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Abstract. Given an integer n > 0 we give a computable injective listing of

the isomorphism types of all computable abelian p-groups of Ulm type ≤ n.
We prove a similar result for certain classes of profinite groups.

1. Introduction

A central problem in many areas of mathematics is the classification problem.
For a class of structures K, this problem typically asks “Is there a way to under-
stand or classify the structures in K up to isomorphism?” Often this classification
involves determining invariants which transform the question of whether A ∼= B
into whether A and B have the same invariants. Since “isomorphism type” is itself
an invariant, we would expect useful invariants to make the classification problem
simpler. Examples of classes with useful invariants include dimension for vector
spaces, Baer invariants for completely decomposable groups [Bae37], and the Jones
polynomials for knots. Mathematical logic provides the tools for understanding the
isomorphism problems for various classes of structures. As we describe below, we
can use mathematical logic to clarify what we mean when we say “invariants should
make the classification problem simpler,” and also to formalise what it means to
have no simplifying invariants for a given class. Where classification is possible,
we can use logic to calibrate precisely how hard the isomorphism problem is. In
this article we use tools of computable structure theory [AK00, EG00] to produce
a fine-grained algorithmic classification for a broad class of groups.

Computable structure theory offers several general approaches to the classifica-
tion problem for a given class of structures; see [GK02]. Here we recall that all
typical countable structures met in practice are naturally computably given, where
a countable algebraic structure is computable if its domain and the operations are
Turing computable [Mal61, Rab60]. The standard representation of the additive
group of the rationals is computable, and a finitely presented group is computable
if its word problem is decidable. The nicest classification of an isomorphism prob-
lem is one where we can decide if two structures are isomorphic; the isomorphism
problem is algorithmically decidable. For instance, the isomorphism problem for
finite abelian groups is clearly decidable, and furthermore all isomorphism types
of such groups can be computably listed without repetition. Although the isomor-
phism problem for arbitrary finite groups is also decidable, it is still open whether
it is computationally feasibly decidable; meaning that we can decide isomorphism
in polynomial time, see, e.g., [AT11].
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For many infinite structures we have no hope of deciding the isomorphism prob-
lem, let alone feasibly deciding it. In these cases we seek to understand how hard
the isomorphism problem is using various hierarchies or by asking whether there is
a way to injectively list the isomorphism types. A somewhat counter-intuitive fact
is that a class can have a computable listing of isomorphism types even though the
isomorphism problem in the class is not decidable; an elementary example is the
class of countable vector spaces over a fixed computable field. After understanding
the problem for computable structures, the process of relativisation to an arbi-
trary oracle allows us to understand the general isomorphism problem for arbitrary
countable structures. We now elaborate on these concepts in more detail.

The isomorphism problem for a class K of structures is the set {〈i, j〉 | Ai ∼= Aj}
for some enumeration {Ae | e ∈ ω} of the computable members of the class we
are interested in. The complexity of the isomorphism problem for a class K can
be measured using various hierarchies such as the arithmetical and the analytical
hierarchy [Rog87]. For example, if we consider computable copies of the linear
ordering of order type ω, the natural numbers, then the isomorphism problem
classified by the halting problem, since access to the halting problem allows us
to decide if x is the successor of y. Typically such results can be relativised to
any oracle, which means that the oracle can be used as a parameter in the result.
More formally, the “boldface” [Sac90] versions of such results are not restricted to
computable members of the class but can cover the whole class. For example, in the
case of torsion-free abelian groups the isomorphism problem is Σ1

1-complete [DM08].
The result can be relativised to any oracle, showing that the collection of reals that
naturally code torsion-free abelian groups is analytic complete [DM08]. Σ1

1 sets
are those which can be expressed as x ∈ A ⇐⇒ ∃fR(f, x) where R is some
computable arithmetical relation, where the existential quantifier is quantifying
over all the continuum many functions. Isomorphism is naturally Σ1

1 since we are
asking “is there a function obeying certain properties from We to Wj?” Showing the
index set is Σ1

1-complete amounts to showing that listing the isomorphism types of
the structure is as hard as listing the isomorphism types of any countable structure.
Hence, there can be no invariants which would simplify the isomorphism problem.
This gives a computational “proof” that there are no reasonable invariants. The
point is that if there are nice invariants like dimension for vector spaces, these
invariants must simplify the isomorphism problem of the class. In the case of vector
spaces, the problem becomes arithmetical since we only need two alternations of
number quantifiers to decide what the dimension is. Hence logic blended with
group theory allows us to answer Fuchs’ question of whether there are invariants
for general torsion-free abelian groups. In contrast, for computable completely
decomposable groups [Bae37] the isomorphism problem is merely Σ0

7 [DM14]. The
result means that the Baer invariants [Bae37] for such groups are somewhat close to
being Turing computable. Since Σ0

7-hardness is an open question, we still have to
understand how close to being computable they exactly are. The relativised version
of this result can be stated in purely topological terms using the Borel hierarchy,
confirming that the class of such groups is somewhat algebraically tame.

A nice algebraic classification sometimes leads to an injective enumeration of
the isomorphism types in the class. That is, we also get a computable enumeration
of computable members of the class in which isomorphism types are not repeated,
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and which every computable member of the class is represented. For example, we
can easily enumerate all isomorphism types of finitely generated abelian groups
without repetition. All such groups naturally have a solvable word problem, there-
fore looking at the computable members of the class is not really a restriction. The
classification of finite simple groups also leads to an injective enumeration of the iso-
morphism types of the class. For more examples, see [LMS18]. As another example,
if we consider the Downey and Melnikov [DM14] result on completely decompos-
able groups discussed above, with the help of a few iterates of the Halting problem,
we can produce a list of all isomorphism types of computable completely decom-
posable groups without repetition (recall that the isomorphism problem for this
class is merely Σ0

7). In contrast, it follows from the Σ1
1 completeness result [DM08]

that no finite – indeed, no recursive transfinite – iterate of the Halting Problem is
capable of enumerating all isomorphism types of computable torsion-free abelian
groups without repetition.

Based on a similar intuition, Goncharov and Knight [GK02] suggested that a
class of computable structures is tame if we have a way of computably listing the
isomorphism types without repetition.

Definition 1.1. [GK02] We say that a class K of structures has a Friedberg enu-
meration if there is a computable listing A1, A2, . . . of all isomorphism types of the
computable members of K without repetition.

Formally, there is a computable listing A1, A2, . . . of computable structures such
that (i) Ai is a computable member of K for all i, (ii) for every i 6= j, we have
Ai � Aj , and (iii) for every B ∈ K, if B is computable then B ∼= Ai for some i.

If a class has a Friedberg enumeration, then we can regard it as “classified” in
this well-defined sense, in spite of the actual isomorphism problem being possibly
quite complex. The inspiration for the name “Friedberg enumeration” comes from
Friedberg’s proof [Fri58] that the computably enumerable sets can be listed without
repetition. For sets, “isomorphism” means equality, and Friedberg’s proof shows
that a class of structures can have an undecidable isomorphism problem (the set
{〈i, j〉 | Wi = Wj} is Π0

2 complete), yet there is a way to give a computable list of
all its members without repetition. Another example, albeit a trivial one, is ω as
a linear ordering, whose Friedberg enumeration consists of a single element, N, yet
the isomorphism problem is Σ0

1-complete.
Goncharov and Knight [GK02] pointed out that classification via enumerations

tends to be technically rather challenging. There is no algebraic structure on com-
putably enumerable sets, yet Friedberg’s original proof [Fri58] involves several tech-
niques which were novel – if not revolutionary – at that time. Unsurprisingly, even
adding very little algebraic content into the class of structures can make the Fried-
berg enumeration problem a lot harder.

In our previous work [DMN17] we solved a problem of Goncharov and Knight [GK02].
We produced a Friedberg enumeration of the class of computable equivalence struc-
tures. The [DMN17] result is significantly more complicated than enumerating the
computably enumerable sets since determining whether two computable equiva-
lence structures are isomorphic is Π0

4-complete, compared to Π0
2 for determining

equality of computably enumerable sets.
In constructing a Friedberg enumeration one usually has to dynamically mea-

sure whether a given computable structure is isomorphic to another one. The more
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complex the isomorphism problem, the more difficult it is to measure this. Gon-
charov and Knight [GK02] suggested that there is no Friedberg enumeration of
computable equivalence structures because the isomorphism problem is Π0

4 which
is very complicated to guess dynamically. Our solution [DMN17] requires essential
use of an advanced priority argument, akin to the 0′′′ technique. In this paper we
advance our techniques even further. Using three separate constructions combined
into a single proof, we will produce Friedberg enumerations for broad classes of
abelian groups in which the isomorphism problem could be at an arbitrarily high
finite level of the arithmetical hierarchy.

Because of the relationship between abelian groups and equivalence structures,
the Friedberg enumeration of computable equivalence structures also gives a Fried-
berg enumeration of all computable abelian p-groups of Ulm type 1. More specif-
ically, given a computable equivalence relation E we can uniformly computably
produce an abelian p-group AE of Ulm type 1 as follows. For each equivalence
class in E having size λ ∈ ω ∪ {∞} produce a cyclic or quasi-cyclic group Zpλ , and
then take the direct sum of all such subgroups, one for each equivalence class. It is
not difficult to see that the map E → AE is bijective on computable isomorphism
types of equivalence relations and abelian p-groups of Ulm type 1. Thus, the main
result of [DMN17] leads to a Friedberg enumeration of computable abelian p-groups
of Ulm type 1. It is natural to ask whether computable abelian p-groups of higher
Ulm type also possess a Friedberg enumeration.

The goal of the present paper is to prove the following result.

Main Theorem. For each natural number n > 0 there is a Friedberg enumeration
of all computable abelian p-groups of Ulm type ≤ n.

We remark that this gives the first known examples of algebraically nontrivial
classes with infinite members having a Friedberg enumeration. We emphasize that
the groups from the Main Theorem are not necessarily reduced. It can be shown
that, for each fixed n, the reduced members of the class do not possess a Friedberg
enumeration [GK02]. However, the fact that the groups are not reduced also adds
a great deal of complexity to the argument. It is not hard to show that the isomor-
phism problem for groups in the theorem is Π0

2n+2-complete. We use a modification
of the jump inversion technique from [AKO] to partially reduce the situation to the
case of equivalence structures. Our proof relies on two priority arguments which
will be non-trivially combined. The main ideas in this argument are built upon
our previous work on equivalence structures, as well as the work of Ash, Knight
and Oates [AKO], along with some new devices we introduce here. We leave open
the question of whether there is a Friedberg enumeration of the class of abelian
p-groups of greater Ulm types, e.g., of all groups of type < ω. Countable abelian
p-groups are exactly the Pontryagin duals of abelian pro-p groups. Pontryagin dual-
ity is injective on the isomorphism types of countable abelian and compact abelian
groups [Pon34]. Thus, the Ulm invariants of an abelian p-group give rise to pro-Ulm
invariants of the respective pro-p dual; see, e.g., [Kie13] for an explicit definition.
In [Mel17] the second author showed that the functor uniformly maps computable
abelian p-groups into recursive pro-p groups [Mel17], bijectively on isomorphism
types. We have:

Corollary 1.2. For each natural number n > 0 there exists a Friedberg enumeration
of recursive pro-p abelian groups of pro-Ulm type ≤ n.
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1.1. Overall structure of the paper. The rest of the paper is devoted to our
technical proof of the Main Theorem. First, in Section 2 we state and discuss
all known results from the literature on computable abelian groups which will be
needed in the proof. Next, in Section 3, we prove the main technical proposition
from the unpublished paper [AKO]; see Proposition 2.6. Our proof of Proposi-
tion 2.6 is slightly different from the proof in [AKO]. In Section 4, we prove a
certain modified version of Proposition 2.6 which will be used in our proof of the
Main Theorem.

In Section 5 we informally outline the construction which produces the desired
Friedberg enumeration. The construction is split into several modules and phases.
In Sections 6, 7, 8, and 9 we describe and verify various submodules and parts of
the construction. Finally, in Section 10, we will put all these pieces together into a
formal construction and its verification.

2. Preliminaries

In this paper all groups are at most countable abelian p-groups for some fixed p.
Recall that the p-height hp(a) of an element a of an abelian p-group is the supremum
over all n such that pny = a has a solution in the group. Given an abelian p-group

A, define A′ = {a ∈ A |hp(a) = ∞}, A(δ+1) =
(
A(δ)

)′
, and take the intersection

of Aβ over β < α for a limit ordinal α. (Here A′ should not be confused with the
halting problem relative to A.) For a countable A, the sequence must stabilize at
some countable ordinal α called the Ulm type of A; in this case A(α) is equal to
the maximal divisible subgroup of A. It is well-known that the maximal divisible
subgroup of A detaches as a direct summand of A, and also itself splits into a direct
sum of quasi-cyclic groups Zp∞ . Here Zp∞ is the direct limit of the linearly ordered
system of all finite cyclic p-groups under the natural inclusion.

2.1. Equivalence structures and p-groups of Ulm type 1. If α ≤ 1, mean-
ing that A′ = A′′, then Kulikov’s Criterion (see page 171 of [Kur60]) implies that
the p-group A splits into the direct sum of its finite cyclic and infinite quasi-cyclic
subgroups. Thus, each group G of Ulm type ≤ 1 is naturally associated with an
equivalence structure EG, as follows. The correspondence is formed by replacing
a cyclic or quasi-cyclic summand Zpλ by an equivalence class of size λ. Note that
this functor is well-behaved on isomorphism types because any two complete de-
compositions of Ulm type 1 abelian p-groups are isomorphic (as decompositions).
The functor is also clearly bijective on isomorphism types.

