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On the degree structure of equivalence relations under
computable reducibility

Keng Meng Ng and Hongyuan Yu

Abstract We study the degree structure of the ω-c.e., n-c.e. and Π0
1

equivalence relations under the computable many-one reducibility. In
particular we investigate for each of these classes of degrees the most
basic questions about the structure of the partial order. We prove the
existence of the greatest element for the ω-c.e. and n-c.e. equivalence
relations. We provide computable enumerations of the degrees of ω-c.e.,
n-c.e. and Π0

1 equivalence relations. We prove that for all the degree
classes considered, upward density holds and downward density fails.

1 Introduction

An important theme in the study of mathematics is the classification of math-
ematical structures according to various different criteria. If we can identify
when two different structures are “equivalent”, then we could reduce the study
of all structures in a certain class to just examining the essential properties
in each equivalence class of structures. The notion of dimension in algebra is
an example of such a classification. A common tool in this endeavour is to
define a reduction; this is a map which reduces a (possibly) more complicated
problem to a simpler question.

In the context of Borel theory, a large body of work exists on classifying
problems via the Borel reducibility. These reducibilities focus on classifying
equivalence relations on an uncountable domain, for example, Friedman and
Stanley [7] applied this to study the isomorphism problem on the countable
models of a theory.

A more recent direction of investigation has been directed towards study-
ing equivalence relations on the domain ω. By restricting the domain down
to a countable set, the usual tools of computability theory can be applied
to supply meaningful definitions, concepts and proof techniques. The main
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reducibility used to calibrate the relative complexity of equivalence relations
on ω is computable reducibility :

Definition 1.1 Let E and F be equivalence relations on ω. We say that E
is computably reducible to F , denoted as E ≤c F , if there exists a computable
function f : ω → ω such that

∀x, y ∈ ω, (x, y) ∈ E ⇔ (f(x), f(y)) ∈ F.

This definition is obviously closely related to the Borel reducibility; in the
Borel case one studies equivalence relations on 2ω and we require the reduc-
tions to be Borel, or sometimes merely continuous. Indeed, Coskey, Hamkins
and Miller [4] and later Miller and Ng [11] studied the countable analogues of
several standard equivalence relations arising in Borel theory. This reducibil-
ity has gone by many different names in the literature, having been called
m-reducibility in [1, 8, 2] and FF -reducibility in [6], in addition to a version
on first-order theories which was called Turing-computable reducibility [13, 3].
Computable reducibility was also used in [9, 11]; we prefer this name since we
wish to avoid confusion with the usual m-reducibility and Turing-reducibility
between sets of numbers.

The computable reducibility was first introduced by Ershov in [5]. However
his approach was much more indirect in that he phrased the notions inside
the language of categories. Indeed his motivation was to study the theory of
numberings, which is of fundamental interest in computable mathematics. In
recent years there has been a sudden increase in interest in the computable
reducibility between equivalence relations on ω.

The objective of this paper is to initiate a systematic study of the de-
grees induced by the computable reducibility: The preordering ≤c induces an
equivalence relation on the class of all equivalence relations. The class of all
R that are c-equivalent to S is called the c-degree of S, denoted as degc(S).
In this paper we shall be mainly interested in the α-c.e. equivalence relations
for α ≤ ω and the Π0

1 equivalence relations; the descriptive complexity of an
equivalence relation is obviously evaluated when it is viewed as a subset of
N× N. A c-degree is α-c.e. if it contains an α-c.e. member.

The concept of degrees has been a central notion since the dawn of com-
putability theory, and much effort has been directed towards the understand-
ing of the algebraic structure of the degrees of different classes of sets. For
instance, the c.e. m-degrees, 1-degrees, (weak) truth table degrees and Turing
degrees have all been well-studied. The original view that many people had
of these structures were that they would be very simple and easy to classify.
However, it turns out that these structures, particularly the c.e. Turing de-
grees, are much more complicated than originally thought. The study of the
Turing degrees of larger classes of sets have also been extensively carried out,
for instance, the d-c.e. Turing degrees and the ∆0

2 Turing degrees have both
turned out to be of interest, and shown to be structurally very different from
the c.e. Turing degrees. Our aim here is not to dwell upon these results as
these are all readily available in the literature. Rather, we wish to point out
that this earlier work serves as the primary motivation for the questions we
wish to investigate in this paper.
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One of the most basic questions to ask of a partial order is the existence
of a greatest element. Given a class C of c-degrees, we call u ∈ C universal
if u ≥ a for every c-degree a ∈ C. We note here that the question of a least
c-degree is uninteresting, for the computable equivalence relations generate
an initial segment of c-degrees of length ω + 1.

The question of universality has already been studied for some classes of
c-degrees. For instance, Lachlan [10] studied certain kinds of universal c.e.
equivalence relations (ceers), called precomplete ceers. We remark that ceers
are also known as positive equivalence relations, since they are closely related
to positive numberings. Gao and Gerdes [8] and Andrews et al. [1] studied the
c.e. c-degrees extensively, particularly in [1], where different types of universal
c.e. c-degrees were identified and compared. The question of universality
was then studied further in [9], where the authors showed the existence of a
universal Π0

1 c-degree, and that no universal degree exists for the class of ∆0
2

c-degrees.
The notion of a universal element of a class is closely related to the exis-

tence of a computable enumeration of the members of that class. If one can
effectively list out all elements of the class, then taking the disjoint union of
the members of the effective list will usually produce a universal element of
the class. For instance, the Halting problem, which has universal m-degree
amongst the c.e. sets, can be viewed as being the disjoint union of all c.e. sets
(we can even effectively list all c.e. sets without repetition, a famous result
of Friedberg). Indeed, the existence of a universal c.e. c-degree can be easily
proved in the same way; first, notice that the transitive closure of any c.e.
binary relation is again c.e., and hence we can easily produce an effective list
containing all c.e. equivalence relations. Taking the disjoint union of this list
(with no relations between different members of the list) produces a universal
c.e. equivalence relation.

The same trick works to produce a universal Σ0
n c-degree for each n > 0.

Unfortunately, an effective listing of all Π0
1 equivalence relations is less obvious.

Indeed, the authors of [9] proved the existence of a universal Π0
1 c-degree in

an indirect way. For α-c.e. equivalence relations, where 1 < α ≤ ω, the
question of universality was not known before this article. In Section 2, we
answer the question of universality in these classes and also investigate what
kinds of effective enumerations are possible for these classes. The results are
summarized in the table on page 4.

Another fundamental question one can ask about a partial order is whether
the structure is dense. Interest in this particular property is partially moti-
vated by results in the c.e. and ∆0

2 Turing degrees, where similar questions
about density have led to a rich collection of knowledge and to new tech-
niques being invented. Related questions such as those on lattice embeddings
have also enriched the field. We will investigate the question of density in
the classes of c-degrees we are interested in. We prove that in each of these
classes (α-c.e. for 1 ≤ α ≤ ω, Π0

1 and ∆0
2 c-degrees), downward density fails

but upward density holds. We believe that this is due to the fact that it is
much easier to code given information into a relation we build, compared to
permitting below a given equivalence relation.
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In Section 3 we consider the problem of downward density in the structure
of c.e. c-degrees. It is not hard to see that the map A 7→ {(x, y) | x = y or
x, y ∈ A} is an embedding (of partial orders) of the c.e. 1-degrees into the
c.e. c-degrees. We call a c-degree set-induced if it contains a relation in the
range of this embedding. An old result of Lachlan implies the existence of
a set-induced c-degree for which downward density fails. These results and
terminologies will be further elaborated upon in Section 3. We construct two
different counter-examples to the downward density of the c.e. c-degrees, one
which is above degc(id), and another which is not above degc(id). Both our
counter-examples are, of course, not set-induced.

In Section 4 we show that downward density fails for the Π0
1 c-degrees, and

generalize this theorem by constructing an infinite sequence of Π0
1 c-degrees

degc(id) < degc(A2) < degc(A3) < · · · , each of which is a strong minimal
cover over the previous. All our counter-examples are not set-induced.

In Section 5 we investigate upward density in the c-degrees. We show that
in contrast to downward density, upward density holds in all the classes of
interest. We do this by constructing a pair of incomparable Π0

1 c-degrees
above any given non-universal Π0

1 c-degree.

Degree
class

Existence of a

universal element

Existence of a

computable enumeration

Downward

density

Upward

density

Σ0
n,

n ≥ 1 X (Folklore) X (Folklore)
×

(Cor 3.10)
X

(Cor 5.5)

n-c.e.,
n > 1

X (Cor 2.2) X (Thm 2.1)
×

(Cor 3.10)
X

(Cor 5.5)

ω-c.e. X (Cor 2.6)

– of all relations
× (Folklore)

– of all degrees
X(Thm 2.5)

×
(Cor 3.10)

X
(Cor 5.5)

Π0
1

X
(Thm 3.3 of [9])

– of all relations
× (Prop 2.10)

– of all degree upper
cones

X(Thm 2.8)

×
(Thm 4.1)

X
(Thm 5.1)

∆0
2

×
(Thm 3.7 of [9])

×
(no universal element)

×
(Cor 3.10)

X (Thm
3.7 of [9])

1.1 Preliminaries Our notation is standard, and for these and other computabil-
ity theory concepts, we refer the reader to [12]. For the rest of this paper, an
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(equivalence) relation S always refers to a subset of ordered pairs, i.e. S ⊆ N2,
and the domain of each relation is always N.

If S and T are equivalence relations, denote S t T by the equivalence
relation {(2x, 2y) | (x, y) ∈ S} ∪ {(2x + 1, 2y + 1) | (x, y) ∈ T}. Notice that
degc(S t T ) is not obviously the least upper bound of the pair degc(S) and
degc(T ), since if f witnesses S ≤c X and g witnesses T ≤c X then rng(f)
and rng(g) might contain elements that are X-related; we will not know how
to identify these elements inside S t T .

Given a binary relation S and an effective enumeration {Ss}s∈ω of S, define
S � t := {(x, y) ∈ S | x, y < t} and Ss � t := {(x, y) ∈ Ss | x, y < t}. We
sometimes append [s] to an expression to denote the value of the expression
evaluated at step or stage s. A number x is said to be isolated with respect
to an equivalence relation T if T (x, y) = 0 for every y 6= x.

We fix notations for several standard equivalence relations. Let ≡n be
the computable equivalence relation with exactly n many distinct equivalence
classes. (Note that not every equivalence relation with finitely many classes
is computable, for example, take the equivalence relation with two classes
{A,ω −A} for any non-computable set A). Also fix id to be the computable
equivalence relation with infinitely many classes. Of course we have

≡1 <c ≡2 <c · · · <c id,

and every computable equivalence relation is of the same degree as one of
these. Furthermore, this chain of degrees form an initial segment of the global
c-degrees - since if R is reducible to any degree in the chain then R is com-
putable.

