
EFFECTIVE PACKING DIMENSION AND TRACEABILITY

ROD DOWNEY AND KENG MENG NG

Abstract. We study the Turing degrees which contain a real of effective
packing dimension one. Downey and Greenberg [DG] showed that a c.e. degree
has effective packing dimension one iff it is not c.e. traceable. In this paper we
show that this characterization fails in general. We construct a real A ≤T ∅′′

which is hyperimmune-free and not c.e. traceable, such that every real α ≤T A
has effective packing dimension 0. We also construct B ≤T ∅′ with the same
properties.

1. Introduction

The concern of this paper is with effective packing dimension. This concept can
be traced back to the work of Borel and Lebesgue who studied measure as a way of
specifying the size of sets. Carathéodory later generalized Lebesgue measure to the
n-dimensional Euclidean space, and this was taken further by Hausdorff [Hau19]
who generalized the notion of s-dimensional measure to include non-integer values
for s in any metric space. In the Cantor space with the clopen topology, this can
be viewed as a scaling of the usual Lebesgue measure by a factor of s, in the sense
of

µs([σ]) = 2−s|σ|,

where [σ] is the clopen set generated by σ, and 0 ≤ s ≤ 1. This gave rise to
the concept of classical Hausdorff dimension, which provided a way of classifying
different sets of measure zero, based on the intuition that not all null sets are created
equal.

There appeared many other related classical notions of fractional dimensions,
such as box-counting dimension and packing dimension. The study of effective
notions of randomness and their relationship with the Turing degrees was initiated
by the early work of de Leeuw, Moore, Shannon and Shapiro [dLMSS56]. The
effective versions of these various notions of fractional dimensions have been studied
in connection with randomness. The best known examples of such effective notions
are the effective Hausdorff, and effective packing dimensions.

Hausdorff measure talks about covering the set by open balls from the exterior,
while packing measure considers filling up a set from the interior. One can effec-
tivize these two notions by looking at covering with Σ0

1 open sets in the Cantor
space with s-measure. This work took a new direction when various authors Lutz
[Lut90, Lut03], Staiger [Sta93], Mayordomo [May02], Artheya et al [AHLM04], and
Reimann [Rei04] showed that there were simple characterizations of effective Haus-
dorff and packing dimensions using Kolmogorov complexity. Indeed, the effective
Hausdorff dimension of a real A can be written as

dimH(A) = lim inf
n→∞

K(A�n)
n

,

Key words and phrases. effective dimension, Turing degrees.
Both authors are partially supported by the Marsden Fund of New Zealand.

1

2 ROD DOWNEY AND KENG MENG NG

while its dual notion, the effective packing dimension is

dimp(A) = lim sup
n→∞

K(A�n)
n

.

We also refer the reader to Lutz [Lut00] for a characterization in terms of martin-
gales. We mention here that there is a natural way to define the effective dimension
of any countable collection of reals, by looking at the lim sup of the effective dimen-
sions of its members. In particular one can talk about the effective dimension of a
Turing degree (or a lower cone with respect to Turing reducibility).

Effective packing dimension is a very natural notion of effective dimension to
study; indeed the reals of effective packing dimension 1 can be described as one
where “measure meets category”. In particular this property is shared by both the
Martin-Löf random reals, as well as reals which were sufficiently generic (for instance
2-generic). Consequently the class of reals having effective packing dimension one
is both co-meager and of measure 1.

Unlike effective Hausdorff dimension, the notion of effective packing dimension
is much more tractable. Fortnow, Hitchcock, Aduri, Vinochandran and Wang
[FHA+06], proved that the dimension extraction property was true for effective
packing dimension with respect to weak truth table reducibility:

Theorem 1.1 (Fortnow et al [FHA+06]). For every ε > 0 and every A, if dimP (A) >
0, then there is B ≡wtt A such that dimP (B) > 1− ε.

Hence their result gives a 0-1 law on the effective packing dimension of wtt
degrees - this can be only 0 or 1. In contrast, Miller [Mil] recently solved a long-
standing question on “broken Hausdorff dimension”, where he constructed a ∆0

2

degree with effective Haudorff dimension 1
2 , but does not compute any real of a

higher Hausdorff dimension.
It is still open if every degree of effective packing dimension one contains a real of

effective packing dimension one, and this seems to be a difficult problem. Our task
at hand is less ambitious; we are interested in answering a more general question:
which Turing degrees are of effective packing dimension 1? Downey and Greenberg
gave a classification in the case of c.e. degrees:

Theorem 1.2 (Downey and Greenberg [DG]). A c.e. degree contains a real with
positive effective packing dimension iff it is array non-computable.

