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The main purpose of this paper is to answer two questions about the distributional 
complexity of multi-branching trees. We first show that for any independent distribution d
on assignments for a multi-branching tree, a certain directional algorithm DIRd is optimal 
among all the depth-first algorithms (including non-directional ones) with respect to d. We 
next generalize Suzuki–Niida’s result on binary trees to the case of multi-branching trees. 
By means of this result and our optimal algorithm, we show that for any balanced multi-
branching AND–OR tree, the optimal distributional complexity among all the independent 
distributions (ID) is (under an assumption that the probability of the root having value 0 
is neither 0 nor 1) actually achieved by an independent and identical distribution (IID).

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

In this paper, we investigate the optimal depth-first al-
gorithms and equilibria of independent distributions on 
multi-branching trees, in which every node may have dif-
ferent numbers of children. The height of a tree is the 
length of the longest path from the root to its leaves. Here, 
a balanced multi-branching tree means a tree such that all 
the non-terminal nodes at the same level have the same 
number of children and all paths from the root to the 
leaves are of the same length.

We first review some basic notions and results on game 
trees. An AND–OR tree (OR–AND tree, respectively) is a 
multi-branching tree such that the root is labeled AND 
(OR), and sequentially the internal nodes are level-by-level 
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labeled by OR and AND (AND and OR) alternatively. An as-
signment for a tree is a mapping from the set of leaves 
to Boolean values {0, 1}. By evaluating a tree, we mean to 
compute the Boolean value of the root. For a given assign-
ment, the cost of computation is defined to be the number 
of leaves that are queried to evaluate a tree. When we con-
sider probability distributions on the set of assignments, 
the cost of computation is the expected cost under the 
given distribution.

An algorithm tells us a priority of searching leaves. An 
algorithm is called alpha–beta pruning if it checks only suf-
ficiently many nodes to determine the value of the current 
subtree [1]. We assume that all the algorithms discussed 
here are deterministic alpha–beta pruning algorithms. A di-
rectional algorithm is one that queries the leaves on a given 
tree in a fixed order. SOLVE is a directional algorithm which 
evaluates a tree from left to right [3]. A depth-first algo-
rithm is one that never jumps to another subtree until it 
completes evaluating the current one. For a given probabil-
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ity distribution on the assignments, we are seeking for the 
optimal algorithms that can minimize the expected cost of 
computation under the given distribution.

The deterministic complexity is defined to be the mini-
mum cost to compute the worst assignment for a tree, i.e., 
min

AD
max

ω
C(AD , ω), where C(AD , ω) is the cost of an al-

gorithm AD on an assignment ω, AD ranges over all the 
deterministic algorithms and ω ranges over all the assign-
ments. A randomized algorithm is a distribution over a fam-
ily of deterministic algorithms. Then the randomized com-
plexity to evaluate a tree is defined as min

AR
max

ω
C(AR , ω), 

where C(AR , ω) is the expected cost over the correspond-
ing family of deterministic algorithms, AR ranges over all 
the randomized algorithms and ω ranges over all the as-
signments. Obviously, the randomized complexity is not 
larger than the deterministic complexity.

Saks and Wigderson [5] calculated the randomized 
complexity for any balanced n-branching tree (each non-
terminal node has n children) with height h to be

�((
n−1+

√
n2+14n+1
4 )h). Yao’s principle [9] indicates that the 

randomized complexity is equivalent to the distributional 
complexity, max

d
min

AD

C(AD , d) with AD ranging over the 

deterministic algorithms and d over the distributions on 
assignments. Yao’s principle provides a profound perspec-
tive to analyze randomized algorithms.

Liu and Tanaka [2], subsequent to the study of Saks 
and Wigderson, investigated the uniform binary trees from 
the viewpoint of distributional complexity. A distribution δ
is said to achieve the distributional complexity (or equi-
librium) if and only if min

AD

C(AD , δ) = max
d

min
AD

C(AD , d). 

They assert that for any uniform binary AND–OR tree, if 
the equilibrium is achieved by an independent distribution 
(ID), then it is, in fact, an independent and identical distri-
bution (IID). However, [2] does not include a proof of the 
assertion. Recently, Suzuki and Niida [7] gave a proof for 
the case where the probability of the root is constrained 
for uniform binary trees and showed Liu–Tanaka’s asser-
tion.