In order for us to work with the various classes of equivalence relations
(ceers, Π0

1 and n-c.e.), we wish to fix an effective enumeration of all members
of the class. This is unfortunately not always possible, so we fix a computable
enumeration {Se}e∈ω of all reflexive and symmetric (c.e., Π0

1 or n-c.e., depend-
ing on the context) binary relations. In fact, we will fix the approximation to
{Se}e∈ω such that for all e, x, y, t, Se(x, x)[t] = 1 and Se(x, y)[t] = Se(y, x)[t].

Notice that the reflexive and symmetric closure of a binary relation has the
same descriptive complexity as the relation, while the transitive closure of a
binary relation S is Σ0

1 relative to S. Thus, the issue of whether {Se}e∈ω can
be turned into a computable enumeration of all members of the class comes
down to the difficulty of recognizing transitivity in the class; for ceers this
is trivial (the transitive closure of a c.e. binary relation is still c.e.), while
for Π0

1 and n-c.e. equivalence relations this question will be addressed in
the respective section. The existence of an enumeration {Se}e∈ω for ω-c.e.
equivalence relations has to be defined in the right way, and we will discuss
this in Section 2.2.

1.2 Organization of the paper The paper is organized as follows. We shall be
primarily interested in the class of Π0

1 equivalence relations, the class of ω-c.e.
equivalence relations and the class of n-c.e. equivalence relations for each
n ≥ 1.

In Section 2 we consider the problem of producing a computable enumera-
tion of each class as well as the existence of a universal equivalence relation of
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the class. In Theorem 2.1 we provide a computable enumeration of all n-c.e.
equivalence relations and deduce the existence of a universal n-c.e. equivalence
relation for each n ≥ 1. In Theorem 2.5 we provide a computable enumera-
tion of ω-c.e. equivalence relations in which every degree is represented, and
deduce the existence of a universal ω-c.e. equivalence relation. Then in The-
orem 2.8 we provide a computable enumeration of Π0

1 equivalence relations in
which the upper cone of every degree is represented, and deduce the existence
of a universal Π0

1 equivalence relation. Note that the existence of a universal
Π0

1 equivalence relation is proved in [9], while a universal α-c.e. equivalence
relation (for 1 < α ≤ ω) was not known before. We also show in Propo-
sition 2.10 that a computable enumeration of all Π0

1 equivalence relations is
impossible.

In Section 3 we consider the problem of downward density in the structure
of the c-degrees of c.e. equivalence relations. In Theorem 3.7 we construct
a c.e. c-degree which is not set-induced, minimal modulo the computable
c-degrees and not above degc(id). In Theorem 3.9 we construct another c.e.
c-degree which is not set-induced and minimal, and this time above degc(id).

In Section 4 we show that downward density fails for the Π0
1 c-degrees. Next

we generalize this theorem by constructing an infinite sequence of Π0
1 c-degrees

degc(id) < degc(A2) < degc(A3) < · · · , each of which is a strong minimal
cover over the previous. All our counter-examples are not set-induced.

Finally in Section 5 we prove that in contrast to downward density, upward
density holds in all the classes of interest.

2 Enumerations of a class and universality

2.1 n-c.e. equivalence relations In this section we address the question of the
existence of a computable enumeration of all n-c.e. equivalence relations, and
the existence of a universal n-c.e. equivalence relation. We fix some n ∈ ω,
n ≥ 1.

Theorem 2.1 There is a computable enumeration of all n-c.e. equivalence
relations. More specifically, there exists a computable function f(e, x, y, s)
such that:

• For all e, x, y, lims→∞ f(e, x, y, s) = Ee(x, y).
• For all e, Ee is a n-c.e. equivalence relation.
• For each n-c.e. equivalence relation S there exists some e such that
S = Ee

1.
• For all e, x, y, f(e, x, y, 0) = 0 and #{s | f(e, x, y, s) 6= f(e, x, y, s+1)} ≤ n.

Proof As mentioned in Section 1.1 we fix {Se}e∈ω to be a computable enu-
meration of all n-c.e. binary relations which are reflexive and symmetric. For
each e, we construct (an approximation to) Ee uniformly in e.

At stage v = 0, define u0 := 0 and Ee,0 := {(x, x) : x ∈ ω}, and do nothing
else. At stage v > 0, let t be largest such that ut ↓, and assume that Ee,v−1
has also been defined (note that t always exists). Check if Se,v � t + 1 is
transitive. If it is, define ut+1 = v and Ee,v = Se,v � t + 1. If not, define
Ee,v := Ee,v−1 and leave ut+1 ↑.

We now verify that Ee has the properties we want.
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Ee is n-c.e.: For each x, y, t, we have that Ee,v−1(x, y) 6= Ee,v(x, y) iff
v = ut+1 and (Se,ut � t) (x, y) 6=

(
Se,ut+1

� t+ 1
)

(x, y). In particular,
if v0 is least (if it exists) such that Ee,v0−1(x, y) 6= Ee,v0(x, y), then
Ee,v0(x, y) =

(
Se,ut+1

� t+ 1
)

(x, y) = 1 where v0 = ut+1, and hence
x, y < t + 1. This means that after stage v0, all further changes in
Ee,v(x, y) must correspond to a change in Se(x, y). Therefore, Ee(x, y)
changes no more often than Se(x, y).

Ee is an equivalence relation: Ee is obviously reflexive since Ee,0 is reflex-
ive. Now note that for every x, y, if Ee(x, y) = 1 then Se(x, y) = 1
and ut ↓ for some t > x, y. Therefore Ee is symmetric. Clearly Ee,v is
transitive for every v, hence Ee is transitive.

If Se is transitive then Se = Ee: If Se is transitive then ut ↓ for every t,
and so Ee is set to copy Se � t for larger and larger t.

The existence of a computable enumeration of all n-c.e. equivalence relation
immediately yields:

Corollary 2.2 There exists a universal n-c.e. equivalence relation for any
fixed n ≥ 1.

However, if one considers varying n over all of ω, then there will not be a
universal element of the class:

Proposition 2.3 The collection

{S : S is an n-c.e. equivalence relation for some n ∈ ω}
has no universal element.

Proof Given an n-c.e. equivalence relation S, the obvious thing to do is to
consider the following equivalence relation (generated by) E:

E := {〈〈e, 0〉, 〈e, 1〉〉 | ϕe(〈e, 0〉) ↓= x ∧ ϕe(〈e, 1〉) ↓= y ∧ S(〈x, y〉) = 0} .
By the definition of E, we have for each e such that ϕe is total, E(〈e, 0〉, 〈e, 1〉) 6= S(ϕe(〈e, 0〉), ϕe(〈e, 1〉)),
which implies E 6≤c S via ϕe.

Now for each e, E(〈e, 0〉, 〈e, 1〉) initially starts off taking value 0, before ϕe
converges on the two inputs. Once ϕe(〈e, 0〉) and ϕe(〈e, 1〉) both converge,
we might see S(x, y) = 0 where we now have to let E(〈e, 0〉, 〈e, 1〉) = 1, and
subsequently we follow the changes in S(x, y). Hence E changes at most one
more time than S, and so E is n+ 1-c.e.

2.2 ω-c.e. equivalence relations Now we turn to ω-c.e. equivalence relations.
In particular, we wish to investigate the question of whether there exists
a universal ω-c.e. equivalence relation, and what kind of enumerations are
possible of this class. The best kind of enumeration one could ask for is an
effective listing {〈Se, fe〉}e∈ω of all ω-c.e. equivalence relations Se along with
a computable bound fe for the number of changes in Se. This is of course
impossible, due to general computability theoretic reasons. Therefore, we will
fix an enumeration {〈Se, he〉}e∈ω in the following sense:

Lemma 2.4 There exists an effective listing {〈Se, he〉}e∈ω of all ω-c.e. equiv-
alence relations Se such that he is partial computable. Here every Se is an
ω-c.e. equivalence relation and every ω-c.e. equivalence relation S is equal to
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Se for some e such that he is total and bounds the number of mind changes
of Se.

Proof Se is taken to be a slowed down version of the eth possible ω-c.e.
binary relation Te. We follow the proof of Theorem 2.1. We start with
Se(x, y)[0] = 0 for all x 6= y. For some t, if we discover that ϕe(x, y) has con-
verged for all x, y < t, we proceed to wait for convergence of all x, y < t+ 1.
Before that happens, we keep Se(x, y) = 0 for all (x, y) such that x > t or
y > t, and update Se to copy changes in Te � t only when T looks transitive.
When ϕ(x, y) converges for all x, y < t+ 1, if ever, and when Te � t+ 1 again
looks transitive, we extend the domain of he and then set Se to now copy
Te � t+ 1, again updating only if Te � t+ 1 looks transitive. This ensures that
Se is always an equivalence relation, and the domain of fe is {(x, y) | x, y < t}
for some t ≤ ω, and where Se = Te and h(e) is total in the event that Te turns
out to be ω-c.e. and transitive.

Note that if he is partial, then Se − {(x, x) | x ∈ ω} is finite and certainly
ω-c.e.

Unlike Theorem 2.1 for n-c.e. equivalence relations, Lemma 2.4 is not suffi-
cient to deduce the existence of a universal ω-c.e. equivalence relation, because
the effective disjoint union of all Se is not ω-c.e. However, recall that every
ω-c.e. m-degree (of subsets of ω) contains an ω-c.e. set with an approximation
that changes at most identity bounded many times. If we could prove, for
example, the analogous statement that there exists a computable enumeration
{Ee}e∈ω of equivalence relations with identity bounded changes, and which
contains an equivalence relation of every ω-c.e. degree, then the disjoint union
of Ee will provide a universal element of the class. This is provided by the
following theorem:

Theorem 2.5 For each e, there exists (uniformly in e) an approximation to
an equivalence relation Ee such that:

• For every x, y, the number of changes in the approximation of
Ee(x, y)[s] is bounded by max{x, y}.
• If he is total then Se ≡c Ee.

Proof Fix e. Let ĥ(y) = maxx,x′≤y he(x, x
′); then ĥ is a partial com-

putable function whose domain is an initial segment of ω. Without loss of

generality, we assume that ĥ is strictly increasing on its domain. Define

h∗(x) = max{z − 1, 0} where z is least such that ĥ(z) ≥ x. Now define

Ee(x, y) =


Se(h

∗(x), h∗(y)), if h∗(x), h∗(y) both exist,

1, if x = y,

0, otherwise.