The Ulm factors A(δ+1)/A(δ) of A are themselves of Ulm type 1, and therefore
they can be described by invariants similar to those for equivalence structures. The
ordinal sequence of such invariants indexed by δ < α gives the Ulm invariant of A;
the invariant completely describes the isomorphism type of A [Kap69].

It is not hard to see that the functor G → EG defined above is also bijective
on computable isomorphism types; see, e.g., [Mel14]. It is clear that passing from
an equivalence structure E to the corresponding group GE is a uniformly effective
process. In particular, it follows that the Friedberg enumeration of all computable
equivalence structures produced in [DMN17] can be uniformly transformed into
a Friedberg enumeration of all computable abelian p-groups of Ulm type 1. In
this enumeration, each group has a computable complete direct decomposition into
cyclic and quasi-cyclic summands.
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It is far less clear that going from Ulm type 1 group G to the respective equiva-
lence structure EG is also uniformly effective; this is a relatively new result [MN18]
and its proof is not entirely straightforward. Although will could avoid using the
proposition below in its full power, it will be very convenient in the construction.

Proposition 2.1 ([MN18], Prop. 3.4). The functor G → EG defined above is
uniformly effective. Furthermore, regardless of the Ulm type of the input abelian
p-group G, we can guarantee that the output of the uniform procedure is always an
equivalence structure.

Note that in the proposition above G does not have to be reduced or infinite. If
G is not reduced or not of Ulm type 1, then EG will have infinite classes.

Remark 2.2. We will often use the uniformity of the correspondence G ↔ EG
without explicit reference. Thus, groups of Ulm type 1 will be identified with equiv-
alence structures (or vice versa) when it is convenient.

2.2. Basic trees. While groups of Ulm type 1 are very similar to equivalence
structures, groups of higher Ulm type resemble trees. We will use the technique of
p-basic trees to work with abelian p-groups having Ulm type larger than 1.

Definition 2.3 ([Rog77]). A p-basic tree is a set X together with a binary operation
pn · x of the sort {pn : 0 < n < ω} ×X → X such that:

(1) there is a unique element 0 ∈ X for which p · 0 = 0,
(2) pk · (pm · g) = pk+m · g, for all g ∈ X and k,m ∈ ω, and
(3) for every element x ∈ X, there is a natural number n with pn · x = 0.

If a prime p is fixed, then we think of a p-basic tree as a rooted tree with 0
being the root. Given a p-basic tree X, one obtains a p-group G(X) as follows:
The set X \ {0} is treated as the set of generators for G(X), and we add px = y
into the collection of relations if p · x = y in X. Every countable abelian p-group
is generated by some p-basic tree [Rog77]. Each element of the group G(X) can be
uniquely expressed as

∑
x∈X mxx, where mx ∈ {0, 1, . . . , p− 1}. Although we will

usually deal with combinatorial trees which are subsets of ω<ω, each such tree can
be interpreted as a p-basic tree. Note that the root must always be in the tree, for
every group must contain at least the neutral element 0.

Non-isomorphic trees can produce isomorphic p-groups. Here we will not give a
complete description of the congruence relation ∼ on rooted trees which is defined
by the rule: T0 ∼ T1 if and only if the groups G(T0) and G(T1) are isomorphic. See
[Rog77] for a detailed analysis of ∼.

Suppose that T is a p-basic tree viewed as a rooted tree. We call a finite chain
of nodes simple if it is isolated, i.e., every node along the chain has at most one
successor. Consider the following procedure:

“Take a simple chain extending v ∈ T , detach it, and

attach this chain to the root of T .”

The procedure is called stripping. If the tree rank of v does not change after
stripping, then the stripped tree T1 and the original tree T give rise to isomorphic
p-groups: G(T1) ∼= G(T ). This process can be iterated. Informally speaking, we
can replace infinitely many simple chains at once (while preserving tree ranks), and
obtain a fully stripped tree representing the same group. (The only restriction is that
the tree-ranks of nodes in the tree must be preserved under this transformation.)
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For example, a fully stripped tree for a reduced p-group of Ulm type 1 is just a
collection of finite simple chains attached to 0.

Using this technique, Ash, Knight, and Oates [AKO] proved the following im-
portant result. Recall that a total function f is called X-limitwise monotonic
if, for some total X-computable g we have f(x) = supz g(x, z), for all x; see
[KKM13, DKT11].

Theorem 2.4 (Ash, Knight, and Oates [AKO]; Khisamiev [Khi92] and [His81] for
N = 1). Suppose that A is a countable reduced p-group of Ulm type N < ω. Then
the following conditions are equivalent:

(1) A has a computable copy.
(2) A has a computable p-basic tree representing it.
(3) (a) For every i < N , the character χ(Ai) is a Σ0

2i+2 set, and
(b) for every i < N , the set

#Ai := {n : (n, 1) ∈ χ(Ai)}

is 0(2i)-limitwise monotonic.

The basis of induction in the proof of this theorem essentially says that abelian p-
groups of Ulm type 1 have the same computability-theoretic and algebraic invariants
as computable equivalence structures; this case is rather simple and has been known
for several decades [His81], see also the surveys [Mel14, Khi98]. The case of Ulm
type n > 1 is significantly more difficult. To explain what happens in this case, we
need several definitions.

Definition 2.5. We say an abelian p-group H of Ulm type 1 proper if it is reduced
(i.e. H ′ = 0) and furthermore the sizes of the finite cyclic summands in its full
direct decomposition are unbounded in size.

The inductive step in the proof of (3)→ (2) of Theorem 2.4 uses a functor that
allows us to uniformly pass from a ∆0

3 abelian group F represented by a p-basic
tree and a proper H to a computable abelian p-group TH(F ) with the properties
(TH(F ))′ ∼= F and TH(F )/(TH(F ))′ ∼= H. By induction, we will have already
proven that F can be represented by a ∆0

3 p-basic tree. It is well-known that
each ∆0

3-tree can be represented as a Π0
2-subtree of ω<ω, and uniformly so. We

identify F with the respective Π0
2-tree. We also identify a proper abelian p-group

H with the corresponding equivalence structure. Under this correspondence, an
equivalence class of size n will represent a cyclic summand of order pn. Recall that
this correspondence is also uniformly effective; see Proposition 2.1. Having in mind
the uniform correspondence H ↔ EH , we will abuse notation and write H for EH .
Since H is proper, the respective equivalence structure EH will have only finite
classes, but the sizes of these classes will be unbounded.

Proposition 2.6 (Ash, Knight and Oates [AKO]). There is a uniform procedure
which given a computable copy of a proper H and a Π0

2 p-basic tree F , outputs a com-
putable p-basic tree TH(F ) with the properties (TH(F ))′ = F and TH(F )/(TH(F ))′ ∼=
H.

It is not difficult to see that the harder implication of Theorem 2.4 follows from
the above-mentioned basic case and Proposition 2.6. Unfortunately, all known
proofs of the proposition are combinatorially rather involved.



8 ROD DOWNEY, ALEXANDER MELNIKOV, AND KENG MENG NG

The paper [AKO] was not published because the authors learned of a similar
result of Khisamiev. The problem with Khisamiev’s published proof [Khi92] is that
it does not use p-basic trees and is extremely hard to follow, verify, or modify.
Moreover, it is not even clear if it is completely correct. Although a description of
TH(F ) using p-basic trees can be found in [Mel14, DMN16], none of these published
descriptions can be viewed as complete proofs. We will need a minor modification
of the original proof of the proposition. Thus we decided to give a detailed proof
of Proposition 2.6; it is contained in Section 3 below.

3. Proof of Proposition 2.6

We split the exposition into several parts, starting from a very informal idea and
then adding more details later.

3.1. An informal idea. We remind the reader that F ∈ Π0
2 if and only if there

is a computable relation R, such that x ∈ F if and only if ∀s∃tR(x, s, t). We say
that “x fires” for the first time if R(x, s, t) holds for some t, and more generally, x
fires the for the n-th time if it has fired n-1 times and R(x, n, t) is observed to hold.
Thus, x ∈ A if and only if it fires infinitely often. If x ∈ A then we say that the Π0

2

outcome holds, and otherwise we say that the Σ0
2-outcome holds.

We intend to build TH(F ) as follows. If a node x ∈ ω<ω looks in F (when
represented as a Π0

2 p-basic tree), then we make progress in driving its tree-rank
to infinity. We do this by attaching more extra finite simple chains to x when
the Π0

2-predicate describing F “fires”; the sizes of the new simple chains we attach
are taken from the sizes of summands in H. (Recall that we identify H with the
equivalence relation, thus the complete decomposition of H is computable.) If x
looks like it is not in F we stop attaching new chains to x.

The obvious difficulties. There are of course several obvious difficulties with the
rough idea outlined above. First of all, the sizes of classes/summands in H are not
given as a computable or a computably enumerable set, and therefore they need to
be guessed and updated at later stages of the construction after they are attached
to a node. Note that they can only grow in length, for otherwise the tree will not be
computable. Secondly, a class of some fixed size may occur in H more than once,
and this must also be taken into account. For instance, if H has exactly 5 classes
of size 3 then, up to stripping, TH(F ) must also have exactly 5 chains of length 3.
Finally, we could have added a few extra finite chains to x but then x will never
fire again. We must understand how such Σ0

2-outcomes will effect the isomorphism
type of the output and what has to be done to control these effects.

3.2. The elementary case: Computable sizes without repetition. Consider
the easy but illustrative case in which the sizes of classes/summands in H have no
repetition and furthermore form a computable set. Under this assumption we do
not have to worry about updating the lengths of chains, and it is not necessary to
monitor the multiplicity of each class/summand in H.

3.2.1. An informal discussion. Under the above assumptions on H it is not hard
to produce TH(F ) by implementing the informal idea. However, even in this simple
case we must be careful of the Σ0

2 outcome x /∈ F . What we have is a list H of
acceptable finite chains. If x fires infinitely often then we will need an infinite tree
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of extensions below x, thus driving the tree-rank of x to infinity. This is done using
sizes in H. However, if x only fires finitely often we need to make sure that we have
not introduced new paths which kill the property TH(F )/(TH(F ))′ ∼= H. The fact
that x might fire finitely often means that there will be a finite part of T which
needs to correspond to simple paths of lengths in H which means that they are
irrelevant after stripping.

We illustrate this situation in the following example.

Example 3.1. Suppose px = 0, i.e., it is an immediate successor of the root node
in ω<ω. Assume that the Π0

2 predicate has “fired” on x, i.e. a further instance of the
Π0

2 event “x ∈ F” has been observed. Suppose that we have used a simple chain of
length 3 on x. This chain corresponds to a class of size 3 in H. However, imagine
that we will never get to add further finite simple chains to x because the predicate
will never fire again on x. As the result, we will end up with a finite simple chain
of length 4. In the group that we will have constructed, it will correspond to a cyclic
summand of order p4. But there may be no equivalence class of size 4 in H, and
thus TH(F )/(TH(F ))′ 6∼= H.

This problem is quite easy to overcome. Instead of adjoining a chain of length 3
to x, attach a chain of length 2. If later x fires again, use some longer class from
H, say, of size 17. Attach a chain of length 16 to x and extend that old chain of
length 2 attached to x by one extra node. This way we will form a simple chain of
length 3 having a longer chain next to it. At this stage, the subgroup generated by
all the mentioned nodes will be isomorphic to Zp17 ⊕ Zp3 which is consistent with
the sizes in H.

There is another problematic scenario which must not be overlooked; it is ex-
plained in the example below.

Example 3.2. At stage s we have adjoined a very long auxiliary chain to σ because
the predicate has fired on σ. Suppose τ extends σ, and that τ was thought to be in
F for a few stages before s. Thus, it is possible that the previous longest auxiliary
chain ξ′ that we saw in the construction prior to stage s was attached to τ . It must
be of length n − lth(τ) corresponding to some size n in H (where lth(τ) denotes
the length of τ), for otherwise we would face the problem outlined in Example 3.1
above.

But as the result of our action on σ, up to stripping, the longest auxiliary chain
attached to τ will be transformed into a simple chain of length n− (lth(σ)− lth(τ))
and not n, thus potentially upsetting the isomorphism type of the group spanned
by T (if τ never fires again). The simplest solution here would be to extend the
auxiliary chain attached to τ to a slightly longer chain. This is done by lengthening
it using by lth(σ)− lth(τ) extra nodes.

Finally, there is another situation similar to that explained in the example above
which may also result in upsetting the isomorphism type of the group. Consider
our final example below.

Example 3.3. In the notation of the previous example, suppose τ is an initial
segment of σ of length d. At stage s we adjoin a very long auxiliary chain to
σ because the predicate fires on σ, but the previous longest auxiliary chain ξ′ is
attached to τ . It must be of length n− lth(τ) for some corresponding n that occurs
in H.
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Up to stripping, the longest auxiliary chain attached to τ is now a simple chain
of size n− lth(σ) and not n. To fix this issue extend this auxiliary chain by lth(σ)
extra nodes, as before.

Assuming the sizes of classes in H form a computable set and have no repetition,
we generalise the examples above into the simple construction below.

3.2.2. Formal details. Fix a computable copy of ω<ω viewed as an infinitely branch-
ing tree with its root the empty string e located at its top. Identify F with a Π0

2-
subtree of ω<ω such that each σ ∈ ω<ω has infinitely many successors which do not
belong to F ; furthermore, we can assume that this set of successors of σ outside F
has an infinite computable subset of nodes. This subset will be used to attach ex-
ternal chains whose sizes will be taken from H. These external chains will be called
auxiliary. Each auxiliary chain will be associated with exactly one class/summand
in EH ↔ H having size greater or equal to the length of the auxiliary chain.

