MULTIPLE GENERICITY: A NEW TRANSFINITE HIERARCHY
OF GENERICITY NOTIONS

MICHAEL MCINERNEY AND KENG MENG NG

ABSTRACT. We introduce a transfinite hierarchy of genericity notions stronger
than 1-genericity and weaker than 2-genericity. There are many connections
with Downey and Greenberg’s hierarchy of totally a-c.a. degrees [3]. We give
several theorems concerning the strength required to compute multiply generic
degrees, and show that some of the levels in the hierarchy can be separated, and
that these separations can be witnessed by a Ag degree. Finally, we consider
downward density for these classes.

1. INTRODUCTION

The notions of measure and category on the real line give rise to different ways
in which we might think of a real number as being typical. In computability theory,
we are interested in studying these classical notions in the effective setting. With
respect to effective measure, the typical reals are the algorithmically random reals,
where a huge body of recent research is devoted to studying the different properties
of algorithmic randomness. Two books [23, 9] have recently appeared collecting
some of this work. In particular there have been various papers exploring the
interactions between classical Turing degrees and algorithmic randomness [, 2, 22,

, 7], and the different structural properties possessed by the Turing degrees of
random reals.

The concern of this paper is to follow up on the more neglected concept of typ-
icality: effective category. The reals with are typical with respect to category are
known as Cohen generic, or simply generic. Intuitively speaking, a (effectively)
generic real is one that is constructed step by step, where at each step we specify
more of a finite initial segment of the real by meeting the next requirement. The re-
quirements are usually described by a sequence of effective topological descriptions,
and since any sufficiently generic real (instead of the one explicitly constructed)
will also meet all the requirements, this class of constructions became known as the
effective analogue of Cohen’s construction.

The most commonly studied notions of genericity are the classes of n-generic sets,
for n > 1. Though originally formulated in terms of forcing n-quantifier arithmetic
sentences, we briefly recall the more common definition given by Jockusch in [15].
Let S be a set of finite binary strings, and A a subset of natural numbers, which
we think of as an infinite binary sequence. We say that A meets S if there is some
o < A such that 0 € S, and A avoids S if there is some o < S such that no
extension of o is in S. Then A is said to be n-generic if for every X0 set of strings
S, A either meets or avoids S.

Both authors are partially supported by MOE2015-T2-2-055.
1

2 MICHAEL MCINERNEY AND KENG MENG NG

These classes form a proper hierarchy: for all n > 1, the n-generic sets properly
contain the n + 1-generic sets. This was later refined by Kurtz [18] who introduced
the weakly n-generic sets. We say that a set of strings S is dense if every finite
binary string has an extension in S. Then a set is weakly m-generic if it meets
every dense XU set of string. Kurtz [158] showed that for all n > 1, the n-generic
sets properly contain the weakly n + 1-generic sets, which properly contain the
n + 1-generic sets. These proper containments even hold for Turing degrees, where
a Turing degree is (weakly) n-generic if it contains a (weakly) n-generic set.

Most of the interest in genericity occurs at the levels n = 1 and n = 2. Even at
these low levels, there is a large difference in the behaviour of 1-generic and 2-generic
sets. For example, the class of 1-generic sets has measure 1, whereas the class of
2-generic sets has measure 0. As another example, the 2-generic sets are downward
dense ! below 2-generic sets, whereas this fails in general for 1-generics. Intuitively,
typical behaviour seems to start with 2-genericity, but can sometimes fail at the
level of 1-genericity. Many such results for genericity, as well as randomness, are
given in [1], and the survey article [2].

Given this, it would seem interesting to develop notions of genericity which
are stronger than 1-genericity, but weaker than 2-genericity. Several such notions
already exist, though they have not received much attention. The most well-known
is pb-genericity, introduced by Downey, Jockusch, and Stob in [12]. Consider a
total function f : 2<% — 2<% for which there is a total computable function g :
2<% x w — 2<% and primitive recursive function p : w — w such that

(1) limg g(o,s) = f(0),

(2) g(o,s) = o, and

(3) Hsew:g(o,s+1) #g(o,s)}| <plo)
for all o € 2<% and s € w. We say that the set A is pb-generic if it meets the range
of all such functions f.

Suppose that we are given functions f, g, and p as above, and that we are trying
to construct a real A to meet the range of f. As usual, we construct A as the
limit of a computable sequence of approximations A, for s € w. Say that we have
decided by stage so that we would like o to be an initial segment of A. Then for A
to meet the range of f, at all stages s > sg, we would simply let A, extend g(o, s).
Although we do not know what g(o, s) may be (except that it must extend o), we
do know that after stage sg, we need to change our approximation to A at most
p(0) many times in order to meet the range of f. The crucial feature here is that p
is primitive recursive. We can think of the bound p(o) as being given “in advance”
— we do not need to perform an unbounded search in order to compute p(c), and so
we can, for instance, organise permission before the construction begins. Indeed, it
is shown in [12] that every array noncomputable degree computes a pb-generic set.

The first way in which we may generalise pb-genericity is by replacing the prim-
itive recursive function p with a total computable function h. This notion was
called c-genericity by Schaeffer [24], though we will refer to it as weak w-change
genericity. Here, the bound is no longer given in advance, but can be thought of as
given during the construction: the bound is only declared at the stage s at which
hs(a) . As we show in Theorem 4.16, there is an array noncomputable degree
which cannot compute a weakly w-change generic degree. In order for a degree to
compute a weakly w-change generic degree, it must be not w-c.a. dominated, which

Lsee Section 6 for definitions and more results along these lines

MULTIPLE GENERICITY: A NEW TRANSFINITE HIERARCHY OF GENERICITY NOTIONS3

can be thought of as a non-uniform version of array noncomputability. We give the
definition for this and other notions related to domination in Section 4.

Note that by properties (1) and (2) and the fact that f is total, f must have
dense range. Another way in which we may generalise pb-genericity is to consider
how the function f might be partial, so that its range is not necessarily a dense
set of strings. We must somehow still track the changes in the approximation for
those inputs where f is actually defined. We can do this by instead requiring the
functions f and g as above to be total, but allowing the bounding function h to
be partial computable. We still insist on properties (1) and (2), and that h(o)
bounds the number of changes in the approximation to f(c) for those strings o
with ¢ € domh. Then given such functions, we can consider the “range” of the
triple {f, g, h) to be the set of all strings f(o) where o € dom h. We say that a set
is w-change generic if it either meets or avoids the range (in this sense) of every
such triple.

There is no reason for us to restrict ourselves to a computably bounded number
of mind-changes. In [8], Downey and Greenberg extend the notion of an w-c.a. func-
tion, that is, a function which can be computably approximated with a computable
number of mind-changes, to a-c.a. functions, for ordinals o < €¢. Though there are
many details which are needed to properly define this concept, roughly speaking,
the approximation is equipped with a sequence of functions os : w — « such that
if the approximation for input n changes at stage s, then we have og4(n) < 0s—1(n).
This allows us to track the changes in the approximation. We make use of this idea
for the functions g which approximate the functions f above. This leads to a trans-
finite hierarchy of genericity notions. We will show that pb-genericity coincides
with the first notion in our hierarchy that is stronger than 1-genericity.

Downey and Greenberg [3] also introduce some domination properties in order to
generalise the definition of array computability. We show that there are many deep
and intricate connections between these domination properties and the hierarchy
of genericity notions. These greatly extend the fact that every degree bounds a pb-
generic if and only if it is array noncomputable. Our results rely on a fine analysis
of the forcing and permitting constructions which can be carried out below a degree
with some such domination property. We explore this in Sections 4 and 5. Together
with the results from [21], the sequel to the current article, we show that our results
are as tight as possible with respect to these notions, which gives a separation of
each of the genericity notions in our hierarchy.

2. BACKGROUND AND DEFINITIONS

We first cover the necessary material from [3] to work with a large collection of
ordinals a. We refer the reader to Chapter 2 of [8] for more details.
Recall that every ordinal @ can be uniquely expressed as the sum

wng +wng + - +wny

where n; < w are nonzero and o7 > a9 > --- > « are ordinals. This is the Cantor
normal form of o. Recall also that

w W we”
o = sup {w,w”,w” ,w* ...

is the least ordinal v such that w” = =, so for all & < g¢, every ordinal appearing
in the Cantor normal form of « is strictly smaller than «.

4 MICHAEL MCINERNEY AND KENG MENG NG

Let R = (R,<®) be a computable well-ordering of a computable set R, and
let |-|: R — otp(R) be the unique isomorphism between R and its order-type.
The pullback to R of the Cantor normal form function is the function nfz whose
domain is R and is defined by letting

nfr(2) = {(z1,n1), (22,12), .- ., (2, k)
where n; < w are nonzero, z; € R, z1 >R 20 >R -+ >R 2k, and
|z = wltlng + wl*2lng + - + wl**lng,,

Definition 2.1 ([8]). A computable well-ordering R is canonical if its associated
Cantor normal form function nf is also computable.

It is shown in [8] that for every ordinal o < ¢ there is a canonical computable
well-ordering of order-type «, and further that any two canonical computable well-
orderings of order-type « are computably isomorphic. We therefore identify each
ordinal o < €p with a canonical computable well-ordering of order-type «.

With all this in place, we are now able to give the main definitions of this paper.

Definition 2.2. Let a < €9, and let o0 denote the greatest element of the linear
ordering o + 1. An a-change test is a sequence (fs, 05ys<, of pairs of uniformly
computable functions fg : 2<% — 2<% and o, : 2<“ — « + 1 such that for all
oc€e2<% and s € w,

o fs(o) = 0,

e 0541(0) < 0s(0), and

o if fo11(0) # fs(0), then 0541(0) < 0s(0).
For a test {fs, 0sys<w, we let the range of the test be

range (fs, 0s)s<w = {lim fs(0) : limos(o) < o0}.
We will usually write range f for this set.