Now Ee(x, y) has the following obvious approximation for x 6= y: Begin with
Ee(x, y) = 0 and wait for both h∗(x) and h∗(y) to become defined. When
this happens, copy Se(h

∗(x), h∗(y)). Thus, the number of changes in the
approximation of Ee(x, y) is at most that of Se(h

∗(x), h∗(y)), which is in turn
bounded by he(h

∗(x), h∗(y)). Suppose x < y (the other case y < x follows
symmetrically). Therefore h∗(x) ≤ h∗(y) by the definition of h∗. Let zy be
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least such that ĥ(zy) ≥ y (this is defined as h∗(y) ↓). If h∗(y) = 0 then
h∗(x) = 0 and so Ee(x, y) changes at most once. So suppose that h∗(y) > 0,
and in particular, h∗(y) = zy−1. Since h∗(x), h∗(y) ≤ zy−1, this means that

he(h
∗(x), h∗(y)) ≤ ĥ(zy − 1). However ĥ(zy − 1) < y by the minimality of zy,

and so Se(h
∗(x), h∗(y)) changes no more than max{x, y} many times. This

verifies the first property claimed in the theorem.
It is also clear that Ee is an equivalence relation, because Se is. Finally,

suppose that he is total. We wish to see that Se ≡c Ee. Now Ee ≤c Se is

given by h∗, which must be total since he is total and ĥ is strictly increasing.

For the direction Se ≤c Ee, we simply take the map z 7→ ĥ(z) + 1. Notice

that h∗(ĥ(z) + 1) = z.

Corollary 2.6 There exists a universal ω-c.e. equivalence relation.

Proof The effective disjoint union te∈ωEe from Theorem 2.5 is clearly an
ω-c.e. equivalence relation. Every ω-c.e. equivalence relation is equal to Se
for some e where he is total, which has the same degree as Ee.

2.3 Π0
1 equivalence relations We recall Theorem 3.3 of [9], where it is shown that

there is a universal Π0
1 equivalence relation:

Theorem 2.7 ([9, Theorem 3.3]) There exists a universal Π0
1 equivalence rela-

tion.

The proof in [9] does not mention enumerations of the class, nor does it
explicitly show how to uniformly transform a Π0

1 binary relation Se into a
transitive equivalence relation. For the sake of completeness and to fit Π0

1

into the context of our paper, we will give a slightly different presentation in
this section.

First, we fix {Se}e∈ω as in Section 1.1. We first show that it is possible
to construct an effective enumeration {Ee}e∈ω of Π0

1 equivalence relations in
which the upper cone of every Π0

1 degree is represented:

Theorem 2.8 There exists an effective Π0
1 enumeration of a sequence

{Ee}e∈ω such that:

• For every e, Ee is a Π0
1 equivalence relation.

• For any Π0
1 equivalence relation S, there exists some e such that

S ≤c Ee;

Proof Fix e, and we shall build a Π0
1 enumeration of Ee uniformly in e such

that if Se is transitive, then Se ≤c Ee. The issue that we must keep Ee
transitive, while Se might not be, and we have to do it in a way where we can
extend our reduction fe witnessing Se ≤c Ee whenever Se looks transitive on
a larger fragment.

Define fe(x) inductively by setting fe(0) = 0, and fe(x + 1) to be the
least stage larger than fe(x) such that Se[fe(x + 1)] � x + 2 looks like an
equivalence relation. Then fe is partial computable, and is total if and only
if Se is an equivalence relation. Now define Ee(x, y) (for x 6= y) by the
following. If x 6∈ rng(fe) or y 6∈ rng(fe) then Ee(x, y) = 0, otherwise let
a, b be such that fe(a) = x and fe(b) = y, and define Ee(x, y) = 0 if and
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only if Se(a, b)[fe(z)] = 0 for some z in dom(fe). Obviously if x = y we set
Ee(x, y) = 1.

There is an obvious Π0
1 enumeration of Ee: First, note that rng(fe) is

computable (uniformly in e), since s ∈ rng(fe) if and only if this has happened
before querying Se[s + 1] (this is true even if rng(fe) is finite). Furthermore
the condition “Se(a, b)[fe(z)] = 0 for some z in dom(fe)” is c.e. Hence Ee is
Π0

1, with an enumeration effectively found in e.
It is obvious that Ee is reflexive and symmetric (since Se is at every stage).

For transitivity, suppose E(x, y) = E(y, w) = 1 and E(x,w) = 0 for distinct
x, y, w. Then clearly there must exist a, b, c such that fe(a) = x, fe(b) = y and
fe(c) = w. Also fix z ∈ dom(fe) such that Se(a, c)[fe(z)] = 0 triggering us to
define Ee(x,w) = 0. Now observe that Se [fe (max{a, b, c, z})] � (max{a, b, c, z}+1)
cannot be transitive, contradicting the properties of fe.

Finally suppose that Se is an equivalence relation, hence fe is total. Then
fe witnesses that Se ≤c Ee.

We deduce immediately [9, Theorem 3.3]:

Corollary 2.9 There exists a universal Π0
1 equivalence relation.

We now turn to the interesting question of whether there exists an effective
enumeration of all Π0

1 equivalence relations, or even an enumeration represent-
ing all Π0

1 degrees. First of all, it is easy to see that an enumeration of all Π0
1

equivalence relations is impossible:

Proposition 2.10 There does not exist an effective sequence {Ee}e∈ω of Π0
1

equivalence relations such that for every Π0
1 equivalence relation S, there is

some e such that S = Ee. (We can even replace “S = Ee” by “S ≤c Ee via a
primitive recursive function”).

Note that Proposition 2.10 does not contradict Theorem 2.8. In fact, it
shows that the proof of Theorem 2.8 is sharp in the sense that the reductions
fe constructed there cannot all be total.

Proof of Proposition 2.10 Fix the sequence {Ee}e∈ω as above, and we shall
construct a Π0

1 equivalence relation S such that S 6= Ee for every e. In fact,
we shall ensure that for every e, pe does not witness S ≤c Ee, where pe is the
eth primitive recursive function.

At the beginning we define S(〈e, i〉, 〈e′, j〉)[0] = 0 for all e, e′, i, j such that
e 6= e′, and S(〈e, i〉, 〈e, j〉)[0] = 1 for all e, i, j. For each e, we do the following
uniformly. We begin our strategy for e by first setting S(〈e, 0〉, 〈e, 1〉) = 0,
and wait for a stage s such that Ee (pe(〈e, 0〉), pe(〈e, 1〉)) = 0. For every stage
t where Ee (pe(〈e, 0〉), pe(〈e, 1〉)) [t] is still = 1, we set S (〈e, t+ 2〉, 〈e, i〉) = 0
for every i 6= t+ 2 (that is, declare 〈e, t+ 2〉 to be an isolated point).

Let s be the first stage such that Ee (pe(〈e, 0〉), pe(〈e, 1〉)) [s] = 0 (note that
s may not exist). At this point, we have made 〈e, i〉 an isolated point for all
2 ≤ i < s + 2. However S(〈e, s + 2〉, 〈e, i〉) = 1 for all i. We wait for either
Ee (pe(〈e, 0〉), pe(〈e, s+ 2〉)) = 0 or Ee (pe(〈e, 1〉), pe(〈e, s+ 2〉)) = 0; at least
one of these must hold because Ee is transitive. Suppose Ee (pe(〈e, 0〉), pe(〈e, s+ 2〉)) = 0.
Then we declare 〈e, 1〉 to be isolated and do nothing else for e; otherwise
declare 〈e, 0〉 to be isolated.
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We now verify that S has the properties we want. Firstly, it is clear that
the above describes a Π0

1 approximation to S, as Ee is transitive and pe is
total. Now if s is never found by the strategy for e then the eth column of S
will consist only of isolated points. If s is found by the strategy then the eth

column S[e] = {〈e, i〉 | i ∈ ω} will consist of s+ 1 many isolated points, while
the rest of the points belong to a single equivalence class. In either case, S[e]

is an equivalence relation. Hence S is an equivalence relation. Finally, it is
straightforward to check that for every e, pe does not witness S ≤c Ee.

Given Proposition 2.10 we can ask if there is an enumeration of Π0
1 equiva-

lence relations in which every degree is represented, like in the case of ω-c.e.
equivalence relations. Part of the difficulty of obtaining such an enumeration
is that the reductions from Se to Ee must be allowed to be partial. We leave
open the question:

Question 2.11 Is there an effective enumeration of Π0
1 equivalence relations

{Ee}e∈ω such that if S is a Π0
1 equivalence relation, then there is some e such

that S ≡c Ee?

3 Downward density and c.e. equivalence relations

We now investigate the structure of the c.e. c-degrees, in particular, the
problem of downward density. Unlike the Π0

1 c-degrees (see Section 4), it is
not the case that every c.e. c-degree is comparable with degc(id). Given any
c.e. set A ⊆ ω, define the ceer RA = {(x, y) | x = y or x, y ∈ A}. Then
observe that id ≤c RA if and only if A is not simple. Thus, even though
the computable c-degrees degc(≡1) < degc(≡2) < · · · < degc(id) is an initial
segment of the c.e. c-degrees, we now get non-trivial c.e. c-degrees which are
incomparable with this initial segment.

This situation is very similar to that of the c.e. 1-degrees, where it had
been observed that the “bottom” degree, 01 = deg1(∅ ⊕ ω), isn’t really the
least element of the c.e. 1-degrees: The simple c.e. sets all have 1-degree
incomparable with 01. Nevertheless, much of the earlier studies of the c.e. 1-
degrees have been focused on the interval [01, deg1(K)]. For example, Lachlan
[10] showed that every finite initial segment in this interval is a distributive
lattice, and hence the first-order theory of the c.e. 1-degrees is undecidable.
Young [14] showed that this interval is neither an upper semilattice nor a lower
semillatice. Part of the reason for this is due to the fact that results about
m-degrees of c.e. sets can often be transferred to the interval [01, deg1(K)],
as the non-simplicity of the c.e. sets in this interval often allow m-reductions
to be turned into 1-reductions.

It was observed in [1] that the interval [01, deg1(K)] embeds into the c.e.
c-degrees; in fact, the interval [01, deg1(K)] of c.e. 1-degrees was shown to
be order-isomorphic with the interval [degc(id), degc(RK)] of c-degrees. Note
that degc(RK) is not the top c.e. c-degree; in fact, RK is far from being
universal amongst the c.e. c-degrees.