We treat probability distributions on multi-branching 
trees. In Section 2, for any ID d, we define a directional al-
gorithm DIRd , and show it is optimal among all the depth-
first algorithms with respect to d for any multi-branching 
tree. Recall Tarsi’s theorem [8] that SOLVE is optimal for 
IID. Our result is on ID among all the depth-first algo-
rithms (with certain conditions) while Tarsi’s theorem is 
on IID among all the algorithms not necessarily depth-first. 
In Section 3, we first extend the fundamental relationships 
between the minimum expected cost and the probabil-
ity of the root of tree being 0 in [7] to balanced multi-
branching trees. Based on this, we show that, for any ID d, 
there exists an IID d′ such that the expected cost with d
is not larger than that with d′ following DIRd . Then we 
establish Liu–Tanaka’s assertion for any balanced multi-
branching AND–OR tree (under an assumption that the 
probability of the root having value 0 is neither 0 nor 1).
2. DIRd is optimal among all the depth-first algorithms

Let � be the set of assignments for a given tree. We say 
d : � → [0, 1] is an independent distribution (denote d ∈ ID) 
if there exist pi ’s (the probability of the i-th leaf being 0) 
such that for any ω ∈ �, d(ω) = ∏

{i: ω(i)=0}
pi

∏
{i: ω(i)=1}

(1 −
pi). We say d ∈ IID if d is an ID satisfying p1 = p2 =
· · · = pn . By C(A, ω), we denote the number of leaves 
checked by an algorithm A with an assignment ω.

Given d ∈ ID and an algorithm A, for each node σ on T , 
we define Cσ (A, d) and pσ (d) to be the evaluation cost of 
σ and the probability of σ being 0. Remark that if σ is 
a leaf, then Cσ (A, d) = 1 and pσ (d) = pi . If σ is a non-
terminal node and A is an algorithm on Tσ , Cσ (A, d) is 
the expected cost of computing the value of σ following A, 
and pσ (d) is the probability of σ being 0.

For any non-terminal node σ in T , Tσ denotes the sub-
tree of T rooted from σ . For a node σ with n children, 
Tσ∗i (1 ≤ i ≤ n) denotes the i-th subtree under σ from left 
to right, and particularly for the root λ, its subtree is sim-
plified as Ti . For simplicity, we denote C(A, d) = Cλ(A, d)

at root λ, and qσ = pσ (d) at any node σ . By qi , we denote 
the probability of the root of Ti being 0 with respect to d.

Definition 1. For any uniform binary tree T and d ∈ ID
on T , the depth-first directional algorithm DIRd is defined 
inductively as follows. The basic case is trivial. For the in-
duction case, let σ ∗ i (i = 1, 2) be a child of non-terminal 
node σ , and assume DIRdσ∗i has been defined for each sub-
tree Tσ∗i .

(1) In the case that σ is labeled ∧, DIRdσ is the concatena-
tion of DIRdσ∗1 and DIRdσ∗2 (denote DIRdσ := DIRdσ∗1 ·
DIRdσ∗2 ) if 

Cσ∗1(DIRdσ∗1 , dσ∗1)

qσ∗1
≤ Cσ∗2(DIRdσ∗2 , dσ∗2)

qσ∗2
, other-

wise DIRdσ := DIRdσ∗2 · DIRdσ∗1 .
(2) In the case that σ is labeled ∨, DIRdσ := DIRdσ∗1 ·

DIRdσ∗2 if 
Cσ∗1(DIRdσ∗1 , dσ∗1)

1−qσ∗1
≤ Cσ∗2(DIRdσ∗2 , dσ∗2)

1−qσ∗2
, other-

wise DIRdσ := DIRdσ∗2 · DIRdσ∗1 .

Theorem 1. For any uniform binary tree T and d ∈ ID, if A is 
any depth-first algorithm, then C(A, d) ≥ C(DIRd, d), i.e., DIRd
is optimal among all the depth-first algorithms.

Proof. We prove this by induction on height h. The base 
case is trivial. For the induction step, let T be a uniform bi-
nary tree with height h + 1, where the root λ is labeled ∧. 
The other case can be shown similarly.