Recall that the array computable degrees were the degrees a such that there is
some f ≤wtt ∅′ which dominates every a-computable function. A degree is array
non-computable if it is not array computable. Their result was related to a the-
orem of Kummer [Kum96], where he proved a gap phenomenon in the growth of
C-complexity. In particular he showed that every c.e. array non-computable degree
contains a set which has infinitely many segments of maximal C-complexity. On the
other hand every c.e. array computable set has initial segments with C-complexity
as close to log n as we want. Downey and Greenberg’s classification reinforces the
fact that array (non-)computability was intimately related to Kolmogorov complex-
ity.

One would naturally conjecture that the above characterization of Downey and
Greenberg holds in general. Unfortunately this tempting guess does not work out
because there are array computable random degrees (any random hyperimmune-
free degree is an example), so the array non-computable degrees fail to give a
characterization. Recall that a set Z is of hyperimmune-free degree, if every func-
tion computable from Z is dominated by a computable function. In fact the array
non-computable degrees also fail to give a characterization within the ∆0

2 degrees
because any superlow random real is also array computable.

EFFECTIVE PACKING DIMENSION AND TRACEABILITY 3

Greenberg and Downey observed that it was easy to generalize Kummer’s Gap
Theorem to a notion called c.e. traceability, which is akin to array computability.
Recall that a degree a is c.e. traceable if there is some computable, non-decreasing
and unbounded function h such that for all f ≤T a there is a unifomly c.e. sequence
{Tx} such that for all x, |Tx| ≤ h(x) and f(x) ∈ Tx. This has been studied by Zam-
bella [Zam90], Terwijn and Zambella [TZ01] and also Ishmukhametov [Ish97] who
showed that in c.e. degrees, array computability coincided with c.e. traceability.
Greenberg and Downey observed that every c.e. traceable set has effective packing
dimension 0.

One might now hope that the weaker notion of being not c.e. traceable would
give a characterization. The degrees which were not c.e. traceable contain all
random degrees, and so the obvious counter-examples for array non-computability
are not relevant. In this paper we show that this feeble conjecture fails. In Theorem
2.1 we first construct a hyperimmune-free and ∆0

3 example:

Theorem 2.1. There is a ∆0
3 real A which is of hyperimmune-free degree and not

c.e. traceable, such that every real α ≤T A has effective packing dimension 0.

Since the degrees containing no real of packing dimension 1 may be thought of as
having low algorithmic information content, one might hope to be able to relate this
concept with some known lowness class arising in algorithmic randomness. Theorem
2.1 says that the low for Schnorr random reals fail to give a characterization even
amongst the hyperimmune-free degrees, because the low for Schnorr random reals
are all computably traceable and is therefore too strong a notion. It is not clear if
there is any relationship between the degrees of positive effective packing dimension,
and the degrees containing a low for Kurtz random (i.e. the hyperimmune-free and
non-dnc degrees).

In Theorem 3.1 we show that the property of being not c.e. traceable fail to give
a characterization amongst the sets computable from ∅′:

Theorem 3.1. There is a real A ≤T ∅′ which is not c.e. traceable, such that every
real α ≤T A has effective packing dimension 0.

Finally we ask if there is a combinatorial characterization of the degrees in PD1.
By combinatorial we mean a definition which does not mention K-complexity, nor
any randomness notion.

We associate finite strings with code numbers for them. If σ is a finite string
of positive length then σ− denotes the predecessor of σ. We use |σ| to denote the
length of a finite string, and # to denote the cardinality of a finite set. The rest of
our notations are generally standard, and follow Soare [Soa87].

2. A ∆0
3 and hyperimmune-free example

Theorem 2.1. There is a ∆0
3 real A which is of hyperimmune-free degree and not

c.e. traceable, such that every real α ≤T A has effective packing dimension 0.

Proof. By Theorem 1.1, we only need to ensure that dimP (α) ≤ 1
2 for every α ≤T A.

We build the set A of HIF degree by an oracle construction and we define a total
function g = ΓA satisfying the requirements

Pe : g(x) 6∈ V e
x for some x.

Ne : if ΦA
e is total, then K(ΦA

e�x) ≤ x/2 for almost all x.