Definition 3.1 We call a c-degree a set-induced if there exists an infinite and
co-infinite set A ⊆ ω such that RA ∈ a.
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It was shown in [1] that every c-degree in the interval [degc(id), degc(RK)]
is set-induced. In fact, the same proof shows a little more; for completeness,
we reproduce the argument here:

Lemma 3.1 Suppose R is a non-computable equivalence relation and A ⊆ ω
is any set such that R ≤c RA. Then there exists a set B ⊆ ω such that
R ≡c RB.

Proof Fix a computable function f witnessing R ≤c RA. Since R is not
computable, rng(f) is an infinite c.e. set. We let {dn}n∈ω be a one-one
computable enumeration of rng(f). Let B = {n ∈ ω | dn ∈ A}. Notice that
this gives B ≤1 A, as expected.

To see that R ≤c RB , use the reduction (dn)−1 ◦ f . For the other direction
RB ≤c R, we map n 7→ the least x such that f(x) = dn.

Lemma 3.1 shows not only that every c-degree in the interval [degc(id), degc(RK)]
is set-induced, but also that:

Corollary 3.2 A non-computable c.e. c-degree a is set-induced if and only if
a ≤ degc(RK).

Before examining the question of downward density for c-degrees, we men-
tion one related result about c.e. 1-degrees. Recall the following definition:

Definition 3.2 If a < b are two elements of a partial order, then b is said
to be a strong minimal cover of a if the following is true of the partial order:
∀c ≤ b (c = b ∨ c ≤ a).

Lachlan [10] proved the existence of a minimal element of the interval
[01, deg1(K)]. In fact, a closer examination of the proof reveals that there
exists a c.e. 1-degree which is a strong minimal cover of 01 within the structure
of all c.e. 1-degrees:

Theorem 3.3 ([10, Lachlan]) There exists a non-simple and non-computable
c.e. set A such that for every set B ≤1 A, we have A ≡1 B or B is computable.

We now turn to the matter at hand in this section. The statement of
downward density for c-degrees says that given any non-computable c.e. c-
degree a, there exists a non-computable (c.e.) c-degree b < a. We show
that this fails by constructing two counter-examples: Theorem 3.7 provides a
“minimal” c.e. c-degree a 6≥ degc(id), while Theorem 3.9 provides a strong
minimal cover a of degc(id). However the existence of a strong minimal cover
of degc(id) in the c.e. c-degrees can already be deduced from Theorem 3.3:

Proposition 3.4 There is a c.e. set-induced c-degree a > degc(id) such that
a is a strong minimal cover of degc(id).

Proof Consider RA >c id where A is from Theorem 3.3. Now if R ≤c RA
then by Lemma 3.1 either R is computable, or else R ≡c RB for some B ≤1 A.
As B is not computable we have B ≥1 A, which means that R ≥c RA.

Thus our counter-examples to downward density in Theorems 3.7 and 3.9 will
be c.e. c-degrees that are not set-induced. It shall be convenient to isolate
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properties that imply that a certain c-degree is not set-induced. We identify
two conditions sufficient for a degree to be not set-induced.

The first and probably the easiest way to produce an equivalence relation
R that does not have set-induced c-degree is to make every R-class finite:

Lemma 3.5 If R is any non-computable equivalence relation where every
class is finite, then degc(R) is incomparable with every non-computable set-
induced c-degree.

Proof If RA ≤c R via a computable function f , then f(A) is a finite set
and hence A is computable. On the other hand if R ≤c RA and R is non-
computable, then by Lemma 3.1 there is a B such that R ≡c RB . Since
RB ≤c R, B is computable, a contradiction.

Unfortunately we will not use Lemma 3.5 to ensure that the ceers constructed
in Theorems 3.7 and 3.9 are not of set-induced degree. This is because it
is generally a messy task to construct non-trivial c.e. equivalence relations
where every class is finite. However, we will be able to easily do this for
Π0

1 equivalence relations. Therefore Lemma 3.5 will be used in the proof of
Theorems 4.1, 4.2 and 4.8 in the next section.

To ensure that the c.e. equivalence relations constructed in Theorems 3.7
and 3.9 are not of set-induced degree, we will introduce a second sufficient
condition:

Lemma 3.6 Let R be any non-computable c.e. equivalence relation with the
property that given any c.e. set W , if infinitely many R-classes contain an
element of W , then every R-class contains an element of W . Then R is a
counter-example to downward density. If additionally each R-class contains
at least two elements of each W which intersects infinitely many R-classes,
then there is no set-induced degree below degc(R).

Proof Fix R as above. Let S ≤c R via a computable function f . If rng(f)
intersects only finitely many R-classes then as R is c.e., S is computable.
Otherwise each R-class must contain an element of rng(f). Since R is c.e.,
this obviously allows us to show that R ≤c S.

Now suppose RA ≤c R via f for some co-infinite set A. Then rng(f) must
intersect infinitely many different R-classes. Hence each R-class will contain
at least two elements of rng(f). Since R is not computable, there are at least
two R-classes. This means that f(x) R f(y) for some pair x, y 6∈ A and x 6= y,
a contradiction.

In Theorem 3.7 we will use Lemma 3.6 to ensure that the degree of the con-
structed ceer is not above a set-induced degree.

Theorem 3.7 There is a non-computable c.e. c-degree a � degc(id) such
that a is not set-induced and for every b ≤ a, either b is computable or
b ≥ a.

Proof We are going to build a c.e. equivalence relation A and ensure the
following requirements:

R2e: A 6= ϕe.
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R2e+1: We intersects infinitely many A-classes ⇒ every A-class contains
at least two elements of We.

It should be clear that these requirements ensure the properties needed
for A. The R2e requirements ensure that A is not computable. Lemma
3.6 and the R2e+1 requirements together ensure that degc(A) is a counter-
example to downward density and does not bound a set-induced degree. Since
id ≡c Rω⊕∅, it follows that degc(A) � degc(id).

During the construction, the classes of A are ordered according to the
magnitude of the least element of the class. The n-th class of As is denoted
by Cn,s. Since A is c.e., the basic operation we will perform at each step s is
to collapse Cn and Cm for certain classes Cn and Cm. This has the obvious
meaning, i.e. define Cn,s+1 = Cn,s ∪ Cm,s if Cn is the smaller class, and
rearrange the names of all affected classes. To say that a class Cn is larger
than m (or another class Cm) means that n > m.

The reader might expect the construction of A to be carried out on a
priority tree using infinite injury, since one might want to guess if a certain
c.e. set W intersects infinitely many different A-classes or not. However, the
actions of the different requirements are sufficiently independent from each
other that we will construct A in an “injury-free” way.

We will always prevent Re from collapsing two classes smaller than e. Of
course, Re is still allowed to collapse two or more classes if at most one class
being collapsed is smaller than e.

We now describe the basic strategy for R2e+1. We act for R2e+1 at a stage
s > 2e+ 1 if at least 2s̄ many different As-classes contain an element of We,s,
where s̄ is the largest stage < s where we had acted for R2e+1. (Obviously,
if s̄ does not exist, set it to be equal to 2e + 1). At such a stage s, we act
for R2e+1 by doing the following. Let N be the least such that CN,s does not
yet contain at least two elements of We. If N > s̄ do nothing else. Otherwise
find the least pair M > M ′ > max{N, 2e+ 1} such that CM,s and CM ′,s each
contains an element of We; such a pair M ′ < M exists by assumption (note
that max{N, 2e+ 1} ≤ s̄). Collapse the classes CN , CM ′ and CM .

We now describe the basic strategy for R2e. At a stage s > 2e, we check
to see if:

• For every 〈i′, j′〉 < s, ϕ(i′, j′) ↓= 0 implies that i′ and j′ are in different
classes, and

• There exists some pair of numbers 〈i, j〉 < s such that ϕe(i, j) ↓= 0 and
i and j currently belong to different A-classes which are both larger
than 2e.

If this is true, collapse the classes containing i and j. Otherwise do nothing
else at this stage.

Construction of A: At the beginning, let A0 = id, i.e. Cn,0 = {n} for all n.
At stage s > 0, let all requirements Re for e < s act (if necessary) according
to the basic strategy above.

We now verify that all the requirements are met. First of all, note that
each class Cn can be collapsed with another class Cm infinitely often, and
so each class can be infinite. However, each pair of classes Cn and Cm are
collapsed with each other only finitely often. We now verify this fact. More
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specifically, suppose there is a pair n < m such that there are infinitely many
steps s in the construction in which Cn,s and Cm,s are collapsed with each
other. Fix a pair such that 〈n,m〉 is the least; recall that the standard pairing
function 〈·, ·〉 has the property that 〈x, y〉 < 〈x+ 1, y〉 and 〈x, y〉 < 〈x, y + 1〉
for all x, y.

Now by examining the construction, only finitely many requirements
(specifically, only those Re for e < m) can cause the current Cn and the
current Cm to be collapsed. Therefore, we can fix an e where Re does this in-
finitely often. This means that e cannot be even, because if Re ever collapses
any two classes, it must be that ϕ(i, j) = 0 and that i, j are put the same
A-class, which will block Re from doing anything else. Therefore, e has to be
odd.

By the minimality of the pair 〈n,m〉, there is a time after which every
class Ck for k ≤ n is eventually growing monotonically (as eventually no two
classes smaller or equal to n is collapsed). Formally, this means that there
exists a stage t0 such that for all s ≥ t0, and k ≤ n, we have Ck,s ⊆ Ck,s+1. If
Re collapses Cn and Cm after stage t0, then some class less than or equal to
Cn will now contain at least two elements of W . By monotonicity, eventually
every class less than or equal to Cn will contain at least two elements of W ,
and so makes it impossible for Re to collapse Cn and Cm (in fact, any class
larger than Cn) again.

This means that every A-class Cn eventually grows monotonically. This
implies that A will (at the end) consist of infinitely many different classes. We
now apply this to show that every requirement is satisfied. To show that R2e

is met, suppose that ϕe is total and correctly computes A. Fix any pair of
elements i, j belonging to the 2e+ 1-th and the 2e+ 2-th classes respectively.
Then ϕe(i, j) must be equal to 0. But this means that at all large enough
stages, R2e would want to act to collapse these two classes. Since this is
impossible, it must be because at all large enough stages, the first clause in
the basic strategy for R2e fails. This is also impossible if ϕe = A.

Now we argue that R2e+1 is met. Suppose that We intersects infinitely
many A-classes, and let CN be the smallest A-class which contains at most
one element of We. Eventually from some point on, the classes C0, C1, · · · , CN
will be growing monotonically. Since We intersects infinitely many A-classes,
there must be infinitely many stages where we will act for R2e+1. Eventually s̄
will be larger than N , and we will act to put two elements of We into CN .