We also fix a Π0
2 predicate S and a computable predicate R such that S = {x :

∃∞zR(x, z)}. Whenever a new existential witness for z is found in R, we say that
S “fires” on z. We identify finite strings with their computable indices, and we also
assume that S fires on σ implies that S has also fired on every predecessor of σ at
least once again. Without loss of generality, assume that at every stage exactly one
node of ω<ω fires. Also recall that recall the empty string e belongs to F .

Construction (the elementary case). Initially, at stage 0, set U = ∅ and T0 =
TH(F )[0] = {e}. At stage s, perform the following actions.

Suppose σ has fired. By our assumption, each initial segment τ of σ fired at
least once again at some earlier stage. Let U = {u1, . . . , us} be the set of sizes in
H which have been declared used in the construction so far.

Consider the subtree Ts−1 = TH(F )[s−1] of ω<ω listed by the end of the previous
stage s-1, and let Ks be the subtree of Ts−1 rooted in σ (which has just fired).

(1) Fix a number m (at least twice larger than any number mentioned so far)
from the set of computable sizes that occur in H.

(2) Attach a chain of length m− lth(σ) to σ.
(3) If there is an auxiliary chain of length nj − lth(σ) associated with a size

nj ∈ U and attached to σ, then enlarge this simple auxiliary chain to one
of length nj .

(4) Suppose there is an auxiliary chain ξ attached to some τ extending σ which
is associated with some nk ∈ U but whose length is not equal nk. If there
are no such chains then do nothing. If lth(ξ) = nk-lth(σ) or longer, then
again do nothing. Otherwise, suppose lth(ξ) = nk-d, where d < lth(σ)
(cf. Example 3.3). In this case extend this auxiliary chain by adjoining
lth(σ)-d extra consequent nodes to the end of it. (The reader will of course
notice that (3) can be incorporated into (4) by allowing τ = σ; we however
feel that this would make the exposition a bit more cryptic.)

Let k be the smallest among the sizes that occur in H but has not yet been
declared used in the construction. To complete the stage, adjoin a simple auxiliary
chain of size k to the root e of Ts−1, associate the new auxiliary chain with k in
H, and also enumerate k into U . Finally, define TH(F )[s] to be the extension of
TH(F )[s − 1]; it will be equal to the collection of all auxiliary chains and their
prefixes/predecessors that have been defined by the end of stage s. Go to the next
stage.
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Verification (the elementary case). It is clear that the tree-rank of a node in the
fixed representation of ω<ω is infinite if and only if the node lies on the Π0

2 subtree
F . It is also clear that T = ∪sTs is a computably enumerable subtree of ω<ω; using
the standard technique we can transform it into a computable one. Thus, it remains
to verify that the abelian p-group spanned by T has the correct isomorphism type.

For convenience we will abuse notation and identify trees with the respective
groups, and we will not distinguish equivalence structures from the respective p-
groups of Ulm type 1.

We must verify that, up to stripping, the nodes of finite tree-rank form a copy
of H. In other words, the fully stripped version of T must contain only finite chains
of lengths that occur in H. Making sure that T/T ′ ∼= H was the main point of
performing substages (1)− (4) at stage s. We will argue that the actions performed
at substages (1)− (4) guarantee that the following properties hold:

(P1) The fully stripped version of the finite tree Ts is composed of simple chains
having sizes/lengths that occur in H.

(P2) If a node σ ∈ Ts is in F , then all finite auxiliary chains which are attached
to σ in Ts, except for at most one (call it exceptional for σ at s), have
sizes/lengths that occur in H.

(P3) If ξ is an exceptional auxiliary chain for σ in (P2) at stage s, and x ∈ F ,
then there is a stage t > s after which ξ is extended to a chain of length
that is mentioned in H; after this stage this auxiliary chain will never be
exceptional for σ (or any other τ) ever again.

The point of attaching a simple chain of length m − lth(σ) to σ (and not of
length m) was to ensure that the bad scenario explained in Example 3.1 does not
occur in Ts. Recall that m was picked very large, and therefore m− lth(σ) is much
longer than any other chain that may currently be in Ts−1. Thus, after a complete
stripping of Ts, this new auxiliary chain will remain attached to σ, and these two
combined will form a simple chain of length m as desired.

Note that attaching a very long new auxiliary chain to σ may result in upsetting
(P1), as explained in Examples 3.2 and 3.3. Our actions at substages (3) − (4)
were essentially formalisations of the straightforward strategies outlined informally
in Examples 3.2 and 3.3. Thus, a calculation of lengths of simple chains at each
stage shows that (P1) holds at every stage.

To see why (P2) holds, note that the predicate will fire infinitely many times on
σ. Thus, there will be infinitely many auxiliary chains attached to σ in the limit.
By induction on a stage, at every stage at most one such auxiliary chain attached
to σ can be exceptional, i.e., may be unequal in length to the respective size in H.
But at the stage at which the predicate fires for σ again this chain will be made
equal to the respective size in H according to the instructions at substage (2). This
proves (P3).

Conditions (P2) − (P3) show that, up to stripping, the nodes of infinite rank
contribute only chains of lengths that occur in H. Recall that the empty string
is assumed to be in F ; it corresponds to zero of the group spanned by F (and by
T ). Thus, each eventually abandoned finite piece Γ of T (due to the Σ0

2-outcome)
is attached to some node of F . Each node of F will have arbitrarily long auxiliary
chains adjoined to it, and therefore there is a stage t such that, after t, Γ can be
fully stripped off T into a union of finite simple chains. By (P1), the sizes of these
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chains occur in H. Finally, our actions at the beginning of every stage ensured that
no size that occurs in H is missed in T/T ′. This finishes the verification in the
elementary case when sizes of classes in H form a computable set.

3.3. The general case. The original proof in [AKO] used limitwise monotonic
functions; recall that a function g is limitwise monotonic if g(x) = supz f(x, z) for
some total computable f of two arguments. We will exploit the uniformity of the
correspondence H ↔ GH (see Proposition 2.1) and will not distinguish between an
equivalence structure H and the respective group GH . This identification allows
us to completely eliminate limitwise monotonic functions from the construction.
The proof of Proposition 2.1 is not straightforward; so the combinatorics related to
limitwise monotonicity has not mysteriously vanished, they just got absorbed into
this proof.

3.3.1. The main difficulty. The difference with the elementary case of a computable
set is obvious. Now, when we attach an auxiliary chain, we cannot guarantee that
the size of the respective class in H is final. In particular, we may have introduced
a chain ξ which was very long, but at some later stage some earlier auxiliary ξ′ may
outgrow ξ. This introduction of ξ results in difficulties in the spirit of Examples 3.2
and 3.3.

3.3.2. An informal description of the solution. Imagine that you knew ahead of
time that the first auxiliary chain corresponds to the smallest class in H, the sec-
ond auxiliary chain that we added corresponds to the second smallest, etc. For
simplicity, further assume that sizes of classes in H have no repetition. Recall
that the comparison of sizes of auxiliary chains is the main driving force of the
construction in the elementary case of a computable set. In the verification of the
elementary case we do not even use these sizes, as long as we can guarantee that
the new chain is much longer than all other chains we have seen so far.

So, assume that the final sizes of classes contain no repetition and can be com-
putably compared, even though their final sizes are merely approximable from be-
low. In this case we would simply run the construction of the elementary case, but
we will have to update the lengths of auxiliary chains when the respective classes
increase in size, as follows.

If a chain ξ has to be grown larger than the current size of some ξ′, but we know
ξ′ will correspond to a larger class in the limit, we just do nothing with ξ until ξ′

grows too. Since there are at most finitely many such ξ′, ξ′′, . . ., this is only a finite
delay. Under this strong assumption on comparability of sizes, the construction
described for the elementary case goes through with only very minor adjustments.

Of course, in general we cannot guarantee that the final sizes of classes in H can
be compared effectively. However, we do know that H contains arbitrarily large
finite classes. Thus, we can implement the following re-targeting procedure.

3.3.3. An informal description of re-targeting. At every stage each auxiliary chain
ξ is associated with some class in H whose size it is monitoring, let t(ξ) denote this
class. Each auxiliary chain is also given an index according to the stage at which
it is introduced, with smaller indices corresponding to earlier stages. Write i(ξ) for
the index of ξ.

Re-targeting: If t(ξ) has increased in size then the lengths of ξ and of ξ′,
such that i(ξ′) > i(ξ) and ξ′ is not attached to e, will have to be updated.
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For ξ, simply add as many extra nodes as there are new points in t(ξ). For
each ξ′ with i(ξ′) > i(ξ) and which is not attached to the root e, update
t(ξ′) and set it equal to the first found new class in H which currently is
larger than t(ξ′′) for every ξ′′ with the property i(ξ′′) < i(ξ′) (these includes
ξ). Since H contains arbitrarily large classes, we keep enumerating H until
such a class is found.

Since some classes may be left out of the range of t, we introduce new auxiliary
chains, associate them with the missed classes, and attach them to the root e. Since
the root is guaranteed to be in the tree F there is no need to be careful with the
way they are approximated. In particular, we will not have to re-target these chains
ever again in the future. In the general case the sizes of classes in H may of course
contain repetition, but is not too problematic; in fact, we do not even have to do
anything special to control the repetition. All we need to do is to make sure that h
is bijective. (This is the main advantage of using an equivalence structure instead
of a limitwise monotonic function.)

3.3.4. Formal details. Recall that we are given a Π0
2 subtree F of a special copy of

ω<ω, and we also are given an abelian reduced p-group H of Ulm type 1 in which
sizes of elementary cyclic summands are unbounded. As usual, H can be uniformly
replaced with a computable equivalence structure; we identify H and this structure.

Construction (the general case). Initially, at stage 0, set U = ∅ and T0 =
TH(F )[0] = {e}. At stage s, go through the four phases described below.

Phase 1: Updating ranks of nodes. Without loss of generality, at every stage
exactly one node of ω<ω fires (recall e ∈ F ). Suppose σ has fired. By our assump-
tion, each initial segment τ of σ fired at least once again at some earlier stage. Let
U = {u1, . . . , un(s)} be the set of classes in H which are currently in the range of h,
and let ξ1, ξ2, . . . , ξn(s) be simple auxiliary chains with t(ξi) ∈ U and having indices
1, 2, . . . , n(s), respectively.

Consider the subtree Ts−1 = TH(F )[s− 1] of ω<ω enumerated at the end of the
previous stage s-1, and let Ks be the subtree of Ts−1 rooted in σ (which has just
fired).

(1) Fix an m larger than any number mentioned so far and so that m is equal
to the size of some class of H which is currently outside of the range of t;
if no such large class is seen in H at the stage, do several extra steps in the
enumeration of H until such a class is found.

(2) Attach a new chain ξs+1 of length m− lth(σ) to σ.
(3) If there is an auxiliary chain of length nj − lth(σ) associated with a size

nj ∈ U and attached to σ, then enlarge this simple auxiliary chain to one
of length nj .

(4) Suppose there is an auxiliary chain ξ attached to some τ extending σ which
is associated with some nk ∈ U but whose length is not equal nk. If there
are no such chains then do nothing. If lth(ξ) = nk-lth(σ) or longer, then
again do nothing. Otherwise, suppose lth(ξ) = nk-d, where d < lth(σ)
(cf. Example 3.3). In this case extend this auxiliary chain by adjoining
lth(σ)-d extra consequent nodes to the end of it.

Phase 2: Re-targeting. Suppose i < s is least such that t(ξi) has grown in H
since the previous stage. For ξi, add as many extra nodes as there are new points in
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t(ξi). For each j > i and which is not attached to the root e, update t(ξj) and set it
equal to the first found new class in H whose index is larger than the index of the
current t(ξj) and which currently is larger than t(ξk) for every k < j; enumerate H
until such a class is found.

Phase 3: Bookkeeping. Let u be the smallest among the classes that occur in H
which is currently outside of the range of h. Adjoin a simple auxiliary chain ξ of
length k = card(u)[s] to the root e of Ts−1, set h(ξ) = u, and also enumerate ξ into
U .

Verification (the general case). It is again clear that the nodes which will end
up having infinite rank are exactly the nodes of F , therefore T ′ has the correct
isomorphism type. Also, T is clearly a computably enumerable subtree of ω<ω; it
can be easily transformed into a computable tree. We must argue that T/T ′ ∼ H.

By induction on a stage and on the index of a simple chain ξ we can show that
h(ξ) is stable. Indeed, h(ξ) has to be changed only if a chain of a smaller index has
to be grown. Since all classes in H are finite and by the inductive hypothesis, there
are only finitely many stages at which h(ξ) has to be changed. Suppose h(ξ) settled
on some class u in H. Go to the stage at which the size of u reaches its final value
k. After this stage we have lth(ξ) ≤ card(u) = k, and it may be smaller due to its
position in T and because of the stripping issues which we explained in detail in
the elementary case. However, it cannot outgrow k and, thus, it eventually settles.

Phase 3 was responsible for making sure that no class of H is left without an
auxiliary chain associated to it. Note that chains attached to the root e cannot be
re-targeted again. We are guaranteed that e will have arbitrarily long finite chains
attached to it, and therefore there is no need to worry about any stripping issues.
We explicitly made sure that every class which could potentially be without h-
preimage will eventually be permanently associated with an auxiliary chain attached
to e. Combined with the inductive argument above, this implies that every class
in H will eventually be permanently associated with an auxiliary chain in T , and
this correspondence is 1-1.