Suppose that DIRdi is optimal for each subtree Ti with 
height h. Let �h+1 be the set of assignments for T , �h
and �′

h the set of assignments for T1 and T2. For any d ∈
ID on T , there exist di for Ti(i = 1, 2) such that d(ω) =
d1(ω1) × d2(ω2), where ω = ω1ω2, ω1 ∈ �h and ω2 ∈ �′

h . 
For any depth-first algorithm A and d ∈ ID, if A evaluates 
the subtree T1 first, then C(A, d) = ∑

ω∈�h+1

C(A, ω) · d(ω) =
∑

ω∈�0
C(A, ω) ·d(ω) + ∑

ω∈�1
C(A, ω) ·d(ω), where �i := {ω ∈

�h+1 | the root of T1 has value i with ω}.
Assume A is a depth-first non-directional algorithm. By 

A1, we denote the algorithm of A for T1, and by Aω1
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the algorithm of A for T2 depending on the assignment 
ω1 in T1. Thus, C(A, d) = ∑

ω1∈�0
h

Cλ∗1(A1, ω1) · d1(ω1) +
∑

ω1∈�1
h

∑
ω2∈�′

h

(Cλ∗1(A1, ω1) + Cλ∗2(Aω1 , ω2)) · d2(ω2)d1(ω1), 

where �i
h := {ω1 ∈ �h | the root of T1 has value i

with ω1}. We calculate that C(A, d) = Cλ∗1(A1, d1) +∑
ω1∈�1

h

d1(ω1) · Cλ∗2(Aω1 , d2). By induction hypothesis, we 

can take algorithms DIRd1 and DIRd2 such that C(A, d) ≥
Cλ∗1(DIRd1 , d1) + (1 − q1)Cλ∗2(DIRd2 , d2). Let A′

1 = DIRd1 ·
DIRd2 , then clearly C(A, d) ≥ C(A′

1, d).
Using the similar arguments as above, if A evaluates 

T2 first, we can get algorithm A′
2 = DIRd2 · DIRd1 . Thus, 

C(A, d) ≥ C(A′
2, d). If 

Cλ∗1(DIRd1 ,d1)

q1
≤ Cλ∗2(DIRd2 ,d2)

q2
, then 

C(A′
1, d) = C(A′

2, d) − (q1Cλ∗2(DIRd2 , d2) − q2Cλ∗1(DIRd1 ,

d1)) ≤ C(A′
2, d). By Definition 1, DIRd is A′

1 if 
Cλ∗1(Ad1 ,d1)

q1
≤

Cλ∗2(Ad2 ,d2)

q2
, otherwise A′

2. Clearly, DIRd is optimal among 
all the depth-first algorithms. �

Now we define DIRd for multi-branching trees.

Definition 2. For any multi-branching tree T , given d ∈ ID, 
the depth-first directional algorithm DIRd is defined induc-
tively as follows. The basic case is trivial. For the induction 
case, assume Tσ has n subtrees Tσ∗i (i = 1, · · · , n) and 
DIRdσ∗i has been defined for each subtree Tσ∗i .

(1) In the case that σ is labeled ∧, for the lexicograph-
ically minimal permutation f of {1, · · · , n} such that 
Cσ∗ f (1)(DIRdσ∗ f (1)

,dσ∗ f (1))

qσ∗ f (1)
≤ · · · ≤ Cσ∗ f (n)(DIRdσ∗ f (n)

,dσ∗ f (n))

qσ∗ f (n)
, 

DIRd := DIRdσ∗ f (1)
· · · · · DIRdσ∗ f (n)

.
(2) In the case that σ is labeled ∨, for the lexicograph-

ically minimal permutation f of {1, · · · , n} such that 
Cσ∗ f (1)(DIRdσ∗ f (1)

,dσ∗ f (1))

1−qσ∗ f (1)
≤ · · · ≤ Cσ∗ f (n)(DIRdσ∗ f (n)

,dσ∗ f (n))

1−qσ∗ f (n)
, 

DIRd := DIRdσ∗ f (1)
· · · · · DIRdσ∗ f (n)

.