We now turn to our second counter-example to downward density, this time
constructing a c.e. c-degree which is above degc(id). Unlike in the proof of
Theorem 3.7, we cannot directly use Lemma 3.6 to show that the constructed
c-degree is not set-induced, because we have to now make the constructed
degree bound degc(id). A modification is needed:

Lemma 3.8 (Modified Lemma 3.6) Let R be any non-computable c.e. equiva-
lence relation with the property that (2n, 2m) 6∈ R for every n 6= m. We call
an R-class even if it contains an even number, otherwise we call the R-class
odd.

Suppose R has the property that given any c.e. set W , if infinitely many
odd R-classes contain an element of W , then every R-class contains at least
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two elements of W . Then R is a counter-example to downward density and
the only set-induced degree below degc(R) is degc(id).

Proof Fix R as above. Let S ≤c R via a computable function f . If rng(f)
is lies in only finitely many odd R-classes then as R is c.e., S is computable.
Otherwise each R-class must contain an element of rng(f). Since R is c.e.,
this allows us as before to show that R ≤c S.

Now suppose RA ≤c R via f for some co-infinite set A. Then rng(f) must
intersect infinitely many different odd R-classes (otherwise RA ≡c id). Hence
each R-class will contain at least two elements of rng(f). Since R is not
computable, there are at least two R-classes. This means that f(x) R f(y)
for some pair x, y 6∈ A and x 6= y, a contradiction.

In Theorem 3.9 we will use Lemma 3.8 to ensure that the degree of the con-
structed ceer is not above a set-induced degree. Notice that the equivalence
relation with only finitely many distinct classes is not of set-induced degree.

Theorem 3.9 There is a c.e. c-degree a > degc(id) such that a is not set-
induced and for every b ≤ a, either b is computable or b ≥ a. In other words,
a is a strong minimal cover of degc(id).

Proof We will modify the proof of Theorem 3.7. We are going to build a
c.e. equivalence relation A and ensure that (2n, 2m) 6∈ A for every n 6= m.
We will ensure the following requirements:

R2e: A 6= ϕe.
R2e+1: We intersects infinitely many odd A-classes ⇒ every A-class con-

tains at least two elements of We.

It should be clear that these requirements ensure the properties needed for
A. The R2e requirements ensure that A is not computable. Lemma 3.8 and
the R2e+1 requirements together ensure that degc(A) is a counter-example
to downward density and is not of set-induced degree. Clearly id ≤c A by
sending x 7→ 2x.

We remark that we can satisfy R2e+1 (trivially) by ensuring that A only
has finitely many odd classes at the end; however it is for the sake of R2e that
we will deliberately ensure that we end up with infinitely many odd classes
at the end.

We follow closely the proof of Theorem 3.7. Let o(n, s) be the n-th odd
class at stage s, i.e. Co(n,s),s is an odd class and there are exactly n many
odd classes amongst C0,s, C1,s, · · · , Co(n,s),s.

We now describe the basic strategy for R2e+1. We act for R2e+1 at a stage
s > 2e + 1 if at least 2s̄ many different odd As-classes contain an element
of We,s, where s̄ is the largest stage < s where we had acted for R2e+1.
(Obviously, if s̄ does not exist, set it to be equal to 2e + 1). At such a
stage s, we act for R2e+1 by doing the following. Let N be the least such
that CN,s does not yet contain at least two elements of We (note that CN,s
might be an even class). If N > s̄ do nothing else. Otherwise find the least
pair M > M ′ > max {o(N, s), o(2e+ 1, s)} such that CM,s and CM ′,s each
contains an element of We and are both odd classes; such a pair M ′ < M
exists by assumption (note that max{N, 2e + 1} ≤ s̄). Collapse the classes
CN , CM ′ and CM .
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We now describe the basic strategy for R2e. At a stage s > 2e, we check
to see if:

• For every 〈i′, j′〉 < s, ϕ(i′, j′) ↓= 0 implies that i′ and j′ are in different
classes, and
• There exists some pair of numbers 〈i, j〉 < s such that ϕe(i, j) ↓= 0 and
i and j currently belong to different A-classes which are both larger
than o(2e, s) and are both odd classes.

If this is true, collapse the classes containing i and j. Otherwise do nothing
else at this stage.

Construction of A: At the beginning, let A0 = id, i.e. Cn,0 = {n} for all n.
At stage s > 0, let all requirements Re for e < s act (if necessary) according
to the basic strategy above.

We now verify that all the requirements are met. First of all, note that no
two even classes are ever collapsed together, and thus (2n, 2m) 6∈ A for every
n 6= m.

Next, we observe the following facts:

• Every A-class Cn eventually grows monotonically. This is because
o(n, s) ≥ n for every n and s, and so the same argument from Theorem
3.7 applies.
• For each n, there are only finitely many steps in the construction where

we collapse Cm,s and Co(n,s),s for some m < o(n, s). To see this, note
that this can only be done by some requirement Re for e < n. Fix some
odd Re which does this infinitely often. Since each class eventually
grows monotonically, this means that eventually Re will be collapsing
the three classes N < M ′ < M where N > n. This of course means
that M ′ and M are both larger than o(n, s) which is a contradiction.
• At the end, A must contain infinitely many odd classes. This follows

because of the preceding fact and also that if Cn,s is collapsed with
Cm,s and n < m, then Cm,s must be an odd class.

Since A contains infinitely many odd classes, the same argument from
before works to show that Re is met for every e.

Notice that if R ≤c S and S is a ceer, then so is R. Therefore we can
immediately conclude that any class of equivalence relations containing the
c.e. equivalence relations is not downwards dense:

Corollary 3.10 The class of Σ0
n equivalence relations, the n-c.e. equivalence

relations and the ω-c.e. equivalence relations are not downwards dense for
n ≥ 1.

4 Downward density and Π0
1 equivalence relations

We now turn to the structure of the Π0
1 c-degrees. In particular, we will

show in this section that downward density fails in the structure of Π0
1 c-

degrees. Before making our statements precise, we first make a few trivial
observations about the Π0

1 c-degrees. Recall that the computable c-degrees
form an initial segment of the Π0

1 c-degrees. In fact, each Π0
1 equivalence

relation has comparable c-degree with id: If R is Π0
1 and has infinitely many
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classes, then we can compute an infinite set of elements which are pairwise R-
inequivalent, allowing us to reduce id to R. On the other hand, if R is Π0

1 with
finitely many distinct classes then every element is eventually R-inequivalent
with all but one class, so it is computable.

Since every Π0
1 c-degree is comparable with degc(id), we will construct a

strong minimal cover of degc(id) which is not of set-induced degree.

Theorem 4.1 There exists a Π0
1 c-degree a2 > degc(id) such that a2 is a

strong minimal cover of degc(id), and where a2 is not of set-induced degree.

As we will later formally prove Theorem 4.2, a stronger version of this the-
orem, we not prove Theorem 4.1. Instead, we give some relevant definitions.
For any integer x ∈ ω and equivalence relation E, [x]E is defined to be the
equivalence class of E containing x; where the context is clear we simply write
[x]. (Note that [s] also used as a stage notation earlier, but there should be no
confusion). An equivalence relation E is said to be size-n if for every x, y such
that E(x, y) = 1, we have b xnc = b ync. In other words, each size-n equivalence
relation has #[x] ≤ n as well as an upper bound on the set [x] for every x.
Notice that id is a size-1 equivalence relation.

It is easy to see that a size-n Π0
1 equivalence relation E is computable iff

the function FE : x 7→ #[x]E is computable.
Our goal is to extend Theorem 4.1 to an infinite sequence degc(id) = a1 <c a2 <c a3 <c · · ·

such that aj+2 is a strong minimal cover of aj+1 for every j ∈ ω. In the next
theorem, Theorem 4.2, we give the formal proof for the existence of a2 and
a3. The infinite sequence degc(id) = a1 <c a2 <c a3 <c · · · is a straightfor-
ward generalization of Theorem 4.2 and there are no new mathematical ideas
needed apart from increased notational complexity.

Theorem 4.2 There exist Π0
1 c-degrees a2 and a3 which are not set-induced

such that degc(id) < a2 < a3, a2 is a strong minimal cover of degc(id), and
a3 is a strong minimal cover of a2.

Proof We shall construct a size-2 Π0
1 equivalence relation A2 and a size-3

Π0
1 equivalence relation A3 satisfying the following requirements.

Q : A2 ≤c A3.

R1
〈m,n〉 : Em ≤c A2 via fn ⇒ ∃ computable function g〈n,m〉 s.t.
A2 ≤c Em via g〈n,m〉 or Em is computable.

R2
〈i,j〉 : Ei ≤c A3 via fj ⇒ ∃ computable function h〈i,j〉 s.t. A3 ≤c Ei via
h〈i,j〉 or Ei ≤c A2.

P 1
e : FA2

6= ϕe.

P 2
e : A3 6≤c A2 via ϕe.

Here, we think of Em and Ei as the “pull-back” of A2 and A3 under fn and
fj respectively, and enumerate En and Em in the obvious way.

By Lemma 3.5, degc(A2) and degc(A3) are not set-induced. We fix the
starting valuesA2,0 = {(i, i), (2i, 2i+ 1), (2i+ 1, 2i) | i ∈ ω} andA3,0 = {(i, i), (3i, 3i+1), (3i+1, 3i+2), (3i+2, 3i), (3i+1, 3i), (3i+2, 3i+1), (3i, 3i+2) | i ∈ ω}.
Q is a global requirement and will be satisfied by ensuring that for every z,
[2z]A2

is isolated if and only if [3z]A3
is isolated for every z.
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Tree of strategies Effectively order the requirements (of order type ω). We will
carry out the construction on a finitely branching priority tree, where every
node at the same (next) level is assigned the same (next) requirement. The
outcomes of each node will be given later.

Notation For any node α, define α− to be β of the longest length such that
β ∗∞ ⊆ α. Of course, α− need not exist. During the construction, we define
δs to be the stage s approximation to the true path.

The length function for R1
〈m,n〉 is defined as l(〈m,n〉, s) := the largest k such

that for every 〈x, y〉 < k, we have fn,s(x) ↓, fn,s(y) ↓ and Em,s(x, y) = A2,s(fn,s(x), fn,s(y)).
The length function for R2

〈i,j〉 is defined similarly as L(〈i, j〉, s) := the

largest k such that for every 〈x, y〉 < k, we have fj,s(x) ↓, fj,s(y) ↓, and
Ei,s(x, y) = A3,s(fj,s(x), fj,s(y)).