The rest of the verification is very much similar to the elementary case when the
sizes of H form computable set. We must verify that the following conditions hold:

(P1) If a node σ ∈ Ts is in F , then all finite auxiliary chains which are attached
to σ in Ts, except for at most one (call it exceptional for σ at s), have their
lengths equal to sizes of classes that occur in Hs.

(P2) If ξ is an exceptional auxiliary chain for σ in (P2) at stage s, and x ∈ F ,
then there is a stage t > s after which ξ is extended to a chain of length
that is mentioned in H; after this stage this auxiliary chain will never be
exceptional for σ (or any other τ) ever again.

Condition (P1) is explicitly maintained at every stage. For a given σ, there is at
most one exceptional ξ whose length is lagging behind the size of h(ξ) according
to the instructions in Phase 1. To see why (P2) holds, go to the stage at which
the length of ξ reaches its final value. Since σ ∈ F , there is a longer chain which
will eventually be attached to the same σ. Thus, according to the instructions at
substage (3) of Phase 1, the length of ξ must be set equal to the size of h(ξ).

It remains to consider what happens with nodes which are forever abandoned
because they never fire again. Let σ be such a node, and assume its predecessor is
in F . Then there are at most finitely many auxiliary chains attached to it or its
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successors. Go to the stage at which all of these chains reach their final value. The
instructions of Phase 1 guarantee that after full stripping this segment of the tree
becomes a collection of disjoint simple chains having lengths equal to sizes of the
respective classes in H. Also, recall that Phase 3 guarantees that no classes are left
without h-preimage. Combined with (P1) and (P2), this shows that T/T ′ ∼ H.
This finishes the proof of Proposition 2.6.

3.4. Properties of the construction. The following properties of the construc-
tion from the proof of Proposition 2.6 will be quite important later:

Property 3.4. Whenever a simple auxiliary chain obtains a new image in H, the
chain grows in size.

Property 3.5. A chain C is re-targeted only if some earlier introduced chain has
grown.

Property 3.6. We re-introduce (the size of a) class in H that has been abandoned
due to re-targeting, as follows. We attach a new simple auxiliary chain of the
correct length to the root and associate it with the class. The new simple chain
will never be re-targeted again.

Note also that the proof above does not assume or use that F corresponds to a
reduced abelian group. This implies:

Theorem 3.7. Suppose A is an abelian p-group of Ulm type > 1 which is not
necessarily a reduced group. Then the following are equivalent:

(1) A has a computable copy;
(2) A′ has a ∆0

3-copy and A/A′ has a computable copy.

Proof. (2) → (1). Recall A has Ulm type > 1, and therefore A/A′ is infinite and
furthermore the sizes of cyclic summands in A/A′ are unbounded, for otherwise
every element of infinite height in A would have to be divisible. We can therefore
run the proof of Proposition 2.6 which does not require the p-basic tree for A′ to
be well-founded.

(1) → (2). This is the same as in the case when A is reduced [AKO]; the key
observation here is that the proof of this implication does not need the group to be
reduced provided that A′ is not divisible. Since this proof has never been published
and the proof in [Khi92] uses a different notation, we give our version of this proof
below.

Since the Ulm type of A is at least 2, there must be an element a ∈ A′, a 6= 0,
which is not divisible; equivalently, any p-basic tree of A′ must have a non-trivial
terminal node, for otherwise A′ would be divisible and A′ = A′′, contradicting the
assumption. This means that a has infinite p-height in A, but there is no x with
the property px = a which also has infinite p-height. Using a, define a limitwise
monotonic function f , as follows. List all x1, x2, . . . with the property pxi = a and
define f(i) = hp(xi) + 1, where hp(xi) stands for the p-height of xi.

We claim that the range of f is infinite and is contained in the collection of all
n such that that A/A′ has a cyclic summand of order pn. We verify this claim in
the paragraph below.

It is clear that the range of f is infinite, for the p-height of a is infinite but it is
not divisible. Since the heights of the xi are unbounded, for each i there will be a j
with hp(xj) > hp(xi); this will imply hp(xi−xj) = hp(xi), because hp(xi) = hp(xj+
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(xi−xj)) ≥ inf{hp(xj), hp(xi−xj)} and hp(xi−xj) ≥ inf{hp(xi), hp(xj)} = hp(xi).

Note that p(xi − xj) = 0, and for some α we have php(xi−xj)α = (xi − xj). But
this makes 〈α〉 a pure cyclic subgroup of A of order hp(xi − xj) = hp(xi) (that is,
for each x in the subgroup its p-height in A is witnessed within the subgroup), and
pure cyclic subgroups detach [Fuc70], so A ∼= B ⊕ 〈α〉. Since (C ⊕D)′ = (C ′ ⊕D′)
and 〈α〉′ = 〈α〉, we have A/A′ ∼= B′ ⊕ 〈α〉, thus proving the claim.

Note that, essentially, we have just showed that if A has a cyclic summand of
order pn then A/A′ also has a cyclic summand of order pn. In fact, the converse
implication is also true. To see why, suppose 〈α〉 of order pn detaches in A/A′. The
coset of α must contain an element a such that pna has infinite height, but pma
has finite height for each m < n. Also, if the p-height of a in A was not zero then,
for some b ∈ A, we would have pb = a which would also hold modulo A′. So for
some β we would have pβ = α, contradicting the choice of α. The same argument
shows that the p-height of each pma ∈ 〈a〉, m < n, is equal to the p-height of its
coset in A/A′ and is equal to m. Since the p-height of x = pna is infinite, there
exists some c with the property pnc = x and with hp(c) > 0. Consider the element
y = a− c and the cyclic subgroup 〈y〉 of A. Then hp(y) = 0, for otherwise hp(a) =
hp(y+ c) ≥ inf{hp(y), hp(c)} > 1 would contradict hp(a) = 0. Similarly, for m < n,
hp(p

my) = m; otherwise hp(p
ma) = hp(p

my + pmc) ≥ inf{hp(pmy), hp(p
mc)} > m

would contradict hAp (pma) = h
A/A′

p (pmα) = m. This shows that 〈a〉 is pure in A
and thus detaches as a direct summand of A.

So cyclic direct summands are the same in A and A/A′. This makes the set

#A = {〈m,n〉 : A/A′ has at least m cyclic summands of order pn}
a Σ0

2-set. Indeed, it is sufficient to search for Zp-independent α1, . . . , αm of order p
such that, for each i ≤ m, hp(α) = n; the latter requires 0′. With the help of #A
and the limitwise monotonic f defined above, we can use the standard techniques
(e.g., [KKM13]) to produce a computable presentation of the equivalence structure
EA/A′ and, thus, of A/A′. �

Remark 3.8. The theorem above fails for non-reduced groups of Ulm type 1. In-
deed, it is not difficult to build a computable non-reduced abelian group of Ulm
type 1 such that its reduced component has no computable copy. Equivalently
(Prop. 2.1), there exists a computable equivalence relation E such that the sub-
relation F (E) consisting of exactly the finite classes of E does not have a com-
putable copy. It is essentially sufficient to produce a Σ0

2 set which is not limitwise
monotonic [His81, KNS97].

Remark 3.9. The functor witnessing the proof of (2) → (1) is uniform if we
guarantee that A/A′ has only finite summands whose orders are not uniformly
bounded.

The “injury” in the construction of Ash, Knight, and Oates is at most finite.
Our next task is to understand what happens when H in TH(F ) is not necessarily
reduced; that is, when EH contains infinite classes.

4. The modified Ash-Knight-Oates strategy

Suppose H is an equivalence structure. We identify H and the respective GH
which is a direct sum of cyclic or quasi-cyclic p-groups. Recall that H is proper
if it has only finite classes, but the sizes of the classes are not uniformly bounded.
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We will use a modification of the original Ash-Knight-Oates functor TH(F ) which
handles the case when H is not necessarily proper, but only if almost all classes of
an improper H are infinite. In [DMN17] such equivalence structures were given the
following disparaging name.

Definition 4.1. Call a computable equivalence structure an infinite junk if it has
infinitely many classes almost all of which are infinite.

We abuse notation and write TH(F ) for the modified Ash-Knight-Oates jump
inversion which is described in the lemma below.

Lemma 4.2. There is a uniform procedure which, on input a computable copy of
an equivalence structure H and a p-basic tree F represented as a Π0

2-subtree of ω<ω

with e ∈ F , outputs a computable p-basic tree TH(F ) with the properties:

(1.) If H is proper then (TH(F ))′ = F and TH(F )/(TH(F ))′ ∼= H.
(2.) If H is an infinite junk, then TH(F ) ∼= H.
(3.) If H is finite then TH(F ) is finite, and furthermore its cardinality can be

assumed arbitrarily large and with all possible uniformity.

Note that there are no assumptions on F apart from e ∈ F , which is equivalent
to saying that 0 is in the subgroup generated by the p-basic tree F , and therefore
this assumption is satisfied without any loss of generality.

Proof. We adopt the following modification to the original strategy of Ash, Knight,
and Oates:

Modification 1. At every stage at which the Ash-Knight-Oates module initiates
a new search through H or makes a change to its p-basic tree, adjoin a very long
simple chain never seen so far to the root of the p-basic tree. Call this extra simple
chain subsidiary . If the subsidiary chain has just been introduced, then it does not
have to copy any class in H. We also initiate a search for a new and large enough
class in H that can be matched with the subsidiary chain in the future. The module
will not act again until the search is finished (if ever). When the module acts again
(if ever) the chain is handled as a standard auxiliary chain attached to e.

The module will be later associated with a node on the tree of strategies, and
in particular it may be initialised. We also attach a very long subsidiary chain to
the root of the p-basic tree previously handled by the strategy if the strategy τ gets
initialised. Since the old p-basic tree will be forever abandoned by the strategy, in
this case there is no need to search for an image for the subsidiary chain in H (the
image can be larger than the length of the chain).

(1.) Since H is proper, we will eventually succeed in finding a long enough class
in H that can be matched to the subsidiary chain; the class in H may be (currently)
larger than the chain. Once this is done, the chain becomes indistinguishable from
the other many simple chains that we attach to the root 0 according to the non-
modified instructions. There are no further interferences of the modification with
the rest of the module. It follows that in the case when H is proper, the verification
of the new module is almost literally the same as the verification contained in the
previous section.

(2.) Here the modification plays no significant role either. However, the analysis
of this scenario is new because the case of a non-reduced H has never been consid-
ered in the literature. Recall that the first few classes of H could be finite, but the
rest of the classes are infinite, and there are infinitely many of them.
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First, we claim that almost all auxiliary or subsidiary simple chains that we ever
attach become infinite. Note that a simple chain may never find a stable pre-image
among classes in H. However, at each intermediate step we always succeed in
finding a long enough class in H to match with the chain. Whenever we switch,
the chain itself must grow; see Property 3.4. Thus, we still grow the length of the
chain to infinity, even though it may never find a stable image in H. Now consider
those simple chains which do find a stable match in H. Almost all of these chains
grow infinite by simply copying the respective stable class in H. The analysis also
applies to the subsidiary simple chains from the modification. In particular, since
we are never stuck at any intermediate step, there are infinitely many such infinite
simple chains to be attached to the root. It follows that the divisible part of TH(F )
has infinite rank.

There are at most finitely many exceptional chains that correspond to the finite
classes in H. There may also be several finite configurations that become simple
chains after stripping the tree. The latter corresponds to parts of the tree being
forever abandoned in a Σ0

2-outcome of the Π0
2-approximation. Every individual

simple chain, as well as each chain involved into an “abandoned” configuration,
must grow whenever its image in H switches (Property 3.4). Thus, a chain or a
configuration of chains can be finite only if each auxiliary chain involved into the
configuration finds a stable image in H. There are only finitely many finite classes
in H, and thus the reduced part of TH(F ) must be finite. Furthermore, we may
be forced to switch the image of a given chain only due to some currently shorter
class of a smaller index has grown (Property 3.5).

If a finite class in H is skipped in the construction due to re-targeting, then
it will be re-introduced again in the form of a simple chain attached to the root
(Property 3.6). There are only finitely many classes having a smaller index than the
index of the finite class. Therefore, by induction, each finite class will eventually
find a stable image in the tree, which will be a simple chain of the correct length.
It follows that the reduced part of TH(F ) is isomorphic to the reduced part of H
(viewed as a p-group).

(3.) This is obvious from the description of the modification, because the sub-
sidiary chain can be taken to be arbitrarily long. It is crucial that the chain does
not have to copy any class in H at the stage when it is first introduced. �

5. A plan of the proof

Recall that we have to produce an effective uniform 1-1 enumeration of all com-
putable isomorphism types of abelian p-groups of Ulm type ≤ n; we call such
enumerations Friedberg.

If n = 1 then there exists Friedberg enumeration of all computable equivalence
structures [DMN17]. The uniformity of the correspondence E ↔ GE gives a Fried-
berg enumeration of all abelian p-groups of Ulm type ≤ 1. It is clear that the
groups in the list are uniformly represented by computable p-basic trees which are
inherited from the full decomposition induced by the corresponding equivalence
structure.

Therefore, assume n > 1 throughout the rest of this paper. Inductively, fix a
Friedberg enumeration (Fi)i∈ω of all isomorphism types of 0′′-computable abelian
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p-groups of Ulm type ≤ n − 1; furthermore, assume that they are represented by
Π0

2 p-basic trees whose indices h(1), h(2), h(3), . . . are given uniformly.

Remark 5.1. The function h is computable and not merely 0′′-computable. It
returns the index of the computable Ri such that σ ∈ Fi ⇐⇒ ∃∞zRi(σ, z). As we
noted before, it is well-known that there is a uniform procedure that transforms a
∆0

3-tree into a Π0
2-subtree of ω<ω.