We use the term test in analogy with randomness tests. We may occasionally
refer to fs(o) as the arrow for o at stage s in the test (fs, 0s)s<w,- In a-change
tests that we construct, we may say that we update the arrow for o at stage s if

fslo) # fs-1(0).
Proposition 2.3. There is an effective list of all a-change tests.

Proof. We follow the proof of proposition 1.7 from [8]. There exists an effective
list (hg,msys<, of all pairs of partial computable functions where for all s € w,
hg : 2<% — 2<% and my : 2<% — @, and furthermore, that if hs(o)|, then hy(o) = o.
We define an effective list (fs, 05)s<, as follows. Let o € 2<%. We let fo(o) = o
and op(c) = o0. Now let s > 0. We let ¢5(0) be the greatest ¢ < s such that for all
r <t

e at stage s we see that h,.(c)| and m,(o)|,

e m,(0) < oo, and if r > 0, then m,.(¢) < my_1(0),

o if >0 and h,(0) # hy_1(0) then m,(o) < m,_1(0).

If there is no such ¢, then we leave t5(o) undefined. If ¢5(o) is defined, then we
let fs(0) = hy (0)(0) and os(0) = my (5)(0). If ts(0) is not defined, then we let
fs(o) = 0 and o4(0) = 0.

O

MULTIPLE GENERICITY: A NEW TRANSFINITE HIERARCHY OF GENERICITY NOTIONS5

Definition 2.4. Let a < g¢g and let a be a Turing degree. We say that a is a-change
generic if there is a set A € a which meets or avoids the range of all a-change tests.

For e = w, this notion is equivalent to the definition of w-change genericity given
in the introduction. We now work towards defining the weak version of this notion.

Definition 2.5. Let (fs,05)s<, be an a-change test. We say that {(fs, 0s)s<w is
total if for all o € 2<%, lim, 0, (0) < 0.

Proposition 2.6. Let o < 9. Then a set A meets the range of every total a-change
test if and only if it meets the range of every a-change test with dense range.

Proof. For the backwards direction, suppose A meets the range of every a-change
test with dense range, and let (fs, 05 be a total a-change test. Then for all o € 2<%,
limg fs(o) is in the range of the test, and lims fs(o) %= o. So the range is dense.
For the forwards direction, suppose A meets the range of every total a-change
test, and let (fs, 05) be an a-change test with dense range. We define a test {gs, ps»
as follows. Let go(c) = fo(o) and po(o) = og(o) for all o. Given g4(c) and
ps(0), if ps(o0) < oo and at some previous stage t > 0 we set gi+1(0) = frr1(7)
for some 7, then we let gs+1(0) = fs41(7) and ps11(0) = 0s41(7). Otherwise, if
there is some 7 = o such that 0s11(7) < o0, then we choose the least such 7, and
let gs41(0) = fs+1(7) and psy1(0) = 0s541(7). Then because {fs,0s) has dense
range, {gs, psy will be a total test. Therefore A meets the range of {gs, psy, and by
construction, A meets the range of {fs, 0,). O

Definition 2.7. We say that a is weakly a-change generic if there is a set A € a
which meets the range of all total a-change tests.

We would now like to see whether we can give a definition of pb-genericity along
these lines, and if possible, extend it to all ordinals o < €p. We follow the approach
taken by Downey and Greenberg in their definition of the uniformly totally a-c.a.
degrees (see Section 3.3 of [3]).

Definition 2.8. Let h: 2<“ — «a be a total computable function. We say that the
a-change test (fs, 0s)s<w 18 h-bounded if for all o € 2<% and s € w, if 04(0) < o0,
then o,(0) < h(o).

Definition 2.9. Let <; denote the usual length-lexicographic ordering on 2<%.
We say that h : 2<% — « is an a-order function if h is total and computable with
range cofinal in «, and such that if o <, 7, then h(o) < h(7).

Proposition 2.10. Let a < €g and let hy, ho : 2<% — « be a-order functions. Then
a Turing degree contains a set which meets all total hy-bounded a-change tests if
and only if it contains a set which meets all total ha-bounded a-change tests.

Proof. Tt suffices to show that given some set A which meets all total hi-bounded
a-change tests, there is some B <t A which meets all total ho-bounded a-change
tests. We construct a Turing functional " such that I'(A4) is the desired set B.

We in fact construct a truth table functional T. We define the function hy' :
w — w as follows. For any n € w, let h; '(n) be the least m € w such that

min{ hy (o) : |o| = m} > max{ ha(7) : |7| =n}.

Then hy Lis total and computable because h; and hy are a-order functions. Because
hs has range cofinal in «, hy ! will have range cofinal in w, and so we may assume
that hy ' is strictly increasing. We may also assume that hy(\) = ha()).

6 MICHAEL MCINERNEY AND KENG MENG NG

We define T' recursively as follows. Let I'(«r) = A for all strings « of length
hy(0), where X is the empty string. Now assume that we have defined T'(a) for all
strings a of length hy'(n). Then for any string o/ of length hy'(n + 1), let a be
the initial segment of o/ of length hy*(n). If o’ %= a0, then we let T'(a/) = I'(a) "0,
and if o’ = "1, then we let I'(a/) = T'(«) " 1. Tt is immediate that T' is consistent
and onto 2<¥. We extend the domain of ' consistently so that its domain is 2<¢.

We now show that I'(B) meets all total ho-bounded a-change tests. Suppose
{(fs,0s)s<w is such a test. We define a total hi-bounded a-change test {gs, psys<w
such that if A meets range g, then I'(A) meets range f.

For any o, we set g;(0) = 0 and ps(0) = o0 until we see a stage t where 0,(I'(0)) <
00. We then let g: (o) be some string extending o such that I'(g:(c)) = f¢(T'(0)) and
pt(o) = 0:(T'(0)). If at some later stage ¢’ we see that fi (I'(c)) # fr—1(T(0)), then
we set gy (o) to be some string extending o such that I'(gy (o)) = fv(['(0)) and
pi(0) = op(T(0)). By the definition of hy' and T, {gs, psys<w is an hy-bounded
test, and it is total because ([, 0ss<. is total.

([

Given the previous proposition, we are able to make the following definition.

Definition 2.11. We say that a is uniformly a-change generic if for all (some)
a-order functions h, there is a set A € a such that A meets the range of all total
h-bounded a-change tests.

We show that the notions of uniform w-change genericity and pb-genericity are
equivalent up to Turing degree in Theorem 3.2.
It is worthwhile to note the following simple proposition.

Proposition 2.12. Let « < &g, let v € 2<%, and let {fs,0s)s<w be an a-change
test. Then if there is no 7 %= v and no s € w such that fs(7) = v, then any set
A > v avoids range f.

Proof. We have lim; (o) = o for all o such that lim, 05(0) < co. Then by assump-
tion, the only strings in range f which extend v are those of the form limg fs(p)
for some p < v. As there are only finitely many such strings, any set A such that
A > v avoids range f. O

3. A HIERARCHY OF GENERICITY NOTIONS

It is clear that for any o < g9 and any Turing degree a that a-change generic
implies weakly a-change generic implies uniformly a-change generic. We show that
there is a transfinite hierarchy of these genericity notions, as in [3].

weakly 2-generic

U

J
w?-change generic
U

weakly w?-change generic

U

uniformly w?-change generic

MULTIPLE GENERICITY: A NEW TRANSFINITE HIERARCHY OF GENERICITY NOTIONS7

U

w-change generic

U

weakly w-change generic

U

uniformly w-change generic = pb-generic

U

1-change generic = 1-generic

U

weakly 1-generic

We will show that the hierarchy collapses to the levels above, that the series
of implications holds, and furthermore, that each implication is strict and can be
witnessed by a A9 Turing degree. More precisely, we have the following theorem.

Theorem 3.1. Let a < gp.

(i) If a is not a power of w, and f is such that o € (W?, wWPTY), then the classes
of degrees which are w®-change generic, uniformly a-change generic, weakly
a-change generic, and a-change generic, are all equal.

(ii) If v is a power of w, then if a = WP, the class of degrees which are uniformly
wP-change generic is a proper subclass of the class of degrees which are
weakly wP-change generic, which is a proper subclass of the degrees which
are wP-change generic, which is a proper subclass of the degrees which are
uniformly wPt1-change generic. Moreover, these proper inclusions can be
witnessed by a AY Turing degree.

We will refer generally to the notions of uniform a-change genericity, weak a-
change genericity, and a-change genericity as notions of multiple genericity.

We first show that our definitions align with the definitions of 1-genericity and
pb-genericity.

Theorem 3.2. A Turing degree is 1-change generic if and only if it contains a
1-generic set, and a Turing degree is uniformly w-change generic if and only if it
contains a pb-generic set.

Proof. Tt is easy to see that 1-change tests are in correspondence with c.e. sets of
strings, and so the first statement holds.

Now suppose that the degree a is uniformly w-change generic. Let h : w — w be
some computable order function which dominates all primitive recursive functions,
and let A € a be such that A meets the range of all h-bounded w-change tests. We
show that A is pb-generic. Let the functions f, g, and p be as in the discussion of
pb-genericity in the introduction. Then because h dominates p, we can produce an
h-bounded w-change test whose range is equal to the range of f. Then as A meets
the range of this w-change test, it meets the range of f.

For the opposite direction, suppose that the set A is pb-generic. The function p :
2<% — w with p(o) = |o| is a primitive recursive w-order function. Let (fs, 0s)s<w
be a p-bounded w-change test. We can present the range of this test as the range
of a function that can be approximated with mind-change function bounded by p.

8 MICHAEL MCINERNEY AND KENG MENG NG

Then as A is pb-generic, it meets the range of this function, and so meets the range
of this test. ([

The following lemma will be used used to prove Part (i) of Theorem 3.1. It is a
straightforward adaptation of Lemma 2.2 from [38] to a-change tests.

Lemma 3.3. Suppose v < g9. Then for all m € w, if a set meets or avoids all
v-change tests, it meets or avoids all ym-change tests.

Proof. Suppose A meets or avoids all y-change tests and that (f, 0s) is a ym-change
test. We break the test (f, 05y up into m many ~-tests.

