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Abstract. In her 1990 thesis, Ahmad showed that there is a so-called “Ahmad pair”, i.e., there are incomparable Σ0
2-enumeration

degrees a0 and a1 such that every enumeration degree x < a0 is ⩽ a1. At the same time, she also showed that there is no
“symmetric Ahmad pair”, i.e., there are no incomparable Σ0

2-enumeration degrees a0 and a1 such that every enumeration degree
x0 < a0 is ⩽ a1 and such that every enumeration degree x1 < a1 is ⩽ a0.

In this paper, we first present a direct proof of Ahmad’s second result. We then show that her first result cannot be extended to
an “Ahmad triple”, i.e., there are no Σ0

2-enumeration degrees a0, a1 and a2 such that both (a0, a1) and (a1, a2) are an Ahmad
pair. On the other hand, there is a “weak Ahmad triple”, i.e., there are pairwise incomparable Σ0

2-enumeration degrees a0, a1
and a2 such that every enumeration degree x < a0 is also ⩽ a1 or ⩽ a2; however neither (a0, a1) nor (a0, a2) is an Ahmad pair.

Keywords: enumeration degrees, Ahmad pairs, Ahmad triples

1. Introduction
Enumeration reducibility is a positive reducibility between sets of natural numbers. It arises naturally as a notion

of relative computability for partial functions and has applications in effective mathematics, especially in computable
topology, in computable model theory and in group theory.

We associate an algebraic presentation of this reducibility as a degree structure. The structure of the enumeration
degrees is a partial order with least upper bound and a jump operator (just like its more famous cousin, the structure
of the Turing degrees). In this article we focus on structural properties of its local substructure—the degree structure
of the enumeration degrees of the Σ0

2-sets, which can be defined also as those enumeration degrees below the
degree 0′e. Here, 0′e is the enumeration degree of the complement K of the halting problem K = {e | φe(e) ↓ }.
The Σ0

2-enumeration degrees can be viewed as the counterpart in enumeration reducibility of either the c.e. Turing
degrees or the Turing degrees ⩽ 0′, i.e., the ∆0

2-Turing degrees. Both analogies are imperfect, but reasonable in
certain respects. We refer the reader to [14] for more information on current trends in research on the enumeration
degrees.

One of the common questions about a degree structure viewed as a partial order is that of the complexity of its
first-order theory. For most degree structures commonly being considered, the theory turns out to be as complicated
as possible: global structures like the Turing degrees or the enumeration degrees have theories that are computably
isomorphic to the theory of second-order arithmetic, while local structures usually have theories that are equivalent
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to the theory of first-order arithmetic. We then wonder about the fragments of the first-order theory, identified by
restricting sentences to a certain quantifier complexity. We find that decidability breaks down at level 3, i.e., the
∃∀∃-fragment is not decidable. On the other hand the ∃- and often even the ∀∃-fragment is decidable.

For the Σ0
2-enumeration degrees, the first of these questions has been completely settled: The full first-order

theory was shown to be undecidable by Slaman and Woodin [13], and equivalent to full first-order arithmetic by
Ganchev and Soskova [4].

As for the second question, the ∃-fragment is easily seen to be decidable, whereas Kent [5] showed the ∃∀∃-frag-
ment to be undecidable. The decidability of the ∀∃-fragment remains open.

The decidability of the ∀∃-fragment can be rephrased algebraically as (uniformly effectively) deciding the fol-
lowing

Question 1.1. For any given finite partial orders P and Qi ⊇ P (for i ⩽ n), can any embedding of P into the
Σ0

2-enumeration degrees be extended to an embedding of Qi for some i ⩽ n (where i may depend on the particular
embedding of P)? (Without loss of generality, we will from now on assume that any finite partial order is bounded,
i.e., has a least element 0 and a greatest element 1.)

Two major subproblems of Question 1.1 have been shown to be decidable:

• Lempp, Slaman and Sorbi [8] showed that the above question is decidable for n = 0, i.e., given any finite
partial orders P ⊆ Q, it is decidable whether any embedding of P into the Σ0

2-enumeration degrees can be
extended to an embedding of Q.

• Lempp and Sorbi [10] showed that all finite lattices can be embedded, even preserving 0 and 1. (The lattice
embeddings question can be seen as a disjunction of extending embeddings to certain one-point extensions Qi

of a finite lattice P viewed as a partial order.)

As noted earlier, the Σ0
2-enumeration degrees are often compared to the c.e. Turing degrees. Both are dense

structures with full first-order theories as complicated as the theory of first-order arithmetic. For the c.e. Turing
degrees this was proved by Slaman and Woodin (unpublished, see Nies, Shore and Slaman [11]); for the c.e. Turing
degrees we have that in addition the ∃-fragment is decidable, whereas Lempp, Nies and Slaman [7] showed the
∃∀∃-fragment to be undecidable. However, the lattice embeddings problem for the c.e. Turing degrees remains one
of the main open problems dating back to the 1960’s (see Lempp, Lerman and Solomon [6] for the most recent
update), and thus the decidability of the ∀∃-theory of the c.e. Turing degrees remains wide open as well.

An important algebraic difference between the c.e. Turing degrees and the Σ0
2-enumeration degrees was dis-

covered by Ahmad in her Ph.D. thesis [1] (see Ahmad and Lachlan [2, Corollary 3.2]): There are incomparable
Σ0

2-enumeration degrees a0 and a1 (called an “Ahmad pair”) such that any degree x < a0 is also < a1. (This
makes a0 “non-splitting”, i.e., join-irreducible, and thus cannot happen in the c.e. Turing degrees by the Sacks Split-
ting Theorem [12].) More interestingly even, Ahmad also showed (see Ahmad and Lachlan [2, Theorem 3.3]) that
this phenomenon is not symmetric: For any two incomparable Σ0

2-enumeration degrees a0 and a1, there is either a
degree x0 < a0 which is ≰ a1, or there is a degree x1 < a1 which is ≰ a0.

In the language of Question 1.1, Ahmad’s results can be rephrased as stating that not every embedding of
P = {0, a0, a1, 1} with incomparable a0 and a1 can be extended to an embedding of Q0 = {0, x0, a0, a1, 1} where
0 < x0 < a0 and x0 ≰ a1, but that every embedding of P can be extended to an embedding of either Q0 or of
Q1 = {0, a0, x1, a1, 1} where 0 < x1 < a1 and x1 ≰ a0.

In this paper, we prove two extensions of Ahmad’s results in different directions, thus adding to our toolbox
toward our ultimate goal, deciding the ∀∃-theory of the Σ0

2-enumeration degrees. Again in the language of Ques-
tion 1.1, our first result can be rephrased as stating that every embedding of P = {0, a0, a1, a2, 1} with incompara-
ble a0, a1 and a2 can be extended to an embedding of Q0 = {0, x0, a0, a1, a2, 1} where 0 < x0 < a0 and x0 ≰ a1
or an embedding of Q1 = {0, x1, a0, a1, a2, 1} where 0 < x1 < a1 and x1 ≰ a2 (leaving the relationship between x0
and a2, and between x1 and a0, unspecified so as to not have too many cases); a similar formulation can be found
for our second result.
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We first present, in Section 2, a direct proof of Ahmad’s result that there is no symmetric Ahmad pair. (Currently,
the only published proof in the literature is indirect and hard to modify.) In Section 3, we show that there is no Ahmad
triple, i.e., there are no Σ0

2-degrees a0, a1 and a2 such that both (a0, a1) and (a1, a2) form an Ahmad pair. On the
other hand, in Section 4, we also show that there is a weak Ahmad triple, i.e., there are pairwise incomparable
∆0

2-enumeration degrees a0, a1 and a2 such that every enumeration degree x < a0 is also ⩽ a1 or ⩽ a2; however,
neither (a0, a1) nor (a0, a2) forms an Ahmad pair. We should add here that Kent (personal communication around
2006) identified the existence of an Ahmad triple and of a “cupping Ahmad pair” (i.e., an Ahmad pair whose join
is 0′e) as the two main initial obstacles toward a decision procedure for the ∀∃-theory of the Σ0

2-enumeration degrees.
It is worth pointing out that the first two results are specific to the Σ0

2-enumeration degrees. Lempp, Slaman, and
Soskova [9] have shown that every finite distributive lattice L can be embedded as an interval of Π0

2-enumeration
degrees [a,b] so that for every enumeration degree x < b we have that x ∈ [a,b] or x < a. Embedding the diamond
in such a way shows that symmetric Ahmad pairs are possible in general.

2. A Direct Proof that there is no Symmetric Ahmad Pair
In this section, we will present a direct proof of the following

Theorem 2.1 (Ahmad [1] (see Ahmad and Lachlan [2, Corollary 3.2])). There is no symmetric Ahmad pair in the
Σ0

2-enumeration degrees, i.e., there are no incomparable Σ0
2-degrees a0 and a1 such that every enumeration degree

x0 < a0 is ⩽ a1, and every enumeration degree x1 < a1 is ⩽ a0.

To show that the degrees of a pair of sets A0 and A1 is not an Ahmad pair, we need to build a set X0 <e A0 such
that X0 ≰e A1. Cooper’s density proof [3] builds precisely such a set X0 assuming that in addition A1 <e A0. Under
this additional assumption, we can build X0 = Φ0(A0) as follows: We satisfy two types of requirements. The first
type ensures that for every e, we have X0 ̸= Γe(A1) by threatening to code A0 into the e-th column of X0. The second
type of requirement ensures that for every i, we have A0 ̸= Γi(X0) by threatening to make Γi(X0) = Γi(X

[⩽i]
0 ∪N[>i]),

which (assuming X[⩽i]
0 is computable) is a c.e. set. Here X[⩽n] = {⟨m, x⟩ | m ⩽ n} and X[>n] = {⟨m, x⟩ | m > n}.

To make this idea work, the construction uses a good approximation to the set A0, i.e., a uniformly computable
sequence of finite sets {A0,s}s<ω such that

(1) for every n, there is a stage s such that A0 ↾ n ⊆ A0,s ⊆ A0; and
(2) for every n, there is a stage s such that for every t ⩾ s, if A0,t ⊆ A0 then A0 ↾ n ⊆ A0,t.

Stages at which A0,s ⊆ A0 are called good. The sets reducible to A0, namely, X0, A1, Γe(A1), and Γi(X0), are
approximated with correct approximations—good approximations whose good stages include all good stages for
the approximation of A0. If we restrict our attention to good stages for A0, then two sets with correct approximations
are the same if and only the length of agreement between them measured at such stages is unbounded. So, if we
enumerate elements into X0,s only by enumerating axioms of the form ⟨x, A0,s⟩ into Φ0, then we ensure that X0 gains
new elements only at good stages for A0, and this allows us to limit the activity of each requirement to a finite set.

If A1 is not bounded by A0, then this construction fails: It can be that there are infinitely many good stages
for A0 that are bad for A1, causing us to falsely assume that a requirement of the first type requires attention again
and again and forcing it to contribute an infinite set to X0. This, in turn, is in critical conflict with the second type
of requirements, which depend on the assumption that each column in X0 is finite. The problem we see should not
surprise us, because Ahmad pairs do exist. Ahmad’s original proof of Theorem 2.1 uses the Gutteridge operator to
show that if A0 and A1 form an Ahmad pair, then A0 and all sets bounded by A0 have eventually correct approxima-
tions with respect to the approximation to A1, and so we can build X1 <e A1 with X1 ≰e A0 using essentially the
same construction as the one described above. The proof is ingenious, though difficult to modify. We give a direct
construction, using the priority method and a tree of strategies. The main idea is to build the sets X0 and X1 in a
more entangled way so that our failure to prove that X1 <e A0 allows us to switch off unwanted axioms enumerated
into X0 and avoid the problem described above.



4 J.L. Goh et al. / Extensions of Two Constructions of Ahmad

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

Assume that A0 and A1 are incomparable Σ0
2-sets. (If A0 and A1 are comparable, then their enumeration degrees

do not form an Ahmad pair by definition.)
We fix approximations for A0 and A1 so that {A0,s ⊕ A1,s}s<ω is a good approximation to A0 ⊕ A1. So even

though we cannot ensure that good stages for A0 are good for A1 or vice versa, we may at least ensure that there are
infinitely many common good stages.

2.1. Requirements
The construction builds an enumeration operator Φ1, attempting to satisfy the following requirements for each
enumeration operator Γ1 and each enumeration operator ∆1:

RΓ1 : Φ1(A1) ̸= Γ1(A0)

S∆1
: A1 ̸= ∆1(Φ1(A1)).

If some RΓ1
requirement fails then we will construct an enumeration operator Φ0 satisfying the following

subrequirements for each of the enumeration operators Γ0 and ∆0:

RΓ1,Γ0 : Φ0(A0) = Γ0(A1) =⇒ A0 = Ψ(A1) (for a Ψ built by us)

SΓ1,∆0
: A0 ̸= ∆0(Φ0(A0)).

Clearly, satisfying either group of requirements, namely, all RΓ1
- and all S∆1

-requirements, or, for some
fixed Γ1, all RΓ1,Γ0 - and all SΓ1,∆0 -requirements, will suffice since A0 ≰e A1.

We will denote Φi(Ai) by Xi (for i < 2) whenever the operator Φi is clear from the context.

2.2. Tree of strategies
Order each of the types of requirements and subrequirements in a priority of order type ω. We have four types of
strategies: an RΓ1 -strategy α, an RΓ1,Γ0 -strategy β, an S∆1 -strategy γ, and an SΓ1,∆0 -strategy δ.

The root of the tree of strategies T is ∅, an RΓ1
-strategy working on the highest-priority RΓ1

-requirement.
An RΓ1

-strategy has only one outcome ⟨0⟩ and is immediately followed by an RΓ1,Γ0
-strategy, working on the

highest-priority RΓ1,Γ0 -requirement.
An RΓ1,Γ0 -strategy β has outcomes ⟨2k⟩, ⟨2k +1, old⟩, ⟨2k +1, off⟩, and ⟨2k +1, new⟩ for all k ∈ ω, ordered as

follows:

⟨0⟩ <L ⟨1, old⟩ <L ⟨1, off⟩ <L ⟨1, new⟩ <L ⟨2⟩ <L · · ·

For every k < ω, the nodes β̂ ⟨2k⟩ and β̂ ⟨2k+1, off⟩ are SΓ1,∆0
-strategies working on the highest-priority SΓ1,∆0

-re-
quirement that is not assigned to any of β’s predecessors. The nodes β̂ ⟨2k + 1, old⟩ and β̂ ⟨2k + 1, new⟩ are
S∆1 -strategies working on the highest-priority S∆1 -requirement that is not assigned to any of β’s predecessors.

An S ∆1
-strategy γ has outcomes ⟨k⟩, where k ∈ ω is ordered by the standard ordering on ω. Each such imme-

diate successor of this strategy is a main RΓ1
-strategy, working on the highest-priority RΓ1

-requirement that is not
assigned to any of its predecessors.

Similarly, an S Γ1,∆0 -strategy δ has outcomes ⟨k⟩, where k ∈ ω is ordered by the standard ordering on ω. Each
such immediate successor of this strategy is an RΓ1,Γ0

-strategy, working on the highest-priority RΓ1,Γ0
-requirement

(for the same Γ1 as δ) that is not assigned to any of its predecessors.