Theorem 1.2 of [DMN17] says that there is a Friedberg enumeration (Ei)i∈ω of
all infinite equivalence structures, and thus of infinite abelian p-groups of Ulm type
1. This is not an immediate corollary of the existence of a Friedberg enumeration
of all equivalence structures. Although using infinite equivalence structures is not
essential for our proof, it will be convenient.

Based on the Friedberg enumerations (Fi)i∈ω and (Ej)j∈ω described above, fix
the effective listing (Fi, Ej)i,j∈ω.

5.1. Proof idea. All informal explanations contained in this section will be clari-
fied in the later sections. The main goal of this subsection is to informally explain
some key ideas behind the formal construction.

In the notation above, suppose Fi is well-founded and Ej has only finite but
arbitrarily large classes; we call such Fi and Ej true and proper, respectively. Under
these assumptions we can uniformly produce a computable abelian p-group TEj (Fi)
of Ulm type at most n such that (TEj (Fi))

′ ∼= Fi and TEj (Fi)/(TEj (Fi))
′ ∼= Ej ;

this is Theorem 3.7 and Remark 3.9. Since (Fi)i∈ω and (Ej)j∈ω are Friedberg, the
Ulm classification theorem implies that unequal pairs correspond to non-isomorphic
groups provided that these pairs consist of true and proper members, respectively.
Furthermore, the Ulm classification theorem and Theorem 3.7 imply that each
computable group of Ulm type k, 1 < k ≤ n, has the form TE(F ) for some true
F of type < n and proper E having the correct complexities (Π0

2 and computable,
respectively).

To succeed in producing the desired Friedberg enumeration, we merge two 0′′′

constructions – one from [DMN17] for Ulm type 1 groups and the other for higher
Ulm types ≤ n – and let them share the “junk”. The rough idea is as follows. Given
(Fi, Ej), guess trueness and properness, and simultaneously attempt to enumerate
TEj (Fi). If all Fi and Ej in the list were true and proper, respectively, then
TEj (Fi), i, j ∈ ω, would be a Friedberg enumeration of all computable abelian p-
groups of Ulm type 1 < k ≤ n. Merging it with the Friedberg enumeration of all
computable abelian p-groups of Ulm type 1 from [DMN17] we would get the desired
1-1 list of all groups of types ≤ n.

However, if Fi is not true or Ej is not proper, we cannot guarantee that TEj (Fi)
will have Ulm type > 1. This will conflict with the enumeration of all groups of
type 1. Nonetheless, by carefully controlling the group produced in each of these
two unpleasant outcomes it is possible to incorporate this group of Ulm type 1 into
the dynamic procedure of enumerating of all type 1 groups from [DMN17]. We will
of course explain the construction from [DMN17] in sufficient detail, but delay this
until §6, discussing the ideas first.

5.2. The global architecture of the proof. We give a more detailed scheme of
the construction which will hopefully help the reader to understand the complex
architecture of the proof. The construction will consist of three main modules.
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(1) The main module. On input Fi and Ej , it performs the following tasks:
• It measures whether Fi is true and Ej is proper. The combined com-

plexity of these two guessing procedures is Σ0
4 (to be verified), and it

will be split into infinitely many Π0
3-instances, one for each potential

∃-witness z in Σ0
4 = (∃z)Π0

3(z).
• It attempts to build TEj (Fi). If Fi is true and Ei is proper then,

for exactly one z, exactly one submodule σ associated with (i, j, z)
succeeds in building TEj (Fi) of Ulm type > 1. This occurs only if the

Π0
3-predicate holds, and E is “true”. The submodule σ also has several

outcomes which depend on the isomorphism type of E and also on
how exactly the Π0

3-predicate fails. Under these outcomes either finite
groups/structures or infinite junk structures (Def. 4.1) of Ulm type 1
are produced. They are placed into the junk collector; see the third
main module below.

• To make the structures produced below the Π0
2- and Σ0

2-outcomes eas-
ier to handle via Lemma 4.2, the procedure associated with σ uni-
formly replaces Ej with a certain Hj and works with THj (Fi) instead
of TEj (Fi). The equivalence structure Hj has several convenient com-
binatorial properties (to be explained), and of course Hj

∼= Ej if the
latter is proper, thus THj (Fi)

∼= TEj (Fi) in the Π0
3 outcome.

(2) The module enumerating Ulm type 1 groups. This is literally the same as
the one in [DMN17], but with equivalence structures uniformly replaced
by the respective Ulm type 1 abelian p-groups. Various sub-strategies are
put together into a tree of strategies, in which the true path will be 0′′′-
computable. The tree produces an enumeration of all equivalence structures
which mentions all structures having arbitrarily large finite classes exactly
once; it also enumerates some isomorphism types of infinite junk and finite
structures. The latter two are placed into the junk collector (see (3) below)
which ensures all infinite junk and finite structures are mentioned exactly
once up to isomorphism. The only missing isomorphism types are:
• Equivalence structures having finitely many classes and at least one of

these is infinite.
• Equivalence structures which have infinitely many classes and are even-

tually bounded; that is, almost all classes are less in size than some
fixed bound k specific to the structure.

The uniform Friedberg list of such structures can be easily produced inde-
pendently and later adjoined to the Friedberg enumeration of the rest.

(3) The junk collector. It is responsible for enumerating all infinite junk and
finite equivalence structures/groups without repetition. Its actions are
global. It handles the infinite junk and finite equivalence structures/groups
produced by the two main modules as described above, and it also be
introduces its own ones to make sure that the enumeration is 1-1 and sur-
jective on isomorphism types of infinite junk and finite equivalence struc-
tures/groups. The junk collector module has two submodules:
• The infinite junk collector. It is responsible for making sure that

all computable isomorphism types of infinite junk structures/groups
are listed, and without repetition. Its unsuccessful attempts result
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in abandoning a structure in the process; abandoned structures are
permanently placed into the finite junk collector.

• The finite junk collector. Its task is to ensure all finite equivalence
structures/abelian p-groups are mentioned in the list, and exactly once.
Several simple tricks and the movable markers technique are sufficient
to sort out the combinatorics. (One such trick is described in Modifi-
cation 1 in Lemma 4.2.)

The construction will be described in Section 10, but we outline it below. The
construction will be split into three relatively independent phases;

(1) Phase 1 is responsible for enumerating all Ulm type k > 1 (k ≤ n) groups,
all groups of Ulm type 1 having arbitrarily large finite cyclic summands,
and some finite and infinite junk groups. At this phase of the construction
the main module and the module enumerating Ulm type 1 groups act simul-
taneously and independently according to their instructions. We ensure
that there is no interactions between these two modules.

(2) Phase 2 is responsible for expanding the output of Phase 1 so that the new
enumeration also contains all isomorphism types of infinite junk structures.
This is done using the infinite junk collector.

(3) Phase 3 transforms the output of Phase 2 into an enumeration which addi-
tionally mentions every isomorphism type of a finite abelian p-group exactly
once. This is done using the finite junk collector.

Finally, to get the desired Friedberg enumeration we merge the output of Phase
3 with the Friedberg enumeration of all eventually bounded equivalence structures
and all equivalence structures having finitely many classes at least one of which
is infinite; the latter of course are uniformly replaced with the respective abelian
p-groups. This finishes the informal outline of the construction.

One crucial observation is that, from the perspective of the junk collector, the
products of Π0

2 and Σ0
2 outcomes of submodules of the main module (1) are not

really special when compared with similar outcomes of the module (2) taken from
[DMN17]. Thus, the junk collector and the tree-construction from [DMN17] can be
adopted with no modification, but all equivalence structures should be uniformly
replaced with the respective Ulm type 1 abelian p-groups (Proposition 2.1).

Of course, there are many details that need to be formally and carefully clarified
and verified. Nonetheless, provided that each of the three main modules succeeds in
its proposed task we shall end up with a Friedberg enumeration of all computable
abelian p-groups of Ulm type ≤ n.

Section 6 contains a detailed exposition of the basic strategy for main module.
It relies on the modified Ash-Knight-Oates strategy and on properties of a certain
transformation E → H which is verified in Section 7. The second and third main
modules can be taken from [DMN17]; no further modification to these modules is
necessary in our proof. Thus, our exposition of these two modules (Sections 8 and 9,
respectively) is relatively compressed. The formal construction and its verification
is contained in Section 10.
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6. The basic strategy

6.1. True and proper groups. Recall that the Ulm type of each Fi is at most
n − 1, and that each Fj is a Π0

2 subtree of ω<ω whose index is given uniformly.
Each Ej is a computable infinite equivalence structure which can be viewed as a
an abelian p-group of Ulm type 1 in which a complete decomposition is known.

We identify Ei with the corresponding abelian p-group. According to our ter-
minology, Ei is proper if it consists only of finite classes and the sizes of its classes
are unbounded.

Definition 6.1. Let F be a p-basic tree. If F has a non-zero terminal node then
we say that F is true. Note that this is equivalent to saying that the reduced part
of the corresponding p-group is non-trivial.

Lemma 6.2. Let (Ei)i∈ω and (Fi)i∈ω be uniform enumerations of computable
equivalence structures and Π0

2 trees as defined above.

(1) The property “Ei is proper” has complexity Π0
3.

(2) The property “Fi is true” has complexity Σ0
4.

Proof. For (1), just state that each class is finite (Π0
3) and that there are arbitrarily

large classes (Π0
2). The statement “Fi is true” can be described by the formula:

(∃x) [x ∈ Fi ∧ x 6= e ∧ (∀y)(y ⊃ x→ y /∈ Fi)]

which gives an upper bound of Σ0
4 for (2). �

It is not difficult to show that the bounds in the lemma above are optimal, and
therefore the complexity of our guessing cannot be simplified.

6.2. Guessing trueness and properness. Given (Fi, Ej) we need to test whether
Fi is true and Ej is proper. We suppress the subscripts in Fi and Ej and write
(F,E) throughout the rest of this subsection.

We start with the simpler Π0
3 guessing properness of E. We index classes of

a computable equivalence structure by natural numbers according to the order at
which they appear in the enumeration of the equivalence structure. Write [i]E or
simply [i] for the i-th class of E. (Classes having a smaller index have a higher
“priority”.)

Definition 6.3. An equivalence structure is eventually bounded if there is an n ∈ ω
such that all classes having indices > n are bounded in size by n.

Note that an eventually bounded structure may have infinite classes or finitely
many classes.

Lemma 6.4. For an equivalence structure E, eventual boundedness is a Σ0
2-

property.

Proof. The property says:

(∃n)(∀i > n)¬

∃a1, . . . an+1 ∈ [i]
∧

i 6=j,i,j≤n+1

ai 6= aj

 .

(Recall that the i-th class [i] is not necessarily the class containing the i-th element
of E; see the explanation preceding Def. 6.3.) �
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6.2.1. Guessing properness of E. The preliminary description of the outcomes of
this guessing is:

Π0
2(j): E is not eventually bounded and the jth class in E is infinite.
Π0

3: E is proper.
Σ0

2: E is eventually bounded.

Since an equivalence structure is proper if and only if it is not eventually bounded
and does not contain infinite classes, it is clear that the outcomes are exclusive and
cover all possible cases.

6.2.2. Guessing trueness of F . Slicing Σ0
4 into (Π0

3(z))z∈ω. Recall that the sentence
saying that F is true has complexity Σ0

4. We represent the respective Σ0
4-predicate

as ∃zΠ0
3(z). As usual, we assume that the measured predicates satisfy the property

of the uniqueness of existential witnesses. In particular, if ∃zΠ0
3(z) holds then there

will be exactly one such z.

The outcomes of each Π0
3(z)-guessing are:

Π0
2(j, z) : This is a Π0

2 outcome that says that j witnesses the failure of the Π0
3(z)

predicate ∀jΣ0
2(j, z).

Π0
3(z) : F is true with a Σ0

4-witness z.

The collection of all Π0
2(j, z)-outcomes can be viewed as the Σ0

3(z)-complement
of Π0

3(z).

6.3. The strategy for (F,E, z). Each triple (F,E, z) is associated with a strategy,
in which z is interpreted as a potential existential witness for ∃zΠ0

3(z) approximat-
ing trueness of F . The strategy for one (F,E, z) in isolation relies on the guessing
F and E described above, and it also has the following two major tasks.

6.3.1. The first task: Building H. The strategy dynamically transforms the com-
putable equivalence structure E into a computable equivalence structure H with
the properties:

i. If E is not eventually bounded, and one of the two conditions holds:
(i.1) E has infinite classes, or
(i.2) F looks not true according to Σ0

3(z) (see the previous subsection),
then H has infinitely many classes with almost every class infinite. Further-
more, the number of finite classes in H produced by the strategy associated
is specific to the node the strategy and to the outcome of the strategy under
which it is produced.

ii. If E is proper and F is true then H ∼= E.
iii. If E is eventually bounded then H is finite.

Condition i. says that H is an infinite junk structure (Def. 4.1). We delay the
detailed description of H and the verification of i-iii until Section 7. Also, a further
minor adjustment to this transformation will be introduced in Subsection 8.5 after
the tree of strategies T from [DMN17] is described in sufficient detail. For now, we
take these properties for granted.
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6.3.2. The second task: Building TH(F ). The second task of the strategy is pro-
ducing TH(F ) based on the dynamic definition of H; here TH(F ) stands for the
modified version of the Ash-Knight-Oates operator defined in Section 4. As usual,
we identify an equivalence structure with the direct sum of cyclic and quasi-cyclic
p-groups in which cyclic summands Zpn naturally correspond to equivalence classes
of size n. According to Lemma 4.2 and assuming the properties i.-iii. of H stated
in the subsection above, we have the following different scenarios:

a. If H is infinite junk, then TH(F ) ∼= H.
b. If H is proper, then (TH(F ))′ = F and TH(F )/(TH(F ))′ ∼= H.
c. If H is finite then so is TH(F ).

