to be a colouring. Thus, without loss of generality, we may assume that u ∈ G and v /∈ G
such that h1(u) = h1(v). This implies that h1(u) = 3 = h1(v). Applying the definition of
h allows us to conclude that if h(u) = 3, then g1(u) = 0. Since h1(v) = 3 = g1(v) + 3, we
obtain g1(u) = g1(v), contradicting the assumption that g1 is a colouring.

Thus, for any G,G0, G1 where Gi ⊃ G for each i < 2, there is some 7-colouring h of
G such that h can be extended to a 7-colouring of G0 and G1. Then by Lemma 3.5,
DNR(2) ̸≤W COL(7). □

3.2. Extending colourings. The proofs of Theorem 3.3 and Lemma 3.5 seem to suggest
that the question of Weihrauch reducibility between the colouring principles and DNR boils
down to the ability to extend colourings. The task now is to prove an analogous result as
in Lemma 3.4 for the principles ConnCOL and COL∗. It turns out that with the additional
assumptions, we have a slightly stronger result for ConnCOL (Lemma 3.7) and COL∗ (Lemma
3.13).
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Lemma 3.7. For a given finite connected planar graph G, and a countable connected
planar graph G′ ⊃ G, if c is a k-colouring (k ≥ 3) of G, then there is some ĉ a k + 3-
colouring of G′ that extends c.

We follow the proof of Theorem 5 in [1] closely. In the paper, the author considers
recursive colourings of connected highly recursive graphs; graphs where N(v), the set of
neighbours of a vertex v, are uniformly computable. The same technique can essentially
be applied assuming that we have access to N(v). We note here that every computable
graph is ∅′-highly recursive. In any case, we do not require that the colourings c and ĉ
be effective in any way. One might wonder if the proof would work to show an analagous
result for the basic colouring principle. Unfortunately, this technique seems to fail in the
case that G has infinitely many disconnected components because we no longer are able to
guarantee that the ‘layers’ (to be specified in the proof) are sufficiently disjoint.

Proof of Lemma 3.7. Let G0 = G. Iteratively define Gn+1 as the induced subgraph of G′

such that VGn+1 =
⋃

v∈VGn
N(v)∪Gn. Also define G0 = G0, and Gn+1 = Gn+1 \Gn. Note

that the vertex sets of the graphs Gn are mutually disjoint, and form a partition of G′.
Furthermore, for any n,

• N
(
VGn

)
= VGn−1

∪ VGn+1

• N
(
VGn

)
∩ VGm

= ∅ and N
(
VGm

)
∩ VGn

= ∅, for any m where |m− n| > 1.

We will attempt to k + 3-colour G′ as follows. First we k-colour G0 = G using c. Now
we 3-color each subsequent layer Gn where n > 0. If n is odd, then we use the colours
k, k+1, k+2, otherwise we use the colours 0, 1, 2. The properties listed above ensure that
the even and odd layers are ‘sufficiently’ disjoint, and ensures that this strategy results in
a k + 3-colouring of G′. We provide the details below.

For each n > 0, define an equivalence relation on the vertices of Gn; u ∼n v iff u, v ∈
Gn−1. Then let Hn be the graph with vertices representing the distinct equivalence classes
of Gn (denoted u) and having edge relation {u,v} ∈ EHn iff there exists u ∈ u and v ∈ v
such that {u, v} ∈ EGn . Hn can then be seen as the graph Gn with an additional vertex say
wn (representing the equivalence class containing all the vertices of Gn−1) that is connected
to all other vertices in Gn. We first prove that Hn is indeed planar.

Suppose to the contrary that Hn is not planar, then Hn must haveK5 orK3,3 as a minor.
That is, there is some finite sequence of contractions that can be used to obtain a graph
isomorphic to K3,3 or K5. If such a sequence of contractions do not include the vertex wn,
then we note that the same sequence of contractions can be done on Gn to show that Gn

is not planar. We may thus suppose that the sequence of contractions does include wn. In
particular, there are two vertices u, v ∈ Gn such that {u,wn}, {v, wn} ∈ EHn . But that
means that there exists u∗, v∗ ∈ Gn−1 where {u, u∗}, {v, v∗} ∈ EGn . Since Gn is connected,
then u∗, v∗ must be connected via some finite path. In other words, by replacing the
contraction which removes wn with this finite sequence of contractions that removes the
path between u∗ and v∗, we are again able to obtain a graph that is isomorphic to K3,3 or
K5, contradicting the assumption that Gn is planar.