We let {V e
x }x be the eth c.e. trace such that #V e

x < x for every e, x. We observe that
there are plenty of reals which are of hyperimmune-free degree, but not computably
traceable. For instance, any HIF random real will do, but random reals all have
effective packing dimension 1. On the other hand, the standard construction of a

4 ROD DOWNEY AND KENG MENG NG

∆0
3 real of HIF degree also makes it computably traceable, so one has to go out

of the way to construct such a real directly (see Terwijn’s thesis [Ter98]). The
basic idea there is to work in a tree T where every node at level x has x branches or
successors (one could work in the Cantor space since T is a homeomorphic copy, but
it will be notationally more cumbersome). We have to define the total functional
g = ΓX externally, by letting Γσ(|σ|) = σ, which will be clearly total along every
path in [T]. We want to defeat all possible traces for g, and since T has enough
splits at each level we could kill off enough branches at a certain level in order
to diagonalize against the eth trace. This is reminiscent of a “bushy tree” type
construction used to construct minimal dnc degrees. At the same time we will be
able obtain an upperbound for the possible values of ΦX

e (n) (to force HIF), just by
reading it off the tree.

Suppose we now want to combine the above construction with the requirement
Ne. Note that Ne requires us not only to have to keep the initial segment complex-
ity of A small (which is easy), but rather we need to keep the complexity of ΦA

e

small. This creates an additional difficulty, because in general there is no effective
relationship between the length of a segment σ, and the length of the use which
produces that segment (i.e. τ such that Φτ

e = σ). In particular, we could have
very long segments τ such that Φτ_i

e are all different for different values of i, such
that |Φτ_i

e | is relatively short. Remember that we have to keep enough successors
of τ left on the tree for diagonalization, so we might have to end up issuing many
descriptions witnessing K(Φτ_i

e) ≤ 1
2 |Φ

τ_i
e | for many different i. The number of

different i could be too large relative to |Φτ_i
e |. The obvious thing to try might

be for instance, to choose a longer τ so that |Φτ_i
e | is longer, and hence cost less

to describe, but remember that generally at level |τ | we have to keep at least |τ |
many successors of τ left on the tree (since g is, and in fact has to be, defined exter-
nally). So generally looking for a longer τ doesn’t help, since this also corresponds
to having even more possibilities of |Φτ_i

e | for which we have to issue descriptions.
Our solution to this is to gather a majority vote, or consensus. We start with

a tree T which has, at level x, a large number of successors say x2L(x) many (for
some L(x) to be determined). We will define a computable subtree Te of T by
the following. We may assume that for every x and above every string σ on T
we can always force convergence, i.e. find some η ⊃ σ on T such that Φη

e(x) ↓.
(otherwise we can just take Te to be the full subtree above some node). First pick
a level x0 which will be the first level in Te for which we will put up splits. We
then pick a length L(x0) which is very large relative to x0, and search for strings
σ1 ⊃ 1x01, σ2 ⊃ 1x02, · · · such that Φσi

e �L(x0)↓ for all i. Since there are x02L(x0)

many different σi, and only at most 2L(x0) many possibilities for Φσi
e �L(x0), it follows

there is some τ such that Φσi
e �L(x0)= τ for at least x0 many different σi. Leave 1x0

on Te, as well as the extensions σi which voted for the majority, and kill all other
incomparable nodes. We then move on to the next level x1. This ensures that
the tree Te still has enough splits at infinitely many levels (so that we can proceed
with diagonalization for other P requirements), but yet we are able to restrict the
possibilities for Φe.

Suppose σi1 , · · · , σix0
were the extensions of 1x0 which survived on Te. After we

pick x1 we will repeat the “majority vote” strategy separately above each σij to
ensure we have enough splits left on Te at level x1, and kill off all other incomparable
nodes. We now have η1, η2, · · · , ηx0 ⊃ Φσi0

e �L(x0) where ηj was voted by the majority
of nodes extending σij . To satisfy Ne we need to issue descriptions for all possible
segments for Φe. There is one segment of length L(x0), x0 many segments of length
L(x1), x0x1 many segments of length L(x2) and so on, for us to describe. As long

EFFECTIVE PACKING DIMENSION AND TRACEABILITY 5

L is chosen such that x0 · · ·xk2−L(xk)/2 is small, then we will be fine. The exact
details are supplied in the formal construction.

Formal construction. For each x ∈ N and rational 0 < δ < 1, we define `(x, δ) to
be the least number larger than 4− 2 log δ

xx , so that xx2−
1
2 `(x,δ)+2 < δ holds. This

seemingly bizzare choice for ` will become clear later; it is simply a huge number
that bounds everything we need. Define the computable sequence of functions
L1, L2, · · · inductively by

L1(x) = `(x, 2−x), Ln+1(x) = `(x2L1(x)+···+Ln(x), 2−x),

for all positive x ∈ N. It is a simple exercise to show that Ln(x) is increasing in
both variables. In this proof, a tree is defined to be a partial computable function
T : ω<ω 7→ ω<ω, such that σ ⊂ τ ∧ T (τ) ↓⇒ T (σ) ↓⊂ T (τ), and incomparable
strings map to incomparable strings. A tree T is said to be crowded if it satisfies
the following