For every o and s there is some unique k < m such that os(c) € [y-k,v-(k+1));
we denote this k by ks(0). We have os(c) = v - ks(0) + Bs(0) for some Bs(0) < 7.
For each k < m, we define a y-change test (g s, Dk,s)s<w- We let gp s(0) = o and
Pk,s(0) = 00 until we see a stage ¢t where k(o) = k. Then we define gy (o) = fi(0)
and py ¢(0) = Bi(o). If at some later stage u we see f,,(0) # fu—1(0) and k, (o) = k,
then we define gy (o) = fu(o) and pg (o) = Bu(0).

Let k* be least such that for some o and s, we have pyx (0) < 0. We know
that A meets or avoids {gp# s, Pr* s). By the choice of k*, A must meet or avoid

(fs,0s)- O

It is immediate that the previous proposition holds with total tests and/or tests
which are h-bounded for some order function h. Part (i) of Theorem 3.1 now
follows: there is some m € w such that o < wPm. Then if a set A is wﬁ—change
generic, it is w?m-change generic, and so a-change generic. We noted before that
each a-change generic degree is weakly a-change generic and uniformly a-change
generic.

Proposition 3.4. Let a < gg. If a Turing degree is uniformly (o + 1)-change
generic, then it is a-change generic.

Proof. Suppose that a is uniformly (« + 1)-change generic and let h: 2<% — o + 1
be the (a+ 1)-order function with h(c) = « for all o € 2<¥. Let A € a be such that
A meets the range of all total h-bounded (a+ 1)-change tests. Let (fs, 05)s<, be an
a-change test. Then it is easy to check that {fs, 0s)s<w 18 in fact a total h-bounded
(o + 1)-change test. Therefore A witnesses that a is a-change generic.]

With the previous proposition, we now see that the (non-proper) inclusions in
part (ii) of Theorem 3.1 hold. The fact that the inclusions are proper and can be
witnessed by A9 Turing degrees will be shown in Theorem 4.16, Theorem 5.4, and
in the main theorem of [21].

Finally, we show that the topmost implication in the diagram above holds.

Proposition 3.5. Let X be weakly 2-generic. Then for any o < €9, X is a-change
generic.

Proof. Suppose {fs,04)s<,, is an a-change test. We define a dense 9 set S as
follows. For any string o, we ask ' whether there exists an s and a 7 %= ¢ such
that os(7) < c0. There are two cases.

Case 1: the answer is no. Then we enumerate every string 7 = ¢ into S.

Case 2: the answer is yes. Then let s be the least such, and let 7 be the least
such for this s. Ask ' whether there is a s;1 > s such that o4, (1) < os(7). If
the answer is no, then we enumerate fs(7) into S. If the answer is yes, we ask ¢’

MULTIPLE GENERICITY: A NEW TRANSFINITE HIERARCHY OF GENERICITY NOTIONS9

whether there is a so > s; such that o0,,(7) < 04, (7), and act as we did before.
We eventually come to some stage where we enumerate some string into S which
is equal to lim; f;(7) for some 7.

It is easy to see that S is dense. As X is weakly 2-generic, X meets S. Suppose
X extends the string x € S. If x was enumerated into S via Case 1, then there is no
extension of x in range f, and so X avoids range (fs, 0s)s<w- If X was enumerated
into S via Case 2, then as noted above, x is equal to lim; f;(7) for some 7, and so
X meets range {fs, 05)s<w-

O

4. DOMINATION PROPERTIES AND MULTIPLE GENERICITY

In this section we begin to investigate the strength required to compute multiply
generic degrees. Our first result is the following simple but important theorem. As
no weakly 2-generic set can be AY, it shows that there is a degree separation of
each notion of multiple genericity from weak 2-genericity.

Theorem 4.1. For any a < g, &' computes an a-change generic degree.

Proof. Let ({fi s,0is)s<wyi<w be an effective list of all a-change tests. We build a
set A by finite extension, computably in &f'.

Construction

Stage 0: Let Ay = A, the empty string.

Stage s, s > 1: Given A,_;, we ask ' whether there is some 7 = A,_; and
t € w such that 0s_1,4(7) < c0. There are two cases

Case 1: the answer is no. Then we let A; = A,_1 and proceed to the next stage.

Case 2: the answer is yes. Let 7 be the least such, and let ¢ be the least such
for this 7. We ask ' whether there is a t; > ¢ such that 05_1¢,(7) < 05—14(7). If
the answer is no, then we let A; = f;_1.(7) and proceed to the next stage. If the
answer is yes, we ask ¢’ whether there is a to > ¢ such that 05_14,(7) < 0s5-1,4, (7),
and act as we did before.

End of construction

If we act in Case 2 at stage s, then we will eventually define A, = fo_14(7)
for some ¢’ such that lim, fs_1,(7) = fs—1,¢(7), and proceed to the next stage.
This is because the number of ¢t € w such that fo_1 +(7) # fs—1,.-1(7) is finite, as
the sequence (0s_1.+(7))t<w is non-increasing in the ordinal «, and if fs_1.(7) #
fs—1,6-1(7), then 0,1 ¢(T) < 05-1,t—1(7).

Let A = (J,c, As- It is clear that A either meets or avoids the range of each
a-change test, and so the degree of A is a-change generic.

O

Using the approach in the proof of the previous theorem, it is now straightforward
to modify the usual proof of the Friedberg jump inversion theorem (for example,
the one given in Section 2.16 of [9]) to show that jump inversion holds for multiply
generic degrees.

Theorem 4.2. For any o < gq, if C =1 &', then there is an a-change generic
degree a such that a’ =1 C.

For finer results than Theorem 4.1, we look at the domination properties intro-
duced in [3]. We give the required definitions, and again refer the reader to [8] for
details.

10 MICHAEL MCINERNEY AND KENG MENG NG

Let R = (R,<®) be a computable well-ordering of a computable set R. An R-
computable approzimation of a function f is a computable approximation {fs)s<y
of f, equipped with a uniformly computable sequence {os)s<,, of functions from w
to R such that for all z and s:

i Os+1(x) <R 03(1'), and
o if fsi1(z) # fs(x), then osy1(x) < 0s(x)

Definition 4.3 ([8]). A function f : w — w is R-computably approximable (or
R-c.a.) if it has an R-computable approximation.

Definition 4.4 ([8]). Let o < g9. A function f is a-c.a. if it is R-c.a. for some
(all) canonical computable well-ordering R of order-type «.

We will have occasional use for the following definition as well.

Definition 4.5 ([8]). Let R be a computable well-ordering. An (R+1)-computable
approximation {fs, 05y is tidy if:

e for all n, fo(n) =0, and
e for all n and s, if 04,(n + 1) € R then os(n) € R.

Recall that if C is a class of functions from w to w, then a Turing degree a is
C-dominated if every function g € a (or equivalently g <t a) is dominated by some
function f € C. We say that a Turing degree a is uniformly C-dominated if there is
some function f € C such that every function g € a is dominated by f.

Definition 4.6 ([3]). A Turing degree is a-c.a. dominated if it is C-dominated,
and uniformly a-c.a. dominated if it is uniformly C-dominated, where C is the class
of all a-c.a. functions.

Note that a 0-dominated degree is also called hyperimmune-free.

These notions form a hierarchy as follows. It is easy to see that if a < (3, then
every a-c.a. function is f-c.a., and that for any class C, if a degree is uniformly
C-dominated, then it is C-dominated. Again, it is only possible for these notions to
differ at powers of w. As our results refer to degrees which are not dominated in
some sense, we present the hierarchy as follows.

U
not w?-c.a. dominated
U
not uniformly w?-c.a. dominated
U
not w-c.a. dominated
U
not uniformly w-c.a. dominated
U

not 0-dominated

MULTIPLE GENERICITY: A NEW TRANSFINITE HIERARCHY OF GENERICITY NOTIONE§1

Downey and Greenberg show that this hierarchy is proper, and in fact the sep-
aration of each level can be witnessed by a c.e. degree (see Section 3.5 of [8]).

There seems to be a close connection between notions of genericity which involve
meeting dense sets of strings, and domination properties. For a Turing degree b,
we say that a Turing degree a is b-dominated if it is C-dominated, for C the class
of all functions computable in b. The first result in this direction is the following.

Theorem 4.7 ([18, 19]). For allm > 1, every weakly (n + 1)-generic degree is not
0™ _dominated.

In fact, Kurtz showed ([18], see also Section 2.24 of [9]) that a degree is weakly
1-generic if and only if it is not 0-dominated.

The notion of array noncomputability was originally defined only for c.e. degrees
in [11], but was extended in [12] to the general degrees using a domination property.
In our terminology, a degree is array noncomputable if and only if it is not uniformly
w-c.a. dominated.

Theorem 4.8 ([12]). Every array noncomputable degree computes a pb-generic set,
and every pb-generic set is of array noncomputable degree.

Stated another way, the previous theorem says that the upward closure (in the
Turing degrees) of the pb-generic sets is exactly the set of array noncomputable
degrees. We give analogous results for the uniformly a-change generic and weakly
a-change generic degrees.

Proposition 4.9. Suppose the Turing degree a computes a weakly a-change generic
degree. Then a is not a-c.a. dominated.

Proof. Suppose that the set A meets the range of all total a-change tests. We show
that the degree of A is not a-c.a. dominated. Then because the property of being
not a-c.a. dominated is upwards closed in the Turing degrees, the proposition will
hold.

Let {{fi,s)0i,s)s<wyi<w b€ an effective list of all tidy (o + 1)-computable approx-
imations whose limits f; = lim, f; s consist of all @-c.a. functions. Let ps be the
principal function of A. We show that if ¢ is such that f; is a total function, then
there is some n € w such that pa(n) > fi(n).

For all i € w, we define the a-change test {g; s, Pi s)s<w as follows. For all s € w
and n € w, if 0; s(m) < o for all m < n, then we define g; (o) = o~ 0%+(™) and
pi,s(0) = 0;,5(n) for all strings o of length n, and otherwise we define ¢; s(0) = o
and p; s(0) = oo for all strings o of length n.