2.3. Construction
At stage 0, all strategies are in initial state: All operators associated with these strategies are empty, all parameters
are undefined. At stage s > 0, we build a path fs of length ⩽ s. The intention is that there will be a true path defined
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by
f (n) = lim inf

fs⪰ f↾n
fs(n)

that correctly describes the outcomes of each strategy. The construction consists of substages t for t < s, where we
act for some strategy fs ↾ t of length t depending on the current outcome of the strategy which acted at the previous
substage starting at the root. When a strategy is activated at stage s, it first ensures that it is not missing any good
stages by adjusting the approximations to A0 and A1: If s− is the previous stage at which this strategy was active,
then it replaces Ai,s by

⋂
u∈[s−,s] Ai,u for i < 2. We describe further actions of each strategy depending on its type

below.
At the end of stage s, we initialize all strategies of lower priority than fs, i.e., strategies extending or to the right

of the strategies which acted at stage s.
Each RΓ1,Γ0 -strategy β and each SΓ1,∆0 -strategy δ works with the version of Φ0 and X0 determined by the

longest RΓ1
-strategy α ≺ β, δ (we say that β and δ work for α); this version of Φ0 is the set of Φ0-axioms enumerated

by all the RΓ1,Γ0 - and SΓ1,∆0 -strategies working for the same RΓ1 -strategy α.

2.3.1. S∆1

We begin with the S-strategies, as they are directly lifted from the density construction. So, let γ be an S∆1 -strategy.
The first time a strategy is visited after initialization, the strategy receives a unique number sγ, the stage of first visit
after initialization. To keep this assignment of stages injective, we interrupt the stage s construction if s is the first
stage when γ is visited: We set fs = γ, sγ = s, and move on to stage s + 1. If sγ < s is already defined, then we
consider the length lγ,s < s of the common initial segment of A1,s and ∆1,s(X1,s) up to s. For every number n ⩽ lγ,s,
if n ∈ ∆1,s(X

[<sγ]
1,s ∪ N[⩾sγ]), we search for the axiom ⟨n, F⟩ ∈ ∆1 that has been valid the longest and enumerate

each element of the form ⟨r, x⟩ ∈ F, where r ⩾ sγ into the set X1,s via the axiom ⟨⟨r, x⟩, A1,s⟩. The outcome of
the strategy is ⟨k⟩, where k is the standard code of the finite set Dk of all numbers for which γ has enumerated an
axiom that looks valid at stage s. The only thing we assume about the coding of finite sets, in addition to its effective
properties, is that Dk1 ⊆ Dk2 implies k1 ⩽ k2.

We will be able to argue that if γ is on the true path, then γ enumerates only a finite set D into X1, as the sequence
{lγ,s}s is good must be bounded. At sufficiently large stages in the approximation to A1, the outcome we select will
always correspond to a superset of D. At stages that are also good (i.e., stages s such that A1,s ⊆ A1), we will be
able to correctly identify the code of D as the correct outcome. In other words, the code of the set D will be γ’s true
outcome.

2.3.2. SΓ1,∆0

An SΓ1,∆0
-strategy δ works similarly to the S∆1

-strategy. It also receives a unique number sδ, the stage of first visit
after initialization, and interrupts the stage s construction if s is the first stage when δ is visited. Otherwise, we
consider the length lδ,s < s of the common initial segment of A0,s and ∆0,s(X0,s) up to s. For every number n ⩽ lδ,s,
if n ∈ ∆0,s(X

[<sδ]
0,s ∪ N[⩾sδ]), we search for the axiom ⟨n, F⟩ ∈ ∆0 that has been valid the longest and enumerate

each element of the form ⟨r, x⟩ ∈ F, where r ⩾ sδ is in the set X0,s via the axiom ⟨⟨r, x⟩, A0,s⟩. The outcome of the
strategy is ⟨k⟩, where k is the standard code of the finite set Dk of all numbers for which δ has enumerated an axiom
that looks valid at stage s.

2.3.3. RΓ1

The RΓ1
-strategy does nothing, has only one outcome ⟨0⟩, and determines the version of Φ0 and X0 that all the

RΓ1,Γ0
- and SΓ1,∆0

-strategies working for the RΓ1
-strategy use.

2.3.4. RΓ1,Γ0

The RΓ1,Γ0
-strategy β attempts to construct an enumeration operator Ψ such that A0 = Ψ(A1) by enumerating

axioms into Φ1 and its version of Φ0.
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At the first stage after initialization, the RΓ1,Γ0
-strategy β is assigned the parameter sβ. Note that we can assume

that sβ is larger than max(Dk) for any k such that a higher-priority S-strategy λ (which can be either an S∆1
- or an

SΓ1,∆0 -strategy) has λ̂ k ⪯ β. Until its next initialization, β will only contribute numbers to the sβ-th columns of X0

and X1. To every element a, we assign the coding location xa = ⟨sβ, a⟩ targeted for X0. The coding locations ma that
we associate with a given number a but are targeted for X1 will change more dynamically during the construction.
Initially, we assign ma = ⟨sβ, a⟩ as well.

At a stage s > sβ, β does the following. It orders the elements of A0,s ∪ Ψs(A1,s) by age: For each a ∈ A0,s ∪
Ψs(A1,s), we define its age (at stage s) as follows.

ages
0(a) = 2k + 1 for k = min(s + 1, µt∀u ∈ [t, s](a ∈ A0,u))

ages
1(a) = 2k for k = min(s + 1, µt∀u ∈ [t, s](a ∈ Ψ(A1,u)[u] via the same axiom))

ages(a) = min{ages
0(a), ages

1(a)}.

Without loss of generality, we will assume that at most one element enters the approximation to A0 or Ψ(A1) at
a fixed stage s. (We can ensure this by artificially delaying the approximations if necessary.) And so, for every stage
t ⩽ s, there may be at most one element with ages(a) = t. Furthermore, if a ∈ A0,s \Ψs(A1,s), then ages(a) is odd,
and if a ∈ Ψs(A1,s) \ A0,s, then ages(a) is even. At stage s, we will say that b is older than a if ages(b) < ages(a).

If A0,s = Ψs(A1,s), then we exit this strategy with outcome ⟨2(s + 1)⟩ (this is an outcome that has not been
visited so far). Since A0 is infinite, this will only be a temporary situation. Otherwise, we pick the oldest number a
such that A0,s(a) ̸= Ψs(A1,s)(a). Let k = ages(a). We must ensure that β’s effect on X1 is computable, and so the
strategy will dump into X1 all elements of the form ⟨sβ, n⟩ ∈ (ma, s] and assign new markers ma′ = ⟨sβ, n⟩ > s to all
elements a′ with ages(a′) > k. (Here, to dump an element m into X1 means to enumerate the axiom ⟨m, ∅⟩ into Φ1.)
We have two cases depending on the parity of k.

Case 1: If k is even, i.e., if a ∈ Ψs(A1,s) \ A0,s, then we will be able to argue that xa = ⟨sβ, a⟩ ∈ Γ0(A1) \ X0. The
strategy selects outcome ⟨k⟩. While a maintains its age, we will design axioms for younger elements enumerated
into X0 by β so that their use includes a. Thus, if this is β’s true outcome, they will be invalid and hence β contributes
finitely much to X0.

Case 2: If k is odd, i.e., if a ∈ A0,s \ Ψs(A1,s), then we would like to add an axiom for a into Ψ, but to do this we
need some preparation. We will identify an axiom ⟨xa, Fa⟩ in Γ0(A1) and use it. Let sk be the previous stage when β
considered k:

(1) If some b with ages(b) < k has mb /∈ Γ1(A0,t) at some stage t ∈ [sk, s], then, since b is older than a, we
may assume that we have identified Fb for b and that Fb ⊆ A1,s. (Otherwise, b would be our choice for the
oldest disagreement.) We can therefore enumerate the axiom ⟨mb, Fb⟩ ∈ Φ1 so that mb ∈ X1,s \ Γ1(A0,s). The
outcome is ⟨k, old⟩. If this is the true outcome, then we do not care what happens to X0 as strategies below
this outcome will be working with new versions of this set.

(2) Otherwise, for every b with ages(b) < k, we can associate a set Gb, the use of the oldest valid axiom for mb in
the set Γ1. We enumerate into Φ0,s the axiom

⟨xa,
⋃

ages(b)<k

Gb ∪ {b | ages(b) ⩽ k}⟩.

Next, we check whether xa ∈ Γ0(A1). If xa /∈ Γ0(A1,s), then we have evidence that this requirement may be
satisfied by xa ∈ X0 \ Γ0(A1). Unfortunately, we have no evidence that the effect of β on X0 is finite, so we
use the marker ma. We will always only enumerate axioms of the form ⟨ma, Fa⟩ into Φ1, where Fa is the use
of a Γ0-axiom for xa. The case we are in suggests that ma /∈ X1.
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(a) If ma /∈ Γ1(A0,t) at some stage t ∈ [sk, s], then we can guarantee that under this outcome, β’s effect
on X0 is finite. This is because we include the use of a Γ1-axiom for ma in the use of every axiom we
enumerate into Φ0 for numbers a′ with age larger than k. (This is true as long as a maintains its age.) We
set the outcome to be ⟨k, off⟩.

(b) Otherwise, ma ∈ Γ1(A0,t) at all stages t ∈ [sk, s], so we have evidence that ma ∈ Γ1(A0) \ X1. We end
with outcome ⟨k, new⟩ and let strategies below forget about this version of X0.

(3) Finally, if xa ∈ Γ0(A1,t) at all stages t ∈ [sk, s] (by the same axiom at all stages since the last visit), then let
⟨xa, Fa⟩ ∈ Γ0 be the axiom that has been valid the longest. Enumerate ⟨a, Fa⟩ into Ψs. We have eliminated a
as a difference, and so we may proceed to pick the oldest difference once again.

2.4. Verification
We define the true path f in the tree of strategies as the leftmost path of strategies visited infinitely often. If λ̂ o ≺ f ,
then we will say that λ has true outcome o. If s is a stage at which λ is visited, then we say that s is λ-true. We need
to prove that f is well defined and strategies along it satisfy their requirements. We do so by showing the following
properties of the construction by simultaneous induction.

Lemma 2.2. The true path f is infinite, furthermore:

A. If β is an RΓ1,Γ0 -strategy and β ⪯ f , then:

(1) There is a leftmost outcome o that β visits at infinitely many stages.
(2) There are finitely many values of the parameter sβ, and for each such value, X[sβ]

1 is a computable set.
(3) If o ∈ {⟨2k⟩, ⟨2k + 1, off⟩ | k ∈ ω}, then RΓ1,Γ0

is satisfied, and for every value of sβ, the set X[sβ]
0 is

finite.
(4) If o ∈ {⟨2k + 1, old⟩, ⟨2k + 1, new⟩ | k ∈ ω}, then RΓ1

is satisfied.

B. If γ is an S∆1
-strategy and γ ⪯ f , then:

(1) There is a leftmost outcome o that γ visits at infinitely many stages.
(2) The set Do consists of all numbers that γ contributes to X1.
(3) The requirement S∆1

is satisfied.

C. If δ is an SΓ1,∆0
-strategy and δ ⪯ f , then:

(1) There is a leftmost outcome o that δ visits at infinitely many stages.
(2) The set Do consists of all numbers that γ contributes to X0.
(3) The requirement SΓ1,∆0

is satisfied.

Proof. We will prove the statements above in turn, assuming that all statements are true for higher-priority strategies
along the true path. We first note that RΓ1

-strategies along the true path have only one possible outcome, visited at
every true stage, hence cannot cause f to be finite.

A. Let β ⪯ f be an RΓ1,Γ0
-strategy. It follows from the definition of the true path that β is visited at infinitely

many stages and initialized finitely often. There is a stage at which β is first visited after its last initialization. At
this stage, sβ receives its final value, and by construction, we interrupt this stage so that no other strategy has the
same parameter at any point during the construction. By construction, no strategy has so far enumerated any element
into the sβ-th column of X0 or X1: Lower-priority strategies σ are initialized at stage sβ, so their parameter sσ (if
defined) will have higher value than sβ. Higher-priority strategies λ will not add elements to the sβ-th column of X0

or X1, either. To see this, note that they are either not visited at further stages, hence do not act any longer; they
are RΓ1,Γ0

-strategies with sλ < sβ and hence enumerate elements into smaller columns of X0 or X1; or they are
S-strategies whose true outcome is extended by β and hence by B(2) and C(2), they will not enumerate any more
valid axioms into either operator Φ0 or Φ1. Thus β is the unique strategy that adds elements into the sβ-th column
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of X0 or X1. If t < sβ is a previous value of the parameter sβ, then our analysis shows that no strategy can add valid
axioms for numbers in the t-th columns of X0 and X1 after stage sβ.

Let Ψ =
⋃
Ψs be the enumeration operator constructed by β. By assumption, A0 ≰e A1, hence Ψ(A1) ̸= A0.

Let a be the oldest disagreement, where the age of the disagreement is defined as in the construction. This means that
there is some stage sa such that at all stages t > sa, we have that if aget(b) < aget(a), then b ∈ A0,t ∩Ψ(A1,t) with a
fixed marker mb. The age c of a remains constant, and at stages t > sa, the strategy β will not visit any outcome left
of the c-outcomes (which depend on the parity of c), so the marker ma will remain fixed. Furthermore, the way β
adjusts the approximation to A0 and A1 when visited ensures that there are infinitely many stages t > sa at which
we visit β, and a is the oldest disagreement at stage t. At such stages, β will visit a c-outcome, and since there are
finitely many c-outcomes (only one c-outcome ⟨c⟩ if c is even, and three c-outcomes ⟨c, old⟩, ⟨c, off⟩, and ⟨c, new⟩
if c is odd), there is a leftmost outcome visited at infinitely many stages, proving (1). Note that if β reaches Case 2.3
infinitely often, then β also ends in Case 2.2 infinitely often because if t is such that a /∈ Ψ(A1,t), but a ∈ Ψ(A1,t−),
where t− is the previous β-true stage, then our convention ensures that xa /∈ Γ0(A1,t). All numbers greater than ma

in the sβ-th column of X1 will be dumped into X1, hence the sβ-th column of X1 is cofinite, proving (2).
If a /∈ A0, then the age of a after stage sa is c = 2k, where k is the stage such that at all t ⩾ k, we have

that a ∈ Ψ(A1,t) via the same axiom ⟨a, Fa⟩, say. As we argued above, ⟨2k⟩ is β’s true outcome. We prove that
xa ∈ Γ0(A1) \ X0: That xa /∈ X0 is clear, as by construction, any axiom that β enumerates into Φ0 for xa contains a
in its use, and as we already argued, no other strategy enumerates valid axioms for xa = ⟨sβ, a⟩. On the other hand, β
enumerated the valid axiom ⟨a, Fa⟩ into Ψ because it saw that ⟨xa, Fa⟩ ∈ Γ0, and since Fa ⊆ A1, it follows that
xa ∈ Γ0(A1). Up until stage sa, there are only finitely many axioms enumerated into Φ0 by β. After stage sa, any
axiom enumerated by β into Φ0 will include a in its use because the age of a remains constant. It follows that all
such axioms are invalid, and so β contributes a finite set to X[sβ]

0 .
Suppose a ∈ A0. Then c = 2k + 1, and we have several cases, depending on the leftmost outcome visited

infinitely often. If this is ⟨2k + 1, old⟩, then infinitely often after stage sa, we visit β, and it stops at Case 2.1 of
the construction, because some b with ages(b) < k has mb /∈ Γ1(A0,t) at some stage t since we last considered a.
There are finitely many such b, and hence the described scenario happens infinitely often with some fixed such b.
As pointed out in the construction, since b is older than a, we know that b ∈ Ψ(A1,t) at such stages via the same
axiom ⟨b, Fb⟩, and so the construction ensures that mb ∈ X1 using this axiom. It follows that mb ∈ X1 \ Γ1(A0).