(1) T (∅) ↓.
(2) if T (σ) ↓, then T (σ_i) ↓ for all i = 1, · · · , x2L1(x)+···+L|σ|+1(x), where

x = |T (σ)|.
(3) if i 6= j then T (σ_i)�1+|T (σ)| 6= T (σ_j)�1+|T (σ)|.
(4) if T (σ) ↓ and T (τ) ↓ and |σ| = |τ |, then |T (σ)| = |T (τ)|.
(5) T is defined nowhere else, and is being built up from ∅ by applying rules

(1) to (4).
Condition (5) compacts the tree in the sense that we eliminate the situtation where
we have T (0) ↓ and T (2) ↓ but T (1) ↑. A crowded tree generalizes simultaneously,
to the non-binary case, both the ideas of having a “perfect” tree, as well as having
enough branches at infinitely many levels.

Generate the tree T by letting T (∅) = 1, and inductively if T (σ) ↓ then let
T (σ_i) = T (σ)_i for i = 1, · · · , x2L1(x)+···+Lx(x) where x = |σ|+ 1. T is in some
sense the identity tree, and is clearly crowded. We say that T is the full crowded
tree. Since Ran(T) is computably homeomorphic to the Cantor space, we will
construct A as an infinite path through Ran(T). If T is a tree, we let [T] be the
set of all infinite strings X such that there are infinitely many τ ∈ Ran(T) such
that τ ⊂ X. Equivalently, [T] = {X : ∃Y ∀nT (Y �n) ⊂ X}. If P and Q are trees,
then we say that P ⊆ Q if for every σ such that P (σ) ↓, we have some η such that
P (σ) = Q(η).

The functional Γ is defined as follow: Γσ(x) ↓= σ if σ is on T and |σ| = x.
Clearly ΓX is total for any path X ∈ [T]. During the construction, at each stage
s + 1 we will define a crowded subtree Ts+1 ⊂ Ts, and let A = ∪sTs(∅). For
each s and k note that Ts(1k) is always convergent, and if Ts is crowded, then
|Ts(σ)| = |Ts(1k)| for every convergent |σ| = k. If P is a tree we say that σ is on
P , or equivalently σ ∈ P to mean that σ ⊆ P (η) for some η. If P is crowded, then
Ran(P) is computable as a set of nodes, so that the relation σ ∈ P is a computable
relation (given an index for P).

If P is a crowded tree and σ is on P , then we define P̃ as the crowded subtree
of P above σ by the following. Look for the minimal η such that P (η) ⊇ σ. Let
P̃ (τ) = P (η_τ) for all τ , and then we chop off the superflous branches, i.e. restrict
the domain of P̃ sufficiently so as to satisfy condition (2). It is clear that P̃ is
crowded as well. This is where we use the idea that crowded trees are “perfect”
in some sense; at any point in the construction we can just extract P above any σ
and still end up with a crowded tree, and this makes no sense if, for instance, P
contains dead ends.

The construction. At stage s = 0 we let T0 = T . At stage s = 3e > 0, we satisfy
Ne. Ask if it is the case that (∀x∀σ ∈ Ts−1)(∃τ ⊃ σ)(τ ∈ Ts−1 ∧ Φτ

e (x) ↓). If the

6 ROD DOWNEY AND KENG MENG NG

answer is no, find a counter example σ on Ts−1, and let Ts be the crowded subtree
of Ts−1 above σ. If the answer is yes, we will define both Ts and a computable tree
Ps by the following. The idea is that [Ps] is a Π0

1 class (with very few splits) and
containing all possibilities for ΦA

e .
First let η 6= ∅ be the first string found such that ΦTs−1(η)

e (0) ↓ and set Ts(∅) =
Ts−1(η). Next, assume that Ts(σ) has been defined up till level k, i.e. for all
relevant |σ| ≤ k. Let N := {σ : |σ| = k ∧ Ts(σ) ↓}. Assume that inductively we
have the properties

• Ts is crowded so far
• for every σ ∈ N , Ts(σ) has at least x2L1(x)+···+Lk+2(x) many successors on

Ts−1, where x = |Ts(1k)|
• for every σ ∈ N , Ps(σ−) ↓ and ΦTs(σ)

e ⊇ Ps(σ−).