Theorem 2. For any multi-branching tree T , if d ∈ ID and A is 
any depth-first algorithm, then C(A, d) ≥ C(DIRd, d).

Proof. We prove this by induction on the height of T and 
the number of children of the root, that is, by induction on 
the sum of the height and the number of children. Sup-
pose that T is a tree with height h + 1 where the root λ
is labeled ∧. The case where λ is labeled ∨ can be shown 
in the similar way. Without loss of generality, we assume 
T has n subtrees denoted by Ti (i ∈ {1, · · · , n}).

At first, we look at the case that A evaluates T1 first. 
The remaining parts of T is denoted by T ′

1. For any distri-
bution d ∈ ID and depth-first algorithm A that evaluates T1
first, by induction hypothesis, we can find depth-first di-
rectional algorithms DIRd1 and DIRd′

1
for T1 and T ′

1 respec-
tively, where d1 (d′

1) is an ID distribution of d restricted to 
T1 (T ′

1). Let A′
1 = DIRd1 ·DIRd′

1
. We have C(A, d) ≥ C(A′

1, d).
Similarly, for all the subtrees Ti ’s under the root of T , 

we can get n directional algorithms A′ , · · · , A′
n such that 
1
A′
i evaluates subtree Ti first. Then our desired algorithm 

DIRd is at least one of A′
i ’s.

Let f be a permutation of {1, · · · , n} such that
Cλ∗ f (1)(DIRdλ∗ f (1)

,dλ∗ f (1))

q f (1)
≤ · · · ≤ Cλ∗ f (n)(DIRdλ∗ f (n)

,dλ∗ f (n))

q f (n)
. We can 

show that A′
f (1)

= DIRdλ∗ f (1)
· · · ··DIRdλ∗ f (n)

= DIRd , and com-

pute C(A′
f (1)

, d)=
n∑

i=1

i−1∏
j=1

(1 −q f ( j))Cλ∗ f (i)(DIRdλ∗ f (i) , dλ∗ f (i)). 

Then we have C(A′
f (1)

, d) ≤ C(A′
f (i), d) for all i. Thus DIRd

is optimal among all the depth-first algorithms. �
3. Distributional complexity for independent 
distributions on balanced multi-branching trees

For any balanced multi-branching tree T , we consider 
an IID on T such that each leaf is assigned 0 with probabil-
ity x. Notice that when the distribution on T is an IID, any 
depth-first directional algorithm produces the same cost as 
SOLVE. Furthermore, since T is a balanced multi-branching 
tree, Cσ (A, d) and pσ (d) are actually functions indepen-
dent from the algorithms. Thus, we may denote the ex-
pected cost as Cσ (x) or C∧,h(x), where h is the height of 
σ on T , and pσ (d) as p∧(x) or p(x) etc.

3.1. Suzuki–Niida lemma for multi-branching trees

We now prove a technical lemma which is a general-
ization of “fundamental relationships between costs and 
probabilities” due to Suzuki and Niida in [7].

Lemma 1. Suppose that the distribution on T is an IID with all 
leaves assigned probability x and we follow the algorithm SOLVE 
(or equivalently any depth-first directional algorithm A). Then

(1) pσ (x) is a strictly increasing function of x.
(2) Cσ (x)

pσ (x) is strictly decreasing.

(3) C ′
σ (x)

p′
σ (x)

is strictly decreasing if σ is not a leaf; and at leaves 
C ′

σ (x)
p′
σ (x)

= 0 is non-increasing, where the primes denote dif-

ferentiation with respect to x.

Proof. Statement (1) is easy to prove. When σ is a leaf, 
pσ (x) = x, then the statement holds. Suppose p∨,h(x) and 
p∧,h(x) are strictly increasing and each node at height 
h + 1 has n children. Then, p∧,h+1(x) = 1 − (1 − p∨,h(x))n

and p∨,h+1(x) = pn
∧,h(x) are both strictly increasing.

Next we prove (2) and (3) by simultaneous induction. 
The base case is trivial. For inductive step, fix a node σ at 
height h + 1 having n children. Suppose that (2) and (3) 
hold for all children of σ with height h.