COLOURING OF PLANAR GRAPHS 35

Since Hn is planar, then Hn can be 4-coloured. Furthermore, in any colouring of Hn,
wn must be a different colour from any of the other vertices in Gn. We may thus assume
that the 4-colouring h of Hn assigns the colours 0, 1, 2 to the vertices in Gn and the colour
3 to wn. Then given a k + 3-colouring g of Gn−1, we extend it to a k + 3-colouring g′ of
Gn as follows.

g′(u) =


g(u), if u ∈ Gn−1

k + h(u), if u /∈ Gn−1 and n is odd.

h(u), if u /∈ Gn−1 and n is even.

Then repeat the process inductively to obtain a colouring for G′. To see that it is indeed
a k + 3-colouring, we use the fact that for any n, for any u ∈ Gn and any v ∈ Gn+2,
{u, v} /∈ E. Together with the fact that all vertices in the odd layers are coloured using
k, k + 1, k + 2 while vertices in the even layers utilising colours < k, we obtain that the
colouring defined is indeed a k + 3-colouring. □

In order to prove a similar lemma for COL∗, it should be clear that we have to utilise
the plane diagram (recall Definition 1.2) in some way. The rough idea is to consider good
colourings (to be defined later) of the graph and show that they can be extended. This
class of colourings is characterised by their behaviour on the faces of a diagram. Since we
need to consider the plane diagrams, a notion for diagram extensions is required.

Definition 3.8. Let D be a plane diagram of G. A plane diagram D′ is an extension of
D, written D′ ⊇ D if the following holds.

• D′ is a plane diagram of G′ ⊇ G (recall this means that G is an induced subgraph
of G′).

• D′ restricted to G is exactly D.

Intuitively, this means that if a diagram D has exhibited that two vertices are not
adjacent, then no extension of D can add an edge between the two vertices. Using this
property, once we know how D embeds the vertices and edges of G into R2, then we have
a good idea about which vertices can later share some common neighbour. Using this
information, we can be more efficient on the usage of colours.

Fact 3.9. Given a finite graph G with plane diagram D, R2 \D is a disjoint union
⊔

i<m Ui

where each Ui is homeomorphic to an open disc with at most finitely many holes.

Proof sketch. Since D can be expressed as a union of finitely many compact line segments
(each representing an edge) such that two distinct line segments possibly intersect only at
the endpoints, an inductive argument can be done to show the desired result. We present
some representative cases in Fig. 10. Each subdiagram corresponds to some configuration
of how the n + 1-th line segment could be positioned relative to one of the connected
components of R2 without the first n many line segments. It follows that in each case, the
hypothesis is still satisfied after removing the n+ 1-th line. □

Consider some extension D′ ⊇ D. Let u, v be two vertices which are adjacent and are
added only in D′. Applying Fact 3.9, we can conclude that u, v are both within the same
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(A) (B)

(C) (D)

Figure 10. Some possible configurations of a line segment and a connected
component.

connected component. Otherwise, D′ cannot be a planar diagram as the embedding of the
edge between u, v necessarily crosses some part ofD. Intuitively, the connected components
of D influence which vertices added later may be adjacent. This motivates the following
definition.

Definition 3.10. Let G be a finite planar graph with plane diagram D and let {Ui}i≤m

be a partition of R2 \D such that each Ui is an open connected region. Then we say that
c is a good (3k + 1)-colouring of D if c is a (3k + 1)-colouring of G and for each Ui, c uses
3k colours to colour all the vertices on ∂Ui. Note that the 3k colours can differ between
different Ui.

In what follows, since we will be working mainly with the diagrams, we shall simply
write u ∈ X for some X ⊆ R2 to mean that u is embedded into X by D.

Lemma 3.11. For any finite planar graph G with plane diagram D, there is a good
4-colouring of D.

Proof. Let G be some planar graph with plane diagram D and let R2 \D =
⊔

i≤m Ui. For
each such open connected set, enumerate a vertex vi and connect it to every vertex u on
∂Ui. We claim that this new graph G′ is also planar.

Applying Fact 3.9, one easily obtains that for any point v ∈ Ui and a finite collection
of points v0, . . . , vl in ∂Ui, there are paths p0, . . . , pl : [0, 1] → R2 such that the following
holds.