Furthermore, by Lemma 4.2, the cardinality of the finite TH(F ) in c. can be assumed
as large as necessary.

6.4. Actions of the strategy for (F,E, z). Whenever the strategy becomes ac-
tive, it makes one more step in each of the two uniform procedures:

(1) Approximate TH(F ), where H is the uniformly modified version of E satis-
fying i-iii (see Section 7 for details) and TH(F ) is the modified Ash-Knight-
Oates operator satisfying a-c (see Lemma 4.2) applied to F and H.

(2) Monitor H and guess whether it has infinitely many classes all of which are
infinite. Since H is uniformly defined from E, this predicate is uniformly Π0

2

in (the index for) E. If this predicate fires then the basic module initialises
itself by permanently abandoning its current TH(F ). In this case it creates
a new version of TH(F ) which is building from scratch. The new version
will have a new index in the uniform enumeration of all type ≤ n abelian
p-groups.

6.5. The outcomes. Assuming that H indeed satisfies the claimed properties i-iii,
the strategy associated with (E,F, z) will have one the following outcomes:

pi0 This is a Π0
2 outcome which measures if all classes in H are infinite (and

thus there infinitely many such classes).

Every time it is played the strategy is initialised, and its previous version
of TH(F ) is abandoned. Recall that the size of the abandoned TH(F ) can
be picked as large as necessary, according to Modification 1 from Section 4.

pij , j > 0: This is a Π0
2 outcome which says that:

– E is not eventually bounded, i.e., it has arbitrarily large classes of
arbitrarily large indices, and

– either the jth class in E is infinite, or F looks not true as witnessed
by Π0

2(j, z).

By Lemma 4.2 and assuming properties i-iii of H, in this case the strat-
egy produces a computable TH(F ) ∼= H which can be identified with GH
composed of at most finitely many cyclic and infinitely many quasi-cyclic
direct summands. Furthermore, we will ensure that different strategies
always produce non-isomorphic TH(F ) ∼= H under their Π0

2 -outcomes,
and also different Π0

2-outcomes of the same strategy give non-isomorphic
TH(F ) ∼= H. This will be clarified in Section 7. With extra care we will
make sure that these infinite junk structures/groups also differ from any
infinite junk structure produced by the tree of strategies T from [DMN17];
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see Section 8 for the description of T and Subsection 6.5 for the above-
mentioned adjustment.

Π: This is a Π0
3 outcome that says that E is proper and F is true.

In this case, by Lemma 4.2 and assuming properties i-iii of E → H,
the strategy outputs a computable basic tree TH(F ) with the properties
(TH(F ))′ = F and TH(F )/(TH(F ))′ ∼= H ∼= E (the latter two are identified
with the respective groups). Furthermore, since E ∼= H is proper and F is
true of type < n, the Ulm type of TH(F ) is at least 2 and at most n.

fin: This is a Σ0
2-outcome which says that E is eventually bounded.

In this case TH(F ) is finite. Furthermore, its cardinality can be con-
trolled and made arbitrarily large, if necessary, according to Modification 1.

To finalise the description of the basic strategy we must give a detailed descrip-
tion of the transformation E → H and verify its claimed properties.

7. The description of E → H

First, in Subsection 7.1 we describe a transformation E → Ĥ which takes care
of most properties i-iii with the exception of the “furthermore” part of iii. Then

in Subsection 7.2 we further adjust Ĥ and describe a transformation Ĥ → H which
is based on a strategy from [DMN17] and which also gives property iii in full. This
modification is highly convenient in the general case of many strategies working
together. Compared to the rest of the paper the content of this section is rather
elementary.

7.1. The definition of Ĥ. Given an infinite computable equivalence structure E,

the strategy produces a computable equivalence structure Ĥ with the properties:

i. If E is not eventually bounded (Def. 6.3), and one of the two conditions
holds

(i.1) E has infinite classes, or
(i.2) F looks not true according to Π0

2(j, z) (see 6.2.2),

then Ĥ has infinitely many classes with almost every class infinite.

ii. If E is proper and F is true then Ĥ ∼= E.

iii. If E is eventually bounded then Ĥ is finite.

We write [m]L for a class of an equivalence structure L with index m. Say that
a stage s is expansionary if the parameter max{card[i]Es , i ≤ s} has increased
from the previous expansionary stage s′. The parameter measures whether the
structure E has arbitrarily large classes with arbitrarily large indices. The simple
construction below acts only at expansionary stages.

7.1.1. Construction. At every stage, each class in Ĥs is matched with a class in
Es. Suppose at a stage [n]Ĥ is copying [i]E . If [i]E has grown in E or the ith Π0

2

instance of the Σ0
3 predicate “F is not true (z)” has fired, then perform the following

action. Initialise each class [k] in Ĥ that satisfies

(1) k > n, and
(2) [k]Ĥ has been copying a class [j]E with j ≥ i.
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Each initialised class grows by one extra element and will be assigned to some large
enough new class in E (if it exists). Until such large enough classes are found

the whole strategy (not just this simple procedure describing Ĥ) ceases its action.
Then, once large enough classes are found, each currently abandoned classes of E

is assigned to a new class in Ĥ. This ends the construction.

7.1.2. The verification of i, ii and iii. To see why iii holds, recall that the procedure

constructing Ĥ acts only at expansionary stages. Since there are only finitely many

such, Ĥ remains finite. To check i and ii, note that each initialised class must grow.
A class can be initialised only due to some larger index class growing or due to some
higher priority Π0

2 instance of the predicate “F is not true (z)” firing; furthermore,

in the former case this larger Ĥ-index class must be copying a larger E-index class.
There are only finitely many such. Thus, if all classes in E are finite and F looks
not true according to instance z, then each class can be initialised only finitely

often. Also, a class in E has to change its clone in Ĥ only if a class with a smaller
E-index grows. Therefore, ii follows by induction. To check i, assume that [j]
is the left-most class of E – i.e., the one with the smallest index – that grows to
infinity. Since all classes to the left of it are finite, there is a stage after which the

class is stably assigned to a clone in Ĥ, call this clone [k]. There exist at most

finitely many classes of Ĥ to the right of [k] that are controlled by classes in E
having index less than the index of [j]. All the rest are initialised infinitely often.
Since E has arbitrary large classes with arbitrary big indices, every search for a
new appropriate image for an initialised class is successful. In particular, E has

infinitely many classes, and therefore so does Ĥ. Since each initialised class must

grow, co-finitely many classes of Ĥ are infinite.

7.2. The transformation from Ĥ to H. Fix a uniformly computable collection
of non-intersecting intervals I0, I1, . . . , In . . . in ω which form its full partition, where
the smallest number of In is equal to the largest number of In−1 plus 1. We write
max In for the largest number of In. (In the construction we will also make sure
that max Iσi 6= max Iτk for σ 6= τ and any strictly positive i, k ∈ ω.)

We are given Ĥ which is either proper, or is an infinite junk, or is finite (cf. i-

iii). Recall that, according to our convention, every class of Ĥ receives an index

according to the stage at which it appears in the enumeration of Ĥ. The uniform

definition of Ĥ contained in the subsection above has the following property. If the

size of [i] in Ĥ is infinite and has infinitely many classes, then so is [k] for each
class [k] having its index larger than the index for [i]. We must uniformly build a

computable equivalence structure H and a map ψ : H → Ĥ by stages.

The idea is rather simple. We construct H so that it copies Ĥ, but the isomor-

phism ψ : C → Ĥ is defined not class-by-class but block-by-block. If some class in

the k-th block of Ĥ has grown, then in H initialise all ψ-preimages of j-blocks for
j ≥ k. Whenever we initialise a block in H each class in the block is increased in
size.

We give formal details. At stage s, if class of Ĥ having index j ∈ Ik has grown
in size, then:
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(1) Declare ψ undefined for every class of Ĥs having its index in Im for some
m ≥ k.

(2) Grow all classes of Hs which currently have no φ-image to a size greater
than any number mentioned so far.

(3) Speed up the enumeration of Ĥ and search for new, larger images for the
finitely many classes in Hs for which ψ is currently undefined.

(4) If (2) is ever finished, introduce a new classes in Hs and match them with

those classes of Ĥ which currently have no ψ-preimages. Goto (1).

Lemma 7.1.

(1) If Ĥ is proper then H ∼= Ĥ.

(2) If Ĥ is finite then H is finite too.

(3) If Ĥ is an infinite junk then so is H. Furthermore, either H has all classes
infinite or the total number of finite classes in H is equal to max Ik for
some k.

Proof. (1). By induction on the index i of a class [k]Ĥ and the index m of the block

Im such that i ∈ Im, every class [k] in Ĥ eventually finds a stable ψ-preimage in
H. Thus, in this case ψ is a ∆0

2-isomorphism of equivalence structures witnessing

H ∼= Ĥ.
(2). This is obvious.

(3). Let m be the smallest such that there is an infinite class in Ĥ having index
j ∈ Im. Then the only classes which have stable ψ-preimages in H are the classes
whose indices are in In for some n < m. If a class in H does not have a stable
ψ-image then its size is driven to infinity; indeed, since Ĥ is an infinite junk the
search at (3) of the procedure describing H is always successful, and according to
(2) whenever ψ is redefined the class must be grown. If m = 0 then all classes in
H end up infinite, otherwise let k = m-1. �

The lemma above and the properties of E → Ĥ imply that the uniform transfor-

mation E → Ĥ → H satisfies i-iii from 6.3.1, as desired. One further insignificant
restriction to the choice of intervals Im will be explained in Subsection 6.5.

8. The tree of strategies for Ulm type 1 groups

The construction in [DMN17] consists of the tree of strategies, the junk collector,
and also an external and independent module enumerating all equivalence struc-
tures having finitely many classes at least one of which is infinite and equivalence
structures which have infinitely many classes and are eventually bounded. In this
section we describe the tree of strategies from [DMN17] with the detail sufficient
for our purposes; the junk collectors will be discussed in the next section.

The tree of strategies from [DMN17] is used without any significant modification,
i.e., it can be essentially literally copied from [DMN17]. The tree and various strate-
gies associated with its nodes act independently from the rest of the construction,
and the only interaction with the rest of the construction is via the junk collector.
And even then this interaction is literally the same as in the proof of [DMN17]. All
we need to do is:

(1) interpret equivalence structures as the respective Ulm type 1 groups, and



28 ROD DOWNEY, ALEXANDER MELNIKOV, AND KENG MENG NG

(2) for every strategy associated with some σ along the tree, the infinite junk
structures potentially produced by σ are non-isomorphic to any infinite
junk structure produced by a strategy for (Fi, Ej , z) or by any other τ 6= σ.

The first assertion is just a triviality, and the second is not really a modification
either, for the original construction in [DMN17] already ensured that different nodes
and different outcomes produce non-isomorphic infinite junk structures, and the
precomputed bounds on the number of exceptional classes can be kept exactly the
same as in [DMN17]. We will elaborate on this point at the very end of this section,
where specifics will be spelled out.

No further adjustment is necessary. Thus, if the reader is familiar with [DMN17]
they can skip the rest of the section which is devoted to a compressed description
of the tree of strategies from [DMN17], the strategies associated with its nodes, and
of the types of equivalence structures produced under different outcomes. We start
with an idea. (We adjust the notation from [DMN17] to avoid conflicts with the
notation in the present article.)

8.1. Idea. Let Xi be the i-th equivalence structure in their natural uniform enu-
meration with repetition, in which the k-th class of the i-th structure is represented
by the k-th column of the computably enumerable set Wi. To produce a Friedberg
enumeration of all isomorphism types of computable equivalence structures, we
could (naively) start off by declaring X0 be the first in the list. To decide whether
X1 must be put into the list, we must see if X0

∼= X1. The relation Xi
∼= Xj is

Π0
4-complete, but X1 must be placed into the Friedberg list only when X0 6∼= X1

which is Σ0
4.

We spread this Σ0
4-guessing over infinitely many Π0

3-nodes in the tree of strate-
gies, with each node working with its own existential witness z for a given Xi

which approximates whether Xi
∼= Xj for some j < i. Each node working with

(i, z) dynamically replaces its structure Xi = X with a structure U using a uniform
transformation similar to that from Section 7. In this transformation, if the struc-
ture has arbitrarily large finite classes (which is a Π0

3 condition) then the output
structure U is isomorphic to X. Otherwise we end up with either a finite X whose
size can be assumed as large as necessary, or an infinite junk having the number of
exceptional finite classes taken from a computable set specific to the strategy.

8.2. The basic strategy. Each basic strategy is associated with a pair (i, z). It
monitors the i-th equivalence structure Xi and approximates the Π0

3-instance of the
Σ0

4-predicate measuring Ξ(Xi)∧ (∀k < i)Xi 6∼= Xk, where Ξ(Xi) is the Π0
3 predicate

saying that Xi has arbitrarily large finite classes. Let P (z, i) be the Π0
3(z) predicate

such that Ξ(Xi) = ∃zP (z, i). As usual, without loss of generality ∃zP (z, i) implies
that there exists exactly one such z.

The strategy dynamically transforms Xi into an equivalence structure U = Ui
with the properties:

(1) If P (z, i) holds then U ∼= X.
(2) If P (z, i) fails then either U is finite or U is infinite junk with the number

of exceptional finite classes coming from a computable set specific to the
strategy.