Otherwise, there is a stage sb > sa such that at all β-true stages t > sb at which a is the oldest disagreement,
Case 2.1 does not apply. This means that for every older b, there is a fixed valid axiom ⟨mb,Gb⟩ ∈ Γ1. This means
that the axiom that we enumerate into Φ0 for xa is valid, and so xa ∈ X0. On the other hand, since infinitely often
we are in Case 2.2, xa /∈ Γ0(A1), and so RΓ0,Γ1

is satisfied.
If β’s true outcome is ⟨2k + 1, off⟩, then ma /∈ Γ1(A0). In this case, we already know that RΓ0,Γ1

is satisfied.
After stage sb, any axiom enumerated by β into Φ0 will include some Ga in its use, where ⟨ma,Ga⟩ ∈ Γ1. It follows
that all such axioms are invalid, and so β contributes a finite set to X[sβ]

0 . This ensures that (3) is true.
Otherwise, there is a stage sc > sb after which Case 2.2.a does not apply. The true outcome is ⟨2k + 1, new⟩,

and ma ∈ Γ1(A0,t) at all stages t > sc by the same axiom. It follows that ma ∈ Γ1(A0). To complete the proof,
we will show that ma /∈ X1. Any Φ1-axiom enumerated for ma has the form ⟨ma, Fa⟩. Such an axiom can only be
enumerated after the axiom ⟨a, Fa⟩ is enumerated into Ψ. Since a /∈ Ψ(A1), it follows that ma /∈ X1. We conclude
that RΓ1

is satisfied, proving (4).

B. Let γ ⪯ f be an S∆1
-strategy. It follows from the definition of the true path that γ is visited at infinitely many

stages and initialized finitely often. There is a first stage at which γ is visited after its last initialization. This is the
stage at which sγ receives its final value, and by construction, we interrupt this stage so that no other strategy has
the same parameter at any point during the construction. Lower-priority strategies σ have sσ > sγ. Higher-priority
strategies are the only ones that can enumerate elements into X[<sγ]

1 , so by induction, X[<sγ]
1 is a computable set. If s

is a good stage in the approximation to A1, then A1,s ⊆ A1 and ∆1(X1,s) ⊆ ∆1(X1). Suppose that {lγ,s}A1,s⊆A1

is unbounded. Then we can argue that A1 = ∆1(X1): If a ∈ A1, then pick a good stage s at which a ∈ A1,s and
lγ,s > a. It follows that a ∈ ∆1(X1,s) ⊆ ∆1(X1). Similarly, if a ∈ ∆1(X1), then we can pick a good stage s at which
a ∈ ∆1(X1,s) and lγ,s > a. It follows that a ∈ A1,s ⊆ A1.
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Furthermore, if {lγ,s}A1,s⊆A1
is unbounded then we can also argue that ∆1(X1) = ∆1(X

[<sγ]
1 ∪ N[⩾sγ]). One

inclusion follows from the fact that X1 ⊆ X[<sγ]
1 ∪N[⩾sγ]. For the reverse inclusion, fix n ∈ ∆1(X

[<sγ]
1 ∪N[⩾sγ]). Let

⟨n, F⟩ be the oldest valid axiom. (Note that the age of this axiom depends only on X[<sγ]
1 .) Pick a good stage s > sγ

that is greater than the age of this axiom and at which lγ,s > n. At this stage, we enumerate all ⟨r, x⟩ ∈ F, where
r ⩾ sγ, into the set X1,s via the axiom ⟨⟨r, x⟩, A1,s⟩. Since s is good, these are valid axioms, and hence n ∈ ∆1(X1).
It follows that A1 = ∆1(X

[<sγ]
1 ∪N[⩾sγ]), contradicting the fact that A1 is not c.e. (otherwise it would be comparable

with A0).
Thus lγ,s is bounded by some number lγ, say, at all good stages in the construction. At good stages, the strategy γ

enumerates axioms only in response to finitely many n. For each such n, we know by the fact that we are looking
at a good stage that n ∈ ∆1(A1). Eventually, the oldest valid axiom will emerge, and so γ will keep selecting the
same axiom ⟨n, F⟩ for this element, and thus ultimately γ will enumerate only finitely many elements into X1, and
all these elements will be enumerated at good stages. Let D = Dk be the set of these elements. Let sk be a stage
such that at all t ⩾ sk, we have that D ⊆ X1. At all γ-true stages t ⩾ sk, the strategy γ will have outcome ⟨m⟩, where
Dk ⊆ Dm. By our choice of coding, we have that ⟨k⟩ ⩽ ⟨m⟩. By the adjustment that γ makes to the approximation
of A1, we know that γ is visited at infinitely many good stages for the approximation to A1. At such stages, γ will
have outcome ⟨k⟩. This proves (1) and (2).

To see that the requirement is satisfied, we prove that there is some element n ⩽ lγ such that A1(n) ̸= ∆1(X1)(n).
Assume that this is not the case. Pick a stage s such that all elements n ⩽ lγ that are in A1 are in A1,s and s is good.
There are infinitely many such stages, and we visit γ at such stages. At such a γ-true stage t, we have that lγ,t > lγ,
contradicting our choice of lγ.

C. The case where δ ⪯ f is an SΓ1,∆0
-strategy is proved similarly to Case B. 2

Lemma 2.3. Either all requirements RΓ1
and S∆1

are satisfied, or there is some requirement RΓ1
such that all

requirements RΓ1,Γ0
and SΓ1,∆0

are satisfied.

Proof. If there are infinitely many RΓ1
-strategies along the true path f , then by the construction of the tree, it

follows that there are infinitely many S∆1
-requirements assigned to nodes on the true path, as only such strategies

have immediate successors that are RΓ1 -strategies. Thus all S∆1 -requirements are assigned to nodes on the true path
and hence by Lemma 2.2 are satisfied. Consider any RΓ1 -strategy α ≺ f . Let γ ≺ f be the next S∆1 -strategy along
the true path. By the construction of the tree, γ’s immediate predecessor is an RΓ1,Γ0

-strategy β with true outcome
⟨2k+1, old⟩ or ⟨2k+1, new⟩ for some k. It follows from Lemma 2.2 that RΓ1

is satisfied, thus all requirements RΓ1

are satisfied.
If there are finitely many RΓ1

-strategies along f , then fix the longest such α. Every immediate successor of α
along the true path is either an RΓ1,Γ0

-strategy with true outcome ⟨2k⟩ or ⟨2k +1, off⟩ or an SΓ1,∆0
-strategy. Hence

there are infinitely many of each, and by Lemma 2.2, they are all successful. By the design of the tree, it follows that
all requirements RΓ1,Γ0 and SΓ1,∆0 are satisfied. 2

3. No Ahmad triple
In this section, we extend the ideas introduced in the previous section to prove our main result:

Theorem 3.1. There is no Ahmad triple in the Σ0
2-enumeration degrees, i.e., there are no Σ0

2-degrees a0, a1, and a2
such that a0 ≰ a1 but every enumeration degree x0 < a0 is ⩽ a1, and such that a1 ≰ a2 but every enumeration
degree x1 < a1 is ⩽ a2.

3.1. Requirements
Suppose A0, A1 and A2 are Σ0

2-sets. The construction builds an enumeration operator Φ0, attempting to satisfy the
following requirements for each of the enumeration operators Γ0 and ∆0:

RΓ0
: Φ0(A0) ̸= Γ0(A1),
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S∆0
: A0 ̸= ∆0(Φ0(A0)).

If some RΓ0
-requirement fails, then we will construct an enumeration operator Φ1 satisfying the following

subrequirements for each of the enumeration operators Γ1 and ∆1:

RΓ0,Γ1
: Φ1(A1) ̸= Γ1(A2)

SΓ0,∆1
: A1 ̸= ∆1(Φ1(A1)).

If some RΓ0,Γ1
-requirement fails, then we will construct an enumeration operator Φ2 satisfying the following

subsubrequirements for each of the enumeration operators Γ2 and ∆2:

RΓ0,Γ1,Γ2
: Φ2(A0) = Γ2(A1) =⇒ A0 = Ψ0(A1) or A1 = Ψ1(A2)

(for Ψ0 and Ψ1 built by us)

SΓ0,Γ1,∆2
: A0 ̸= ∆2(Φ2(A0)).

We will denote Φ0(A0) by X0, Φ1(A1) by X1, and Φ2(A0) by X2 whenever the operator Φi is clear from the
context.

3.2. Overview
We first give a high-level overview of how the overall construction works, without going into the specifics of the
priority tree layout and the arrangement of different outcomes. At each node α of the priority tree, there will be an
active version of X1 and X2 (where X0 is, of course, maintained globally). Each version of X1 and X2 is built in
some cone; X1 is built in a cone with an RΓ0 -requirement at the top of the cone, while X2 is built in a cone with
an RΓ0,Γ1

-requirement at the top. These cones are nested in the sense that each node where a particular set X2 is
active is also a node where a set X1 is active; but a cone for X1 can contain many different X2-cones. The setup
here is typical of a non-uniform argument; the situation in our construction is perhaps slightly more complicated
than a typical non-uniform argument due to having to keep track of three levels of non-uniformity. However, the
overall spirit is the same: The set X0 is maintained globally, and there will only be one version of it, i.e., every
node in the tree is in the one X0-cone. Inside each X2-cone, we will have the active sets X0 and X1. Inside this
X2-cone, we actively try and satisfy the RΓ0,Γ1,Γ2 - and the SΓ0,Γ1,∆2 -strategies, while leveraging on the assumption
that the RΓ0,Γ1

- and RΓ0
-strategies at the top of the X2- and X1-cones are unsuccessful. While this assumption is

not violated, we stay in the X2-cone and only consider the RΓ0,Γ1,Γ2
- and the SΓ0,Γ1,∆2

-strategies.
If we ever detect that the RΓ0,Γ1

-strategy is successful, we will exit the X2-cone and immediately place the
next SΓ0,∆1

-strategy before starting a new X2-cone below it. Similarly, if we ever detect that the RΓ0
-strategy is

successful, we will end the current X1- and X2-cones and immediately place the next S∆0 -strategy before starting
a new X1- and a new X2-cone below. In this way, depending on how many different X1- and X2-cones the true
path of the construction crosses, we will be able to argue that along the true path, either all RΓ0 - and S∆0 -require-
ments are satisfied, or all RΓ0,Γ1

- and SΓ0,Γ1
-requirements are satisfied in some final X1-cone, or all RΓ0,Γ1,Γ2

- and
SΓ0,Γ1,∆2 -requirements are satisfied in some final X2-cone.

It remains to describe how a node α assigned to a requirement RΓ0,Γ1,Γ2
is able to either detect the success of

its parent RΓ0,Γ1 -strategy, or the success of its grandparent RΓ0 -strategy, or be able to leverage on the failure of
both to ensure the success of its own requirement. By our experience with the S-strategies thus far, it is important to
note that α must not be too liberal with enumerating true axioms into Φ0, Φ1 and Φ2; if we do not exit the current
X2-cone, we must make sure that α’s contribution to X2 is finite or at least computable. If we do not exit the current
X1-cone, then α’s contribution to X1 must be finite, while α’s contribution to X0 must be finite regardless of the true
outcome. (If we do not ensure this, then along the true path, when we have the next S∆0

,SΓ0,∆1
- or SΓ0,Γ1,∆2

-node,
we will not be able to run the respective basic S-strategy.)
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With the foregoing comment in mind, consider a node α assigned to a requirement RΓ0,Γ1,Γ2
. The obvious

strategy is to associate each number a (targeted for A1) with a number xa (targeted for X1 = Φ1(A1)) and try to
maintain that a ∈ A1 iff xa ∈ X1. We build a reduction Ψ1 which will emulate Γ1. Since A1 = Ψ1(A2) cannot
possibly hold, we must be able to find some xa where X1(xa) ̸= Γ1(A2)(xa), and hence RΓ0,Γ1

will be satisfied.
This naive strategy will work to satisfy RΓ0,Γ1

in isolation; unfortunately, we may not be able to guarantee that the
effect on X1 is finite; as discussed above, if we satisfy RΓ0,Γ1

, we stay in the X1-cone, and we will need the strategy
to enumerate only finitely many true axioms for Φ1(A1). Notice that if there is some xa ∈ Γ1(A2) \ X1, then this
condition can be ensured, since the strategy for α will only need to enumerate further axioms putting some xa′ into
Φ1(A2) if the length of agreement goes up; hence all newer axioms in Φ1 will include the number a. However, if the
disagreement is witnessed by some xa ∈ X1 \ Γ1(A2), then there is no way to prevent infinitely many elements xa′

from being put into X1 by the strategy. Note that the same problem applies even if we try and diagonalize X0 and
Γ0(A1), or X2 and Γ2(A1). The solution to this problem is to ensure that under the problematic outcome where
xa ∈ X1 \ Γ1(A2), all future axioms enumerated by α putting some xa′ into X1 = Φ1(A1) must also include the use
of certain elements in Γ0(A1) and Γ2(A1). If we entangle the axioms for newer xa′ in this way correctly, then we
will be able to argue that in the end, either we will be able to diagonalize X0 and Γ0(A1), or we can diagonalize X2

and Γ2(A1), or else we can force all newer xa′ -axioms enumerated by α to become invalid.
To arrange for this entangling to work properly, we will need another setup. Under the assumption that a ∈

A1 \Ψ1(A2) and xa ∈ X1 \ Γ1(A2) hold, we will need to start a backup RΓ0,Γ1,Γ2 -strategy, which we will name β.
Each time β sees further proof that a ∈ A1 \ Ψ1(A2) and xa ∈ X1 \ Γ1(A2) hold, it will extend the reduction
A0 = Ψ0(A1) that it builds. The basic working of β is that it associates each number b targeted for A0 with a
number yb targeted for X2 = Φ2(A0) and a number mb targeted for X0 = Φ0(A0). (For technical reasons, in the
construction, the association b 7→ yb will be fixed while the association b 7→ mb will be dynamic, but we do not
encumber ourselves with these details at this time.) The plan will be to let Ψ0 emulate Γ2, so that the necessary
disagreement between A0 and Ψ0(A1) must produce a corresponding disagreement between X2 and Γ2(A1). Fix the
element b so that we have either

(i) b ∈ A0 \Ψ0(A1) and yb ∈ X2 \ Γ2(A1) and mb ∈ X0, or

(ii) b ∈ Ψ0(A1) \ A0 and yb ∈ Γ2(A1) \ X2 and mb ̸∈ X0.

Since b will eventually be in one of the Σ0
2-sets involved above, almost every axiom enumerated by the main

strategy α putting some xa′ into X1 = Φ1(A1) will be able to observe and use the information provided by this
number b.

Consider a future stage s when the strategy α is deciding whether or not to enumerate an axiom putting some xa′

into X1 = Φ1(A1). By our assumption on b, we must see either yb ∈ X2[s] or yb ∈ Γ2(A1)[s]. If the strategy for α
sees yb ∈ X2[s] but yb ̸∈ Γ2(A1)[s], then it does not need to proceed with its strategy and does not enumerate any
axiom for xa′ into X1 since it currently looks like X2 ̸= Γ2(A1). If, however, α sees yb ∈ Γ2(A1)[s] but mb ̸∈ Γ0(A1),
then it also does not need to enumerate an axiom for xa′ into X1. This is because either b ∈ A0, in which case both
yb ∈ X2 and mb ∈ X0, or they are all three out of the respective sets, and so we must currently see X2 ̸= Γ2(A1)

or X0 ̸= Γ0(A1). Therefore, the only time when α enumerates xa′ into X1 is when it sees both yb ∈ Γ2(A1)[s] and
mb ∈ Γ0(A1)[s], in which case it will include the use of the latter two in the axiom for xa′ in X1.

Now finally assume that β is along the true path of the construction. If the first case (i) above applies to b,
then almost every axiom xa′ enumerated by the strategy for α will be invalid, since they will include the use of
yb ∈ Γ2(A1), which was exactly what we wanted to achieve. If the second case (ii) applies and mb is not eventually
in Γ0(A1), then again almost every axiom xa′ enumerated by the strategy for α will be invalid, since they will
include the use of mb ∈ Γ0(A1). Finally, assume that the second case (ii) applies and mb ∈ Γ0(A1). Then in this
case, it may be possible that the strategy for α enumerates infinitely many elements into X1, but then we would have
mb ∈ Γ0(A1) \ X0, and we will exit the current X1-cone. In this case, the current set X1 will be irrelevant anyway.
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3.3. Tree of strategies
Order each of the types of requirements, subrequirements and subsubrequirements in a priority of order type ω such
that each RΓ0 -requirement precedes all the RΓ0,Γ1 -subrequirements, and each RΓ0,Γ1 -subrequirement precedes all
the RΓ0,Γ1,Γ2 -subsubrequirements.