• pj(0) = v and pj(1) = vj .
• Each pj is injective and the sets pj((0, 1)) are pairwise mutually disjoint.

In particular, G′ is planar as it has a plane diagram. Then G′ has some 4-colouring c. It
remains to check that c ↾ G is a good 4-colour of D. Fix some Ui, a connected component
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of R2 \D. By construction of G′, there is some vector v connected to all vertices u in ∂Ui.
Since c is a 4 colouring, then c can only use 3 colours for the vertices in ∂Ui. □

Lemma 3.12. Let G be a finite planar graph with plane diagram D. Also let D′ be some
finite extension D′ of D. If D has a good (3k + 1)-colouring c, then c can be extended to
a good (3(k + 1) + 1)-colouring of D′.

Proof. Let D be a plane diagram of some finite planar graph G and let c be a good (3k+1)-
colouring of D. Fix some finite planar extension G′ with plane diagram D′ extending D.
Consider the diagram D′′ which draws only the induced subgraph of the vertices in G′ \G.
Clearly, D′′ ⊆ D′ (in the sense of Definition 3.8). Applying Lemma 3.11, there is a good
4-colouring c′ of D′′. Let R2 \D =

⊔
i≤m Ui with the properties as stated in Fact 3.9. Define

a (3(k + 1) + 1)-colouring, d, of D′ as follows.

• For any v ∈ G, let d(v) = c(v).
• For any v ∈ G′ \ G, let Ui be the open connected region of R2 \D such that D′

embeds v into Ui. Since c is good, c only uses 3k colours for the vertices in ∂Ui

and thus there are four remaining colours that d can use. Let these colours be
i0, i1, i2, i3, and define d(v) = ic′(v) for any v ∈ G′ \G.

Let u, v ∈ G′ be given such that u, v are adjacent. If both u, v ∈ G, then d(u) = c(u) and
d(v) = c(v) and thus d(u) ̸= d(v) as c is a colouring of G. If both u, v ∈ G′ \G, then there
exists some Ui such that u, v ∈ Ui. This is because D′ ⊇ D, meaning that the embedding
of the edge connecting u, v cannot intersect with any part of D. Then d(u) = ic′(u) and
d(v) = ic′(v) where i0, i1, i2, i3 are the 4 colours unused by c to colour ∂Ui. Since c′ is a
colouring of G′ \G, then d(u) ̸= d(v). Finally, consider the case that u ∈ G and v ∈ G′ \G.
Once again, since D′ is a plane diagram of G′, it must be that there exists some Ui such that
v ∈ Ui and u ∈ ∂Ui, otherwise the embedding of the edge connecting u, v must intersect
D. In such a case, d(u) = c(u) and d(v) = ic′(v), where i0, i1, i2, i3 are all different from
c(u). Therefore, d(u) ̸= d(v). Thus d is a (3(k + 1) + 1)-colouring of G′.

Now we prove that d is a good colouring of D′. The idea is as follows. We shall first
show that d is a good colouring of D∪D′′. This diagram D∪D′′ is a plane drawing of the
disjoint union of the graph G and the induced subgraph G′ \G. In other words, the edges
between the vertices in G′ \G and the vertices in G are not shown in the diagram D∪D′′.
However, the intuition is that it is ‘easier’ for some fixed colouring to be good when there
are more edges; if d is a good colouring of D ∪D′′, then it must also be a good colouring
of D′. We provide the details below.

Using Fact 3.9, let R2 \D =
⊔

i≤m Ui and R2 \D′′ =
⊔

j≤m′′ U ′′
j . Fix some Vl, an open

connected region of R2 \(D ∪ D′′). It is evident that there exists unique i, j, such that
Vl ⊆ Ui and Vl ⊆ U ′′

j . We show now that ∂Vl ⊆ ∂Ui ∪ ∂U ′′
j . Let x ∈ ∂Vl be given. That

is, x is a limit point of Vl, and therefore is also a limit point of Ui. In other words, x ∈ Ui

or x ∈ ∂Ui. By repeating the same argument with U ′′
j , we also obtain that x ∈ U ′′

j or

x ∈ ∂U ′′
j . Applying the fact that ∂Vl ⊆ D ∪ D′′, we thus obtain that x ∈ ∂Ui ∪ ∂U ′′

j . In
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addition, since x ∈ ∂Ui or x ∈ Ui for each x ∈ ∂Vl, and D ∩ D′′ = ∅, we also have that
∂Vl ∩D′′ ⊆ Ui.