Let ¢ be such that f; is a total function. Then using the fact that {f; s, 0;s)
is a tidy (« + 1)-computable approximation, it is straightforward to verify that
(Gi,s, Pi,s)s<w 15 & total a-change test. Let o be such that A > lim, g; s(c). If o has
length n, then we have lim; g; s(¢) = o~ 0/ and so pa(n) > fi(n). O

Proposition 4.10. Suppose the Turing degree a computes a uniformly a-change
generic degree. Then a is not uniformly a-c.a. dominated.

Proof. Let h : w — a be some computable a-order function, and let ({f; s, 0i s) s<w Yi<w
be an effective list of all tidy (h + 1)-computable approximations whose limits
fi = limg f; s consist of all h-c.a. functions. The rest of the proof follows the proof
of the previous proposition. O

12 MICHAEL MCINERNEY AND KENG MENG NG

To show that every degree with a certain domination property is able to compute
a multiply generic degree of a certain kind, we use forcing. These constructions can
be seen as refinements of the construction of Jockusch and Posner [16] who showed
that every degree which is not generalised lows computes a 1-generic set.

Theorem 4.11. FEvery not a-c.a. dominated degree computes a weakly a-change
generic degree.

Proof. Let {{fi.s, 0i,s)s<wyi<w be an effective list of all a-change tests. For t € w,
let
range fi ¢ = {fi1(0) : 0;1(0) < 0}.

Let a be a not a-c.a. dominated degree, and let g <t a be a function which is
not dominated by any a-c.a. function. We may assume that g is strictly increasing.
We build a set G by finite extensions o9 < 01 < ---. We say that e requires
attention at stage s if 051 does not meet range f. (5, but there is some 7 such
that Oe,g(s)(T) < o0 and fe,g(s) (T) > O0s—1.

Construction

Stage 0: let oy be the empty string, and proceed to the next stage.

Stage s, s > 1:

Case 1: there is some e < s which requires attention at stage s. We choose the
least such e, and the least such 7 for this e. We let o4 be the initial segment of
fe.g(s)(T) of length s. We say that we act for e at stage s. We proceed to the next
stage.

Case 2: otherwise. We let 05 = 051 "0 and proceed to the next stage.

End of construction

The construction is carried out computably in g, and so G <r a.
Lemma 4.12. G meets the range of every total a-change test.

Proof. Suppose that {fe s, 0c s)s<w 18 a total a-change test. Assume by induction
that we do not act for any d < e after stage s*.

We define a total function p : 2<“ — w as follows. Let p(o) be the least ¢ such
that for all s > t, 0. s(0) = 0, (0). We claim that p is a-computably approximable.
Let t, be the least stage ¢ such that o, ,(c) < 0. Let

(o) = { to if s <t,
PATVZ () (00,4(0) = 005(0)) i s > 1,
and let) it
0ct,(0) ifts<t,
us(0) = { 0;75(0) if s > t,.
Then {(ps, ts s« is an a-computable approximation for p.

Let p'(n) = max{p(c) : 0 € 2" }. Then p’ is a-computably approximable too.
For p/.(0) = max{ps(c) : 0 € 2"} and w)(0) = ®{us(o) : o € 2"}, we have that
(P, 1l ys<w 18 an a-computable approximation for p’.

Therefore, the function g escapes domination by p’. Let t > s* be least such
that g(t) > p/(t). Note that for all s € w, |os| = s. At stage t, we will act for e, and
we will continue to act for e at all subsequent stages until some stage t’ > ¢t where
op meets range fe.

O

MULTIPLE GENERICITY: A NEW TRANSFINITE HIERARCHY OF GENERICITY NOTIONE$3

d

Theorem 4.13. FEvery Turing degree computes a weakly a-change generic if and
only if it is not a-c.a. dominated.

Proof. By Proposition 4.9 and Theorem 4.11. ([

Theorem 4.14. Every not uniformly a-c.a. dominated degree computes a uni-
formly a-change generic degree.

Proof. Let h : 2<% — a be a computable a-order function, and let {{f; s, 0; s s<w Yi<w
be an effective list of all total h-bounded a-change tests.

We define a total function r : w x 2<% — w as follows. Let r(e, o) be the least ¢
such that for all s > ¢, 0c s(0) = 0¢,(0). Then r is h-computably approximable and
so certainly a-computably approximable. Let r'(n) = max{r(e,0) : e < n,|o| <
n}. Then ' is a-computably approximable too.

Let a be a not uniformly a-c.a. dominated degree and let g <t a be a function
which escapes domination by 7’. Then as before, we run the construction from the
previous theorem to construct a set G < a. The proof that G meets the range of

every total h-bounded a-change test is straightforward.
O

Theorem 4.15. Every Turing degree computes a uniformly a-change generic if
and only if it is not uniformly a-c.a. dominated.

Proof. By Proposition 4.10 and Theorem 4.14. O

We are now able to give the first of our theorems which separate levels in the
hierarchy of multiple genericity notions.

Theorem 4.16. Let a < g9 be a power of w. Then there is a AY Turing degree
which is uniformly a-change generic but not weakly a-change generic.

Proof. By Theorem 3.5(2) of [8], there is a c.e. degree a which is totally a-c.a.
but not uniformly totally a-c.a., and by Theorem 5.2 and Theorem 5.4 of [8], a is
a-c.a. dominated but not uniformly a-c.a. dominated. Then by Theorem 4.14, a
computes a uniformly a-change generic degree b. As a is a-c.a. dominated and
b <r a, b is a-c.a. dominated. Then by Proposition 4.9, b cannot be weakly
a-change generic. O

5. C.E. DEGREES COMPUTING MULTIPLY GENERICS

In terms of domination, the best result for computing 1-generics is that every
array noncomputable degree computes a 1-generic set. However, every noncom-
putable c.e. degree computes a 1-generic set. Therefore, the assumption that the
degree is c.e. provides extra strength. A similar situation occurs for the notions
of multiple genericity. If we assume that the degree is c.e., then we can improve
Theorem 4.11 to compute an a-change generic degree.

Theorem 5.1. Every not a-c.a. dominated c.e. degree computes an a-change
generic degree.

Proof. Let a be a not w-c.a. dominated c.e. degree. Because a is a c.e. degree, by
Theorem 5.2 of [8], a is not totally a-c.a. Recall that this means that there is some

14 MICHAEL MCINERNEY AND KENG MENG NG

function g <r a which is not a-c.a. Let A € a be a c.e. set and let I' be a Turing
functional such that I'(A) = g.

We first fix some technicalities. Suppose {I's)s<, is a computable enumeration
of T and {(As)s<, is a computable enumeration of A. We assume that if T's5(A4s,n)],
then T's(As,m)| for all m < n. From the computable enumerations of I' and A,
we can produce a AJ-approximation to g as follows. For all s,n € w, if [';(A4,n)|,
then we set gs(n) = T's(A4s,n), and otherwise we set gs(n) = 0. If Ts(As,n)|, then
as usual, we let y5(n) be the length of the least @ < Ay such that I's(c,n)|. If
['s(As,n)T, then we let v5(n) = v5(m) for m < n greatest such that I's(As, m)|, or
vs(n) = 0 if there is no such m.

Let (fe)e<w = {{fe,s10e,5)s<wye<w be an effective list of all a-change tests. We
build a Turing functional A and meet for every e € w the requirement

R, : A(A) either meets or avoids range fe.

We begin by considering the strategy to satisfy the requirement R, in isolation,
and in the simplified case where for all 0 € 2<“ and s € w, if 0. s(0) < 0, then
0c,s(0) = 0. That is, range f. is simply a c.e. set of strings. At every stage of
the construction, we will have a finite sequence of natural numbers which we call
lengths. If 1; is the i*" length in our sequence at stage s, then the i*" substrategy
for R, will begin by looking for a string 7 with 7 > A;_1(As) | I; and such that
0e,s(T) < 0. If we find such a 7 (we say that [; is realised), then we would like to
define A such that A(A) > f. (7), but may require changes in the approximation
to A in order to allow us to consistently make such a definition for A. We know
that A computes the function g which is not a-c.a. function, and so we look for
changes in A which are used to compute the various approximations g:(n) to g(n).

More precisely, whenever a new length is defined, we assign to it a permitting
number; in this instance we assign [; the permitting number ¢. We will then grant
permission for [; at stage s if we see that gs(i) # gs—1(¢), and hence A [vs—1(i) #
As—1 | vs—1(f). If permission is granted, then since (As)s<, is a computable
enumeration, for all ¢t < s and all s’ > s, we have that Ay [y5—1(¢) # A¢ | vs—1(4);
that is, the permission can never be retracted. Therefore, we are able to consistently
define A (Ag [¥s—1(?)) = fe,s(7), and R, will be permanently satisfied. As we may
never receive permission on any of the lengths already in our sequence, we choose a
fresh large number to be a new length, and assign it a permitting number. If there
are infinitely many realised lengths, none of which receive permission, then we derive
a contradiction to g being not a-c.a. as follows. Suppose [; is realised at stage s;. As
we do not receive permission for [; after stage s;, we know that the approximation
to ¢(i) cannot change past this stage. Thus we can computably bound the number
of times the approximation to g(i) can change, which is a contradiction. In fact, in
this simplified case, we have that A [s, (i) = As, | s, (¢) for all ¢, which contradicts
A being noncomputable.