For each σ ∈ N , do the following. Since σ has at least x2L1(x)+···+Lk+2(x) many
successors on Ts−1, we label these successors by Ts(σ)_n1, Ts(σ)_n2, · · · . For
each i ≤ x2L1(x)+···+Lk+2(x) find the first string σi ⊃ Ts(σ)_ni on Ts−1, such
that Φσi

e �Lk+2(x)↓⊃ Ps(σ−). There must be some τ of length Lk+2(x) such that
τ ⊃ Ps(σ−) and we have at least x2L1(x)+···+Lk+1(x) many values of i such that
Φσi

e �Lk+2(x)= τ . Take the first x2L1(x)+···+Lk+1(x) many such i, and arrange them
in increasing order (i1 < i2 < · · ·) and for each j ≤ x2L1(x)+···+Lk+1(x) we set
Ts(σ_j) = Ts−1(ν) where ν is some string such that Ts−1(ν) ⊃ σij . Also set
Ps(σ) = τ . Repeat for each σ ∈ N , and we may assume (by choosing a longer ν)
that |T (σ_j)| is constant for all σ ∈ N and all j, and that Ts(σ_j) has enough
successors on Ts−1.

Now assume we are at stage s = 3e+1, and Ts−1 is crowded. We want to satisfy
Pe. Pick the least i ≤ 1 + |Ts−1(∅)| such that Ts−1(i)�1+|Ts−1(∅)| 6∈ V e

1+|Ts−1(∅)|, and
let Ts be the crowded subtree of Ts−1 above Ts−1(i)�1+|Ts−1(∅)|.

Finally assume we are at stage s = 3e + 2. We run the usual hyperimmune-free
strategy. Ask if (∀x∀σ ∈ Ts−1)(∃τ ⊃ σ)(τ ∈ Ts−1 ∧ Φτ

e (x) ↓). If the answer is
no, find a counter example σ on Ts−1, and let Ts be the crowded subtree of Ts−1

above σ. If the answer is yes, we define Ts by the following. Set Ts(∅) = Ts−1(∅).
Suppose Ts(σ) has been defined for all σ of length ≤ k, and that Ts(σ) has at least
x2L1(x)+···+L|σ|+1(x) many successors where x = |Ts(1|σ|)| on Ts−1. Label them
Ts(σ)_n0, Ts(σ)_n1, · · · . For each |σ| = k and i ≤ x2L1(x)+···+Lk+1(x), we set
Ts(σ_i) to be Ts−1(η) for some η such that Ts−1(η) ⊃ Ts(σ)_ni and ΦTs−1(η)

e (k) ↓.
Once again we may assume that |Ts(σ_i)| are all equal for all combinations of σ
and i, by choosing a longer η if necessary.

Verification. The construction produces a sequence of trees T0 ⊇ T1 ⊇ · · · ,
where the sequence of indices for the trees is computable in ∅′′. Hence A is ∆0

3

and A ∈ [Ts] for every s. We verify that for every s, Ts is crowded and every
infinite path through Ts (in particular A) has the desired properties. Assume that
Ts−1 is crowded, and let s = 3e > 0. If the answer to the Π2-question is no, then
Ts is clearly crowded and there is some x such that for every X ∈ [Ts], we have
ΦX

e (x) ↑. Suppose on the other hand that the answer given was yes. Observe that
the inductive definition of Ts done level by level is well-defined, and maintains the
property of being crowded at each finite level. Observe also that Ps is a tree with
the following properties:

(1) dom(Ps) = dom(Ts).
(2) for every σ, |Ps(σ)| = L|σ|+2(|Ts(σ)|).
(3) for every infinite path X ∈ [Ts], we have ΦX

e total and is an infinite path
through [Ps].

EFFECTIVE PACKING DIMENSION AND TRACEABILITY 7

We claim that every infinite path through [Ps] has effective packing dimension at
most 1

2 , because Ps is extremely sparse. This is similar to the proof that every Π0
1

class of measure 0 contains no random path. To see this, we enumerate a Kraft-
Chaitin set, where we enumerate axioms 〈η, 1

2 |η|〉 for every string η ⊃ Ps(∅) on Ps.
We let hk := |Ts(1k)|, and Sk := {σ ∈ dom(Ts) | |σ| = k}. We can show easily that
#S0 = 1 and #Sk ≤ (hk−12L1(hk−1)+···+Lk(hk−1))k for any k > 0. It follows then
that the total cost of all these requests is bounded above (very generously) by∑

η∈dom(Ps)

∑
x≥|Ps(η)|

2−
1
2 x ·# of successors of Ps(η)

≤
∑

η∈dom(Ps)

2−
1
2 |Ps(η)|+2 ·# of successors of Ps(η).

Since Ts is crowded, so every level looks the same, hence we can express the above
sum as ∑

k

#Sk · 2−
1
2 Lk+2(hk)+2 · hk2L1(hk)+···+Lk+1(hk)

≤
∑

k

2−
1
2 Lk+2(hk)+2 · (hk2L1(hk)+···+Lk+1(hk))k+1

≤
∑

k

2−hk < 1 (by the choice of `).