Partition the vertices in ∂Vl into those contained in G and those contained in G′ \ G.
Since d ↾ G = c is a good (3k + 1)-colouring and ∂Vl ∩D ⊆ ∂Ui, we have that all vertices
in ∂Vl from G are coloured with at most 3k colours. Now consider the vertices in ∂Vl∩D′′.
We know that all such vertices v are contained within Ui and thus, d(v) = ic′(v) where
i0, i1, i2, i3 are the 4 colours unused by c in the colouring of ∂Ui, and c

′ is a good 4-colouring
of D′′. Since c′ is a good 4-colouring of D′′, then it uses at most 3 colours to colour the
vertices on ∂U ′′

j , say 0, 1, 2. As a result, d colours the vertices in ∂Vl∩D′′ ⊆ ∂U ′′
j ∩Ui using

only the colours i0, i1, i2. Therefore, d uses at most 3k + 3 colours to colour the vertices
in ∂Vl and is thus a good (3(k + 1) + 1)-colouring of D ∪ D′′. Finally, to see that d is a
good (3(k + 1) + 1)-colouring of D′, recall that D ∪D′′ is the drawing of G′ without the
edges between vertices in G′ \ G and G. In other words, for every connected open region
of R2 \D′, there is a connected open region of R2 \(D ∪D′′) such that every vertex in the
boundary of the former is contained in the boundary of the latter. It follows immediately
that d is a good (3(k + 1) + 1)-colouring of D′. □

Lemma 3.13. Let G be a finite planar graph with plane diagram D. Let G′ ⊇ G be
a countable planar graph with some plane diagram D′ ⊇ D. If D has a good (3k + 1)-
colouring c, then c can be extended to a (3(k + 1) + 1)-colouring of G′.

Proof. We apply a standard compactness argument. Let a finite planar graph G with plane
diagram D be given. Also let σ be a good (3k + 1)-colouring of D. Consider the tree T
defined as follows.

• ⟨σ,G,D⟩ ∈ T .
• If ⟨ξ,H, P ⟩ ∈ T , then ⟨τ,H ′, P ′⟩ ∈ T provided that all of the following holds.
H ′ ⊆ G′ and P ′ ⊆ D′. τ ⊇ ξ is a good (3(k + 1) + 1)-colouring of P ′ ⊇ P . P ′ is a
plane diagram of H ′. And H ′ extends H by exactly one vertex.

It is clear that T is finitely branching. To see that it is infinite, since G′ is an infinite graph
with diagram D′, then it remains to argue that there always exists some (3(k + 1) + 1)-
colouring τ of D′ ↾ H for each finite induced subgraph H where G ⊆ H ⊆ G′. Since H ⊇ G
is a finite planar graph with a plane diagramD′ ↾ H ⊇ D, then applying Lemma 3.12 allows
us to conclude that there is some good (3(k+1)+1)-colouring τ ⊇ σ. Thus there must be
a path through T and the first coordinate of this path provides a (3(k + 1) + 1)-colouring
of G′. □

Applying the Lemmas 3.4, 3.7 and 3.13, we can now complete the picture illustrated in
Fig. 5 and also compare the Weihrauch degrees of the different colouring principles.

Theorem 3.14. DNR ̸≤W ConnCOL(7) and DNR ̸≤W COL∗(7).

Proof. We adopt a similar idea as in the proof of Theorem 3.2. Roughly speaking, Lemma
3.7 and 3.13 allows us to extend 4-colourings into 7-colourings. We will present the proof
for DNR ≤W COL∗(7) as it has some slight intricacies not required for DNR ≤W ConnCOL(7),
but essentially the same proof can be used to show the latter.
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Suppose to the contrary that DNR ≤W COL∗(7). Then, there are Turing reductions Φ,Ψ
such that Φ(f) produces a planar graph with a plane diagram D given any oracle f . And
given any 7-colouring h of G, Ψ(h⊕ f) satisfies DNR.