We now consider the general case, where we no longer necessarily have that
0c,s(0) < oo implies o, s(0) = 0. This will mean that a single length may require
multiple permissions, as we now discuss. We begin as above, with the length [
with permitting number 0. Suppose at stage s, lp is realized when we see that
there is 7 > A;_1(As) | lp with 0. 5(7) < 0. We associate the string 7 with the
length [y by letting 79 = 7. As above, while we wait to receive permission for
lp, we will choose a new length [; with permitting number 1. If we were to ever
receive permission for [y at some later stage t, then we would define A; such that

MULTIPLE GENERICITY: A NEW TRANSFINITE HIERARCHY OF GENERICITY NOTIONS5

Ay(As) > fei(70). In the simplified case from before, this action would have been
enough to permanently satisfy R.. Here, in the general case, at some later stage u
we may have that f. (7o) # fe,t(70), in which case R, would no longer appear to be
satisfied at stage u. In order to consistently define A so that A(A4) > fe u(70), we
may require another permission for [y. If there are infinitely many realised lengths,
none of which receive as many permissions as they require, then we show that we
can build an a-computable approximation for g, which is a contradiction.

Suppose that we do see the stage u as in the previous paragraph. We must decide
how to proceed. We request another permission for [y, and since [still has permit-
ting number 0, [y will receive permission if we see a change in the approximation to
g(0) at some later stage. While waiting for [y to receive permission, we must define
a new length, and assign it a permitting number. The first candidate we might
consider for the new length is the old length /1, which was defined earlier at stage
s. We would like to be able to argue that if the new length is never realised, then
A(A) avoids range f.. However, we may have |f. ((70)| > l1, so if we use {1 for the
new length, we cannot make this argument. Therefore, we choose to clear I from
the sequence of lengths when [y receives permission, and at stage u we will define
the new length to be a fresh large number. We write this now indexed by the stage
number as [,,.

Now we must assign [,, a permitting number. Again, the first candidate for the
permitting number of [; ,, is the permitting number of the original {;, namely 1.
Recall that in order to show that we do eventually receive enough permissions for
some length, we must define an a-computable approximation, call it {hs, gsYs<w,
for the function g. The values of ¢s(n) will depend on the values of o, s(7;), where
7; is the string found at the stage when [; is realised. In particular, if the original
length [; is realised at a stage t' before we receive the first permission for Iy, then
if 7 is the string found at ', we will define gy (1) = 0c,¢(70) @ 0c,r(71). However,
if 11, is realised at some stage v > u when we find the string 7y, we may not
be able to redefine ¢, (1) to incorporate the value o ,(71,,), because the sequence
{gs(n))s<, must be non-increasing. We therefore must assign /3 ,, the permitting
number 2.

There is one last complication. At stage v, we have the lengths Iy and Iy ,,
both waiting for permission, with permitting numbers 0 and 2, respectively. What
should we do if we see at some later stage w that g, (1) # gw—1(1)? We would like
to use changes in the approximations to the values of g(n), and so changes in A, as
much as possible. So it would be wasteful to not allow [y to receive permission when
we see such a change in A. If we think in terms of the approximation (hs, ¢s)s<w,
we must have limg hs(n) = g(n) for all n € w. Our solution is to simply allow Iy
to receive permission when we see a change in the approximation to either g(0)
or g(1) after stage t. In effect, the permitting number has become a permitting
interval. We ensure that if the natural number n is in the permitting interval of
some length at some stage, then at all later stages, it is in the permitting interval of
some (possibly different) length. Then the approximation {hg, ¢sys<., Will correctly
approximate g. We now turn to the formal details for the construction.

At every stage s € w and for every requirement R., we may define the natural
number [; s for some i € w. If [, ; 5 is defined, then we say that [; s is a length for
R, at stage s. If [, ; ; is defined, then we will also have [, ; ; defined for all j <. If
lei,s is defined, then we may also define a string 7. ; ;. If we say at stage s that we

16 MICHAEL MCINERNEY AND KENG MENG NG

clear a length l.; s_1, then we let l.; s and 7. ;s be undefined. The requirement
R, is initialised at stage s by clearing all lengths for R..

To every length l. ;s we associate a permitting interval Is(le;s). This is an
interval of natural numbers; its left end is fixed from when I, ; ; is first defined, but
its right end may grow with time (but only finitely often). We say that I ; s—1 is
permitted at stage s if l.; s—1 is waiting for permission at stage s, and for some
n € Is_1(leis—1) we have gs(n) # gs—1(n).

We use the following priority ordering among the R-requirements:

R0<R1<R2<-~-.
We say that R, requires attention at stage s if either

(1) le,0,s—1 is undefined,
(2) there is some length [, ; s—1 which is permitted at stage s,
(3) (a) we acted in Case 2 for R, for some I, ;; at some previous stage ¢,

(b) le;i,sfl = le,i,t and Teyi,s—1 = Te,iyts but

(C) fe,s(Te,i,s—l) #* fe,t(Te,i,s—l)v or

(4) for some ¢ such that I, ; s_1 is not realised at the beginning of stage s, there

is some 7 such that 7 = Ag_1(As) [leis—1 and oe (1) < 0.

We note that the i as in Case 3 and Case 4 must be greatest such that [, ; s_; is
defined.

Construction

Stage 0: for every n € w, we let Ag(Ag [Y0(n)) = 0™. We proceed to the next
stage.

Stage s, s > 1: we follow the instructions in Step 1 and Step 2, and then proceed
to the next stage.

Step 1
We choose the least e such that R, requires attention at stage s, act according

to the cases below, initialise all requirements of weaker priority than R., and then
proceed to Step 2.

Case 1: R, requires attention via (1) at stage s. We define l. o s to be a fresh
large number and let I5(lc0s) = {0}.

Case 2: R, requires attention via (2) at stage s. We choose the least i as in the
definition of requires attention. Let n be the greatest element of any permitting
interval for any length for R, at the beginning of stage s. We set Ag(Ag | 75(n)) =
Jes(Teis—1). Welet le;s = lejs—1, and set Is(leis) = [minls_1(leis),n]. We
clear all lengths l.;.—1 for all j > i. We do not say that l.; is waiting for
permission at stage s + 1. We say that we act in Case 2 for R, via [, ; s at stage s.

Case 3: R, requires attention via (3) at stage s. Let ¢ be as in the definition
of requires attention. For all j < 4, we let lc ;s = lcjs—1 and let Is(le ;) =
Is—1(le j,s—1). We say that [; s is waiting for permission at stage s + 1. We define
le,i+1,s to be some fresh large number, and let I (lei+1,s) = {n}, where n is the
least natural number which is not in any Is(l. ; s) for j <. We say that we act in
Case 3 for R, for l.; ¢ at stage s.

Case 4: R, requires attention via (4) at stage s. Let ¢ be as in the definition
of requires attention. We choose the least such 7 as in the definition of requires
attention, and define 7.;, = 7. For all j < 4, we let l. ;s = lcjs—1 and let

MULTIPLE GENERICITY: A NEW TRANSFINITE HIERARCHY OF GENERICITY NOTION§7

Is(lejs) = Is—1(lejs—1). We say that l.; s has been realised at stage s. We say
that l.; s is waiting for permission at stage s + 1. We define [, ;41 s to be some
fresh large number, and let I (I ;41.5) = {n}, where n is the least natural number
which is not in any I(l. ;) for j < i. We say that we act in Case 4 for R, for I, ;
at stage s.

Step 2

If we did not act in Case 2 in Step 1, then for every n € w, if As [vs(n) ¢
dom A;_; and S is such that Ag_1(As_1 [vs—1(n)) = B, we set A (As | vs(n)) = 6.

If we did act in Case 2 in Step 1, then for n as in Case 2 and all m > 1, we set
AS(AS f ’Ys(n + m)) = fe,s(Te,i,s—l) “om.

End of construction

By the consistency of the functional T, if gs_1(n) # gs(n), then we must have
As [vs—1(n) # As_1 | 7s—1(n). Using this fact, a straightforward induction shows
that the functional A is consistent.

Lemma 5.2. FEach requirement is met.

Proof. Assume by induction that R, is initialised for the last time at stage s*.
Suppose for contradiction that we act for R, at infinitely many stages. We build a
tidy (a + 1)-computable approximation (hs, ¢sys<w for g. We will in addition show
that (hs, ¢sys<w 18 eventually a-computable. That is, for all n € w, there is some
s € w such that gs(n) < co. By Lemma 1.6 of [3], this shows that g is a-c.a.

For all n € w and all s < s*, we set hg(n) = 0 and ¢s(n) = . For all s > s*
and n € w, if we act in Case 3 or Case 4 for R, for some [.; ; at stage s such that
n € Is(le,is), then we set hs(n) = gs(n) and

qs(n) = (—B Oc,s(Te,j,s) D (i 4 1).
J<i
We say that we update the approximation to h(n) at stage s (though we may define
hs(n) = hs_1(n)). Otherwise, we set hg(n) = hs_1(n) and ¢s(n) = gs—1(n).

Suppose that ¢ and s are such that l.; s, = lc,; is never cleared after stage so.
We show that there is some stage s; > s¢ at which we act in Case 4 for R, for [;.
By our assumption on i and sg, for all ¢ > s, we cannot act in Case 2 for R, for
any l j; at stage ¢ where j < i. A straightforward induction shows that if I. ;.
is defined but there is some k£ > j such that I, s is defined, then [, ; ; must be
waiting for permission at stage s. Therefore, for all t > sy, we cannot act in Case
3 for R, for any l. ;s at stage t where j < i. As l.;, is defined, we cannot act in
Case 1 for R, after stage so. As we must act for R, at infinitely many stages after
stage s*, we must then act in Case 4 for R, for l.; at some stage s; > so.

Now suppose that ¢ and sg are such that I ; s, = lc; is never cleared after stage
50, and that [, ; was realised at some stage s, > so. Further suppose that we act in
Case 2 for R, for l.; at some stage sp > s1. We show that we must act in Case 3
for R, for l.; at some stage s3 > so. Suppose for contradiction that this is not the
case. As in the proof in the previous paragraph, we cannot act in Case 2 or Case 3
for R for any l. ;; with j < i at any stage ¢ > sp. At stage sy we cleared I j 4,—1
for all j > i. Therefore, by assumption, we cannot act in any case for R, for any
lej,+ with j > 7 at any stage t > so. We also say at stage s that [; is not waiting
for permission at stage s2 + 1, and because we do not act in Case 3 for R, for [, ; at

18 MICHAEL MCINERNEY AND KENG MENG NG

any later stage s3, we cannot act again in Case 2 for R, for l.; at any stage t > ss.
Therefore, we do not act for R, after stage s3, which is a contradiction.