Definition 4.1 (R1-expansionary stage) If α is assigned an R1 strategy, then we
call a stage s > 0 an α-expansionary stage if the following hold.

• α ⊂ δs.
• l(α, s) > l(α, t), where t is the largest α-expansionary stage less than s

(if it exists).
• # (rng(fα,s)− {0, 1, . . . , t}) > 2t.
• There exists an even number y such that:

– If α− exists and α− is assigned an R1 requirement then y ∈ Sα−
(this parameter Sα− will be defined later). If α− is assigned an
R2 requirement then 3y

2 ∈ Sα− .

– y > maxSβ for all β assigned an R1 requirement such that β <L α
or β ∗ fin ⊆ α.

– 3y
2 > maxSβ for all β assigned some R2 requirement such that
β <L α or β ∗ fin ⊆ α.

– y > xβ (the follower assigned to the positive strategy β) for each
β of higher priority than α assigned some P 1 requirement.

– y >
2xβ
3 for each higher priority β assigned some P 2 requirement.

– [y]A2,s
⊆ rng(fα,s).

– #[y]A2,s = 2.
• fα,s looks like a reduction on all the numbers above.

Definition 4.2 (R2-expansionary stage) If α is assigned an R2 strategy, then we
call a stage s > 0 an α-expansionary stage if the following hold.

• α ⊂ δs.
• L(α, s) > L(α, t), where t is the largest α-expansionary stage less than
s (if it exists).
• # (rng(fα,s)− {0, 1, . . . , t}) > 3t.
• There exists a number y divisible by 3 such that:

– If α− exists and α− is assigned an R1 requirement then 2y
3 ∈ Sα−

(this parameter Sα will be defined later). If α− is assigned an R2

requirement then y ∈ Sα− .
– 2y

3 > maxSβ for all β assigned an R1 requirement such that
β <L α or β ∗ fin ⊆ α.

– y > maxSβ for all β assigned some R2 requirement such that
β <L α or β ∗ fin ⊆ α.
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– 2y
3 > xβ (the follower assigned to the positive strategy β) for each

β of higher priority than α assigned some P 1 requirement.
– y > xβ for each higher priority β assigned some P 2 requirement.
– [y]A3,s

⊆ rng(fα,s).
– #[y]A3,s

= 3.
• fα,s looks like a reduction on all the numbers above.

Strategies of individual nodes We now describe the formal strategy for each re-
quirement. Clearly, all the parameters and values described below are to be
interpreted relative to the last stage at which a node is initialized.

Strategy for an R1 node α. Suppose the current stage s > 0 is an
α-expansionary stage. Let yα be the least y satisfying the conditions of
Definition 4.1. We fix {cα, c′α} ⊆ dom(fα) such that fα(cα) = yα and
fα(c′α) = yα + 1.

Our action for α is to enumerate yα into Sα, which is a collection of all
such ys chosen by α in this way. Definition 4.1 ensures that at s, there are
at least t + 1 many distinct equivalence classes in rng(fα) which are larger
than t. Here we let t′ < t be the previous two α-expansionary stages before s
(if s is the first or second expansionary stage, we give a separate description
below). We know there are at most yα,t < t many elements strictly between
the class [yα,t′ ] and [yα,t] , where yα,t′ , yα,t are the elements enumerated into
Sα at stage t′ and t.

We isolate every z strictly between [yα,t′ ] and [yα,t]. That is, for every z
with max[yα,t′ ] < z < min[yα,t], we make z isolated. Also isolate

[
3b z2c

]
A3

for

each such z. We now have kα < yα,t < t many isolated points there. Pick kα
many elements bα,1, bα,2, · · · , bα,kα from dom(fα) all of which are in distinct
E-classes, and which are distinct from {cα, c′α}, and all previous values in
rng(gα). This exists because fα looks like a reduction, and kα < t. Note that
if b′ is a previous value in rng(gα) then fα(b′) converges at stage t and hence
fα(b′) < t (by the usual convention).

Now define gα(max[yα,t′ ] + i) = bα,i, i = 1, 2, . . . , kα, gα(yα) := cα and
gα(yα + 1) := c′α.

For clarity, we now describe our actions at the first and second α-
expansionary stages. If the current stage s is the first α-expansionary
stage after an initialization, define yα,s as in Definition 4.1, and gα(yα) and
gα(yα + 1), and do nothing else. Note that we should not allow α to isolate
any number less than yα,s, as these classes might be restrained by a higher
priority requirement. If s is the second α-expansionary stage after an ini-
tialization, define yα,s, gα(yα) and gα(yα + 1) as usual. Do not isolate any
number less than [yα,t], and define gα(i) as above for every i < min[yα,t],
mapping gα(i) = gα(i′) iff i and i′ are in the same class.

If s isn’t α-expansionary, do nothing for α.
The outcomes of α on the priority tree are:

fin: Taken each time α is visited and the stage is not α-expansionary.
∞: This outcome is taken at every α-expansionary stage.

Strategy for an R2 node α. This works similarly to an R1 node. Suppose
the current stage s > 0 is an α-expansionary stage. Let yα be the least y
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satisfying the conditions of Definition 4.2. We fix {cα, c′α, c′′α} ⊆ dom(fα)
such that fα(cα) = yα, fα(c′α) = yα + 1 and fα(c′′α) = yα + 2.

Our action for α is to enumerate yα into Sα. We isolate every z strictly
between [yα,t′ ] and [yα,t] (these are A3-classes). Also isolate

[
2b z3c

]
A2

for

each such z. We now have kα < yα,t < t many isolated points there. Pick kα
many elements bα,1, bα,2, · · · , bα,kα from dom(fα) all of which are in distinct
E-classes, and which are distinct from {cα, c′α, c′′α}, and all previous values in
rng(hα). Again, this exists for the same reasons as above.

Now define hα(max[yα,t′ ] + i) = bα,i, i = 1, 2, . . . , kα, hα(yα) := cα,
hα(yα + 1) := c′α and hα(yα + 2) := c′′α. At the first two α-expansionary
stages, we follow the description above for R1.

If s isn’t α-expansionary, do nothing for α.
The outcomes of α on the priority tree are:

fin: Taken each time α is visited and the stage is not α-expansionary.
∞: This outcome is taken at every α-expansionary stage.

Strategy for a P 1 node α. If the witness xα is not yet defined, check if there
is a least even number xα at the current stage s > 0 such that:

• If α− exists and is assigned an R1 requirement then xα ∈ Sα− .
• If α− exists and is assigned an R2 requirement then 3xα

2 ∈ Sα− .

• xα > maxSβ for all β assigned an R1 requirement, such that β <L α
or β ∗ fin ⊆ α.

• 3xα
2 > maxSβ for all β assigned an R2 requirement, such that β <L α

or β ∗ fin ⊆ α.
• xα > xβ for all P 1 nodes β of higher priority.
• 3xα

2 > xβ for all P 2 nodes β of higher priority.
• #[xα]A2,s = 2.

If these conditions are met, pick this number xα as the follower. (Here ϕα
refers to ϕe assigned to the node α).

Otherwise, xα has already been picked prior to the current stage. If this
is so, check if ϕα,s(xα) ↓= 2; recall that P 1 wants to diagonalize against
FA2

being computable. If no, do nothing else. If yes, isolate all members of
the class [xα]A2,s

and
[
3xα
2

]
A3,s

. Declare diagonalization successful and never

again attempt diagonalization (unless α is initialized).
The outcomes of α on the priority tree are:

w: Diagonalization is not yet successful.
s: Diagonalization is successful.

Strategy for a P 2 node α. If the witness xα is not yet defined, check if there
is a least number xα divisible by 3 at the current stage s > 0 such that:

• If α− exists and is assigned an R1 requirement then 2xα
3 ∈ Sα− .

• If α− exists and is assigned an R2 requirement then xα ∈ Sα− .
• 2xα

3 > maxSβ for all β assigned an R1 requirement, such that β <L α
or β ∗ fin ⊆ α.

• xα > maxSβ for all β assigned an R2 requirement, such that β <L α
or β ∗ fin ⊆ α.

• 2xα
3 > xβ for all P 1 nodes β of higher priority.
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• xα > xβ for all P 2 nodes β of higher priority.
• #[xα]A3,s

= 3.

If these conditions are met, pick this number xα as the follower.
Otherwise, xα has already been picked prior to the current stage. If this

is so, check if ϕα(xα) ↓, ϕα(xα + 1) ↓, ϕα(xα + 2) ↓, and for all i, j ≤ 2,
A2(ϕα(xα+ i), ϕα(xα+j)) = 1. If no, do nothing else. If yes, isolate all mem-
bers of the class

[
2xα
3

]
A2,s

and [xα]A3,s
. Declare diagonalization successful

and never again attempt diagonalization (unless α is initialized).
The outcomes of α on the priority tree are:

w: Diagonalization is not yet successful.
s: Diagonalization is successful.

Construction At stage s, define in the usual way the approximation to the true
path δs of length s as the sequence of nodes eligible to act and having the
correct guesses about outcomes at stage s. Initialize all nodes β to the right
of δs, i.e., initialize the functions gβ , hβ , the set Sβ and the witness xβ .

Verification Denote by δ the true path of the construction, i.e. δ = lim inf
s→∞

δs.

Now we are going to show that every node α ⊂ δ ensures the satisfaction of
the requirement assigned to it. Fix α ⊂ δ, and fix a stage s0 such that for
every s > s0, δs 6<L α.

First of all, we check that the global requirement Q is met. It is easy to
see that every step in the construction isolates [2k]A2

iff it isolates [3k]A3
, for

each k. Thus, each A3 class has size 1 or 3. In this case, we clearly have
A2 ≤c A3 via the reduction 2k 7→ 3k, 2k + 1 7→ 3k + 1.

Fact 4.3 Suppose α ∗ ∞ ⊆ β. If α is an R1-node and β is an R2-node and
z ∈ Sβ then 2z

3 ∈ Sα. If α is an R2-node and β is an R1-node and z ∈ Sβ
then 3z

2 ∈ Sα. If α and β are R-nodes of the same type then Sβ ⊆ Sα.

Proof Easy to check (by a straightforward induction on |β|).

Lemma 4.4 Each P 1 requirement succeeds.

Proof Assume that α is assigned a P 1 requirement. Suppose α is never able
to find a suitable xα. The first two conditions do not pose a problem because
if α− exists, then as α− ∗ ∞ ⊂ δ, there will be infinitely many elements z
enumerated into Sα− . Furthermore for each new z that α− adds to Sα− , we
must have #[z]A2 = 2 and #

[
3z
2

]
A3

= 3 or vice versa. The third and fourth

conditions also do not pose a problem because there are only finitely many
such β, and none of them will increase Sβ after stage s0. The fifth and sixth
conditions are similar, as a P -node β along the true path will only pick finitely
many different xβ . Thus eventually xα must be picked by α (and never again
redefined).