The root of the tree of strategies T is ∅, an RΓ0 -strategy working on the highest-priority RΓ0 -requirement.
An RΓ0

-strategy has only one outcome ⟨0⟩ and is immediately followed by an RΓ0,Γ1
-strategy, working on the

highest-priority RΓ0,Γ1
-requirement. An RΓ0,Γ1

-strategy has only one outcome ⟨0⟩ and is immediately followed by
an RΓ0,Γ1,Γ2

-strategy, working on the highest priority RΓ0,Γ1,Γ2
-requirement.

An RΓ0,Γ1,Γ2
-strategy α has outcomes ⟨2k⟩, ⟨2k +1, old⟩, ⟨2k +1, off⟩, ⟨2k +1, new⟩, and ⟨2k +1, backup⟩ for

all k ∈ ω, ordered as follows:

⟨0⟩ <L ⟨1, old⟩ <L ⟨1, off⟩ <L ⟨1, new⟩ <L ⟨1, backup⟩ <L ⟨2⟩ <L · · ·

For every k < ω, the nodes α ⟨̂2k⟩ are SΓ0,∆1 -strategies working on the highest-priority SΓ0,∆1 -requirement that
is not assigned to any of α’s predecessors. The nodes α ⟨̂2k + 1, old⟩ and α ⟨̂2k + 1, off⟩ are SΓ0,Γ1,∆2 -strategies
working on the highest priority SΓ0,Γ1,∆2 -requirement that is not assigned to any of α’s predecessors. The nodes
α ⟨̂2k + 1, new⟩ are S∆0 -strategies working on the highest-priority S∆0 -requirement that is not assigned to any
of α’s predecessors. Finally, the nodes α ⟨̂2k + 1, backup⟩ are backup RΓ0,Γ1,Γ2

-strategies with their own outcomes
(defined below).

An S∆0
-strategy γ has outcomes ⟨k⟩, where k ∈ ω ordered by the standard ordering on ω. Each such immediate

successor of this strategy is a main RΓ0
-strategy, working on the highest-priority RΓ0

-requirement that is not as-
signed to any of its predecessors. The outcomes and immediate successors of the SΓ0,∆1

- and SΓ0,Γ1,∆2
-strategies

are defined analogously (RΓ0,Γ1 and RΓ0,Γ1,Γ2 , respectively).
Finally, a backup RΓ0,Γ1,Γ2 -strategy β has outcomes ⟨2l, off⟩, ⟨2l, new⟩ and ⟨2l + 1⟩ for all l ∈ ω, ordered as

follows:

⟨0, off⟩ <L ⟨0, new⟩ <L ⟨1⟩ <L ⟨2, off⟩ <L · · ·

For every l < ω, the nodes β̂ ⟨2l, off⟩ and β̂ ⟨2l+1⟩ are SΓ0,∆1 -strategies working on the highest-priority SΓ0,∆1 -re-
quirement that is not assigned to any of β’s predecessors. The nodes β̂ ⟨2l, new⟩ are S∆0

-strategies working on the
highest-priority S∆0

-requirement that is not assigned to any of β’s predecessors.

3.4. Construction
This construction has many properties that are similar to the one in Section 2. At stage 0, all strategies are in initial
state: All operators associated with these strategies are empty, and all parameters are undefined. At stage s > 0, we
build a path fs of length ⩽ s with the intention of building a true path defined by

f (n) = lim inf
fs⪰ f↾n

fs(n).

When a strategy is activated at stage s, it first adjusts the approximations to A0, A1, and A2: If s− is the previous
stage at which this strategy was active, then it replaces Ai,s by

⋂
u∈[s−,s] Ai,u for i ⩽ 2. At the end of stage s, we

initialize all strategies of lower priority than fs, i.e., strategies extending or to the right of the strategies which acted
at stage s.

Each strategy β works with the version of Φ1 and X1 determined by the longest RΓ0
-strategy α ≺ β (we

say that β works for α); this version of Φ1 is the set of Φ1-axioms enumerated by all the RΓ0,Γ1,Γ2
-strategies and

SΓ0,∆1
-strategies working for the same RΓ0

-strategy. Similarly, each strategy β works with the version of Φ2 and X2

determined by the longest RΓ0,Γ1
-strategy α ≺ β; this version of Φ2 is the set of Φ2-axioms enumerated by all the

backup RΓ0,Γ1,Γ2 -strategies and SΓ0,Γ1,∆2 -strategies working for the same RΓ0,Γ1 -strategy.
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3.4.1. S∆0
, SΓ0,∆1

, SΓ0,Γ1,∆2

The S-strategies work precisely as in the previous construction. Let γ be such a strategy. The first time γ is visited
after initialization, it receives a unique number sγ, the stage of first visit after initialization, and stops the construction
of fs = γ for this stage. If sγ < s is already defined, then we consider the length lγ,s < s of the common initial
segment up to s of the sets A j,s and ∆i,s(Xi) that are named in the corresponding requirement: For S∆0

, these
are A0,s and ∆0,s(X0,s); for SΓ0,∆1 , these are A1,s and ∆1,s(X1,s); and for SΓ0,Γ1,∆2 , these are A0,s and ∆2,s(X2,s).
For every number n ⩽ lγ,s, if n ∈ ∆i,s(X

[<sγ]
i,s ∪N[⩾sγ]), then we search for the axiom ⟨n, F⟩ ∈ ∆i that has been valid

the longest, and we enumerate each element of the form ⟨r, x⟩ ∈ F, where r ⩾ sγ, into the set Xi,s via the axiom
⟨⟨r, x⟩, A j,s⟩. Note that this action might enumerate some number ⟨r, x⟩ into Xi,s where ⟨r, x⟩ is already in Xi,s via an
axiom enumerated by a different node.

The outcome of the strategy is ⟨k⟩, where k is the standard code of the finite set Dk of all numbers for which γ
has enumerated an axiom that looks valid at stage s. As before, we assume that Dk1 ⊆ Dk2 implies k1 ⩽ k2.

3.4.2. RΓ0
, RΓ0,Γ1

The RΓ0
-strategy and the RΓ0,Γ1

-strategy do nothing, have only one outcome ⟨0⟩, and determine the version of Φ1

and X1, or Φ2 and X2, respectively, that substrategies work with.

3.4.3. RΓ0,Γ1,Γ2

The RΓ0,Γ1,Γ2
-strategy α attempts to construct an enumeration operator Ψ1 such that A1 = Ψ1(A2) by enumerating

axioms into Φ1. (It will not enumerate axioms into either Φ0 or Φ2, only its backup strategies will.)
At the first stage after initialization, the RΓ0,Γ1,Γ2 -strategy α is assigned the parameter sα. We can assume that sα

is larger than max(Dk) for any k such that a higher-priority S-strategy λ has λ̂ k ⪯ α. Until its next initialization, α
will only contribute numbers to the sα-th columns of X1. To every element a, we assign the coding location xa =
⟨sα, a⟩ targeted for X1.

At stage s > sα, α does the following. It orders the elements of A1,s ∪Ψ1,s(A2,s) by age:

ages
1(a) = 2k + 1 for k = min(s + 1, µt∀u ∈ [t, s](a ∈ A1,u))

ages
2(a) = 2k for k = min(s + 1, µt∀u ∈ [t, s](a ∈ Ψ1(A2,u)[u] via the same axiom))

ages(a) = min{ages
1(a), ages

2(a)}.

Once again, we assume the age is defined injectively, i.e., for every stage t ⩽ s, there may be at most one element
with ages(a) = t. Also, if a ∈ A1,s \ Ψ1,s(A2,s), then ages(a) is odd, and if a ∈ Ψ1,s(A2,s) \ A1,s, then ages(a) is
even.

If A1,s = Ψ1,s(A2,s), then we exit this strategy with outcome ⟨2(s+1)⟩. Otherwise, we pick the oldest number a
such that A1,s(a) ̸= Ψ1,s(A2,s)(a). Let k = ages(a). We have two cases depending on the parity of k.

Case 1: If k is even, i.e., if a ∈ Ψ1,s(A2,s) \ A1,s, then we will be able to argue that xa = ⟨sα, a⟩ ∈ Γ1(A2) \ X1. The
strategy selects outcome ⟨k⟩. While a maintains its age, we will design axioms for younger elements enumerated
into X1 by α so that their use includes a. Thus if this is α’s true outcome, they will be invalid, and hence α contributes
finitely much to X1. Under this outcome, we do not care about X2.

Case 2: If k is odd, i.e., if a ∈ A1,s \ Ψ1,s(A2,s), then we would like to add an axiom for a into Ψ1. We will follow
a similar scheme as in the previous construction: We will add an axiom for xa into Φ1, wait until xa shows up in
Γ1(A2), and use the (currently) valid axiom ⟨xa, Fa⟩ to define an axiom for a in Ψ1. We entangle the axiom for xa

with axioms from both Γ0 and Γ2. First, we consider all z ∈ X2,s such that the age of z in X2 (i.e., the least t ⩽ s
such that z ∈ X2,u for all u ∈ [t, s]) is less than k. Let sk be the previous stage when α considered k:
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(1) If some such z ∈ X2,s is not in Γ2(A1,t) via the same axiom for all stages t ∈ [sk, s], then we have evidence
that z ∈ X2 \ Γ2(A1), and so we exit with outcome ⟨k, old⟩. If b is younger than a, then α will always include
the use of an axiom for z being in Γ2(A2) in the use of the axiom for xb being in Φ1(A1), so if this is the true
outcome, then RΓ0,Γ1,Γ2

is satisfied and α’s effect on X1 is finitary.
(2) Otherwise, for every z ∈ X2,s that is older than a, we can associate a set Gz, the use of the oldest valid axiom

for z being in Γ2(A1). Next, we consider every backup strategy β (an immediate successor of α) that is not
in initial state, every number yβb = ⟨sβ, b⟩ ∈ Γ2,s(A1,s) such that the age of yβb (i.e., the least t ⩽ s such that
at all u ∈ [t, s], we have yβb ∈ Γ2,u(A1,u) via the same axiom) is less than k, and for each such yβb, the coding
locations mβb < k that are associated with b by β. (Note that we do not restrict β to the ones that extend an
older outcome than k. There will only be finitely many such backup strategies being considered due to the
restriction on the age of yβb.)
If for some such yβb ∈ Γ2,s(A1,s), there is an mβb < k such that mβb /∈ Γ0(A1,t) at some stage t ∈ [sk, s], then we
have two cases:

(a) If b /∈ A0,t at some stage t ∈ [sk, s], then we have evidence that yβb ∈ Γ2(A1) \ X2. We exit with outcome
⟨k, off⟩ and argue that if this is the true outcome, then RΓ0,Γ1,Γ2 is satisfied and α enumerates finitely
many valid axioms into Φ1 because they all must include the use of a Γ0-axiom for all such mβb.

(b) If b ∈ A0,t at all t ∈ [sk, s], then the outcome is ⟨k, new⟩. We have evidence that mβb ∈ X0 as it was either
dumped there (i.e., we enumerated the axiom ⟨mβb, ∅⟩ into Φ0) or its axiom has use {b}. If this is the true
outcome, then we aim to show that RΓ0 is satisfied by mβb ∈ X0\Γ0(A1). In this case, we do not care
about α’s effect on X1 even though that effect will be finitary as we argued in the previous case.

(3) Otherwise, for every older yβb ∈ Γ2,s(A1,s) and each mβb < k associated with b, we can associate a set Gmβb
, the

use of the oldest valid axiom for mβb in the set Γ0. We enumerate into Φ1,s the axiom for xa whose use consists
of

• all b such that ages(b) ⩽ k (note that this includes a),
• all Gz for older z ∈ X2,s, and
• all Gmβb

where β is a substrategy of α not in initial state (at the end of this stage) with older yβb ∈ Γ2,s(A1,s),

and corresponding mβb < k.

Next, we check whether xa ∈ Γ1(A2). If xa /∈ Γ1,t(A2,t) at some stage t ∈ [sk, s], then we have evidence that
RΓ0,Γ1

may be satisfied by xa ∈ X1 \ Γ1(A2). Unfortunately, we have no evidence that the effect of α on X1

is finite. So we activate the backup strategy below outcome ⟨k, backup⟩. The backup strategy will either turn
off future axioms enumerated by α or ensure that RΓ0 is satisfied.

(4) Finally, if xa ∈ Γ1(A2,t) (by the same axiom at all stages since the last visit), then let ⟨xa, Fa⟩ ∈ Γ1 be the
axiom that has been valid longest. Enumerate ⟨a, Fa⟩ ∈ Ψ1,s. We have now eliminated a as a difference, and
so we will pick the oldest difference once again, starting over at the current substage. (This can happen at
most finitely often at any substage.)

Notice that the set X2 is only relevant under the outcomes ⟨k, old⟩ and ⟨k, off⟩ of α (corresponding to items (1)
and (2a) above, respectively). Since α itself does not add axioms to Φ2(A0), but rather, they are only added by the
backup strategies, whenever some outcome ⟨k′, backup⟩ of α is played, the effect on each column of X2 will be finite
if α has true outcome ⟨k, old⟩ or ⟨k, off⟩. This is also the reason we have multiple backup strategies for α.

3.4.4. Backup RΓ0,Γ1,Γ2

The backup RΓ0,Γ1,Γ2 -strategy β works with its immediate predecessor α and attempts to construct an enumeration
operator Ψ0 such that A0 = Ψ0(A1) by enumerating axioms into Φ0 and its version of Φ2.

Just like α, the strategy β is assigned the parameter sβ at the first stage after initialization. We can assume that sβ
is larger than max(Dk) for any k such that a higher priority S-strategy λ has λ̂ k ⪯ β. The strategy β associates
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to every element b the coding location yb = ⟨sβ, b⟩ targeted for X2. To certain elements b, it will also dynamically
assign a coding location mb targeted for X0.

At a stage s > sβ, β orders the elements of A0,s ∪Ψ0,s(A1,s) by age so that if b ∈ A0,s \Ψ0,s(A1,s), then ages(b)
is odd, and if b ∈ Ψ0,s(A1,s) \ A0,s, then ages(b) is even.

If A0,s = Ψ0,s(A1,s), then we exit this strategy with outcome ⟨2(s + 1) + 1⟩. Otherwise, we pick the oldest
number b such that A0,s(b) ̸= Ψs(A1,s)(b). If there is no marker mb associated with b, then we choose mb to be the
least number of the form ⟨sβ, n⟩ which has not been chosen as a marker. We also enumerate the axiom ⟨mb, {b}⟩
into Φ0.

Let l = ages(b). We must ensure that β’s effect on X0 is computable and so the strategy will dump into X0 all
markers which are currently associated with any number b′ with ages(b′) > l. Furthermore, to each such b′, we
associate a new marker mb′ , which is the least number of the form ⟨sβ, n⟩ which has not been chosen as a marker.
We also enumerate the axiom ⟨mb′ , {b′}⟩ into Φ0.

We will not ensure that β’s effect on X2 is finitary or computable because if β is on the true path, then either RΓ0

or RΓ0,Γ1 will be satisfied and X2 will not be relevant to strategies extending β.
We now have two cases depending on the parity of l.

Case 1: If l is even, i.e., if b ∈ Ψ0,s(A1,s) \ A0,s, then unlike for α, we cannot simply take the easy win yb ∈
Γ2(A1) \ X2, because we still have not guaranteed that α’s effect on X1 is finitary. For that reason, we will instead
consider the marker mb. We will argue that b /∈ A0,s is evidence that mb is not an element of X0, and so we check
whether mb ∈ Γ0(A1). Let sl be the previous stage when α considered l:

(1) If mb is not in Γ0(A1,t) for some t ∈ [sl, s] (via the same axiom), then we will be able to argue that if this is
the true outcome, then α enumerates only finitely many axioms into X1 as all but finitely many of them will
include an axiom for mb in Γ0. In this case, RΓ0,Γ1

is satisfied, and α’s action on X1 is finitary. So we take
outcome ⟨l, off⟩.