Let f be the empty oracle; fs = 0s for each s ∈ ω. Define ψf (x) = Ψ(h ⊕ f)(x) in
a similar way as in the proof of Theorem 3.2. At each stage s, compute the graph and
diagram Gs, Ds given by Φ(fs). Instead of directly searching for a colouring of Gs, we adopt
the idea presented in Lemma 3.11 and search instead for a 4-colouring of an extended
graph G′

s ⊇ Gs which enumerates a new vertex for each open connected component of
R2 \Ds and connects the vertex to all vertices on the boundary of the open connected
component. As explained in the lemma, G′

s is planar and must thus have some 4-colouring
hs. Furthermore, hs ↾ Gs is a good 4-colouring of Ds. There must thus exist some stage s
such that Ψ(hs ↾ Gs ⊕ fs)(x)[s] ↓, otherwise by a compactness argument, there is some h a
4-colouring of Φ(f) such that Ψ(h⊕ f)(x) ↑. By the recursion theorem, there exists x such

that φf
x(x) = ψf (x). We thus have that for some s and some 4-colouring hs of G

′
s ⊇ Φ(fs),

ψf (x) = Ψ(hs ↾ Gs ⊕ fs)(x)[s] ↓ .
Furthermore, hs ↾ Gs is a good 4-colouring of Ds. Now applying Lemma 3.13 allows us to
conclude that for any planar extension G of Gs, there is some h a 7-colouring of G which
extends hs ↾ Gs. In particular,

Ψ(h⊕ f)(x) = Ψ(hs ↾ Gs ⊕ fs)(x)[s] ↓ = ψf (x) = φf
x(x).

A contradiction to the assumption that Φ,Ψ witnesses DNR ≤W COL∗(7). □

Theorem 3.15. For any n > 0 and for any i < 4,

• COL(4n+ i) ̸≤W ConnCOL(3(n+ 1) + 1), and
• COL(4n+ i) ̸≤W COL∗(3(n+ 1) + 1).

Proof. We follow the idea presented in the proof of Theorem 3.3. Once again, we will only
present the proof for the slightly more complicated COL∗. Suppose to the contrary that
COL(4n+ i) ≤W COL∗(3(n+1)+1). That is, there exists Φ,Ψ, Turing reductions such that
Φ(G) produces a countable planar graph H with a diagram D and given any (3(n+1)+1)-
colouring h of H, Ψ(h⊕G) is a (4n+ i)-colouring of G. Start by enumerating sufficiently
many K4 graphs to construct a Wm (recall the proof of Theorem 2.8) where m is the least
such that m ≥ ⌈(4n+ i)/4)⌉.

Using the same procedure as described in the proof of Theorem 3.3 to define h, a colour-
ing of H and build W g

m (recall Notation 2.7) where g = Ψ(h ⊕ G). The only difference is
that each time we extend hl to hl+1 for l < m− 1, we use Lemma 3.12 in place of Lemma
3.4. That is, for each l < m, hl is a good (3l + 1)-colouring of some finite restriction of
H. Finally, we use Lemma 3.13 to extend hm−1 to h a (3m + 1)-colouring of H. Since

m ≤ n+1, h is a (3(n+1)+1)-colouring of H but H contains a W
Ψ(h⊕G)
m and thus cannot

be (4n+ i)-coloured by Ψ(h⊕G). □

From the theorem, we have the following interesting result.

Corollary 3.16. For all n ≥ 16,
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• ConnCOL(n) <W COL(n), and
• COL∗(n) <W COL(n).

4. Further Questions

We have shown that for each n, the principles COL(n), ConnCOL(n) and COL∗(n) are
equivalent to WKL0 over RCA0. However, for the cases of n > 4, non-uniform proofs were
used to obtain the reversals. We also showed that this non-uniformity is necessary for
n ≥ 7 but leave the cases for n = 5, 6 open. A possible way to tackle this question is to
consider the uniformity of reductions between the colouring principles. It is trivial to see
that COL(7) ≤sW COL(6) ≤sW COL(5) ≤sW COL(4). But it is still unknown which of the
reductions (other than COL(4) ̸≤W COL(7)) can be made strict. Similarly, we leave open
the question of whether or not the implications presented in Fig. 5 can be made strict.
A deeper analysis of the Weihrauch degrees of the different colouring principles can also
be done. We note that each of the principles COL(n), ConnCOL(n), and COL∗(n) are all
parallelizable but we do not know if they are cylinders (see [2] for definitions). In Remark
2.9 we mentioned the principle “every planar graph G has some n-colouring”. We know
that it is not provable in RCA0 and clearly provable in WKL0, but leave open the question of
whether or not it is equivalent to WKL0 over RCA0.
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