Case 1. σ is labeled ∨. Using the similar arguments as 
Theorem 1, we have the following recursive equations (we 
drop x for simplicity): C∨,h+1 = C∧,h(1 + p∧,h +· · ·+ pn−1

∧,h ), 
and p∨,h+1 = pn

∧,h .
From now on, we further drop the subscripts ∧ and 

h on the right hand side. For statement (2), we have 
C∨,h+1
p∨,h+1

= C
pn (1 + p + · · · + pn−1) = C

p

(
1

pn−1 + · · · + 1
p + 1

)
. 

By induction hypothesis and (1), the terms C , 1
n−1 , . . . , 1
p p p
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are strictly decreasing and positive; hence C∨,h+1
p∨,h+1

is also 
strictly decreasing, i.e., (2) holds.

Next we look at (3). By differentiating C∨,h+1(x) and 
p∨,h+1(x) with respect to x, we get

C ′
∨,h+1

p′
∨,h+1

= C ′

p′
1

n
(

1

pn−1
+ · · · + 1

p
+ 1)

+ 1

n

C

p
(

1

pn−2
+ 2

pn−3
+ · · · + (n − 1)).

By induction hypothesis and similar arguments as 
above, 

C ′
∨,h+1

p′
∨,h+1

is strictly decreasing. Moreover, the second 
summand makes it strictly decreasing. That establishes (3) 
for this case.

Case 2. σ is labeled ∧. Then we have the following re-
cursive equations (we drop x for simplicity):

C∧,h+1 = C∨,h(1 + (1 − p∨,h) + · · · + (1 − p∨,h)
n−1),

p∧,h+1 = 1 − (1 − p∨,h)
n

= p∨,h(1 + (1 − p∨,h) + · · · + (1 − p∨,h)
n−1).

Hence, C∧,h+1
p∧,h+1

= C∨,h
p∨,h

is strictly decreasing by induction 
hypothesis, which establishes (2) for case 2.

To prove statement (3) for case 2, we can first show the 
following statements by induction on height h:

∀h, C∨,h(x) = C∧,h(1 − x) and

p∨,h(x) = 1 − p∧,h(1 − x).
(∗)

Consequently, by substituting x by 1 − x, we have the 
dual equations C∧,h(x) = C∨,h(1 − x) and p∧,h(x) = 1 −
p∨,h(1 − x). Then we have 

C ′
∧,h+1(x)

p′
∧,h+1(x)

= − C ′
∨,h+1(1−x)

p′
∨,h+1(1−x)

. By the 

results on the ∨-case, we know that 
C ′

∧,h+1(x)

p′
∧,h+1(x)

is also strictly 
decreasing, which completes the proof of Lemma 1. �
3.2. Getting more uniformity while increasing the cost and 
keeping the probability

The next lemma illustrates how to make one step ad-
vance towards uniformity. For this, we focus on a single 
node σ on T . Let τ1, . . . , τn be all children of σ from 
left to right. We assume that the distribution on Tσ is a 
segment-wise IID, in the sense that for every child τi of σ , 
the distribution restricted to Tτi is an IID with probabil-
ity xi . We may assume that x1 ≤ · · · ≤ xn .

For the distribution d as above, we define the algorithm 
DIRd as follows: if σ is labeled ∨, then DIRd evaluates the 
value of τi ’s following the increasing order of their proba-
bility, i.e., evaluates τ1 first and τn last; if σ is labeled ∧, 
then DIRd evaluates τn first and τ1 last. The evaluation of 
each τi is done by SOLVE as the distribution restricted to 
Tτi is an IID. The DIRd defined in Definition 2 and that 
defined here are the same up to isomorphism of trees, 
in the following sense. For DIRd defined here, there is a 
permutation f of child nodes, though f is not necessarily 
lexicographically minimal, such that the inequality of Def-
inition 2 holds.
Lemma 2. Let d be as above. Suppose that pσ (d) �= 0, 1. If there 
is an i such that xi < xi+1 then we can find another distri-
bution d′ with the following properties: d′ restricted to Tσ is 
a segment-wise IID; C(DIRd′ , d′) = C(DIRd, d′) > C(DIRd, d); 
and pσ (d) = pσ (d′).