This shows that every infinite path through [Ps] has effective packing dimension at
most 1

2 .
Next, we let s = 3e+1. In the construction we will be able to find the required i,

since #V e
1+|Ts−1(∅)| ≤ |Ts−1(∅)|. We have ΓX(1 + |Ts−1(∅)|) = Ts−1(i)�1+|Ts−1(∅)| 6∈

V e
|Ts−1(∅)|+1 for every infinite path X through [Ts].
Finally, consider s = 3e+2. If the answer to the Π2-question is no, then again Ts

is clearly crowded and for every X ∈ [Ts], ΦX
e is not total. If the answer given was

yes, then it is clear that Ts is also crowded, and that furthermore for every infinite
path X through [Ts], we must have that for every x, ΦX

e (x) must converge with
use at most |Ts(1x+1)|. One can then proceed to generate a computable bound for
all possible ΦX

e .
Since A ∈ [Ts] for every s, it follows that A has all the properties we require. �

3. A ∆0
2 example

In this section we provide an effective version of the proof of Theorem 2.1. By
doing so we prove that:

Theorem 3.1. There is a ∆0
2 set A which is not c.e. traceable, such that every

real α ≤T A has effective packing dimension 0.

Proof. We work in a variation of the Cantor space which is finitely branching. We
build a path g in this space by finite extension where g = ∪eσe. Again we only
need to ensure that dimP (α) ≤ 1

2 for every α ≤T g. We ensure that the following
requirements are met:

Pe : g(x) 6∈ V e
x for some x.

Ne : if αe = Φg
e is total, then K(αe�x) ≤ x/2 for almost all x.

Then the set A can be taken to be say, the graph of g. Again we let {V e
x }x to be the

eth c.e. trace, with identity bound. We maintain a sequence of computable trees
T0 ⊃ T1 ⊃ · · · and build g as a path through ∩eTe. At every stage s we use ∅′ as
an oracle to search through the tree Te, and when we discover that the tree is not

8 ROD DOWNEY AND KENG MENG NG

total we change our mind on Te. This will resemble a finite injury with oracle ∅′,
and is similar to the way in which Sacks’ construction of a minimal degree below
∅′ is a ∅′-effective version of Spector’s construction.

We retain most of the notations and parameters of the previous ∆0
3 construction.

Like in Sacks’ proof, we have to allow our crowded trees to be “partial”, in the sense
that they may now contain dead ends. To wit, we now declare that a tree is crowded,
if

(1) If T (σ) ↓, then either T (σ_i) ↓ for all i = 1, · · · , x2L1(x)+···+L|σ|+1(x), where
x = |T (σ)| or else T (σ_i) ↑ for every i.

(2) If i 6= j then T (σ_i)�1+|T (σ)| 6= T (σ_j)�1+|T (σ)| whenever they converge.
(3) T is defined nowhere else, and is built up using the above rules.

The difference now is that we allow T (σ) ↓ but has no successors. We also have to
allow T (σ) and T (η) to be of different lengths when |σ| = |η|, because we might not
be able to find convergent strings densely; as we will see this will have no serious
impact on the calculations. If T (σ) ↓ but T (σ_i) ↑ for every i then we say that
T (σ) has no successors.

If T is a crowded tree and σ is on T , we let Full(T, σ) be the crowded subtree
of T above σ as before. An index for Full(T, σ) can be found effectively in σ and
an index for T . The second operation is the majority e-subtree above σ, denoted as
Maj(e, T, σ). This is the tree Q defined by the following. We also define a partial
computable tree P together with Q:

First let γ 6= ∅ be the first string found such that T (γ) ↓⊃ σ and ΦT (γ)
e (0) ↓. If

no such string is found then Q(∅) ↑, otherwise set Q(∅) = T (γ). Next, assume that
Q(η) has been defined, and that inductively we have the properties

• Q is crowded so far,
• Q(η) = T (γ) for some |γ| > |η|,
• P (η−) ↓ and P (η−) = ΦQ(η)

e �L|η−|+2(|Q(η−)|).