Now suppose α picks its final xα at some stage t > s0. It is not hard
to see that after stage t, no node other than α itself will be able to isolate
[xα]: For an R-node β extending or to the right of α, use the fact that β
is prevented from isolating anything less than the first β-expansionary stage.
For an R-node β such that β ∗ ∞ ⊆ α, apply Fact 4.3 and the fifth bullet of
the strategy.
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Therefore, if ϕα(xα) 6= 2, then α never acts and so obviously FA2
6= ϕe.

Otherwise if ϕα(xα) = 2 we will isolate [xα] making FA2
(xα) = 1.

Lemma 4.5 Each P 2 requirement succeeds.

Proof Assume that α is assigned a P 2 requirement. As in the proof of
Lemma 4.4, α must eventually be able to define a final xα. After this is picked
by α, no node other than α itself is able to isolate [xα]. Suppose ϕα(xα + i) ↓
for i = 0, 1, 2. If A2(ϕα(xα + i), ϕα(xα + j)) = 0 for some i, j = 0, 1, 2, then α
will never do anything to [xα], which means that A3(xα + i, xα + j) = 1. On
the other hand, if A2(ϕα(xα + i), ϕα(xα + j)) = 1 for every i, j, then as each
A2-class has size at most 2, this means that ϕα(xα+ i) = ϕα(xα+ j) for some
i 6= j. However α will isolate [xα] which means that A3(xα + i, xα + j) = 0.
In either case, ϕα is not a possible reduction for A3 ≤c A2.

Lemma 4.6 Each R1 requirement succeeds.

Proof Assume that α is assigned an R1 requirement, and that fn witnesses
Em ≤c A2 (otherwise there is nothing to prove). In particular, fn is total,
Em(x, y) = A2(fn(x), fn(y)) for every x, y and l(α, s)→∞.

Suppose that α ∗ fin ⊂ δ, hence there is a final α-expansionary stage.
Then we claim that Em is computable. Since there are only finitely many
expansionary stages, hence either rng(fα) is finite, or the number y cannot
be found after the final α-expansionary stage. Obviously if rng(fα) is finite,
then Em is computable. So assume that y cannot be found. Since Sα− is
infinite, and maxSβ and xβ in the second through fifth conditions for y in
Definition 4.1 are all eventually finite, the only thing preventing y from being
found is if for almost every z, z′ ∈ rng(fα) we have A2(z, z′) = 0. (Recall that
α− will isolate every z 6∈ Sα−). But this of course means that E is computable
(in fact, E ≡c id).

Now suppose that α ∗∞ ⊂ δ. Hence, Sα is infinite. Suppose s1 > s0 is the
first α-expansionary stage after the final initialization to α. We claim that
no strategy can isolate any z < yα,s1 after stage s1. (Note that yα,s1 is the
smallest element of Sα). Again we apply Fact 4.3 and the fifth bullet of the
strategy, and note that every node of lower priority than β is also initialized
when β is initialized. This means that for every z < yα,s1 , we have [z]s1 = [z].

We shall argue that gα is total and A2(x, y) = Em(gα(x), gα(y)) for every
x, y. Clearly gα is total because Sα is infinite. There are three possibilities for
x. First, if max[yα,t′ ] < x < min[yα,t] at some α-expansionary stage s, where
t′ ≥ s1, then the construction will make x isolated. The construction at stage
s defines gα(x) = bα,j for some bαj found at the α-expansionary stage s, and

it is clear that g−1α ([bα,j ]) = {x}. Therefore, A2(x, y) = Em(gα(x), gα(y)) = 0
no matter what y is.

Let’s assume now that x < yα,s1 . Now at the second expansionary
stage, we will define gα(x) = bα,j for some bαj found at the second α-
expansionary stage. Clearly if y ≥ yα,s1 then y 6∈ [x], and we have
A2(x, y) = Em(gα(x), gα(y)) = 0. On the other hand if y < yα,s1 then
the construction at the second α-expansionary stage defines gα(y) = bα,k
where k = j iff [y]s1 = [x]s1 . However, by our comments above, [x]s1 = [x]
and [y]s1 = [y] and so we certainly have A2(x, y) = Em(gα(x), gα(y)).
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Finally let’s assume that x = yα,s or x = yα,s + 1 for some α-expansionary
stage s. Without loss of generality, assume x = yα,s. The construction defines
gα(x) = cα (for the value found at s), in particular, fα(gα(x)) = x. If y 6= yα,s
or yα,s+1 then of course A2(x, y) = Em(gα(x), gα(y)) = 0. If y = yα,s+1 then
fα(gα(y)) = y as well, and soA2(x, y) = A2 (fα(gα(x)), fα(gα(y))) = Em(gα (x), gα(y)).

Lemma 4.7 Each R2 requirement succeeds.

Proof Assume that α is assigned an R2 requirement, and that fα witnesses
Ei ≤c A3. In particular, fα is total, Ei(x, y) = A3(fα(x), fα(y)) for every x, y
and L(α, s)→∞.

If α ∗ ∞ ⊂ δ then we follow the proof of Lemma 4.6 to show that hα is
total and witnesses that A3 ≤c Ei. So we assume that α ∗ fin ⊂ δ. Hence
there is a final α-expansionary stage. We claim that Ei ≤c A2. Again since
there are only finitely many expansionary stages, either rng(fα) is finite, or
the number y cannot be found after the final α-expansionary stage. Obviously
if rng(fα) is finite, then Ei is computable. So assume that y cannot be found.
As before, the only thing preventing y from being found is if for almost every
number z, we have that # ([z]A3

∩ rng(fα)) ≤ 2.
We first argue that Ei ≤c A2tid. Recall that given equivalence relations S

and T we defined StT = {(2x, 2y) | S(x, y) = 1}∪{(2x+1, 2y+1) | T (x, y) = 1}.
Fix y0 such that # ([z]A3

∩ rng(fα)) ≤ 2 for every z ≥ y0, and consider a
stage t after which A3 � y0 is stable. Define H to be the following partial
computable function. Assume that at every stage s > t, exactly one new
element zs enters rng(fα) (this set was assumed to be infinite). If zs < y0
and H is not yet defined on any element of [zs], then take H(zs) = 2s + 1.
Otherwise take H(zs) = H(zs′) where t < s′ < s is such that [zs] = [zs′ ].
(Note that it is not important at what stage this is measured, as we assumed
that [z] is stable after stage t if z < y0). Suppose zs ≥ y0. If H(z) is
not yet defined for any z such that b z3c = b zs3 c then define H(zs) = 4b zs3 c.
If H(z) is already defined for exactly one z such that b z3c = b zs3 c, define
H(zs) = 4b zs3 c + 2. Otherwise H(z) is already defined for two z such that
b z3c = b zs3 c, and in this case we define H(zs) = 2s+ 1.

Now we claim that H ◦ fα is total and witnesses Ei ≤c A2 t id. It
is clearly total since dom(H) = rng(fα). Now fix x, y. We shall ar-
gue that Ei(x, y) = (A2 t id) (H(fα(x)), H(fα(y))). First suppose that
fα(x) < y0, then we would have defined H(fα(x)) = 2s + 1 for some s. If
fα(y) is in a different class than fα(x), then obviously Ei(x, y) = 0, and
H(fα(y)) is either even or of the form 2v + 1 for some v 6= s. In either
case, Ei(x, y) = (A2 t id) (H(fα(x)), H(fα(y))) = 0. On the other hand if
fα(y) < y0 and is in the same class as fα(x), then Ei(x, y) = (A2 t id) (H(fα(x)), H(fα(y))) = 1.

Now if fα(x), fα(y) are both ≥ y0 and b fα(x)3 c 6= b
fα(y)

3 c then it is easy
to check that Ei(x, y) = (A2 t id) (H(fα(x)), H(fα(y))) = 0. On the other

hand suppose b fα(x)3 c = b fα(y)3 c. If H(fα(x)) and H(fα(y)) are both even
then we are okay, because recall that [2k]A2

is isolated iff [3k]A3
is isolated

by the construction, for every k. On the other hand if H(fα(x)) is odd, then

this means that 3b fα(x)3 c, 3b
fα(x)

3 c + 1 and 3b fα(x)3 c + 2 are all in rng(fα),



On the degree structure of equivalence relations 25

which means that these elements must be isolated by the construction. This
means that Ei(x, y) = (A2 t id) (H(fα(x)), H(fα(y))) = 0. This shows that
Ei ≤c A2 t id.

Now we check that A2tid ≤c A2. By Lemma 4.4 there are infinitely many
z such that z is A2-isolated. Fix an infinite computable set U containing only
A2-isolated points, let U = {u0 < u1 < · · · }. Define G by G(2n+ 1) = u2n+1

for each n, and G(2n) = u2n if n ∈ U , and G(2n) = n otherwise. First
of all G is clearly injective. It is also easy to check that G witnesses that
A2 t id ≤c A2.

This ends the proof of Theorem 4.2.

As mentioned earlier, our goal is to extend Theorem 4.2 to an infinite sequence
degc(id) = a1 <c a2 <c a3 <c · · · :

Theorem 4.8 There exist Π0
1 c-degrees degc(id) = a1 <c a2 <c a3 <c · · ·

such that ak+2 is a strong minimal cover of ak+1 for every k. All constructed
degrees are not set-induced.

Proof This is a straightforward generalization of Theorem 4.2. We want to
construct, for each k > 1, a size-k Π0

1 equivalence relation Ak. By Lemma
3.5, degc(Ak) is not set-induced.

We again begin with fix Ak,0 = {(ki+j1, ki+j2) | 0 ≤ j1, j2 < i}. Naturally
we wish to satisfy the requirements

Qk: Ak−1 ≤c Ak, for 2 ≤ k ≤ n.

Rk
〈m,n〉: Em ≤c Ak via fn ⇒ ∃ computable function g

(k)
〈n,m〉 s.t. Ak ≤c Em

via g
(k)
〈n,m〉 or Em ≤c Ak−1, for 2 ≤ k ≤ n.

P 2
e : fA2 6= ϕe.

P k
e′ : Ak 6≤c Ak−1 via ϕe′ , for 3 ≤ k ≤ n.

The strategy for Qk is similar as before. We ensure that for every x, k and
k′, we isolate [kx]Ak iff we isolate [k′x]Ak′ , and we keep #[x]Ak = 1 or k.