The transformation is similar to the one described in Section 7. A rigorous de-
scription of this transformation and its verification are contained in Subsections
2.3.2-2.3.4 and Lemmas 2.1 and 2.2 of [DMN17], but in a different notation. (In
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the notation of [DMN17], the input structure is denoted by Eτ , the output struc-
ture is Uτ , and the partial isomorphism between the two at every stage is `τ . The
description of the transformation in incorporated into the description of the basic
strategy.) The following outcomes are possible (see 2.3.5 of [DMN17]):

• The Σ0
2 outcome wait. It is played when either Xi has only finitely many

classes or it is eventually bounded (i.e., does not have arbitrarily large
classes of arbitrary large index). In this case we may assume that the size
of some class of U is as large is necessary on the stage when U is defined.
• The Π0

2 outcome init. If this is the true outcome then Xi has infinitely many
classes but too few of them are finite, namely less than k finite classes, where
k is specific to each strategy. This is clearly a uniformly Π0

2 condition. The
outcome is played if the Π0

2 predicate fires, and in this case the strategy
initialises itself. More specifically, the current equivalence structure U built
by the strategy is permanently abandoned and the strategy starts building
a new equivalence structure which will have a large index in the global
Friedberg enumeration.
• The Π0

2 outcome pij . This is the j-th instance of the Σ0
3-predicate saying

that P (z, i) fails; in other words, either Xi could be isomorphic to some Xj ,
j < k, or it does not have arbitrarily large finite classes. In this case U is
an infinite junk structure. Whenever the outcome is played again it comes
with the best current approximation c to the number of finite exceptional
classes. This number k of exceptional finite classes of U is necessarily taken
from a computable parameter set specific to the strategy and the parameter
j of this outcome. Different parameter sets for different strategies do not
overlap. If this outcome is the true outcome then there exists a stage s
such that c[t] = c[s] for every t ≥ s and c[t] is correct.
• The Π0

3 outcome pi3. It says that P (i, z) holds, and thus Ei 6∼= Ek for
any k < i, and also Ei contains arbitrarily large finite classes. Under this
outcome the strategy produces Ui ∼= Ei.

8.3. The tree of strategies, the current true path, initialisation. The order
of the outcomes is:

init < pi0 < pi1 < . . . < pi3 < wait.

The tree T is composed according to this order; of course under the pi3 outcome
measuring P (i, z) there is no other node working with some z′ > z in P (i, z′).

The definition of the current true path is standard for such constructions with
explicit Π0

3-outcomes, with the pi3-outcome visited in-between pij outcomes, so
that the true path is 0′′′-computable. No links or scouting reports or other tricks
peculiar to some 0′′′ proofs are necessary. The definition of initialisation is not
entirely standard; the only not entirely standard part being that the nodes below
the pi3 outcome of σ are forced to play their pi2j outcomes if σ plays its pi2j
outcome.

We note that in [DMN17] there was an unnecessarily complex resolution of the
possibility of several Π0

2-outcomes of the same τ played infinitely often; this difficulty
can be resolved entirely and elementarily by using the uniqueness of ∃-witnesses
throughout. We must of course dynamically adjust the definitions of all outcomes
of τ (including those played if τ is off the current true path) depending on the
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position of τ on the tree. In [DMN17], we defined a dynamic explicit version of the
above-mentioned transformation, but of course it did not have to be explicit.

8.4. Structures produced by T . We will not sketch the verification; see [DMN17]
for the details of the proof. We take correctness of the tree-construction sketched
above for granted. If we view the tree of strategies T as one large module, its
cumulative products can be classified as follows:

• Equivalence structures having arbitrarily large finite classes. All such struc-
tures are enumerated under the pi3-outcomes along the true path, and
without repetition (up to isomorphism).
• Finite structures. These come from true init- and wait-outcomes of various

nodes in the tree, and also are produced due to initialisation. By making
them larger than any number seen so far in the construction (see, e.g.,
Modification 1), we ensure there is no repetition among them, but we do
not guarantee that all finite structures are produced by the tree.
• Infinite junk structures produced by true pij-outcomes of various structures.

Note that some strategies off the true path can be forced to play their pij-
outcomes. The number of sizes of exceptional classes is different for different
nodes and below different outcomes of the same node. At every stage the
isomorphism type of the structure is guessed, with the guess eventually
becoming correct if the outcome is played infinitely often.

More specifically, if m is the number of times the strategy (call it τ) has
been initialised, then the number of finite classes in Uτ produced under the
true outcome pi2j of τ should be between 〈τ,m, j〉 and 2〈τ,m, j〉, where
the standard pairing function 〈i, j〉 is replaced with 3〈i,j〉 (see the very end
of 2.3.2 of [DMN17] for this convention); this is Lemma 2.1 of [DMN17].
These parameters are highly flexible, allowing us to change the base of
the exponent and the exact choice of enumeration of τ . But the approach
in [DMN17] already gives sufficiently sparsely distributed intervals, so no
further adjustment will be necessary.

8.5. The complete separation of infinite junk structures. Now, since we have
explained the role of the intervals [〈τ,m, j〉, 2〈τ,m, j〉], we are ready to introduce the
following elementary but important adjustment to the basic strategy from Section 6.

Modification 2. We assume that for every strategy σ working with some (Fi, Ej , z),
the parameters max Iσk = max Ik described in Subsection 7.2 are taken from the
complement of the set ⋃

τ∈T
[〈τ,m, j〉, 2〈τ,m, j〉],

where T is the tree of strategies from [DMN17]. We furthermore assume that

max Iσk 6= max Iσ
′

j whenever either σ 6= σ′ or k 6= j.

Infinite junk structures produced by various Π0
2-outcomes of different strategies

are non-isomorphic. Thus, there is no conflict between Π0
2-outcomes of different

strategies, regardless of whether they live on the tree T or work with some triple
(Fi, Ej , z). Any two distinct Π0

2-outcomes of the same strategy (on the tree or
working with a triple) produce non-isomorphic infinite junk structures as well.

Informally, each Π0
2 outcome will “know” the isomorphism type of the structure

it will produce. Since we assume uniqueness of existential witnesses throughout, the
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true Π0
2-outcome is the only one which guesses the isomorphism type of the infinite

junk structure correctly infinitely often. More formally, if an infinite junk structure
L is produced under a true Π0

2-outcome of some τ ∈ T or some σ working with
(Fi, Ej , z), then L comes together with a computable sequence (ls)s∈ω such that
the unique number l mentioned in the sequence (ls)s∈ω infinitely often describes
the sizes of the finitely many exceptional classes in L. (If L is not infinite junk
then (ls)s∈ω has no such l.) In the case of τ ∈ T the finite parameter comes from
the dynamic definition of the respective interval [〈τ,m, j〉, 2〈τ,m, j〉], and in the
case of σ working with (Fi, Ej , z) this parameter is the current max Iσm, where m
corresponds to the outcome.

9. The junk collector

The junk collector can be extracted from [DMN17] without any further mod-
ification. For completeness, we explain the action of the junk collector in fairly
complete detail.

We call a structure a junk structure if it is either a finite structure or an infinite
junk structure produced by one of the strategies. Junk structures can be of two
different kinds:

(1) Finite junk. These are finite abelian p-groups/equivalence structures which
are either produced due to initialisation or are built if the Σ0

2-outcome is the
true outcome. Because of Modification 1, the cardinalities of these finite
groups may be assumed to be large and unseen at the stage when they are
first introduced; see Lemma 4.2(3).

(2) Infinite junk (see Def. 4.1). These are produced under various Π0
2-outcomes,

which are not their left-most Π0
2-outcomes, of basic strategies either work-

ing with (Fi, Ej , z) or along the tree T . According to Modification 2 in
the preceding Subsection 8.5, the isomorphism type of the infinite junk
structure produced by σ ξ̂, where ξ is the Π0

2-outcome of σ played infinitely
often, will be uniquely determined by σ and ξ, regardless of the type of the
strategy σ. At every stage at which the outcome is played we will also have
the current best guess on the isomorphism type of the structure.

The junk collector consists of two submodules working in coordination with each
other.

9.1. The infinite junk collector. The task of this global strategy is to ensure
that each isomorphism type of infinite junk structure H is represented in the global
enumeration, and exactly once. Here the isomorphism type of an infinite junk
structure is identified with the isomorphism type of the respective abelian p-group
of Ulm type 1. Note that under each Π0

2-outcome, which is not the left-most
outcome, we have a specific guess on the isomorphism type of the infinite junk
produced by the respective strategy. Call this isomorphism type L. If the outcome
is played again at stage s, then we say that L is active at s. Otherwise, we say that
it is not active at the stage. We assume that at most one structure is active at a
given stage.

9.1.1. Idea. Initiate an enumeration of all isomorphism types of infinite junk struc-
tures. If L becomes active at a later stage, then we are in the danger of having
repetitions, for the following reason. Suppose an enumeration of L′ ∼= L has al-
ready been initiated by the infinite junk collector. When L becomes active, we
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stop building L′ and permanently put the currently finite L′ into the finite junk
collector (to be explained). We also artificially adjoin a very large cyclic summand
to L′ to make it look different from all the other finite structures that we have ever
seen in the construction so far. While L is no longer active, we re-introduce its
isomorphism type to the junk collector by using a large L′′ ∼= L.

9.1.2. The formal description. We define a computable sequence (Jsi )s,i∈ω of in-
finite junk equivalence structures. The sequence (Jsi )s,i∈ω can be thought of as
a computable map ν which on input (i, s) outputs the index of some computable
abelian p-group. At every stage we will of course have only a finite part of each of
these structures in their natural uniform enumeration.

The input of the infinite junk submodule is a uniform enumeration of abelian
p-groups some of which can be infinite junk. We write L0, L1, . . . to denote these
groups. At every stage each Li is finite and is identified with the respective equiv-
alence structure ELi with all possible uniformity; see Proposition 2.1. This list
is uniformly produced by sub-strategies of the main strategy and the tree T all
working together, but the exact nature of this list is not important. We need only
the following assumptions about this list.

(a1): We identify each Li with its index which is uniformly computable from i;
without loss of generality we may assume that the complement of the set
of all these indices is an infinite computable set.

(a2): At every stage at most one such L = Li can be declared active which means
that, in a Π0

2-fashion, we have more evidence that L may end up being an
infinite junk structure. In this case the intended isomorphism type of L is
also given in the form of a finite parameter describing the exceptional finite
classes of L. At such a stage L grows in size to a very large cardinality. If L
is active infinitely often then this parameter is the only one which appears
as the best current guess infinitely many times (cf. Subsection 8.5).

(a3): Also, if Li 6= Lj then their parameters from (a2) above never describe the
same isomorphism type of an infinite junk structure (cf. Modification 2).

At stage 0, initiate a uniform enumeration (J0
i )i∈ω of all isomorphism types of

abelian p-groups J such that the respective EJ is an infinite junk equivalence struc-
ture. Each isomorphism type comes with a (strong) index describing the finitely
many exceptional classes in the respective J0

i . Unless interrupted and declared
abandoned (to be defined), each J0

i eventually ends up isomorphic to the infinite
junk structure with the declared finite description.

As stage s, consider the following cases:

• Some L is active at the stage. Let i be the unique index such that, ac-
cording to the parameter describing L (see (a2)), we should have L ∼= J0

i .
Set Js+1

i = L and declare Jsi abandoned and place it into the finite junk
collector. Adjoin a very large class to the structure before permanently
abandoning it.

• No L is active. If L was active at stage s-1 and currently Jsi = L, then intro-
duce a new D having a large index (see (a1)) which, unless interrupted and
declared abandoned, will have the same isomorphism type as the intended
isomorphism type J0

i at the end of the construction; define Js+1
i = D.
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In any case make one more step in the approximation of each Jsi , and go to the
next stage.

Now to the verification. We identify equivalence structures with their computable
indices and with the respective groups. Let limsJ

s
i be equal to the structure X

having the smallest index such that there exists infinitely many stages s at which
Jsi = X.

Lemma 9.1. Suppose there exist infinitely many stages at which L becomes active,
and let i be such that J0

i
∼= L. Then Ji = limsJ

s
i = L.

Proof. At every stage s at which L becomes active we set Js+1
i = L. Furthermore,

if some other L′ becomes active at a stage t, then we set J t+1
j = L for some j 6= i,

because the finite parameter describing L′ corresponds to a non-isomorphic infinite
junk structure by (a3). Also, every time L becomes active, the structure Jsi is
declared abandoned and will never be set equal to J ti at any later stage t. It follows
that limsJ

s
i = L. �

Lemma 9.2. Suppose X is an infinite junk structure such that there is no L ∼= X
in the input list which becomes active at infinitely many stages. Then for some i,
Ji = limsJ

s
i
∼= X.

Proof. Let i be such that the intended isomorphism type of J0
i is the same as

the isomorphism type of X. By (a3) combined with (a2), there will be at most
one L in the list which could potentially be isomorphic to X in the limit. Thus,
there are at most finitely many stages s at which Jsi 6= Js+1

i . Let s′ be least such

that Jsi = Js+1
i for each s > s′. If s′ = 0 then limsJ

s
i = J0

i , the enumeration
of J0

i is never interrupted, and thus we end up with X ∼= J0
i = limsJ

s
i by the

choice of i. Otherwise, limsJ
s
i = D for some D picked at s′ and which, unless

interrupted, has the same isomorphism type as the intended isomorphism type J0
i .

Since Js
′+1
i = D will never be declared abandoned, and since D is described by

the same finite parameter as was initially picked for J0
i , the choice of i implies

X ∼= D = limsJ
s
i . �

As before, let Ji = limsJ
s
i .

Lemma 9.3. The sequence (Ji)i∈ω mentions each isomorphism type of infinite junk
structures/groups exactly once.