(2) Otherwise, we have evidence that mb ∈ Γ0(A1) \ X0 and so if this is the true outcome, then RΓ0
is satisfied

and we take the outcome ⟨l, new⟩. Below this outcome, we do not care anymore what happens to X1.

Case 2: If l is odd, i.e., if b ∈ A0,s \Ψ0,s(A1,s), then we enumerate the axiom ⟨yb, {b}⟩ into the operator Φ2.

(1) If yb /∈ Γ2(A1,s), then, if this is the true outcome, all but finitely many axioms that α enumerates will contain
the use of an axiom for yb being in Γ2(A1) which is invalid. It follows that once again, RΓ0,Γ1 is satisfied
and α’s action on X1 is finitary. We exit with outcome ⟨l⟩.

(2) Finally, if yb ∈ Γ2(A1,s) (by the same axiom at all stages since the last visit), then let ⟨yb, Fb⟩ ∈ Γ2 be the
axiom that has been valid longest. Enumerate ⟨b, Fb⟩ into Ψ0,s. We have now eliminated b as a difference,
and so we will pick the oldest difference once again, starting over at the current substage. (This can happen at
most finitely often at any substage.)

3.5. Verification
We define the true path f in the tree of strategies as the leftmost path of strategies visited infinitely often. If λ̂ o ⪯ f ,
then we will say that λ has true outcome o. If s is a stage at which λ is visited, we say that s is λ-true. We need to
prove that f is well-defined and strategies along it satisfy their requirements. We do so by showing the following
properties of the construction by simultaneous induction.

Lemma 3.2. The true path f is infinite, furthermore:

A. If α is an RΓ0,Γ1,Γ2
-strategy and α ≺ f , then:

(1) There are finitely many values of the parameter sα.
(2) There is a leftmost outcome o that α visits at infinitely many stages.
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(3) If o ∈ {⟨2k⟩ | k ∈ ω}, then RΓ0,Γ1
is satisfied, and for every value of sα, the set X[sα]

1 is finite.
(4) If o ∈ {⟨2k + 1, old⟩, ⟨2k + 1, off⟩ | k ∈ ω}, then RΓ0,Γ1,Γ2

is satisfied, and for every value of sα, the
set X[sα]

1 is finite.
(5) If o ∈ {⟨2k + 1, new⟩ | k ∈ ω}, then RΓ0 is satisfied.
(6) If o ∈ {⟨2k + 1, backup⟩ | k ∈ ω}, then RΓ0,Γ1 is satisfied.

B. If β is a backup strategy for an RΓ0,Γ1,Γ2 -strategy α and β ≺ f , then:

(1) There are finitely many values of the parameter sβ.
(2) There is a leftmost outcome o that β visits at infinitely many stages.
(3) For every value of sβ, the set X[sβ]

0 is computable.
(4) If o ∈ {⟨2l, off⟩, ⟨2l + 1⟩ | l ∈ ω}, then RΓ0,Γ1 is satisfied, and for every value of sα, the set X[sα]

1 is
finite.

(5) If o ∈ {⟨2l, new⟩ | l ∈ ω}, then RΓ0
is satisfied.

C. If γ ≺ f is an S∆0
-, SΓ0,∆1

-, or SΓ0,Γ1,∆2
-strategy, respectively, then:

(1) There is a leftmost outcome o that γ visits at infinitely many stages.
(2) The set Do consists of all numbers that γ contributes to X0, X1, or X2, respectively.
(3) The requirement S∆0

, SΓ0,∆1
, or SΓ0,Γ1,∆2

, respectively, is satisfied.

Proof. A. Since α ≺ f , there is a least stage at which α is visited after its final initialization. At this stage, sα
receives its final value, proving (1). By construction, we interrupt this stage so that no other strategy has the same
parameter at any point during the construction. We claim that α is the only strategy that adds elements to X[sα]

1 . By
construction, no strategy has enumerated any element into X[sα]

1 so far. Lower-priority strategies σ are initialized at
stage sα, so any future values of sσ will be greater than sα. Once that occurs, σ cannot add elements to X[sα]

1 . Higher-
priority strategies will not add elements to X[sα]

1 , either. To see this, note that any strategy λ of higher priority that
potentially adds elements into X1 after stage sα is either an RΓ0,Γ1,Γ2

-strategy with sλ < sα, or an SΓ0,∆1
-strategy

which will not enumerate any valid Φ1-axioms for numbers into X[⩾sα]
1 by inductive hypothesis and our choice of sα.

This proves our claim. Note that if t < sα is a previous value of the parameter sα, then our analysis shows that no
strategy can add elements into X[t]

1 after stage sα. It follows that X[t]
1 is finite.

Let Ψ1 =
⋃

s>sα Ψ1,s be the enumeration operator constructed by α. By assumption, A1 ̸⩽e A2, hence Ψ1(A2) ̸=
A1. Let a be the oldest disagreement between Ψ1(A2) and A1. This means that there is some stage sa such that at
all stages t > sa, we have that aget(a) stabilizes, and if aget(b) < aget(a), then b ∈ A1,t ∩ Ψ1,t(A2,t). Furthermore,
the way α adjusts the approximation to A1 and A2 when visited ensures that there are infinitely many stages t > sa

at which we visit α and a is the oldest disagreement at stage t. At such stages, α will visit an aget(a)-outcome,
and since there are finitely many aget(a)-outcomes, there is a leftmost outcome o visited at infinitely many stages,
proving (2).

To prove (3), suppose that o is ⟨2k⟩. In order to show that RΓ0,Γ1 is satisfied, we will show that xa ∈ Γ1(A2)\X1.
Since o is ⟨2k⟩, we have a /∈ A1,t for infinitely many stages t, so a /∈ A1. We argued above that only α can enumerate
Φ1-axioms for xa. By construction, the use of any such axiom contains a. So xa /∈ X1. As for Γ1(A2), note that
a /∈ A1 implies that a ∈ Ψ1(A2). For any Ψ1-axiom for a, there is a corresponding Γ1-axiom for xa with the same
use. The latter axiom witnesses that xa ∈ Γ1(A2) as desired.

To show that X[sα]
1 is finite, it suffices (by our reasoning above) to show that there is a stage after which no

Φ1-axiom enumerated by α is valid. This holds because any Φ1-axiom enumerated by α when the current outcome
is o or to the right of o must contain a in its use, yet a /∈ A1. This completes the proof of (3).

To prove (4), first suppose that o is ⟨2k + 1, old⟩. In order to show that RΓ0,Γ1,Γ2
is satisfied, we will show that

X2 ̸⊆ Γ2(A1). Since o is ⟨2k + 1, old⟩, there are infinitely many stages s such that there is some z ∈ X2,s with age
less than 2k + 1 and z /∈ Γ2(A1,t), where t ∈ [sk, s]. (Recall that sk is the last stage before s at which α considered
2k + 1.) There are only finitely many z which ever have age less than 2k + 1, so the scenario described happens
infinitely often with some fixed z. It follows that z ∈ X2\Γ2(A1) as desired.
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To show that X[sα]
1 is finite, note that for all but finitely many stages at which we visit α, the age of z in X2 is

smaller than the age of the oldest disagreement between A1 and Ψ1(A2). At such stages, if α enumerates a Φ1-axiom,
its use contains the use Gz of a Γ2-axiom for z being in Γ2(A1). Since z /∈ Γ2(A1), it follows that α only enumerates
finitely many valid Φ1-axioms. Therefore, X[sα]

1 is finite (as α is the only strategy which adds elements into X[sα]
1 ).

This completes the analysis if o is ⟨2k + 1, old⟩.
Next suppose o is ⟨2k + 1, off⟩. In this case, we will show that Γ2(A1) ̸⊆ X2. By assumption on o (and the fact

that there are only finitely many backup strategies β and numbers b such that the age of yβb in Γ2(A1) is ever less than
2k + 1), there are a backup strategy β, a number b, and a number m < 2k + 1 such that at infinitely many stages s at
which we visit α, we have that

• the age of yβb in Γ2,s(A1,s) is less than 2k + 1;

• m is one of the markers mβb that β associates with b; and
• m /∈ Γ0,t(A1,t) for some t ∈ [sk, s].

It follows that yβb ∈ Γ2(A1) and m /∈ Γ0(A1). Since o is ⟨2k + 1, off⟩, we have b /∈ A0. We will show that yβb /∈ X2.
The only Φ2-axiom enumerated by β for yβb has use {b}, so it is not valid. Furthermore, one can show that β is the
only strategy that adds elements into X[sβ]

2 . The proof is similar to that for α and X[sα]
1 : Note that while β may not be

along the true path, its immediate predecessor α is along the true path and therefore so are all of its predecessors.
We have shown that yβb ∈ Γ2(A1)\X2.

To show that X[sα]
1 is finite, note that for all but finitely many stages when we visit α, the age of yβb in Γ2(A1) is

smaller than the age of the oldest disagreement between A1 and Ψ1(A2). At such stages, if α enumerates a Φ1-axiom,
its use contains the use Gm of a Γ0-axiom for m. Since m /∈ Γ0(A1), it follows that α only enumerates finitely many
valid Φ1-axioms. Therefore, X[sα]

1 is finite (as α is the only strategy which adds elements into X[sα]
1 ). This completes

the proof of (4).
To prove (5), suppose that o is ⟨2k + 1, new⟩. To show that RΓ0

is satisfied, we will show that X0 ̸⊆ Γ0(A1).
Fix β, b and m, following the analysis in the case where o is ⟨2k+1, off⟩. As before, we have m /∈ Γ0(A1). However,
since o is ⟨2k + 1, new⟩, we have b ∈ A0. Since we enumerated the Φ0-axiom ⟨m, {b}⟩ when associating m with b,
it follows that m ∈ X0. So m ∈ X0\Γ0(A1).

To prove (6), suppose o is ⟨2k + 1, backup⟩. We have xa /∈ Γ1(A2). To show that xa ∈ X1, consider a stage s′

large enough such that for all s > s′,

• if ages(b) ⩽ 2k + 1, then b ∈ A1;
• if the age of z in X2,s is less than 2k + 1, then z ∈ X2 ∩ Γ2(A1), and the use Gz of the oldest valid Γ2-axiom

for z has stabilized; and
• if β is a backup strategy for α and the age of (the current value of) yβb in Γ2,s(A1,s) is less than 2k + 1, then

* yβb has stabilized and lies in Γ2(A1);

* each mβb lies in Γ0(A1); and

* the use Gmβb
for the oldest valid Γ0-axiom for each mβb has stabilized.

Such s′ exists because o is ⟨2k + 1, backup⟩. At any stage s > s′ at which we visit α, we would enumerate a valid
Φ1-axiom for xa. We conclude that xa ∈ X1\Γ1(A2) as desired.

B. Since β ≺ f , there is a least stage at which β is visited after its final initialization. At this stage, sβ receives its
final value, proving (1). By construction, we interrupt this stage so that no other strategy has the same parameter at
any point during the construction. One can show that β is the only strategy that adds elements into X[sβ]

0 , and if t is
a previous value of sβ, then no strategy adds elements into X[t]

0 after stage sβ. It follows that X[t]
0 is computable for

every previous value t of sβ.
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Let Ψ0 =
⋃

s>sβ Ψ0,s be the enumeration operator constructed by β. By assumption, A0 ̸⩽e A1, hence Ψ0(A1) ̸=
A0. Let b be the oldest disagreement between Ψ0(A1) and A0. Following similar reasoning as that for α, there is a
leftmost outcome o of the form ⟨2l, off⟩, ⟨2l, new⟩ or ⟨2l +1⟩ which is visited at infinitely many stages, proving (2).

To prove (3), we begin by showing that mβb stabilizes. Once sβ and ages(b) have stabilized, the only way that mβb
changes is if some b′ with ages′(b′) < 2l is the oldest disagreement between A0,s′ and Ψ0,s′(A1,s′). At such a stage s′,
the current outcome of β would be to the left of o. This only occurs finitely often, proving that mβb stabilizes. Then all
numbers greater than mβb in the sβ-th column of N will eventually be dumped into X0, implying that X[sβ]

0 is cofinite.
As for older values of sβ, we mentioned above that the corresponding columns of X0 are computable.

To prove (4), first note that by A(6), RΓ0,Γ1
is satisfied. It remains to show that for every value of sα, the set X[sα]

1

is finite. As reasoned above, it suffices to show that α only enumerates valid Φ1-axioms for finitely many elements
in X[sα]

1 , where sα has stabilized. The proof differs depending on whether o is ⟨2l, off⟩ or ⟨2l + 1⟩.
Suppose o is ⟨2l, off⟩. We have b ∈ Ψ0(A1)\A0 and mβb /∈ Γ0(A1). By β’s construction of Ψ0, we have yβb ∈

Γ2(A1) (via an axiom with the same use as a Ψ0-axiom for b). Let t be the age of yβb in Γ2(A1). Consider any
stage s such that sα, sβ, the age of yβb in Γ2(A1), and mβb all have stabilized. Suppose α enumerates a Φ1-axiom for
some xa′ at stage s. Then a′ is the oldest disagreement between A1,s and Ψ1,s(A2,s). Furthermore, if t,mβb < ages(a′),
then the use of the Φ1-axiom enumerated by α contains the use of a Γ0-axiom for mβb, rendering it invalid (because
mβb /∈ Γ0(A1)). But there are only finitely many a′ for which there is some s such that ages(a′) ⩽ max{t,mβb}, so α
can only enumerate valid Φ1-axioms for finitely many xa′ as desired.

If o is ⟨2l+1⟩, the analysis proceeds similarly but with yβb instead of mβb. In this case, we have that b ∈ A0\Ψ0(A1)

and yβb /∈ Γ2(A1). By β’s construction of X2, we have yβb ∈ X2 via ⟨yβb, {b}⟩ ∈ Φ2. Let t be the age of yβb in X2.
Consider any stage s such that sα, sβ and the age of yβb in X2 all have stabilized. Suppose α enumerates a Φ1-axiom
for some xa′ at stage s. Then a′ is the oldest disagreement between A1,s and Ψ1,s(A2,s). Furthermore, if t < ages(a′),
then the use of the Φ1-axiom enumerated by α contains the use of a Γ2-axiom for yβb, rendering it invalid (because
yβb /∈ Γ2(A1)). But there are only finitely many a′ for which there is some s such that ages(a′) ⩽ t, so α can only
enumerate valid Φ1-axioms for finitely many xa′ as desired. This completes the proof of (4).

To prove (5), suppose o is ⟨2l, new⟩. We will show that mβb ∈ Γ0(A1)\X0. Since o is ⟨2l, new⟩, we have mβb ∈
Γ0(A1). To show that mβb /∈ X0, note first that the only Φ0-axiom enumerated by β for mβb has use {b}, so it is
not valid. Furthermore, as mentioned above, β is the only strategy that adds elements into X[sβ]

0 , so mβb /∈ X0. This
completes the proof of (5).

C. We will prove (1)–(3) in the case where γ is an S∆0
-strategy. Then we will sketch how to modify the proof to

address the SΓ0,∆1
- and SΓ0,Γ1,∆2

-strategies.
Since γ ≺ f , there is a least stage at which γ is visited after its final initialization. At this stage, sγ receives its

final value, proving (1). By construction, we interrupt this stage so that no other strategy has the same parameter at
any point during the construction.