This obviously ensures the global requirements are met. Rkα works similarly
as before. It measures rng(fα), putting numbers y into Sα whenever it finds
a new y such that #[y] = k and [y] ⊆ rng(fα) (amongst other conditions).
It then isolates every class not in Sα (except for those blocked by higher
priority requirements), as well as the corresponding classes in the other Ak′ ,
as required by the Q requirements. The P k-requirements uses a class [xα]
where #[xα] = k to diagonalize. Since classes of Ak−1 have size at most
k − 1, this is achieved by preventing [xα] from breaking up while waiting for
ϕα to converge. There are no additional difficulties, and we leave the formal
verification of the proof to the reader.

5 Upward density

We now turn to the question of upward density. In Sections 3 and 4 we showed
that downward density fails in the classes of c-degrees being considered in this
paper. In this section, we will show that in contrast, upward density holds in
these classes. We will first prove this for the Π0

1 c-degrees.
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Theorem 5.1 Let u be the universal Π0
1 c-degree, and a be any Π0

1 c-degree
such that a < u. Then there exists two incomparable Π0

1 c-degrees b0 and b1
such that a < b0, b1 < u.

Proof Fix U ∈ u and A ∈ a. We will build B0 and B1 satisfying the
following requirements:

P2e : B0 6≤c A tB1 via ϕe,

P2e+1 : B1 6≤c A tB0 via ϕe.

Obviously we will take b0 = degc(A tB0) and b1 = degc(A tB1).
The basic strategy for P2e will be a version of the Sacks coding strategy.

The idea is that if ϕe(x) goes inside the even integers for infinitely many
x, then by coding U inside B0 and on the set of these xs, we can force a
disagreement to appear, showing that B0 �c A via ϕe. On the other hand if
infinitely many ϕe(x) go inside the odd integers, then it will be easy for us to
ensure that B0 �c B1 via ϕe, since we are building both sets B0 and B1.

We now describe the basic strategy of P2e. We begin by takingBi,0 = {(〈e, x〉, 〈e, y〉) | e, x, y ∈ ω}
for i = 0, 1. Denote Ce = {〈e, x〉 | x ∈ ω}; thus our starting value of Bi is
the disjoint union of Ce × Ce for all e. As the construction proceeds we will
refine Bi on Ce.

At stage s of the construction, we act for P2e by taking the following steps.
If P2e has just been initialized we pick a fresh value for i(2e) and begin work
for B0 inside Ci(2e), and set M = 〈i(2e), 0〉. Note that at this point as i(2e) is

freshly picked, we haveB0 � Ci(2e) =
{

(x, y) ∈ B0 | x, y ∈ Ci(2e)
}

= Ci(2e)×Ci(2e).
Now suppose that i(2e) is defined and k is least such that f2e(k) ↑. Check

if ϕe (M) ↓ and ϕe currently looks like a reduction on the elements ≤ M . If
not, we keep f2e(k) ↑ and isolate the next element of Ci(2e) larger than M
with respect to B0. If the conditions are met, then our action depends on the
following cases:

• M is marked. First of all check to see if ϕe is injective on Ci(2e) so far,
and if not, we get an easy win by isolating every element of Ci(2e) with
respect to B0, and do nothing else for this requirement.

Otherwise we setB0 (f2e(k − 1),M) = 1−(AtB1) (ϕe (f2e(k − 1)) , ϕe (M)).
Note that we can do this because M is marked means that we have
kept B0 (f2e(k − 1),M) = 1 up till now. Initialize all lower priority
requirements, and isolate all the rest of Ci(2e) with respect to B0. Do
nothing else for this requirement.

• The following three conditions hold:
– M is not marked, and
– ϕe (M) is odd, and
– either P 6∈ Ci(e′) for any e′ < 2e, or P is isolated, or ϕe (M) = ϕe (M ′)

for some M ′ < M and M ′ ∈ Ci(2e), and where P = ϕe(M)−1
2 .

In this case we set f2e(k) = M and redefineM to be the next element
of Ci(2e) larger than f2e(k) and not yet isolated. We mark the new M
and isolate it from every element except for f2e(k).
• M is not marked and ϕe(M) is even. Then we set f2e(k) = M

and redefine M to be the next element of Ci(2e) larger than f2e(k)
and not yet isolated. We update the coding of U into B0 by
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setting Us(i, j) = B0,s (f2e(i), f2e(j)) for all i, j ≤ k, and set
Us(i, k + 1) = B0,s (f2e(i),M) = B0,s (M,f2e(i)) for all i ≤ k and
for the new M . Again we can do this because the new value of M is
B0-related to f2e(i) for all i ≤ k just before this step.

• Otherwise. We isolate M and redefine it to be the next element of
Ci(2e) not yet isolated. Follow the previous case to update the coding
of U into B0 up to and including this new M (this new M is now the
intended image for k + 1).

The basic strategy for P2e+1 is similar to the one for P2e, except we reverse
the roles of B0 and B1. When a requirement is initialized, we reset the param-
eters f , i and M associated with the requirement. We isolate all remaining
elements of the previous column Ci associated with the requirement.

Construction of B0 and B1: As indicated above, at the beginning we begin
by taking Bi,0 = {(〈e, x〉, 〈e, y〉) | e, x, y ∈ ω} for i = 0, 1. At stage s > 0,
let all requirements Re for e < s act in order according to the basic strategy
above.

Verification: We now verify the construction works. It is clear that each Re
is initialized only finitely often. We first check that the constructed objects
are equivalence relations:

Lemma 5.2 B0 and B1 are equivalence relations.

Proof The only way for something to go wrong is for some column to be not
transitive. So let’s check that every column Ck is transitive with respect to
B0 (similarly for B1):

We initially start with the full relation on Ck. If Ck is never picked by
any requirement then it stays full. Otherwise some requirement P2e begins
work in Ck. Then P2e will assign f2e(0), f2e(1), · · · and begin isolating every
other element until initialized. Additionally it also copies U � domf2e into
B0 � rngf2e (unless the last element is marked). Since for every m, there
are cofinitely many s such that Us � m is transitive, we can assume that
B0 � rngf2e is always transitive.

At the end, we have the following possibilities:

• f2e is total. Then Ck will contain rngf2e and infinitely many isolated
elements, where rngf2e ≡c U .

• domf2e is finite, and we eventually go through infinitely many different
M . Then Ck contains a (copy of a) finite initial segment of U as well
as infinitely many isolated elements.

• domf2e is finite, and we eventually settle on a final M , where k is the
largest element of domf2e. If M is marked then M is in the same
class as f2e(k) and Ck contains the finite initial segment of U � k.
Otherwise ifM is not marked then Ck contains the finite initial segment
of U � k + 1. Finally if R2e is initialized or if we act one last time under
the first case of the basic strategy, then Ck is also transitive.

Lemma 5.3 Each Re acts only finitely often, that is, it extends domfe and
redefines M only finitely often.
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Proof We proceed for R2e, the other case is symmetric. Since R2e is ini-
tialized finitely often, fix the final Ci(2e) assigned to R2e. Suppose Re acts
infinitely often. Hence no element is ever marked by R2e.

Suppose the third case is taken infinitely often by R2e. Hence f2e is total.
Furthermore, as R2e never gets stuck waiting forever, this means that ϕe ◦f2e
is total, and provides a reduction from U to A t B1. Since the range of
this reduction is contained in the even integers, this means that U ≤c A, a
contradiction.

Now suppose the fourth case is taken cofinitely often by R2e. In this case
we will discover, for some e′ < 2e, an infinite sequence M0 < M1 < · · · of
elements inside Ci(2e) such that for every j 6= j′,

• ϕe(Mj) is odd,

• ϕe(Mj)−1
2 ∈ Ci(e′),

• ϕe(Mj)−1
2 is picked by Re′ to be in rngfe′ or a value of M ,

• ϕe(Mj) 6= ϕe(Mj′).

However this is impossible since by the induction hypothesis, Re′ only goes
through finitely many different values of M and domfe′ .

Lemma 5.4 Each Re is satisfied.

Proof Assume that ϕe witnesses that B0 ≤c A t B1. By Lemma 5.3 R2e

eventually stops acting, therefore, the final action taken by R2e must be un-
der the first case. If the final action was due to the fact that we discov-
ered that ϕe is not injective on Ci(2e), then clearly we get a contradiction.
Thus we can assume that the final action under the first case was to set
B0 (f2e(k − 1),M) = 1−(AtB1) (ϕe (f2e(k − 1)) , ϕe (M)). Suppose s1 is the
stage where we took the final action, and s0 < s1 was the earlier stage where
R2e marked M . It remains to verify that (A t B1) (ϕe (f2e(k − 1)) , ϕe (M))
will never change after s1, and we get the desired contradiction. This can
only be possible if (ϕe (f2e(k − 1)) , ϕe (M)) ∈ As1 tB1,s1 .

At the earlier stage where we marked M we must have discovered that

ϕe (f2e,s1(k − 1)) is odd and that either
ϕe(f2e,s1 (k−1))−1

2 6∈ Ci(e′) for any

e′ < 2e, or
ϕe(f2e,s1 (k−1))−1

2 is isolated. If the latter holds then we must in
fact have ϕe (f2e,s1(k − 1)) = ϕe(M).

So we may suppose that
ϕe(f2e,s1 (k−1))−1

2 6∈ Ci(e′) for any e′ < 2e at
stage s0. At stage s1, if v 6= i(e′) for any e′, then Cv will never be as-
signed to any requirement and so is never modified by the construction, where
ϕe(f2e,s1 (k−1))−1

2 ∈ Cv. Therefore we can assume that v = i(e′) at stage s1.
Since no higher priority requirement is initialized between s0 and s1, we must
have e′ ≥ 2e. We do not have to worry about e′ = 2e because Ci(2e) must
be the full relation with respect to B1, since it is already associated with R2e

working for B0. Thus the last case to consider is when e′ > 2e. However Re′

is initialized at stage s1, which means that there can be no more changes to
Cv with respect to B1 after stage s1.

This ends the proof of Theorem 5.1.
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It is easy to modify the proof of Theorem 5.1 for the other classes being
studied. Therefore, we have:

Corollary 5.5 The classes of Π0
1, Σ0

n, n-c.e. and ω-c.e. equivalence relations
are upwards dense, for n ≥ 1.

Proof In each class, there is a universal member U . We apply an appropriate
version of the Sacks coding strategy, and leave the proof to the reader.
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Note

1. Note that S and Ee are actually equal instead of merely ≡c. This is the best
kind of enumeration one can hope for.
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