Proof. Fix some isomorphism type X. Suppose there is a member L = Li of the
input list which becomes active at infinitely many stages and such that L ∼= X.
Then for some i we will have Ji = L ∼= X. No other Jj with j 6= i can be isomorphic
to X. On the other hand, if no such Li exists then Lemma 9.2 implies that for
some i we have Ji = D ∼= X, and again for exactly one such i. �

Define a uniform enumeration (Zi)i∈ω which includes all of the (Li)i∈ω and
further expand it by structures which are of the following two sorts:

• A finite structure expanding some Jsi which was declared abandoned at
stage s;
• An infinite junk structure Ji = limsJ

s
i which, for some s′, will have index

Js
′

i (cf. Lemma 9.2).
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In particular, the first clause will cover the case when Ji = limsJ
s
i is undefined

and thus for every s the index Jsi is eventually abandoned. It also covers the case
when the monitored structure of isomorphism type J0

i already appears in the list
(Li)i∈ω. The second clause covers the case when the isomorphism type of J0

i is not
mentioned among (Li)i∈ω. With a bit of extra work, the lemmas above imply the
following:

Proposition 9.4. Given a uniform list (Li)i∈ω with properties (a1)-(a3) and which
is injective on isomorphism types, the finite junk collector outputs a uniform list
(Zi)i∈ω which mentions each member of (Li)i∈ω exactly once and mentions each
isomorphism type of infinite junk structures exactly once. In addition to all infinite
junk structures and members of (Li)i∈ω, it may only contain some isomorphism
types of finite structures/groups, and also without repetition.

Proof. Most of the work has already been done, it remains to check the claimed
properties related to finite structures. It is clear that the extra isomorphism types
may come from Jsi only. But by assumption (a2) they are all distinct, for at the
stage at which they are introduced they are larger than any other finite isomorphism
mentioned so far. �

This list (Zi)i∈ω will serve as the input for the finite junk collector which is
described below.

9.2. The finite junk collector. This global strategy must ensure that every iso-
morphism type of a finite abelian p-group is represented in the enumeration. As
usual, we can identify such groups with finite equivalence relations. Recall also
Modification 1.

9.2.1. Idea. We initially start with a uniform enumeration of all finite abelian p-
groups. At every stage we have only finitely many of them already listed, and some
of these finitely many groups may have to be further expanded to a larger finite
group, but only at most once. This is because new finite abelian groups appear in
the construction only due to the actions of the main module, the tree T , and the
infinite junk collector. Such groups could be of three different kinds:

(1) Finite abelian groups that are permanently abandoned by a node in T or
a module working with a triple (Fi, Ej , z) due to initialisation. According
to Modification 1 we adopted in the definition of TH(F ), if a strategy is
initialised then its structure gets a very large simple chain. Similarly, if an
equivalence structure is abandoned by a strategy in T then we adjoin a very
large new class to it. This makes the isomorphism type of the abandoned
finite group/equivalence structure unique at the respective stage.

(2) Finite abelian groups that are permanently abandoned by the infinite junk
collector. The isomorphism type of this abandoned finite group is unique
at the stage, because a very large finite class/summand is adjoined to it;
see the description of the infinite junk collector.

(3) Structures that are finite approximations to a TH(F ) of some τ at a fi-
nite stage. According to Modification 1, at every stage s at which some
progress has been made in the approximation of the respective TH(F ), the
finite structure TH(F )[s] has its isomorphism type unseen so far in the con-
struction. This is achieved by artificially adjoining a very long simple chain
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to the root of the Π0
2 p-basic tree every time the strategy has to temporarily

stop enumerating its TH(F ).

If a group A of a sort (1), (2), or (3) is permanently put into the finite junk
collector, then there is no isomorphic finite group already listed by the finite junk
collector by this stage. This is because the isomorphism type of the new group is
artificially made very large in each of the three cases. It is thus routine to make
sure that these groups are incorporated into the enumeration, and no finite abelian
p-group isomorphic to these will be ever introduced by the finite junk collector.

However, in case (3) the group may resume growing, and we reintroduce the
finite isomorphism type that it had just before it grew again. This is done using a
new finite group with a large index. We permanently put this new group into the
enumeration. This group will never become isomorphic to any other finite group
in the construction, because all groups produced by other strategies at later stages
will have cyclic summands that are too big, and because the finite junk collector
itself will never duplicate the finite group at any later stage.

9.2.2. The formal description. The input is a uniform enumeration (Zi)i∈ω of abelian
p-groups. At every stage each finite Zi[s] is identified with the respective equiva-
lence structure EZi[s], with all possible uniformity. In the construction this list is
produced collectively by T , sub-modules of the main module, and the infinite junk
collector. We will need only the following dynamic properties of this list. These
properties are immediate consequences of Modification 1 and the analysis contained
in Subsection 8.4.

(b1): At every stage s there is at most one i for which Zi[s + 1] is larger than
Zi[s], in this case we also assume that the cardinality of Zi[s+ 1] is larger
than any number mentioned so far in the construction. This applies to the
case when Zi[s+ 1] is newly introduced too.

(b2) At every stage s the finite list (Zi[s])i≤s contains no repetition up to iso-
morphism.

The finite junk collector defines its own sequence (Di)i∈ω by stages, as follows.

At stage 0, set D0 equal to the empty equivalence structure/the trivial group.

At stage s, define Ds be equal to the index of the least isomorphism type (with
respect to the natural uniform enumeration of such types) which is currently not
mentioned among (Zk[s])k≤s and Dj , j < s. Go to the next stage.

Expand the enumeration (Zi)i∈ω by uniformly adjoining all structures (Di)i∈ω
to this enumeration. Let (Bi)i∈ω be the resulting combined uniform enumeration.

Lemma 9.5. For every i and j, Zi 6∼= Dj.

Proof. When Dj is defined at stage j it is set equal to a finite structure/group not
isomorphic to any group mentioned so far in the enumeration. By property (b1),
no Zi[t] with i ≤ j can be set equal to a finite structure isomorphic to Dj since
its cardinality is larger than the cardinality of Dj . For i > j, the structure Zi[t] is
very large when it is introduced, and thus it cannot be isomorphic to Dj . �

Lemma 9.6. For any i 6= j, Di 6∼= Dj.
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Proof. According to the instructions at stage j, no Di with i < j could be isomor-
phic to Dj . Similarly, according to the instructions at stage i, Di with i > j cannot
be isomorphic to Dj . �

Lemma 9.7. Every isomorphism type of finite equivalence structures/finite abelian
p-groups is mentioned in (Bi)i∈ω exactly once.

Proof. Each isomorphic type is mentioned at least once by the choice of Ds at stage
s. Indeed, assuming it is not mentioned, we would arrive at a contradiction, for
eventually all newly introduced members of (Zi)i∈ω will be either stable or will
be too large, and thus for some s we will have to fill in the gap using Ds. By
(b1) and the two lemmas above, the enumeration is injective on finite isomorphism
types. �

The lemmas imply the following:

Proposition 9.8. On input of a uniform enumeration (Zi)i∈ω which is injective
on isomorphism types and satisfies (b1)-(b2), the finite junk collector produces a
uniform enumeration (Bi)i∈ω which is injective on isomorphism types and mentions
each isomorphism type from (Zi)i∈ω and each finite isomorphism type.

This finishes the description of the finite junk collector.

10. The construction

We are ready to put all the essential components together. The construction
consists of three phases. The output of the first phase is the input of the second
phase, and the output of the second is the input of the third. Apart from this
obvious correlation via the input/output, there is no further interaction between
the three phases.

10.1. Phase 1. Fix the effective enumeration (Fi, Ej , z)i,j,z∈ω which was defined
at the beginning of Section 5. Also, fix the tree of strategies T defined in Section 8
and the strategies associated with its nodes.

At the first phase we let all the basic strategies associated with each triple
(Fi, Ej , z) and the strategies associated with T act according to their instructions;
the instructions can be found in Section 6 and Section 8, respectively.

Working together, these strategies produce a uniform enumeration (Li)i∈ω of
computable abelian groups which, as we shall argue, satisfy conditions (a1)-(a3)
from Subsection 9.1.2.

10.2. Phase 2. On input the enumeration (Li)i∈ω listed at Phase 1, let the infinite
junk collector act according to its instructions, as described in Subsection 9.1. Let
(Zi)i∈ω be the uniform enumeration produced as the result of these actions. We
will argue that (Zi)i∈ω will satisfy conditions (b1)-(b2) from Subsection 9.2.

10.3. Phase 3. On input (Zi)i∈ω, let the finite junk collector act according to its
instructions and produce a uniform enumeration (Bi)i∈ω.

Finally, fix some Friedberg enumeration (Mi)i∈ω of all abelian p-groups of Ulm
type 1 which correspond to equivalence structures having finitely many classes at
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least one of which is infinite and to eventually bounded equivalence structures hav-
ing infinitely many classes. Merge (Bi)i∈ω with (Mi)i∈ω to produce an enumeration
(Ci)i∈ω. (For i = 0, 1, . . ., set C2i+1 = Bi and C2i = Mi.)

We will argue that (Ci)i∈ω is a Friedberg enumeration of all computable abelian
groups of Ulm type ≤ n.

10.4. Verification. As usual, we identify equivalence structures and the respective
Ulm type 1 groups throughout.

Lemma 10.1. The enumeration (Li)i∈ω produced at Phase 1 has the following
properties:

(1) It contains no repetition, up to isomorphism.
(2) It includes all isomorphism types of computable abelian p-groups of Ulm

types m, 1 < m < n.
(3) It mentions each isomorphism type of computable abelian p-groups having

Ulm type 1 in which there are arbitrarily large finite cyclic summands.
(4) It mentions some abelian p-groups of Ulm type 1 corresponding to infinite

junk structures. In each of these cases the respective group Li in the list
comes with an eventually stable sequence (lis)s∈ω such that the number li =
lims l

i
s describes the sizes of the finitely many exceptional classes in ELi .

(If Li is not infinite junk then (lis)s∈ω will be divergent.)
(5) It includes some finite abelian p-groups.
(6) Apart from the isomorphism types described in (2)-(4), no further isomor-

phism types will be enumerated.
(7) It satisfies (a1)-(a3) from 9.1.2.

Proof. (2): As we argued in Section 5, every computable abelian p-group A must
have A′ true and A/A′ proper. Theorem 3.7 implies that, for some pair (Fi, Ej)
we will have Fi ∼= A′ and A/A′ ∼= Ej . The Σ0

4-predicate described in Section 6
holds for this pair. In particular, for exactly one z the basic strategy working with
(Fi, Ej , z) has a true Π0

3-outcome; see Subsection 6.5 for the detailed analysis of
the outcomes. Under this outcome the strategy produces THj (Fi)

∼= A.
(3): See Subsection 8.4 for a detailed analysis of the structures produced by T .
(4): This is explained in Subsection 8.5.
(5): This is merely an observation based on the descriptions of the strategies.
(6): This follows from the detailed analysis of the outcomes contained in Sub-

sections 6.5 and 8.4.
(7): Condition (a1) is a triviality, (a2) is reformulation of (4) of this lemma, and

(a3) is Modification 2 in Subsection 8.5.
(1): We use the same notation as in the proof of (2) of this lemma. Since the

enumerations (Fi)i∈ω and (Ej)j∈ω are Friedberg and since we assumed uniqueness
of existential witnesses throughout, the groups produced under true Π0

3-outcomes
corresponding to different pairs (Fi, Ej) are non-isomorphic, and there is at most
one true Π0

3-outcome for each such pair. The true Π0
3-outcomes of strategies along

the true path of T witness that the construction produces a complete list of all
computable equivalence structures having arbitrarily large finite classes; see Sub-
section 8.4.

Modification 2 and the analysis contained in Subsection 8.5 implies that infi-
nite junk structures produced by different strategies cannot be isomorphic. Finally,
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Modification 1 in the proof of Proposition 2.6 and the analysis contained in Subsec-
tion 8.4 guarantee that finite structures that appear in the list have no repetition,
up to isomorphism; indeed, they all have distinct cardinalities. �

Lemma 10.2. The enumeration (Zi)i∈ω produced at Phase 2 has the following
properties:

(1) It contains no repetition, up to isomorphism.
(2) It includes all isomorphism types which appear in (Li)i∈ω.
(3) It includes all isomorphism types of infinite junk structures.
(4) It satisfies (b1) and (b2) from 9.2.2.

Proof. (1), (2), and (3) follow from Proposition 9.4, and (4) is an immediate con-
sequences of Modification 1 and the analysis contained in Subsection 8.4; see also
9.2.2.

�

Lemma 10.3. The enumeration (Bi)i∈ω produced at Phase 3 has the following
properties:

(1) It contains no repetition, up to isomorphism.
(2) It includes all isomorphism types which appear in (Zi)i∈ω.
(3) It includes all isomorphism types of finite groups.

Proof. This is a reformulation of Proposition 9.8. �

Combining the three lemmas above, we conclude that (Bi)i∈ω is a Friedberg
enumeration of almost all computable Ulm type ≤ n groups. This enumeration
does not include the following special isomorphism classes of groups, namely:

(1) abelian p-groups of Ulm type 1 which correspond to equivalence structures
having finitely many classes at least one of which is infinite, and

(2) abelian p-groups corresponding to eventually bounded equivalence struc-
tures having infinitely many classes.

These two isomorphism classes have a combined uniformly computable Friedberg
enumeration which we denoted by (Mi)i∈ω. By merging (Mi)i∈ω with (Bi)i∈ω we
obtain a computable Friedberg enumeration of all computable Ulm type ≤ n abelian
p-groups, as desired.
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