We now compute Q(η_i) for an appropriate number of i’s. Let x = |Q(η)|. First
wait for T (γ_i) ↓ for every i ≤ x2L1(x)+···+L|γ|+1(x). For each i find the first
string γi ⊇ γ_i such that T (γi) ↓ and ΦT (γi)

e �L|η|+2(x)↓. Necessarily we must

have ΦT (γi)
e �L|η|+2(x)⊃ P (η−). There must be some τ of length L|η|+2(x) such that

τ ⊃ P (η−) and we have at least x2L1(x)+···+L|η|+1(x) many values of i such that
ΦT (γi)

e �L|η|+2(x)= τ . Take the first x2L1(x)+···+L|η|+1(x) many such i’s and define
Q(η_i) = T (γi). Observe that the three properties still hold for Q(η_i). This
ends the definition of Q. Note that we may assume that |Q(η)| 6= |Q(η′)| whenever
|η| = |η′| (by searching further along T).

An index for Q is obtained effectively from e, T and σ. In fact the following
holds:

Lemma 3.2. If T is crowded and σ is on T , then
(i) Q is crowded,
(ii) every α = ΦX

e for X ∈ [Q] has dimP (α) ≤ 1
2 ,

(iii) if Q(∅) ↑ then there is no X ⊃ σ such that X ∈ [T] and ΦX
e is total,

(iv) if Q(η) ↓= T (γ) but has no successors on Q, then either
– it has no successors on T , or else
– there is some k such that T (γ_k) ↓, and for every X ⊃ T (γ_k),

X ∈ [T], we have ΦX
e is not defined somewhere below L|η|+2(|Q(η)|).

Proof. The others are straightforward, so we only prove (ii). Observe that P is
closed under initial segments, and in this case satisfies similar properties as before:

(1) for every η, P (η) ↓⇔ Q(η) ↓ and has successors,

EFFECTIVE PACKING DIMENSION AND TRACEABILITY 9

(2) for every η, |P (η)| = L|η|+2(|Q(η)|),
(3) for every infinite path X ∈ [Q], we have ΦX

e total and is an infinite path
through [P].

Since P is a partial computable tree, hence the set of strings τ on P is a c.e. set.
We then enumerate a KC-set {〈τ, 1

2 |τ |〉 : τ ⊃ P (∅) is on P}. We need to show that
the total size of these requests is bounded. Just as before, the size of these requests
is bounded above by∑

η∈dom(P)

2−
1
2 |P (η)|+2 ·# of successors of P (η) ≤

∑
η∈dom(P)

2−|Q(η)|,

where o(η) = x2L1(x)+···+L|η|+1(x) and x = |Q(η)|. That is o(η) is the number of
successors of Q(η). Since we assumed that |Q(η)| 6= |Q(η′)| whenever η, η′ are of
the same length, we can reduce the sum to∑

k

∑
{2−|Q(η)| : |η| = k, η ∈ dom(Q)} ≤

∑
k

2−k+1 < ∞.

This shows that every infinite path through [P] has effective packing dimension at
most 1

2 , and shows that (ii) holds. �

Construction of g. We build g by finite extension. At each stage s, Te[s] denotes
the tree which we use to satisfy requirement Ne. Let T be the full crowded tree in
Theorem 2.1. By convention T−1 = T . At stage s = 0 we initialize Te for every e,
and let σ0 = 〈〉. At s > 0 we assume that inductively we have the following:

(1) T ⊃ T0[s] ⊃ · · · , and are all crowded,
(2) η0 ≥ η1 ≥ · · · such that σs−1 = T0(η0)[s] = T1(η1)[s] = · · · .

We find the least e ≥ 0 such that Te is defined and σs−1 has no successors on Te. If e
exists, then Te must have been obtained from Te−1 by taking the e-majority subtree
operation. We claim that ∅′ can compute some ρ ⊃ ηe−1 such that Te−1(ρ) ↓, and
for every X ⊇ Te−1(ρ) and X ∈ [Te−1], ΦX

e is not total.
First go through each k and ask if there is some string ρk ⊇ ηe−1

_k such that
Te−1(ρk) ↓, and ΦTe−1(ρk)

e �L|ηe|+2(|σs−1|)↓. If the answer no for some k, then take
ρ = ηe−1

_k. If ρk is found for every k, then by Lemma 3.2(iv), there will be some
k such that [Te−1(ρk)] ∩ [Te−1] = ∅. By compactness we can search for it using ∅′.
Let ρ = ρk. In any case once ρ is found we let σs = Te−1(ρ). We keep T0, · · · , Te−1

and set Te to be the Full(Te−1, σs). Initialize all Te+1, Te+2, · · · . Adjust η0, · · · , ηe

accordingly.
Suppose on the other hand e does not exist. Let e0 be the largest such that Te0 ↓.