Consider the sequence of good stages s, i.e., stages at which A0,s ⊆ A0. This sequence is infinite because
{A0,s}s∈ω is a good approximation to A0. We claim that the length of agreement lγ,s between A0,s and ∆0(X0,s) is
bounded on this sequence. Towards a contradiction, suppose not. We begin by showing that ∆0(X0) = A0: First,
if a ∈ A0, then pick a good stage s such that a ∈ A0,s and lγ,s > a. Then a ∈ ∆0(X0,s) ⊆ ∆0(X0). Conversely, if
a ∈ ∆0(X0), then pick a good stage s such that a ∈ ∆0(X0,s) and lγ,s > a. Then a ∈ A0,s ⊆ A0 as desired.

Next, we shall show that ∆0(X0) = ∆0(X
[<sγ]
0 ∪N[⩾sγ]). The forward inclusion is trivial. To prove the backwards

inclusion, consider n ∈ ∆0(X
[<sγ]
0 ∪ N[⩾sγ]). Let ⟨n, F⟩ be the oldest ∆0-axiom putting n into ∆0(X

[<sγ]
0 ∪ N[⩾sγ]).

Pick a good stage s > sγ such that F[<sγ] is permanently in X0 and lγ,s > n. When we first visit γ at some stage
s′ ⩾ s, we enumerate a Φ0-axiom ⟨⟨r, x⟩, A0,s′⟩ for each ⟨r, x⟩ ∈ F[⩾sγ]. By the way that γ adjusts the approximation
to A0, we have A0,s′ ⊆ A0,s ⊆ A0. Therefore, F ⊆ X0, implying that n ∈ ∆0(X0). This proves the reverse inclusion.

By inductive hypotheses B(3) and C(2), X[<sγ]
0 is computable, because the only strategies that contribute elements

to X[<sγ]
0 after stage sγ are backup strategies β ≺ γ or S∆′

0
-strategies γ′ ≺ γ. The equality proved in the previous
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paragraph then implies that ∆0(X0), and hence A0, is c.e., contradicting our assumption on A0. Therefore lγ,s is
bounded on the sequence of good stages s. Fix a bound lγ. Using this, we will prove (1) and (2). First note that γ
can only contribute numbers to X0 at good stages, because every Φ0-axiom enumerated by γ at stage s has use A0,s.
This means that only numbers n ⩽ lγ can cause γ to enumerate valid Φ0-axioms. If n /∈ ∆0(X

[<sγ]
0 ∪ N[⩾sγ]),

then n /∈ ∆0,s(X
[<sγ]
0,s ∪ N[⩾sγ]) at good stages, so n will not cause γ to enumerate any valid Φ0-axioms. As for

n ∈ ∆0(X
[<sγ]
0 ∪ N[⩾sγ]), the oldest valid ∆0-axiom for n will appear to be the oldest valid axiom at all sufficiently

large good stages, because we are working with a good approximation to A0. Therefore, at all sufficiently large good
stages, γ does not enumerate any valid Φ0-axioms not already in Φ0. This proves that γ enumerates only finitely
many elements into X0. Let D = Dk be the set of these elements. To prove (1) and (2), it remains to show that ⟨k⟩
is the leftmost outcome that γ visits at infinitely many stages. Consider a stage s after which D lies permanently
in X0. At any γ-true stage s′ ⩾ s, γ’s current outcome ⟨k′⟩ satisfies Dk ⊆ Dk′ . This implies that ⟨k⟩ ⩽L ⟨k′⟩. By the
adjustment that γ makes to the approximation of A0, we know that γ is visited at infinitely many good stages. At all
such stages (after stage s), γ will have outcome ⟨k⟩. This proves (1) and (2).

Finally, to prove (3), we show that there is n ⩽ lγ such that A0(n) ̸= ∆0(X0)(n). Assume that this is not the case.
Fix a stage s such that for all s′ ⩾ s and each n ⩽ lγ in A0 ∩∆0(X0), we have n ∈ A0,s′ ∩∆0,s′(X0,s′). Consider any
good stage s′ ⩾ s at which we visit γ. If n /∈ A0 ∩∆0(X0), then we must have n /∈ A0,s′ ∪∆0,s′(X0,s′). So lγ,s′ > lγ,
contradicting our choice of lγ.

This proves (1)–(3) in the case where γ is an S∆0
-strategy. As for the SΓ0,∆1

- and SΓ0,Γ1,∆2
-strategies, most

of the above proof goes through if we simply replace A0, ∆0, and X0 by the appropriate sets or operators. The
only nontrivial change is in proving that X[<sγ]

1 is computable (for SΓ0,∆1
) or X[<sγ]

2 is computable (for SΓ0,Γ1,∆2
),

respectively. To prove the former, apply inductive hypotheses A(3), A(4), B(4), and C(2). Note that A(5) and B(5)
are not relevant because any strategy above γ with such a true outcome works with a different version of X1. To
prove the latter, apply inductive hypothesis C(2). Any backup strategy above γ works with a different version of X2,
so we are not concerned with it. 2

Lemma 3.3. One of the following holds:

(1) All requirements RΓ0
and S∆0

are satisfied.
(2) There is some operator Γ0 such that all requirements RΓ0,Γ1

and SΓ0,∆1
are satisfied.

(3) There are operators Γ0 and Γ1 such that all requirements RΓ0,Γ1,Γ2
and SΓ0,Γ1,∆2

are satisfied.

Proof. First, suppose there are infinitely many RΓ0 -strategies along the true path f . By construction of the tree
of strategies, there must be infinitely many S∆0

-strategies along f as well. Thus all S∆0
-strategies are assigned to

nodes on the true path and hence are satisfied. To show that RΓ0
is satisfied, fix an RΓ0

-strategy α ≺ f . Let γ
be the next S∆0 -strategy along f . By construction of the tree of strategies, γ’s immediate predecessor is either an
RΓ0,Γ1,Γ2

-strategy with true outcome of the form ⟨2k + 1, new⟩, or a backup RΓ0,Γ1,Γ2
-strategy with true outcome

of the form ⟨2l, new⟩. In both cases, the previous lemma shows that RΓ0
is satisfied.

Second, if there are only finitely many RΓ0 -strategies along f , fix α ≺ f and Γ0 such that α is an RΓ0 -strategy
and no immediate successor of α is an RΓ′

0
-strategy. If there are infinitely many RΓ0,Γ1

-strategies along f , we
claim that all requirements RΓ0,Γ1

and SΓ0,∆1
are satisfied. By construction of the tree of strategies, there must

be infinitely many SΓ0,∆1 -strategies along f . Thus all SΓ0,∆1 -strategies are assigned to nodes on the true path
and hence are satisfied. To show that RΓ0,Γ1

is satisfied, fix an RΓ0,Γ1
-strategy β ≺ f extending α. Let δ be

the next SΓ0,∆1
-strategy along f . By construction of the tree of strategies, δ’s immediate predecessor is either an

RΓ0,Γ1,Γ2 -strategy with true outcome of the form ⟨2k⟩, or a backup RΓ0,Γ1,Γ2 -strategy with true outcome of the form
⟨2l, off⟩ or ⟨2l + 1⟩. In each case, the previous lemma shows that RΓ0,Γ1

is satisfied. This proves our claim.
Finally, suppose there are only finitely many RΓ0,Γ1

-strategies along f . Fix α′ ≺ f extending α and Γ1 such
that α′ is an RΓ0,Γ1 -strategy and no immediate successor of α′ is an RΓ0,Γ′

1
-strategy. (Such α′ exists because α’s

only immediate successor, which must lie along f , is an RΓ0,Γ1
-strategy.) Then no immediate successor of α along f

can be a backup RΓ0,Γ1,Γ2
-strategy, so every immediate successor of α′ along f is either an RΓ0,Γ1,Γ2

-strategy with
true outcome of the form ⟨2k + 1, old⟩ or ⟨2k + 1, off⟩, or an SΓ0,Γ1,∆2 -strategy. By the previous lemma and the
design of the tree, all requirements RΓ0,Γ1,Γ2

and SΓ0,Γ1,∆2
are satisfied. 2
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4. A Weak Ahmad Triple
In the previous section, we saw that an Ahmad triple is not possible in the Σ0

2-enumeration degrees. In this
section, we show a positive result, the existence of what we call a weak Ahmad triple.

Theorem 4.1. There are pairwise incomparable ∆0
2-enumeration degrees a1, a2, and a3 such that

(1) there are ∆0
2-degrees a12 ≰ a3 and a23 ≰ a1 with a12 ∨ a23 = a2; and

(2) for every Σ0
2-degree x < a2, we have that either x ⩽ a1 or x ⩽ a3.

We call such a triple of degrees a1, a2, and a3 a weak Ahmad triple.

4.1. Requirements
We will construct ∆0

2-sets A1, A3, A12, and A23 satisfying the following list of requirements for every natural
number e:

N 12
e : A12 ̸= Θe(A3 ⊕ A23);

N 23
e : A23 ̸= Θe(A1 ⊕ A12);

R1
e : X = Φe(A12 ⊕ A23) ⇒ (∃Γ)[X = Γ(A1 ⊕ A12)] or (∃∆)[A23 = ∆(X)];

R3
e : Y = Ψe(A12 ⊕ A23) ⇒ (∃Γ)[Y = Γ(A3 ⊕ A23)] or (∃∆)[A12 = ∆(Y)].

Then a1 = dege(A1⊕ A12), a2 = dege(A12⊕ A23), and a3 = dege(A3⊕ A23) clearly satisfy clauses (1) and (2)
of the theorem: Indeed, if Z ⩽e A12 ⊕ A23, then Z will take the role of X for some requirement R1

e and the role of Y
for some requirement R3

e′ . If either requirement is satisfied by the first disjunct, then we know that Z ⩽e A1⊕A12 or
Z ⩽e A3⊕A23, respectively. Otherwise, we have that both A12 ⩽e Z and A23 ⩽e Z, and so A12⊕A23 ≡e Z. Finally,
by the definition of the degrees and by density, our requirements imply that a1, a2 and a3 are pairwise incomparable:
Clearly, a2 ≰ a j for each j ∈ {1, 3} by (1). Similarly, a j ⩽ a4− j for some j ∈ {1, 3} contradicts (1). If a j < a2 for
some j ∈ {1, 3}, then fix x with a j < x < a2, so x ⩽ a4− j by (2), and in particular a j < a4− j, contradicting the last
sentence.

The reader might recognize the R-requirements to be very similar to the requirements for making an Ahmad
pair. Indeed, we can think of R1

e as being the strategy making (A23, A1) an Ahmad pair “relative” to A12, while R3
e

is the strategy making (A12, A3) an Ahmad pair “relative” to A23. In fact, as we will see, the addition of A12 to the
oracle in R1

e will not pose additional difficulties, and a similar Ahmad pair strategy can be used.

4.2. Naive description of the strategies
We start by briefly outlining naive strategies to satisfy each requirement and then discuss how to modify them in
order to avoid conflicts between them. The construction shares many similarities with the usual construction of an
Ahmad pair on a tree. We will use the usual setup of a tree of strategies ordered by priority.

An N -requirement N 12, say, is satisfied using a standard Friedberg-Muchnik strategy α: It picks a witness zα
and enumerates it into A12. It waits to see if this witness will ever enter the set Θα(A3 ⊕ A23). It wins if this never
happens, provided that zα remains in A12. If zα ∈ Θα(A3 ⊕ A23), we say that zα is realized. In that case, α can win
by extracting zα from A12 and ensuring that zα will remain in Θα(A3 ⊕ A23) by imposing a finite restraint on the
sets A3 and A23.

Of course, this puts N 12-strategies and N 23-strategies in conflict, and so already we see the need for a priority
ordering between strategies. This is an easy obstacle to deal with. The complexity of our construction will only be
revealed once we think about the R-strategies as well.
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Consider an R-requirement R3, say, and its strategy β. Its initial goal is to build the operator Γβ so that Γβ(A3⊕
A23) = Yβ, where Yβ = Ψβ(A12⊕A23). When activated at stage s, for every natural number n < s, it checks whether
n ∈ Yβ \ Γβ(A3 ⊕ A23), and if so, it enumerates a new axiom ⟨n,D⟩ into Γβ, where D contains a fresh number a3(n)
that we enumerate into A3. If, on the other hand, n ∈ Γβ(A3⊕A23)\Yβ, then the strategy invalidates all valid axioms
for n by extracting from A3 the corresponding marker a3(n). A new fresh value is then picked for a3(n) to use in the
next Γ-axiom. (This allows us to keep our sets ∆0

2.)
The R1- and R3-strategies do not interfere with each other: They modify the sets A1 and A3, respectively;

however, R1-strategies do not involve the set A3, and R3-strategies do not involve the set A1. R-strategies do not
interfere with higher priority N -strategies, as our priority tree will ensure that whenever an N -strategy imposes
a restraint, all lower-priority strategies are initialized and choose all of their parameters (specifically, numbers or
witnesses they might later on like to extract from some set) as fresh numbers, larger than any number seen in the
construction so far. An N 12-strategy does not directly interfere with R1-strategies of higher priority: Its extraction
of the witness z from A12 may cause some x to leave X. However, our design of the axioms that are enumerated
into Γ1 will guarantee in that case that x will also leave Γ1(A1 ⊕ A12), and hence the R1-strategy will not even have
to act in response.

The situation is quite different, unfortunately, when one considers how the extraction of zα from A12 by an
N 12-strategy α affects a higher-priority R3-strategy β: In that case as well, some y may be forced out of Yβ through
this extraction, and so β will react by extracting a3(y) from A3. This action, however, might directly interfere with
the restraint that α is trying to impose on A3 in order to keep zα ∈ Θα(A3 ⊕ A23). In order to deal with this problem,
we will need to modify our strategies.

4.3. An N -strategy working below a single R-strategy
For simplicity, we describe first the actions and outcomes of an N 12-strategy α with one R3-strategy β of higher
priority working above it. In the formal construction below, we will deal with the more general case.

The N 12-strategy α will start by defining a threshold dα to be larger than any number mentioned so far. This
threshold is meant to allow the R-strategy β enough room to satisfy its requirement. If Γβ(A3 ⊕ A23) changes its
value on a number x ⩽ dα, then α will be restarted. So α can assume that Γβ(A3 ⊕ A23) does not change below dα
and hence A3 does not change on any a3(n) for n ⩽ dα. From this point on, α (temporarily) takes over control of
the operator Γβ: It defines a killing point kα as a fresh number and enumerates it into A3. It will require that the
strategy β adds this killing point to the axiom that it enumerates into Γβ for any x ⩾ dα. Whenever α is restarted, all
parameters that α had at the previous stage will be canceled except for the threshold dα and the killing point kα. The
killing point kα is extracted from A3 (thereby invalidating all axioms that were enumerated into Γβ for any element
x ⩾ dα). Finally, a new value for kα will be set - a fresh number, not seen in the construction so far, and this fresh
number is added to A3. Note that (assuming Γβ(A3 ⊕ A23) ↾ dα changes finitely often, which is something we will
prove in Lemma 4.4), this restart can happen at most finitely often.

The strategy α has three outcomes, stop <L ∞ <L wait. Once it has completed its initial setup (defining
thresholds and killing points), the strategy picks a witness zα as a fresh number and enumerates it into A12 as before.
It waits to see if zα becomes realized, and while waiting, the strategy has its rightmost outcome wait. Suppose zα
enters Θα(A3 ⊕ A23) via an axiom ⟨zα, Ezα ⊕ X⟩. The strategy first checks if it can extract zα without causing
Γβ-correction that will extract from A3 some number in Ezα . At this point, the strategy is willing to sacrifice all other
setups that it has made so far and enumerate into A12 and A23 as many numbers as necessary in order to guarantee
this, with the exception of a certain pair of finite sets R12 and R23 consisting of witnesses selected by higher-priority
strategies and kept out of their corresponding set. So if it is possible to add to A12 and A23 some finite set of numbers
that make the extraction of zα essentially harmless, then the strategy extracts zα from A12 and takes outcome stop,
where it will remain forever (unless initialized or restarted).