We now show that (hsg, ¢sys<w is eventually a-computable. By the definition of
gs(n) above and the definition of the permitting intervals I;(l¢; s) in the construc-
tion, it suffices to show that there are infinitely many stages at which we act in
either Case 3 or Case 4 for R.. Suppose for contradiction we do not act in Case 3
or Case 4 after some stage s > s*. As R, is not initialised after stage s*, there is
some ¢ such that l.; s is never cleared after stage s. Let ¢ the greatest such, and
let le; = le,i,s. There are three possibilities to consider. The first is that /. ; has
not been realised by stage s. Then as shown above, we must act in Case 4 for R,
for l.; at some stage s; > s, which is a contradiction. The second is that [. ; has
been realised by stage s, and l.; is waiting for permission at stage s. Then it must
be the case that there is some j > i such that [, ; , is defined. By the choice of 4,
there is some stage ¢t > s at which [, j;—; is cleared, and at the least such stage ¢,
we must act in Case 2 for R, for l.; at stage . Then as shown above, we must
act in Case 3 for R, for [.; at some stage so > s, which is a contradiction. The
last possibility is that [.; has been realised by stage s, but l.; is not waiting for
permission at stage s. Then again by the above, we must act in Case 3 for R, for
le,; at some stage s > s, which is a contradiction.

It follows from the fact that the sequence {0e s(n))s<. is non-increasing for all
n € w and the definition of I(l. ;) in Case 2 of the construction that {(gs(n))s<w
is non-increasing for all n € w. We must now show that for all n € w and all s > 0
that

(1) if we update the approximation to h(n) at stage s, then gs(n) < gs—1(n).

Fix some n € w. Let sy < s; < --- be the potentially infinite sequence of all
stages at which we update the approximation to h(n). We have go(n) = oo and
s, (n) < o0, so (1) holds at stage sg. Suppose by induction that (1) holds at stage
Sk, and that sgy1 is defined. We show that (1) holds at stage sx+1. Suppose that
i and j are such that we act via l.; ,, at stage s, and via I j;,,,, at stage spyq1. If
J < i, then the inclusion of the last term in the definition of ¢y, ., (n) is enough to
ensure that (1) holds at stage s+1. Now suppose j = i. We must have lo ; + = lc; s,
and Te ;¢ = Te,i,s, for all t with s <t < si41. As we act in Case 3 for l.; 5, at
stage s; and stage sp41, we must act in Case 2 for [.;,, at some stage ¢ with
Sk <t < Sgy1. At stage t we defined A, such that A;(Ay) > fei(Tet), and as we
act in Case 3 for l.;, at stage spy1, we must have feo o, (Teisp) # fet(Tesisi),
and 80 ¢, s, (Teyivsn) < Oct(Teyiysn) < Ocysy,(Teyissy,)- This is enough to ensure that
(1) holds at stage Sg41.

Finally, we show that (hs,qs)s<w is an approximation for g. That is, for all
n € w, limg hy(n) = g(n). Fix some n € w. The fact that (1) holds at all stages
together with the well-foundedness of the ordinal a shows that we update the
approximation to h(n) at only finitely many stages. Let ¢ be the last such stage.
We claim that g(n) = h(n). At stage ¢t we set hi(n) = g¢(n), so it suffices to show
that g, (n) = g¢(n) for all u > t. Suppose for contradiction that g,(n) # g:(n) for
some u > t, and let u be the least such. Let ¢ be such that n € I;(l ;). By the
choice of u, we have l.; , = lc;+ and n € I,,(lc;.). Then for all j < i, I, is
waiting for permission at stage u. At all stages s, if m is the greatest element of

MULTIPLE GENERICITY: A NEW TRANSFINITE HIERARCHY OF GENERICITY NOTION$9

any permitting interval for any length for R. at stage s, then every [< m is in
some permitting interval for some length for R, at stage s. Therefore, for some
J <4, leju—1 is permitted at stage u, and we act in Case 2 for R, for . ;. at stage
u. As R, is not initialised after stage s*, there is some k < ¢ and some v such
that n € I,(le kw) for all w > v. Let v be the least such. By assumption, at any
stage y with ¢ < y < v, we cannot act in Case 3 for R, for any length [. ; , with
n € Iy(le ;). By the choice of k, lc 1, = le i is never cleared. Then as shown above,
we must act in Case 3 for R, for [, j at some stage z > v. We have n € I,(l¢ k), so
we will update the approximation to h(n) at stage z. This is a contradiction. This
completes the proof that we act for R, at finitely many stages.
We are now in a position to show that A(A) either meets or avoids range f.. Let
t be the last stage at which we act for R., and let ¢ be greatest such that [, ;; is
defined. First suppose that we act in Case 1, Case 3, or Case 4 for R, at stage t.
Then [, ;; is not realised at stage ¢, and because we do not act for R, after stage t,
leit is never realised. We initialise all requirements of weaker priority than R. at
stage t, and we do not act for R, after stage t, so the construction will ensure that
Ay(Ar) T leir < Ay(Ay,) for all w > ¢. Then because [;; is never realised, there
is no 7 such that 7 = Ay(A¢) [lesie and 0e (1) < 00. Therefore, by Proposition
2.12; A(A) avoids range f.. Finally, suppose that we act in Case 2 for R, at stage
t. We define A, such that Ay(A;) > fe(Tei). We initialise all requirements of
weaker priority than R, at stage ¢, and we do not act for R, after stage t, so the
construction will ensure that A, (A,) > fet(Te,i,) for all w > t. Then because we do
not act in Case 3 for R, for l. ;. at any stage u > t, we have fe o (Te,it) = fet(Te,it)
for all u > ¢, and so A(A) meets range f.
O

O

We now have the following characterisation.

Theorem 5.3. A c.e. degree computes an a-change generic degree if and only if
it is not totally a-c.a.

Proof. Theorem 5.2 of [3] says that a c.e. degree is totally a-c.a. if and only if it
is a-c.a. dominated. Suppose that a is a c.e. degree which computes an a-change
generic degree b. Then b is weakly a-change generic, and so by Theorem 4.11, a is
not a-c.a. dominated. The other direction follows from the previous theorem. [

Theorem 5.1 allows us to separate further levels in the hierarchy of multiple
genericity notions.

Theorem 5.4. Let a < gg be a power of w and let B be such that o = w®. Then
there is a AY degree which is w®-change generic but not uniformly wP*!-change
generic.

Proof. By Theorem 3.5(1) of [8], there is a c.e. degree a which is uniformly totally
whtl-c.a., but not totally wP-c.a., and by Theorem 5.2 and Theorem 5.4 of [3], ais
uniformly w?*!-c.a dominated and not w”-c.a. dominated. Then by Theorem 5.1,
a computes an w’-change generic degree b. As b < a and a is uniformly w?+1-
c.a. dominated, b is uniformly w?*'-c.a. dominated. Now by Proposition 4.10, b
cannot be uniformly w?*!-change generic. ([

20 MICHAEL MCINERNEY AND KENG MENG NG

6. DOWNWARD DENSITY

We say that a class of degrees D is downwards dense below a degree a if for every
noncomputable degree b <t a, there is some c € D with ¢ <t b. There are several
results regarding downward density and genericity. Martin showed (see Theorem
4.1 in [15]) that for all n > 2, the n-generic degrees are downwards dense below n-
generic degrees. The case for n = 1 is more involved though. Chong and Jockusch
[5] showed that the 1-generic sets are downwards dense below AY 1-generic sets.
However, it was later shown by Chong and Downey [4], and independently Kumabe
[17], that there is a 1-generic degree below " which bounds a minimal degree, and
so downward density of 1-generics below 1-generic degrees fails in general.

Downey and Nandakumar [13] have recently shown that there is a weakly 2-
generic set which bounds a minimal degree, and so downward density cannot hold
in general for any notion of multiple genericity. We can still ask whether it holds
below @', as it does for 1-genericity. Schaeffer [24] has shown that there is a pb-
generic below @’ which bounds a noncomputable superlow degree. By Proposition
6.3 of [24], no superlow degree can bound a pb-generic degree, and so pb-generics
are not downwards dense below pb-generics below @§'. We show that downwards
density does not hold below ¢’ at any uniform or weak level in the hierarchy of
multiple genericity notions.

Theorem 6.1. Let a < €y be a power of w. Then there is a weakly a-change
generic degree a <1 &' which bounds a noncomputable degree b which does not
bound a uniformly w-change generic degree. Therefore the weakly a-change generic
degrees are not downward dense below weakly a-change generic degrees below ',
and similarly for the uniformly a-change generic degrees.

Proof. We construct a set A and a Turing functional ® such that a = deg.(A) and
b = deg(P(A)) are as required. Let {(fe s, 0c,s)s<we<w be an effective list of all
a-change tests. So that a is of weakly a-change generic degree, we meet for every
1 € w the requirement

P, if fi = {fi.s,0i59s<w 1S & total a-change test, then A meets range f;.

We construct ® such that ®(A) is total, and in order to make ®(A) noncom-
putable, we meet for every i € w the requirement

Ni: ®(A) # o5

where (©;)i<. is an effective list of all partial computable functions.

Let h : 2<“ — a be some computable a-order function with h(c) > 0 for all
o € 2%, So that b does not bound any uniformly a-change generic degree, we
meet for every e € w the requirement

Q. if T (P(A)) is total, then it does not meet the range of every h-change test

where (T¢)e<. is an effective list of all Turing functionals. To meet Q., we build
an h-change test te = (ge s, De,s)s<w such that if I'.(®(A)) is total, then I'c(P(A))
does not meet ranget..