Hence Te0(ηe0) has at least 1 + |σs−1| many successors on Te0 ; since Te0(ηe0
_i) are

all different at the |σs−1|th bit, we pick some i so that Te0(ηe0
_i)(|σs−1|) 6∈ V e0

|σs−1|.
Let ρ = Te0(ηe0

_i). Ask if Maj(e0 + 1, Te0 , ρ)(∅) ↓. If the answer is yes, let Te0+1

be Maj(e0 + 1, Te0 , ρ) and σs = Te0+1(∅). Otherwise the answer is no; we let
Te0+1 = Full(Te0 , ρ) and let σs = ρ. Define η0, · · · , ηe0+1 appropriately.

Verification. Clearly for every s, σs+1) σs. Let g = ∪σs and hence g ≤T ∅′.
It is also easy to see that for each e, Te is initialized finitely often and receives a
final definition; let T̃e denote this. It is clear that g ∈ [T̃e] for every e. Now fix
an e. We claim that Pe is satisfied. There is a least stage s where Te+1 receives a
definition; at that stage we ensured that g(|σs−1|) 6∈ V e

|σs−1|. Now we verify that Ne

is satisfied. Suppose that Φg
e is total. Let s be the stage where Te is defined as T̃e.

Suppose at s we found that e is the least such that Te is defined and σs−1 has no
successors on Te. However σs is defined such that any infinite extension X ⊃ σs,
where X ∈ [T̃e−1] has the property that ΦX

e is not total. Since Φg
e is total, hence at

s the second scenario in the construction applies, where e0 +1 = e and ρ is on T̃e−1.

10 ROD DOWNEY AND KENG MENG NG

By Lemma 3.2(iii) we must have Maj(e, T̃e−1, ρ)(∅) ↓. Hence T̃e = Maj(e, T̃e−1, ρ).
By Lemma 3.2(ii), we have dimP (Φg

e) ≤ 1
2 . �

References

[AHLM04] K. Artheya, J. Hitchcock, J. Lutz, and E. Mayordomo. Effective strong dimension,
algorithmic information, and computational complexity. Proceedings of the Twenty-
First Symposium on Theoretical Aspects of Computer Science (Montpellier, France,
March 2527, 2004), pages 632–643, 2004.

[DG] R. Downey and N. Greenberg. Turing degrees of reals of positive packing dimension.
Information Processing Letters. To appear.

[dLMSS56] K. de Leeuw, E. Moore, C. Shannon, and N. Shapiro. Computability by probabilistic
machines. Annals of Mathematics Studies, 34:183–212, 1956.

[FHA+06] L. Fortnow, J. Hitchcock, P. Aduri, V. Vinochandran, and F. Wang. Extracting Kol-
mogorov complexity with applications to dimension zero-one laws. Proceedings 33rd
ICALP, LNCS 4051:335–345, 2006.

[Hau19] F. Hausdorff. Dimension und äßeres maß. Mathematische Annalen, 79:157179, 1919.
[Ish97] S. Ishmukhametov. Weak recursive degrees and a problem of Spector. Recursion theory

and complexity (Kazan, 1997), 2:81–87, 1997.
[Kum96] M. Kummer. Kolmogorov complexity and instance complexity of recursively enumer-

able sets. SIAM Journal of Computing, 25:1123–1143, 1996.
[Lut90] J. Lutz. Category and measure in complexity classes. SIAM Journal of Computing,

19:1100–1131, 1990.
[Lut00] J. Lutz. Dimension in complexity classes. Procceedings to the 15th Conference on

Computational Complexity, pages 158–169, 2000.
[Lut03] J. Lutz. The dimensions of individual strings and sequences. Information and Com-

putation, 187:49–79, 2003.
[May02] E. Mayordomo. A Kolmogorov complexity characterization of constructive hausdorff

dimension. Information Processing Letters, 84:1–3, 2002.
[Mil] J. Miller. Extracting information is hard. Advances in Mathematics. To appear.
[Rei04] J. Reimann. Computability and dimension. Unpublished notes, University of Heidel-

berg, 2004.
[Soa87] R. Soare. Recursively enumerable sets and degrees. Perspectives in Mathematical

Logic. Springer-Verlag, 1987.
[Sta93] L. Staiger. Kolmogorov complexity and Hausdorff dimension. Information and Com-

putation, 103:159–194, 1993.
[Ter98] S. Terwijn. Computability and measure. Ph. D Thesis, University of Amsterdam,

1998.
[TZ01] S. Terwijn and D. Zambella. Algorithmic randomness and lowness. Journal of Sym-

bolic Logic, 66:1199–1205, 2001.
[Zam90] D. Zambella. On sequences with simple initial segments. ILLC technical report, ML-

1990-05, University of Amsterdam, 1990.

School of Mathematics, Statistics and Computer Science, Victoria University of
Wellington, PO Box 600, Wellington, New Zealand