Suppose that this is not possible. In this case, the strategy α gives up on the witness zα (at least for now) and
decides to prove that β’s requirement is satisfied by initiating the construction of ∆ so that ∆(Yβ) = A12. We say
that α switches β from Γ to ∆. The fact that an extraction of zα from A12 causes the extraction of a finite set Fzα
from Yβ can now be turned into the first axiom in ∆. We would like to have a stronger relationship: zα ∈ A12 if and
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only if Fzα ⊆ Yβ. Of course, currently there might be other numbers in A12 and A23 whose extraction may also cause
Fzα to leave Yβ. In order to remove their influence, we will dump into A12 and A23, respectively, all numbers that
were ever in A12 or A23 unless they belong to a higher-priority N -strategy (i.e., are in R12 or R23) or a lower-priority
N -strategy γ ⪰ αˆ∞: We collect those elements in P12 and P23. The act of dumping means that we enumerate
these numbers into A12 or A23, respectively, and never again allow them to leave these sets. (Note that any numbers
controlled by strategies to the right of the outcome ∞ of α, or which will be replaced by new versions, can be
dumped without harm.) We begin the construction of the operator ∆ by enumerating the axiom ⟨zα, Fzα⟩, along with
⟨x, ∅⟩ for every element x that is dumped into A12. At the end of this stage, we will visit the outcome ∞, but before
we do so, we set things up for a new round: We extract the killing point kα from A3 and redefine it as a fresh number.
We record the parameters ⟨zα, Ezα , Fzα⟩ in a list W that we keep track of and then redefine the value of zα as a new
fresh number. At the next visit, the strategy α will start a new attempt at diagonalization with this new witness, but
it will keep an eye on the previous witness z and its parameters Ez and Fz. If it ever sees that by dumping into A12

and A23 elements outside of R12 ∪ R23, it can restore Ez ⊆ A3 and extract z from A12 (and this extraction will
not cause β to extract any element from Ez back out of A3 to correct Γβ), then the strategy α will do so and take
outcome stop forever.

Below the outcome ∞ of α, we will have a duplicate strategy for every requirement of lower priority than β’s
requirement, including the one that α failed to satisfy. These strategies will not have to worry about the strategy β
any longer as its requirement is satisfied in a different way. Specifically, an N 12-strategy γ will be able to employ
the original Friedberg-Muchnik strategy with a couple of modifications: The witnesses that γ can use have to be
the witnesses that α formerly used for its definition of ∆; these will be collected in a stream S 12 that α controls.
Every time α has outcome ∞, it adds one more element to the stream S 12. The strategy γ will wait for the stream
to contain a currently unused witness z before it can carry on. It will then proceed as usual; however, it will only
trust A3 below the current killing point of α. So z will be realized if z ∈ Θγ(A3 ↾ kα⊕A23) at the current stage. If ∞
is α’s true outcome, i.e., if α visits this outcome infinitely often, then β’s activity is pushed away by the extraction
of the infinite unbounded sequence of killing points, thereby destroying Γβ as discussed above, but giving γ enough
room to faithfully realize its witness. Note that since {kα,s}s<ω is unbounded, we will still have that if the witness is
never realized then it does not belong to Θγ(A3⊕A23). Finally, if γ succeeds in realizing a witness, then it extracts it
from A12 and declares victory with outcome stop. This might have an unanticipated effect on the operator ∆ that α
is constructing. It is possible that an axiom for some number z′ > z was enumerated into ∆ under the assumption
that z remains in A12. The extraction of z from A12 may cause Fz′ to not be a subset of Yβ, even though z′ ∈ A12. To
prevent complications in the operator ∆, we will in this case dump (and thus remove from the stream) all elements
in the stream S 12 that entered the stream after z did.

A similar consideration has to be incorporated when an N 23-strategy δ works below αˆ∞. For simplicity, we
may assume that δ has no R1-strategy working above it. The strategy δ also operates a simple Friedberg-Muchnik
strategy with the additional requirement that whenever it extracts a witness from A23, it must dump into A12 (and
thus remove from the stream) all witnesses that were put into the stream after δ defined its witness.

4.4. Strategies, parameters and the tree
We will describe the tree of strategies T ⊆ ({0,wait, stop} ∪ {∞i | i < ω})<ω (which will be a finite-branching
tree). We start with a priority ordering of all requirements of order type ω. To define the tree, we will make use of
two other sets defined inductively as we move down the tree. We have a set Mσ of nodes ≺ σ that have been killed,
and a list Qσ of requirements that need to be assigned (or reassigned) to nodes ⪰ σ. The root of the tree will be
assigned the highest-priority requirement, and we set M∅ = ∅ and Q∅ to consist of all requirements. Suppose that
we have assigned a requirement to a node σ in the tree. If this strategy is an Ri

j-strategy, say, then it has only one
immediate successor σ 0̂. We set Qσ 0̂ = Qσ \ {Ri

j} and assign to σ 0̂ the highest-priority requirement in the list
Qσ 0̂. We set Mσ 0̂ = Mσ.

Suppose now that σ is assigned an N -requirement, say, an N 12
e -requirement. (The case N 23

e is similar, but now
conflicting with R1.) Let δ0 ≺ δ1 ≺ · · · ≺ δn be all initial segments of σ to which we have assigned an R3-strategy
and which are not in Mσ. (We call such δ j alive at σ.) The strategy σ has n + 3 immediate successors,

σ ŝtop <L σˆ∞0 <L σˆ∞1 <L · · · <L σˆ∞n <L σˆwait.
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We set Qσˆwait = Qσ ŝtop = Qσ \ {N 12
e } and assign to each of the nodes σˆwait and σ ŝtop the highest-priority

requirement in this list. We also set Mσˆwait = Mσ ŝtop = Mσ. For i ⩽ n, we set Qσˆ∞i to be Qσ, along with the
requirements associated with δi+1, . . . , δn, and σ. We assign to σˆ∞i the highest-priority requirement in Qσˆ∞i . We
set Mσˆ∞i = Mσ ∪ {δi, δi+1, . . . , δn}.

Lemma 4.2. Let h be an infinite path in the tree of strategies T . Every requirement Q in our priority ordering is
assigned to some node σ ≺ h such that for every δ with σ ≺ δ ≺ h, Q is not in Qδ.

Proof. We prove this statement by induction on the priority ordering of all requirements. Suppose that the statement
is true for all requirements of higher priority than the requirement Q, and letσ′ ≺ h be least such that no requirement
of higher priority than Q enters Qδ where σ′ ⪯ δ ≺ h, or is assigned to any such δ. It follows that Q is assigned to
some longest σ ⪯ σ′, and we have the following two cases:
Case 1: Q = Ri

j. Fix the Ri-strategies δ0 ≺ δ1 · · · ≺ δn ≺ σ that are alive at σ. By our inductive hypothesis,
if there is a least strategy δ ≺ h extending σ that puts Q into the list Qδ, then this strategy cannot kill δl for any
l ⩽ n by our inductive assumptions. Thus only σ (and possibly strategies extending σ) are killed by δ, and so δ will
be assigned the requirement Q. Now, since no Ri-requirement of higher priority than Q will switch from Γ to ∆
along h beyond δ, the requirement Q cannot be added to Qδ′ for any δ′ with δ ≺ δ′ ≺ h; as a consequence, there is
also a longest Q-strategy along h.
Case 2: Q = N i j

e , and by symmetry assume i j = 12. Fix as usual the R3-strategies δ0 ≺ δ1 · · · ≺ δn ≺ σ alive
at σ. The strategy σ cannot put Q into the set Qσ ô unless σ switches the outcome of δn from Γ to ∆ along h (since,
by inductive hypothesis, no δl can be killed along h anymore). But then Q must be assigned to σ ô and cannot be
added to Qδ′ for any δ′ with δ ≺ δ′ ≺ h. 2

An R-strategy β has only its operator Γβ as a parameter. Initially (and after every initialization), we set Γβ = ∅.
We will also refer to Φβ(A12 ⊕ A23) as Xβ (in the case of an R1-strategy, and proceed similarly in the case of an
R3-strategy.)

An N 12-strategy α extending R3-strategies β0 ≺ β1 ≺ · · · ≺ βn still alive at α has a threshold dα, a set of killing
points k0α < · · · < kn

α, a witness zα, a list of old witnesses Wα, each component of which contains a number z, an index
i ⩽ n, two finite sets Ez and Fz, and enumeration operators ∆β0 , . . . , ∆βn . Initially (and after every initialization),
all of these parameters are undefined or empty. An N 23-strategy γ has the same list of parameters with respect to all
R1-strategies that are still alive at γ.

In addition, every strategy has two streams S 12 and S 23. These streams are determined by the predecessor of
every strategy. Whenever a strategy is canceled, most of the elements in its stream (except for possibly one element)
will be dumped into the corresponding set A12 or A23.

4.5. Construction
In our construction, we will build a sequence { fs}s<ω. Each fs is a node of length s on our tree of strategies. Strategies
visited at stage s+1 will modify the values of their parameters, as well as the approximations to the sets A12, A23, A1

and A3. Since our tree is finitely branching, there is a leftmost path of nodes visited at infinitely many stages, the
true path. The intention is that for every requirement Q, there is a strategy along the true path that satisfies Q.

At stage 0, we set A12 = A23 = A1 = A3 = ∅, and all parameters of all strategies are in initial state (either
undefined or empty). All streams are empty.

At stage s + 1, we always start by visiting the root of the tree, namely, fs+1 ↾ 0 = ∅. We add to the streams S 12
∅

and S 23
∅ of the root the element s. Suppose we have built fs+1 ↾ k along with its streams S 12

fs+1↾k and S 23
fs+1↾k. If we

have added a new number to S 12, then we denote it by n12. If we have added a new number to S 23, then we denote
it by n23. If k = s + 1, then we are done with the construction of fs+1: We initialize all strategies δ > fs+1, dump
their streams into A12 and A23, respectively, empty their streams (i.e., set S 12

δ = S 23
δ = ∅), and move on to the next

stage.
Otherwise, we have four cases depending on the requirement assigned to fs+1 ↾ k:
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Case 1: fs+1 ↾ k is an R3
j -strategy β: The strategy scans all x ⩽ s.

(a) If x ∈ Yβ \ Γβ(A3 ⊕ A23), then the strategy picks a fresh marker a3(x) and enumerates it into A3. Then
it defines Kx

β as the finite set of all β-killing points that belong to an N 12-strategy α ≻ β with current
threshold dα ⩽ x. (Note that this is a finite set as there are currently only finitely many strategies that are
not in initial state.) The strategy then enumerates into Γβ the axiom ⟨x, ({a3(x)} ∪ Kx

β)⊕ A23 ↾ s⟩.
(b) If x ∈ Γβ(A3 ⊕ A23) \ Yβ, then the strategy extracts from A3 all markers a3(x) that are in some valid

axiom for x in Γβ.
Once the scan is over, the strategy defines the stream S 12

β̂ 0 by adding to its previous value the number n12 and,
similarly, the stream S 23

β̂ 0 by adding to it the number n23 (if they exist). Then the strategy ends the substage
with outcome 0.

Case 2: fs+1 ↾ k is an R1
j -strategy. This case is dealt with analogously to the previous case.

Case 3: fs+1 ↾ k is an N 12
e -strategy α. Fix β0 ≺ β1 ≺ · · · ≺ βn ≺ α to be the R3-strategies alive at α. Let Kα

be the greatest lower bound of the set of all killing points ki
γ, where γ is an N 12-strategy and α ⪰ γˆ∞i.

Let R12 and R23 be the sets of witnesses currently used by higher-priority N 12- and N 23-strategies, respec-
tively. Similarly, the sets Pi

12 and Pi
23 consist of the current witnesses of N 12- and N 23-strategies extending

outcome ∞i.
If this is the first time that α is visited after initialization, then define the threshold dα to be fresh and large and
the killing points k0α < · · · < kn

α as fresh numbers. Enumerate every killing point into A3. Then go to the first
case which applies:

(a) If Γβi(A3 ⊕ A23) ↾ dα has changed since we last visited α, then cancel zα, Wα and ∆βi for every i ⩽
n. Extract the killing points k j

α where j ⩾ i from A3. Define new values for these killing points and
enumerate them into A3. Initialize all strategies of lower priority than α. Dump the streams S 12

α and S 23
α

into A12 and A23, respectively. Set S 12
α̂ o = S 23

α̂ o = ∅ for every possible outcome o of α and end the
substage with outcome wait.

(b) If the previous time when we visited α, it had outcome stop, and α has not been initialized since, then
let the outcome again be stop. Define S 12

α̂ stop and S 23
α̂ stop by adding to them the number n12 and n23,

respectively (if they exist).
(c) Scan the list of old witnesses Wα. For each entry ⟨z, iz, Ez, Fz⟩ such that z has not yet been dumped

into A12, check to see whether the number iz can be decreased: Find the least jz such that for every
i ⩾ jz, if we enumerate back into A3 the set Ez, into A12 every number x ̸= z such that x ⩽ s and
x /∈ R12 ∪

⋃
j< jz P j

12, and into A23 every number x ⩽ s that is not in the set R23 ∪
⋃

j< jz P j
23, then βi

will not be forced to extract from A3 any number in Ez during Γβi -correction. (In this case, we say that z
is Γβi -cleared for i ⩾ jz.) If there are no witnesses with jz ⩽ iz, then move on to step (d). Otherwise,
among all witnesses with jz ⩽ iz, pick the one with least jz, and among these the least z. Enumerate Ez
into A3, dump into A12 every number x ̸= z such that x ⩽ s and x /∈ R12 ∪

⋃
j< jz P j

12, and into A23 every
number x ⩽ s such that x /∈ R23 ∪

⋃
j< jz P j

23. If jz = 0, then set zα = z, extract it from A12 and end
the substage with outcome stop. Set S 12

α̂ o = S 23
α̂ o = ∅ for every possible outcome o of α and dump the

elements that were in each stream into A12 and A23, respectively.
Otherwise, if jz > 0, then set iz = jz − 1. Let Fz ⊆ Yβiz

be the set such that z ∈ A12 if and only
if Fz ⊆ Yβiz

. Enumerate into ∆βiz
the axiom ⟨z, Fz⟩. Update the record in Wα to include ⟨z, iz, Ez, Fz⟩.

Extract the killing points k j
α where j ⩾ iz from A3, and end the substage with outcome ∞iz . We set the

streams S 12
α̂ o = S 23

α̂ o = ∅ for every outcome o of α that is to the right of ∞iz and dump all elements that
were in those streams except z into A12 and A23, respectively. Dump n12 into A12 (if it exists). We leave
S 12
α̂ o and S 23

α̂ o unchanged for every outcome o of α that is to the left of ∞iz . We update S 12
α̂ ∞iz

by adding
the number z to it, and S 23

α̂ ∞iz
by adding the number n23 (if it exists) to it.

(d) If no current witness is selected and n12 exists and is larger than the current witness of every N -strategy γ
with γˆwait ⪯ α or γ ŝtop ⪯ α, then define zα = n12 and enumerate it into A12. Otherwise (if n12 is
defined but too small), dump n12 into A12. End the substage with outcome wait, leaving all streams of
immediate successors of α unchanged.
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(e) If zα /∈ Θα(A3 ⊕ A23) or if zα ∈ Θα(A3 ⊕ A23) but for every valid axiom ⟨zα, E ⊕ D⟩ ∈ Θα, we have
that max(E) ⩾ Kα, then end the substage with outcome wait. Add n12 into S 12

α̂ wait and n23 into S 23
α̂ wait

(if they exist). Leave all other streams of immediate successors of α unchanged.
(f) If zα ∈ Θα(A3 ⊕ A23) via an axiom ⟨zα, E ⊕ D⟩ with max(E) < Kα, then we add ⟨zα, n + 1, E, ∅⟩

to Wα and go back to step (c). (Note that the current outcome will not be wait, since in step (c), we are
guaranteed to find some witness jz ⩽ n + 1.) We also cancel the value of the current witness so that at
the next visit, if α passes through steps (a), (b) and (c), then it will go to step (d) and select a new value
of the witness.