The basic strategy for a P-requirement P; is straightfoward. We pick a follower
o for P; and wait until a stage s where we see that o; s(0) < 00. At such a stage s,
we say that P; is realised, and we let A; > f; (o). If at some later stage t we see
that f; (o) A Ai—1, then we define A; to extend f; (o). Since f; is an a-change
test, this strategy is finitary.

MULTIPLE GENERICITY: A NEW TRANSFINITE HIERARCHY OF GENERICITY NOTIONS1

The basic strategy for an N-requirement N; is also straightforward. We begin at
some stage s by defining some string 7; ; for N;. We will have defined only finitely
many axioms for ® by stage s, so ®s_1(As—1) is some finite string, say, 5. We
define ®(7; ;) = 8. We also define ®(7; s "0) = 3°0. We then wait for some stage ¢
where for all n < |B] + 1, ;. (n)| and ®,_1(A;—1) = ¢i(n). At such a stage ¢, we
act for N; by letting A, extend 7; "1, and defining ®(7; 5" 1) = 8" 1.

Now suppose that we having one @-requirement). together with all the N-
requirements, with the priority ordering Q. < Ng < N; < ---. The action of
the N-requirements will ensure that ®(A) is total. Suppose that e is such that
T (®(A)) is total. We will need to build an h-change test t. such that I'.(®(A))
does not meet the range of ¢..

Suppose that we begin the strategy for N; at stage s. We keep A above 7; "0
so that ®(A) extends 8°0. Suppose we see at some later stage ¢ that there is some
v € domT.; with v < ®;_1(A¢—1). It seems as though we should look to update
arrows in the test t.. Therefore, for every string p such that u < T'.(7), we define
ge.1(1t) to be some string properly extending p that is incomparable with I (7).

If v < ®,(A,) for all u > ¢, then I'e(y) < T'e (P, (A,)) for all u > ¢, and so
we will never again need to update the arrow for any such u. Suppose though that
at some later stage u, we see that we need to act for N;. We let A, > 7, "1 and
define ®(7°1) = 5" 1. However, if v £ ®,(A,), the opponent is now free to define
axioms in ', in such a way that I'c ,(®,(Ay)) > ge,t(v), which means that we will
again need to update the arrow for v. Moreover, action for any N-requirement of
stronger priority than N; may also force us to update the arrow for u. Since t,
must be an h-change test, we must be careful that we do not update the arrow for
4 too many times.

In this restricted scenario, it is quite easy to manage this; each N-requirement
N; is able to act at most once and force us to change ®(A), requiring at most one
update to the arrow for p due to N;. In light of this, we revise our strategy for
defining the test t..

Suppose that we begin our strategy for N; at some stage s by defining some
string 7; s and defining ®(7; s) = B, as above. Suppose that there are n many
requirements of stronger priority than V; for which we have not already acted. We
seek a string v < ®(A) such that v € domT'. and h(Jv|) = n + 1. Since I'.(®(A4))
is total and h is an a-order function, we will eventually see such a stage. Suppose
we see such a string v at stage t.

First suppose that NN; is never initialised after stage t. We would like to restart
the strategy N; so that we may keep ®(A) above the string v. If we can do so,
then acting for N; will cause a change in ®(A4) above v, and I'.(®(A)) must remain
above I'.(v), which is sufficiently large to accommodate any update to the arrows
in the test ¢, as a result of action for N;.

We restart N; at stage t as follows. We let A, = A;_1, and define 7; ; to be some
intial segment of A, of a fresh large length. For 8 = ®,_1(A4;), we enumerate {7; ¢, 5
and {(7;;"0,8"0) into ®. Having done this, we then act for N; at some later stage
wif for all n < |B] + 1, i n(n)] and @,_1(Ayu—1) = @;(n). While waiting to act for
N;, we look at stage u for some string v € domT'. ,, with 570 < v < ®y—1(Au—1).
Only once we see such a string v do we update arrows in ..

In effect, the requirement (). is broken into infinitely many Q.-subrequirements
Qc,n, for each N-requirement N;. The subrequirement Q. n, will look for some

22 MICHAEL MCINERNEY AND KENG MENG NG

string v as above (waiting for initial convergence) and then will look for a string
~ as above (waiting for further convergence). Only once further convergence has
been found will we look to update arrows in t..

If at any stage we act for some N-requiement IN; of stronger priority than NN,
we initialise N;, and we no longer update the arrow for any u as part of action for
Qe,n,; this responsibility then falls to Qe N, -

Now consider introducing the P-requirement P;, with the priority ordering

P)i < {N07Q6,N0} < {NlaQe,Nl} < -

and where IV; and Q. n, are of equally strong priority for all ¢ € w. We begin
the strategy for P, by choosing a follower o. We proceed with the strategy above,
acting for many N-requirements, and updating many arrows in the test ¢.. Only
after this do we see at some stage s that o, s(0) < 0.

The problem is readily apparent. We may have updated the arrow for some
string p for which o, s(0) > h(|p|). Acting for P; is then able to force A to move
through a very large number of strings, and because of the action taken for N-
requirements, this will force ®(A) to move through a very large number of strings.
No matter our definition of the arrow for p in the test t., the opponent is able to
manoeuvre ®(A) and define axioms for T, in such a way that T'.(®(A)) extends the
arrow for p.

Note however that the opponent has revealed to us the value o, s(0), which gives
us some upper bound on the number of times this can occur. Our strategy for Q. p,
is reminiscent of the strategy we adopted above. We seek a string v < ®(A) such
that v € domT'. and h(|v|) > 0c,s(0). Since I'.(®(A)) is total and h is an a-order
function, we will eventually see such a stage. Suppose we see such a string v at
stage t.

We would like to restart the strategy for P; in a way that allows us to keep ®(A)
above v. However, if we were to simply follow our current strategy for P;, we must
always let A, extend f; (o), but doing so may force us to move ®(A) away from
v. Note that we are only interested in meeting the range of f; if f; is a total test.
Therefore, we are free to define a set S; = {09,001} of incomparable strings, and
wait until we see o; converge on all strings in S;. Suppose that we see 0; (o) < o0
for all o € S; at some stage s. We say that P; is realised at stage s. We let A
extend f; s(09), and will let A, extend f; ., (0¢) at subsequent stages u.

We slightly modify the strategy for Q). p, by now requiring that the string v is
such that h(|v|) > 0¢,s(00) @ 0c,s(01). Suppose we see such a string in the domain
of T, at stage t. We may now restart P; by letting A, extend f;,(o1), and will
let A, extend f; ,(01) at subsequent stages u. It is straightforward to organise the
construction in a way that allows us to then keep ®(A) above v.

The introduction of further P- and Q-requirements poses no significant challenge.
We proceed to the formal argument.

Definitions and conventions for the construction

At each stage s € w, and for each i € w, we define for a set S; ; < 2<%. The
requirement P; is initialised a stage s by setting S. s = &.

At each stage s € w, and for each i € w, we may define a string 7; ; and a natural
number /; . The requirement N; is initialised at stage s by letting 7; s and I; s be
undefined.

MULTIPLE GENERICITY: A NEW TRANSFINITE HIERARCHY OF GENERICITY NOTIONS3

For each e € w and each ¢ with e < 4, we have the Q.-subrequirements Q. p, and
Qe,n,. At each stage s € w, for each e € w, and for each P- or N-requirement R, we
may define a natural number c. g s, and strings v, g s and v, g.s. We may say that
we are waiting for initial convergence for Qe r at stage s, or that we are waiting
for further convergence for Q. r above the string B at stage s for some string 3.
The subrequirement Q. r is initialised at stage s by letting c¢ r s, Ve,R,s, and Ve R,s
be undefined. Additionally, we do not say that we are waiting for initial or further
convergence for . r at stage s + 1.

As usual, all definitions and statements made at stage s will apply at stage s+ 1
unless otherwise specified.

We use the convention that a commutative ordinal sum over an empty set is
equal to zero.

We say that P; requires attention at stage s if either

(1) Si,s—l = @a

(2) Sis—1 # O, P; has not been realised by the beginning of stage s, and for
all 0 €S, 5_1, 0 s(0) <00, or

(3) P; has been realised by the beginning of stage s, and there is some o € S; s_1
such that 0 < As_1 but f; s(0) A As_1.

We say that N; requires attention at stage s if either

(1) 7i,5—1 is not defined,
(2) 7;5—1 is defined, and for all n < I; s_1, @; s(n)] and ®s_1(As_1,n) = @;(n).

We say that Q. r requires attention at stage s if either

(1) we are waiting for initial convergence for Q. r at stage s, and there is some
vedomT, ; such that v < ®,_1(As—1) and |T¢ s (V)| > Ce,rs—1, OF
(2) we are waiting for further convergence for Q. g above the string § at stage
s, and there is some v € dom T, ; such that 5 < v < @41 (As—1).
We use the following priority ordering on the P- and N-requirements and the
(Q-subrequirements:

{Po,Qo,p,} < {No,Qo,n,} < {P1,Qo,p,Q1,p} < {N1,Qon,,Q1nN,}
<{P,Qo0,p,,Q1.p,,Q2,p,} < ---

where the requirements and subrequirements in the same set are considered to be
of equally strong priority.

Construction

Stage 0: we set Ag = 0“. We let &5 = . For all e € w and all p € 2<%, we let
ge,0(pt) = pand pe o(pt) = h(p). We initialise all requirements and subrequirements
and proceed to the next stage.

Stage s, s > 1:

s=1 mod 3

Step 1

Let R be the P- or N-requirement of strongest priority which requires attention
at stage s. We act according to the cases below, and then initialise all requirements
and subrequirements of weaker priority than R. We say that we act for R at stage

s. If we act in subcase 1b or subcase 2a, then we proceed to step 2, and otherwise,
we proceed to the next stage.

24 MICHAEL MCINERNEY AND KENG MENG NG

Case 1: R = P; for some i. We act according to the subcases below.

Subcase 1a: P; requires attention at stage s via (1). Let 7 < As_1 be of a fresh
large length, and let S; 5 consist of 4 + 2 many pairwise incomparable strings which
extend 7. We choose some string o € S; ; and let Ay = 0~ 0“.