Proof. Let x1 ≤ x2 ≤ · · · ≤ xi = x < y = xi+1 ≤ · · · ≤ xn . We 
show that we can adjust the values of x and y so that the 
cost strictly increases. We have two cases:

Case 1. σ is labeled ∨. Our new distribution d′ agrees 
with d at x j for all j /∈ {i, i + 1}; and the adjusted values 
of x and y still satisfy the constraint xi−1 ≤ x < y ≤ xi+2
(here we assume x0 = 0 and xn+1 = 1). Since all param-
eters other than x and y are fixed during the discussion, 
we may view the cost and probability functions as func-
tions of arguments x and y, and denote them by C(x, y)

and p(x, y) respectively.
Following the algorithm DIRd , which goes from x1 to xn , 

we have C(x, y) = γ + β(C∧(x) + p∧(x)(C∧(y) + p∧(y)α))

and p(x, y) = δp∧(x)p∧(y), where C∧, p∧ are the cost and 
probability functions associated with any child of σ ; and 
α, β, γ and δ are constants with β > 0 if pσ (d) �= 0. We 
may further drop γ , β as it does not affect the optimiza-
tion. Since we want to keep pσ (d′) = pσ (d), we may as-
sume p∧(x)p∧(y) is some constant e. We view x as a func-
tion of y which is implicitly defined by p∧(x)p∧(y) = e, 
and claim that f (y) = C(x(y), y) = C∧(x) + p∧(x)C∧(y) +
αp∧(x)p∧(y) is strictly decreasing with respect to y.

To show this, it suffices to show f ′(y) < 0. We drop 
the subscript ∧. f ′(y) = C ′(x) dx

dy + p′(x) dx
dy C(y) + p(x)C ′(y). 

Since p(x)p(y) = e, we have dx
dy = − p(x)p′(y)

p′(x)p(y)
. Hence

f ′(y) = − C ′(x)p(x)p′(y)
p′(x)p(y)

− p(x)p′(y)C(y)
p(y)

+ p(x)C ′(y). Since 

− p(x)p′(y)C(y)
p(y)

< 0, to show f ′(y) < 0 it suffices to show 

that p(x)C ′(y) − C ′(x)p(x)p′(y)
p′(x)p(y)

< 0.

By Lemma 1, C ′
p′ is strictly decreasing. Since x < y, we 

have C ′(y)
p′(y)

<
C ′(x)
p′(x) . Furthermore the latter is ≤ 1

p(y)
C ′(x)
p′(x) as 

p(y) ≤ 1. So f ′(y) < 0. Hence f is decreasing with respect 
to y.

Thus if we set y′ to be y − ε where ε > 0 is chosen so 
that the unique x′ satisfying p(x′)p(y′) = e is strictly less 
than y′ , we can still keep the constraint xi−1 < x′ < y′ <

xi+2, but increase the cost f (y′). In addition, by the proof 
of Theorem 1, C(DIRd′ , d′) = C(DIRd, d′).

Case 2. σ is labeled ∧. In this case, DIRd goes from 
right to left. Thus the cost at σ is C∨(xn) + (1 −
p∨(xn))[C∨(xn−1) + (1 − p∨(xn−1))(C∨(xn−2) + · · · + (1 −
p∨(x2))C∨(x1))]. Here C∨ and p∨ stand for C∨,|σ | and 
p∨,|σ | respectively, and we drop the index |σ | for sim-
plicity. By (∗) in Lemma 1, this cost is C∧(1 − xn) +
p∧(1 − xn)[C∧(1 − xn−1) + p∧(1 − xn−1)(C∧(1 − xn−2) +
· · · + p∧(1 − x2)C∧(1 − x1))]. But this is just the cost at a 
∨-node with probability 1 − xn ≤ · · · ≤ 1 − x1 with respect 
to algorithm DIRd . Together with the fact that keeping 
1 − (1 − p∨(xn)) · · · (1 − p∨(x1)) to be a constant is the 
same as keeping p∧(1 − xn) · · · p∧(1 − x1) to be a constant, 
our argument for ∨-case can be transferred to ∧-case 
also. �



W. Peng et al. / Information Processing Letters 125 (2017) 41–45 45
Corollary 1. Given a node σ with a segment-wise IID distribu-
tion d̄ = x1, · · · , xn, there exists d ∈ ID such that Cσ (DIRd̄, d) =
max
e∈D

Cσ (DIRd̄, e) where D = {(x1, x2, · · · , xn) : 0 ≤ x1 ≤ · · · ≤
xn ≤ 1, and pσ (e) = pσ (d̄)}. Moreover, when pσ (d̄) �= 0, 1, 
the maximal value is achieved if and only if d ∈ IID.