Case 4: fs+1 ↾ k is an N 23
e -strategy. This case is dealt with analogously to the previous case.

4.6. Verification
As anticipated, we have an infinite true path f of strategies on the tree consisting of the leftmost nodes visited at
infinitely many stages. Our intention is to prove that nodes along this path satisfy their requirements. In order to
prove that nodes on this path are initialized only finitely often, we must consider an N -strategy on the true path and
think about how many times it can be restarted, as that is the only reason, other than just visiting a node to the left of
a strategy, that causes the initialization of strategies. We will prove, in Lemma 4.4, that for every R3-strategy β ≺ f ,
the set Γβ(A3⊕A23) is ∆0

2, and similarly, for every R1-strategy β′ ≺ f , the set Γβ′(A1⊕A12) is ∆0
2. Throughout this

proof, we will phrase various interactions between strategies for the pairs R3 and N 12. We note that the relationship
between R1 and N 23 is symmetric.

First, we point out a technical fact about streams that will be useful in the rest of the proof.

Lemma 4.3. If n enters a stream of a strategy δ at stage s and δ was last visited or initialized at stage s−, then
n ⩾ s− and n is larger than all previous elements of either stream of δ.

Proof. The proof is an easy induction on the construction. The root is never initialized, and at stage s + 1, n12∅ =
n23∅ = s, which is the last time the root was visited.

Suppose the statement is true about δ. If δ adds n12 and n23 to the stream of its immediate successor, then the
statement clearly follows by induction, as we cannot initialize an immediate successor of δ without either visiting
or initializing δ. So suppose that δ is an N 12-strategy, say, and δ adds a witness z to the stream of δ̂ ∞i, as that is
the only other case. In that case, the witness z was defined after δ̂ ∞i was last visited or initialized at stage t, as
whenever we initialize or visit δ̂ ∞i, we initialize and empty the stream of all strategies δ̂ ∞ j where j > i. At the
stage when z was defined, it was defined as n12δ , which by induction is greater than or equal to the previous stage
when δ was visited, and hence greater than or equal to t, and larger than any element in the stream of δ̂ ∞i. 2

Lemma 4.4. Let β ≺ f be an R3-strategy. Suppose that α is an N 12-strategy such that β ≺ α ≺ f and β is alive
at α. Let dα be a threshold of α. Then there is a stage s such that after stage s, the strategy β does not modify the
set Γβ(A3 ⊕ A23) below the threshold dα. Thus, in particular, if β is never killed along f then the set Γβ(A3 ⊕ A23)
is ∆0

2.

Proof. We prove this theorem by induction on the priority of β and α. So towards a contradiction, suppose that the
statement is false for a pair of strategies β ≺ α ≺ f , and take the pair where α has highest priority. It follows from
our choice of α that there is a least stage sα such that after stage sα, the strategy α (and hence β as well) is not
initialized and never again changes the value of its threshold dα. At stage sα, the strategy α picks its killing points as
fresh numbers, and hence they do not interfere with any axiom for any number n ⩽ sα in Γβ. After stage sα, every
time Γβ(A3 ⊕ A23) changes on some number n ⩽ sα, the strategy α is restarted. It chooses all parameters anew and
initializes all lower-priority strategies. This means that if β enumerated a new axiom into Γβ for some n ⩽ sα such
that n ∈ Ψβ(A12 ⊕ A23), then:
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(1) This axiom cannot be invalidated by any strategy γ of equal or lower priority than α, as N 12-strategies are ini-
tialized or restarted and hence pick their killing points as fresh numbers larger than a3(n) and have thresholds
larger than n (hence none of their killing points will be included by β in this axiom). N 23-strategies have to
pick their witnesses anew, from fresh streams, as their streams are emptied at the current stage. Hence these
witnesses will be larger than the current stage and will not be included in the A23-portion of the axiom for n.

(2) The axiom that made n enter Ψβ(A12 ⊕ A23) uses (by our convention) only numbers smaller than the current
stage and hence it will not be invalidated by any strategy of equal or lower priority than α, as these strategies
are initialized and their streams are emptied. By Lemma 4.3, their streams will contain only numbers larger
than the current stage, from which they will pick their witnesses.

No strategy of higher priority than α can invalidate either of these axioms, either: A higher-priority strategy extracts
from A12 or A23 only at stages at which it, for the first time after initialization, has its leftmost outcome stop, which
by our choice of sα must happen before stage sα. Similarly, after stage sα, higher-priority strategies extract killing
points only associated with R-strategies that they end up killing, and since β is alive at α, this cannot be β. Of course,
all A3-markers are different, so R3-strategies do not interfere with each other.

It only takes finitely many stages for any number n ⩽ dα that ever enters Ψβ(A12 ⊕ A23) to enter Ψβ(A12 ⊕ A23)
permanently, and hence after that stage, β will not need to modify Γβ(A3 ⊕ A23) ever again. 2

The lemma above has two easy but significant corollaries. The first corollary was already anticipated by us.

Corollary 4.5. Every strategy along the true path is initialized at most finitely often. 2

The second corollary gives us the satisfaction of R-requirements in one case.

Corollary 4.6. If β ≺ f is an R3-strategy that is alive at every successor of β along the true path, then Γβ(A3 ⊕
A23) = Ψβ(A12 ⊕ A23). The analogous statement for R1-strategies holds as well.

Proof. Fix an R3-strategy β ≺ f . Consider the N 12-strategies β ≺ α0 ≺ α1 ≺ · · · ≺ αn ≺ · · · ≺ f along
the true path. The sequence {dαi}i<ω of the final values of their thresholds, attained at the first true stage after the
corresponding strategy stops being initialized, is an unbounded increasing sequence. By Lemma 4.4, for every i,
there is a stage si such that at all t ⩾ si, the strategy β does not modify Γβ(A3 ⊕ A23) on numbers less than dαi ,
and hence, by β’s design, Γβ(A3 ⊕ A23) ↾ dαi = Ψβ(A12 ⊕ A23) ↾ dαi at all stages t ⩾ si. Furthermore, the proof
of Lemma 4.4 actually gives us more: If n ⩽ dαi is in Ψβ(A12 ⊕ A23) at any β-true stage after αi selects its last
threshold dαi , then n ∈ Γβ(A3 ⊕ A23) ∩ Ψβ(A12 ⊕ A23). This gives us immediately that Γβ(A3 ⊕ A23) ↾ dαi =
Ψβ(A12 ⊕ A23) ↾ dαi and, by the unboundedness of {dαi}i<ω, the fact that Γβ(A3 ⊕ A23) = Ψβ(A12 ⊕ A23). 2

We next concentrate on the N -requirements. To prove that each is eventually satisfied, we will first show that
once a number is Γi-cleared, it will remain Γi-cleared at all future stages.

Lemma 4.7. Fix an N 12-strategy α ≺ f below R3-strategies β0 ≺ · · · ≺ βn alive at α. If α moves a witness z from
S 12
∞ j

to S 12
∞i

, where i < j, at a stage after α’s last initialization, then at any future stage, if z is extracted from A12

and Ez is enumerated back into A3, the strategy β j will not change A3 to cause z to be extracted from Γβ j(A3⊕A23).

Proof. Suppose that at stage s, the strategy αmoves z from S 12
∞ j

to S 12
∞i

, where i < j. At this stage, it dumps into A12

all numbers x ⩽ s such that x /∈ {z}∪R12∪
⋃

i′⩽i Pi′
12, and into A23 all numbers x ⩽ s such that x /∈ R23∪

⋃
i′⩽i Pi′

23.
At stage s, we see that under these circumstances, the extraction of z from A12 will not cause any number y that is
currently in Ψβ j(A12 ⊕ A23) and that has an A3-marker a3(y) ∈ Ez to leave the set Ψβ j(A12 ⊕ A23). Assuming that
(R12 ∪

⋃
i′⩽i Pi′

12) ∩ A12 as seen at the current stage s remains a subset of A12, and that (R23 ∪
⋃

i′⩽i Pi′
23) ∩ A23 as

seen at stage s remains a subset of A23, this will be true at future stages as well, as every strategy to the right of αˆ∞i
is initialized and will select its future witnesses from its stream that is currently empty and will by Lemma 4.3 in
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the future only have elements larger than any number mentioned before stage s, hence not be included in any axiom
in Ψβ j valid at stage s.

The only potential problem is that some strategy γ might, at a stage t, extract from A12 a number y that is in the
set (R12 ∪

⋃
i′⩽i Pi′

12) ∩ A12 at stage s, or from A23 a number y that is in the set (R23 ∪
⋃

i′⩽i Pi′
23) ∩ A23 at stage s.

First note that if y ∈ R12 ∪ R23, then y is the current witness of an N -strategy δ ≺ α. Since δ has no witness
at stages when it has an infinite outcome, and its current witness is not in A12 if it has outcome stop, it follows that
δ̂ wait ⪯ α. This means that y remains the current witness of δ at all future stages and never enters another stream.
No other strategy has access to it in order to extract it at stage t.

Suppose that y ∈ Pi′
12 for i′ ⩽ i. Let δ ⪰ αˆ∞i′ be the strategy with witness y at stage s. Let γ be the strategy

that extracts y at stage t. Once again, γ cannot have higher priority than α, or else α would be initialized. It follows
that γ = α, or else γ ⪰ αˆ∞k, where k ⩽ i′, as all other strategies of lower priority than α are initialized at the stage
when y was assigned to δ as a witness and thus have streams consisting of elements larger than y by Lemma 4.3.
If γ = α, then at stage t, the strategy α dumps all elements less than t that are not in {y} ∪ R12 ∪ R23 into A12

and A23, respectively, in particular z will be dumped. If γ ⪰ αˆ∞k and k ⩽ i, then consider the stage r at which y
entered the stream of αˆ∞k. Since at stage s, the number y is already in the stream of αˆ∞i′ , and whenever a number
switches streams, all streams associated with strategies to the right are dumped, we have that at stage r, the number z
is dumped (z cannot already be in a stream to the left of or equal to αˆ∞k at stage r, or else y would have been
dumped before stage r). 2

Lemma 4.8. Every N -requirement is satisfied.

Proof. By symmetry, fix an N 12
e -requirement, say. By Lemma 4.2, there is a strategy α along the true path that is

assigned N 12
e and such that no strategy σ extending α along the path f has N 12

e ∈ Qσ. It follows that αˆwait ≺ f
or α ŝtop ≺ f .

Let sα be the first stage after which α is not initialized. Recall that the number Kα is defined as the greatest lower
bound of the set of all killing points ki

γ, where γ is an N 12-strategy and α ⪰ γˆ∞i. Every time that α is visited, this
number has a larger value than at the previous visit. Furthermore, no N -strategy of higher priority than αmodifies A3

on numbers x ⩽ Kα. This is because when such an N -strategy γ such that γˆ∞i ⪯ α has outcome ∞i, it extracts
from A3 all killing points k j

γ, where j ⩾ i, and then it redefines them as fresh numbers. The strategy γ cannot extract
any smaller killing point without initializing α.

So A3 ↾ Kα can only be modified by an R-strategy β above α. We note that such a strategy is necessarily alive
at α. Indeed, if β is not alive above at α, then it is killed by a strategy γ such that γˆ∞i ⪯ α and β is γ’s j-th
R3-strategy, where j ⩾ i. Every time that γ has outcome ∞i, it extracts its j-th killing point from A3, thereby
invalidating all axioms in Γβ for numbers x ⩾ dγ. After stage sα, the strategy β does not modify Γβ(A3 ⊕ A23) on
any number x ⩽ dγ, hence if it sees a valid axiom for some x that needs to be made invalid, then x > dγ. This axiom
has marker a3(x) > k j

γ ⩾ Kα.
If αˆwait ≺ f , then let s ⩾ sα be such that α has outcome wait at every stage t ⩾ s. After stage s, the

strategy α will select its final witness zα. It follows from the construction that zα never enters Θα(A3 ⊕ A23) with
an axiom that does not use any numbers larger than Kα. Since the values of Kα at α-true stages form an unbounded
sequence, it follows that every axiom we ever see for zα in Θα(A3 ⊕ A23) is invalid at infinitely many stages. Hence
zα /∈ Θα(A3 ⊕ A23). As no strategy other than α can extract zα from A12, and zα is enumerated into A12 at the stage
when it is defined, it follows that zα ∈ A12 \Θα(A3 ⊕ A23).

If, on the other hand, α ŝtop ≺ f , then there is a stage s ⩾ sα such that α has outcome stop for the first time at
stage s. At this stage, α has found a witness z that is cleared by all higher priority R3-strategies that are alive at α.
Note that max(Ez) < Kα, and by Lemma 4.7, no strategy β that is alive at α will extract a marker from A3 that is
in Ez. Every number that was in A23 when the axiom for z in Θα was found is dumped into A23 at stage s (only
elements that are in R23 are preserved; however, they cannot have been in R23 when z was realized and not be in R23

later unless α is initialized). It follows that z ∈ Θα(A3 ⊕ A23) \ A12. 2

The final lemma that we present handles the case when an R-requirement is satisfied by its backup strategy,
which completes the proof.
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Lemma 4.9. Let α be an N 12-strategy below the R3-strategies β0 ≺ · · · ≺ βn ≺ α alive at α. If αˆ∞i ≺ f , then
A12 ⩽e Yβi . (Of course, a symmetric result holds for N 23-strategies below R1-strategies.)

Proof. Let sαi be a stage such that αˆ∞i is not initialized after stage sαi . After this stage, the set R12
α does not change.

We prove that if x ⩾ sα is an element that is never dumped into A12, then either x ∈ R12
α or x ∈ A12 if and only if

x ∈ ∆βi(Yβi).
Fix x and suppose that x is never dumped into A12 and that x /∈ R12

α . Fix the least witness z of α such that z ⩾ x.
Consider the stage at which z is realized and enters one of the streams of α’s immediate successors. If z > x, then
at that stage, x would be dumped into A12. So suppose that z = x. Now consider the next stage at which α has
outcome ∞i. At that stage, some element z′ enters the stream S α̂ ∞i , and by our choice of sαi , we know that at this
stage, x is in some stream S α̂ ∞ j where j ⩾ i. If x ̸= z′, then x would be dumped into A12 at this stage, so suppose
that x = z′ and x enters the stream S α̂ ∞i at stage s. Then at this stage, we add an axiom ⟨x, Fx⟩ into ∆βi for x,
where Fx is such that under the current circumstances at stage s, we have that x ∈ A12 if and only if Fx ⊆ Yβi . As in
the proof of Lemma 4.7, if some number that is in the set (R12 ∪

⋃
j⩽i P j

12) ∩ A12 at stage s is extracted from A12

or a number that is in the set (R23 ∪
⋃

j⩽i P j
23)∩ A23 at stage s is extracted from A23, then x is dumped into A12. So

suppose that neither of these ever happens. Then clearly, if x ∈ A12, then Fx ⊆ Yβi , as all strategies of lower priority
than αˆ∞i are initialized at stage s. If at any stage t > s, we visit α and notice that Fx ⊆ Yβi even if x /∈ A12, then
the strategy α will move x to a smaller stream and initialize αˆ∞i, contrary to our assumptions. 2

Putting Corollary 4.6 and Lemma 4.9 together, we conclude the following

Corollary 4.10. Every R-requirement is satisfied.

Proof. Fix an R3
e -requirement, say. By Lemma 4.2, let β be the longest R3

e -strategy along f . If β is not switched
from Γ to ∆ by any strategy extending β along f , then by Corollary 4.6, R3

e is satisfied. If β ≺ αˆ∞i ≺ f and α
switches β from Γ to ∆, then β is α’s i-th live R3-strategy. By Lemma 4.9, A12 ⩽e Yβ, and hence R3

e is once again
satisfied. 2

This concludes the proof of Theorem 4.1.
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