Proof. Since Cσ (DIRd̄, d) is a continuous function of d on 
[0, 1]n and D a compact subset of [0, 1]n , there is some 
d0 ∈ D at which the maximal value is achieved. If pσ (d) �=
0, 1, by Lemma 2, d0 has to be an IID. �
3.3. Analysis of cost for independent distributions with respect 
to DIRd

Lemma 3. Given d ∈ ID on T , there exists d′ ∈ IID such that 
C(DIRd, d) ≤ C(DIRd, d′), and the probability at the root λ, 
pλ(d′) = pλ(d). Furthermore the equation holds if and only if 
d ∈ IID or (pλ(d) = 0 or 1).

Proof. First observe that once d is given, we can calculate 
the parameter pσ (d) on each node σ ∈ T . We define the 
algorithm DIRd as follows. For any two nodes σ1 and σ2
of T , we have the following two cases: case 1, one node is 
a descendant of the other, say, σ2 is a descendant of σ1, 
then evaluate σ2 first; case 2, σ1 and σ2 are incomparable. 
Let σ0 be the node on T such that τ1 and τ2 are children 
of σ0 satisfying that σi is a descendant of τi for i = 1, 2. 
Suppose that pτ1 (d) ≤ pτ2 (d). If σ0 is labeled ∨, then eval-
uate τ1 first; if σ is labeled ∧, then evaluate τ2 first.

We inductively define a sequence of distributions
d0, . . . , dh on T , where h is the height of T , such that

• d0 = d which is the given distribution, dh is an IID, and 
di+1 is one step more uniform than di , i.e., if di restricted 
to Tσ is a segment-wise IID, then di+1 restricted to Tσ

is an IID and
• for all σ of height ≥ i, pσ (di) = pσ (d) and

Cσ (DIRd, di) ≥ Cσ (DIRd, d).

Let d0 = d. Suppose that di has been defined and for 
each node σ of height i + 1, di restricted to Tσ is a 
segment-wise IID. To be more precise, let τ1, . . . , τn be the 
children of σ , and di restricted to Tτ j is an IID with x j . 
Then let di+1 be the distribution d′ such that when re-
stricted to Tσ , d′ is an IID with leaves having probability x
such that pσ (x) = pτ1 (x1) · · · pτn (xn) if σ is labeled ∨; and 
pσ (x) = 1 − (1 − pτ1 (x1)) · · · (1 − pτn (xn)) if σ is labeled ∧.

By induction hypothesis, di+1 satisfies that for each 
node σ of height i + 1, pσ (di+1) = pσ (di) = pσ (d0). By 
Lemma 2, Cσ (DIRd, di+1) ≥ Cσ (DIRd, di) ≥ Cσ (DIRd, d0). 
Then we can take d′ to be dh . �

By Lemma 3, we have the following theorem.
Theorem 3. For any balanced multi-branching AND–OR tree T , 
suppose that d ∈ ID and pλ(d) �= 0 or 1. If d achieves the distri-
butional complexity, then, d ∈ IID.

4. Future works

Until now, our results on game trees are all restricted 
to depth-first algorithms. Using the method of transposi-
tions at some nodes in [6,4], we can show that for any ID, 
the minimum cost among the depth-first directional algo-
rithms is not larger than that among the non-depth-first 
directional algorithms for any uniform binary tree with 
height 2.

We would like to construct the optimal non-depth-first 
algorithms. Another challenge is to consider the distribu-
tional complexity with respect to certain classes of non-
depth-first algorithms. In [5], Saks and Wigderson pro-
posed the notion of leaf cost function. Instead of assuming 
unit cost for each leaf, they consider the cost as a function 
of leaf and its value. We would also like to investigate the 
eigen-distribution for game trees with a leaf cost function.
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