Subcase 1b: P; requires attention at stage s via (2). We say that P; is realised
at stage s.

Subcase 1c¢: P; requires attention at stage s via (3). Let o be as in the definition
of requires attention. We set A; = f; ;(c) " 0%.

For all e < 4, if we are not waiting for initial convergence for Q). p, at stage s, then
we let v p, s be undefined, and we say that we are waiting for futher convergence
for Q. p, above the string ®,_1(f; s(0)) at stage s + 1.

Case 2: R = N; for some i. We act according to the subcases below.

Subcase 2a: Nj; requires attention at stage s via (1). We let Ay = A,_;. Define
Ti,s t0 be some inital segment of A, of a fresh large length. Let § = ®,_1(A;). We
enumerate {(7; 5,) and {(7; s~ 0, 570) into P.

Subcase 2b: N; requires attention at stage s via (2). Define p to be some string ex-
tending 7; ;1 of a fresh large length, and such that there is no string a € dom ®,_;
such that 7, _1 < o < p. Weset As = p"0%. Let § = ®5_1(7 5—1). We enumerate
{p,B"1) into P.

For all e < 4, we do the following. We do not say that we are waiting for initial
convergence for Q). n, at stage s + 1. If we are not waiting for initial convergence
for Qe n, at stage s, then we say that we are waiting for further convergence for
Qc,n, above the string 871 at stage s + 1.

Step 2

Let R be the requirement for which we acted in step 1, and let ¢ be such that
R = P, or R = N;. For all e < i, we do the following.

If we are not waiting for initial or further convergence for any Q.-subrequirement
of stronger priority than Q). r at stage s, then we do the following. Let I be the
set of all j such that P; < Q¢ r and P; has been realised by the beginning of stage
s. Let N, be the set of all j such that N; < Q¢ g and such that we have not acted
for N; in subcase 2b since it was last initialised. We define c. r s to be a fresh large
number such that for all strings v with |v| > cc g s,

1) = (® @ 0iul)) @ LI ® |
jels o€S; s

We say that we are waiting for initial convergence for Q. r at stage s + 1. We

proceed to the next stage.

s =2 mod 3

If there is some @-subrequirement which requires attention via (1) at stage s,
then we follow the instructions below, and otherwise, we proceed to the next stage.

Let R be the strongest P- or N-requirement for which there is some e € w such
that Qe r requires attention via (1) at stage s, and choose the least e for this R. Let
v be as in the definition of requires attention. We do not say that we are waiting
for initial convergence for Q. r at stage s + 1. We define v, g s to be v.

If R is a P-requirement, then we do the following. Let ¢ be such that R = P;.
Suppose that we last acted for P; in subcase 1a or subcase 2a at stage q. We choose

MULTIPLE GENERICITY: A NEW TRANSFINITE HIERARCHY OF GENERICITY NOTIONS5

some o € S; 1 such that A, % o for all t € [¢,s), and set A, = o~ 0¥. Let
B =®s_1(As—1). We enumerate {o, 5) into ®.

If R is an N-requirement, then we do the following. Let ¢ be such that R = N;.
We let A, = As;_1. Define 7; ; to be some inital segment of A; of a fresh large
length. Let 8 = ®,_1(A,). We enumerate {(7; 5, 5) and {(7; s "0, 3°0) into ®. We let
li;s = |B] +1. We say that we are waiting for further convergence for Q. r above
the string 570 at stage s + 1.

We say that we act for Q. r at stage s. We initialise all requirements and
subrequirements of weaker priority than Q). r, and proceed to the next stage.

s=0mod 3

If there is some @-subrequirement which requires attention via (3) at stage s,
then we follow the instructions below, and otherwise, we proceed to the next stage.

Let R be the strongest P- or N-requirement for which there is some e € w such
that Q. g requires attention via (2) at stage s, and choose the least e for this R. If
there is some N-requirement N; with N; < Q¢ r such that 7; ;1 is undefined then
we proceed to the next stage. Otherwise, we follow the instructions below.

We initialise all requirements and subrequirements of weaker priority than Q¢ r.
Let v be as in the definition of requires attention. We define v, r s to be v. For
every string p such that p < T s(v) and ge s—1 () is comparable with T 4(7), we
do the following.

We define g s (1) to be some proper extension of y which is not an initial segment
of e s(7). Let I, s be the set of all j such that v, p, s is defined and T'¢ s(ve, p,.s) <
p. Let Ne . s be the set of all j such that v, n, s is defined, T'c s(ve,n;,s) < p, and
we have not acted for IV; in subcase 2b since it was last initialised. We set

pe,sm)—(D @ oj,s<a>) © Leps] ® [Nepsl-

j€lesus 0€S;s

We do not say that we are waiting for further convergence for Q). r at stage s + 1.
We say that we act for Q. r at stage s. We proceed to the next stage.

End of Construction

Lemma 6.2. The construction can be carried out as described.

Proof. The only difficulty is showing that if we wish to act for Q. p, at some stage
s with s = 2 mod 3, then we can choose a string ¢ as described. Suppose that
we act for P; in subcase la at some stage q. We may assume that we do not
initialise P; at any stage after stage ¢. Then for all s > ¢, it is straightforward to
see that the number of strings o in S; s—1 for which there is some stage ¢t € (g, s)
such that A; > o is equal to the number of d < i such that we have acted for
Qa,p, at some stage u € (g, s) with u = 2 mod 3. Since S, 4 consists of ¢ + 2 many
pairwise incomparable strings, we can choose a string o as described in stage s of
the construction. (]

Lemma 6.3. Suppose that S; s # (&. Then there is some o € S; ¢ such that o < As.
Proof. This follows from Lemma 6.2. (]
Lemma 6.4. The functional ® is consistent.

Proof. By induction on the stage number. [

26 MICHAEL MCINERNEY AND KENG MENG NG

Lemma 6.5. Suppose that P; is initialised for the final time at stage s*. Then we
may act for P; at at most finitely many stages after stage s*.

Proof. We act for P; in subcase la at stage s* + 1, and by assumption, we may
not act for P; in subcase la at any later stage. We may act at most once for P; in
subcase 1b at some stage after stage s*. By assumption, we have that S; ; = S; ¢ 41
for all t > s*. Now since S; ¢+ 41 is finite, and (f; 5, 0; s)s<w is an a-change test, we
can act at most finitely many times for P; in subcase 1c after stage s*. O

Lemma 6.6. Suppose that N; is initialised for the final time at stage s*. Then we
may act for N; at at most finitely many stages after stage s*.

Proof. This is immediate. O

Lemma 6.7. Suppose that Q. r is initialised for the final time at stage s*. Then
we may act for Q.. r at at most finitely many stages after stage s*.

Proof. R is either a P-requirement or an N-requirement. First suppose that R is a
P-requirement, and let i be such that R = P;. We may act for). p, at some stage
s with s = 2 mod 3 at most once after stage s*. Suppose that we act for Q. p, at
some stage s with s = 0 mod 3 after stage s*. We do not say that we are waiting
for further convergence for). p, at the beginning of stage s + 1. Now suppose
that we act for Q. p, at some later stage ¢t with ¢ = 0 mod 3. By the definition of
requires attention, we must be waiting for further convergence for Q. p, at stage t.
Therefore, we must have acted for P; in subcase 1c at some stage u with u € (s,t).
As in the proof of Lemma 6.5, we may act for P; in subcase lc at at most finitely
many stages after stage s. This establishes the lemma for this case.

Now suppose that R is an N-requirement, and let ¢ be such that R = N;. We
may act for Q. n, at some stage s with s = 2 mod 3 at most once after stage s*.
Suppose that we act for Q. n, at some stage s with s = 0 mod 3 after stage s*. If
we act for). n, at some later stage ¢t with ¢ = 0 mod 3, then we must act for N;
in subcase 2b at some stage before stage ¢, and we will not be able to act again for
Qc,n,. This establishes the lemma.

|

Let A =liminf,_, As.
Lemma 6.8. ®(A) is total and A is AY.

Proof. That ®(A) follows from the fact that we act for infinitely many N; require-
ments. By Lemma 6.5, Lemma 6.6, Lemma 6.7, and the initialisation performed
during the construction, A is AY. O

Lemma 6.9. Each P- and N -requirement is met.

Proof. Fix some P-requirement P;. By Lemma 6.5, Lemma 6.6, and Lemma 6.7,
suppose that we last initialise P; at stage s*. If f; is not a total a-change test, then
P; is met. So assume that f; is a total a-change test. Again by Lemma 6.5, there is
a last stage t at which we act for P;, and by assumption and Lemma 6.3, we must
act for P; in subcase 1c at stage ¢t. Let o be as in the definition of requires attention
at stage t. Then we have that f; ,(0) = fi (o) for all uw > ¢, and f; ,(0) < A, for
all u > t, which shows that P; is met.

Now fix some N-requirement N;, and suppose that we last initialise N; at stage

. There are at most finitely many stages ¢t > s such that 7, # 7,,—1. Given

ST,

MULTIPLE GENERICITY: A NEW TRANSFINITE HIERARCHY OF GENERICITY NOTIONS7

this, it is clear that the instructions in case 2 of the construction ensure that V; is
met. [l

Forall ee w, p e 2<%, and s € w, define I, , ; and N, , s as in the construction.
)) ’ ks sk

Lemma 6.10. Let e € w and p € 2<¥. Then for all s € w,

h(p) > (@ @ Oj,s(0)> ® |IE,M,S| ® |Ne7u78|-
j€le,u,s 0€ES; s

Proof. We show this by induction on s. We have that I. , o = & and N ,0 = O,
and so since h(u) > 0, the statement holds at stage 0. Suppose by induction that
s > 0 and that the statement holds for all ¢ with ¢ < s. If we do not define
some string ve g s at stage s, then I, , s = I, s—1 and N, s = Ne i s—1, and the
statement holds at stage s. So suppose that we define v, p s at stage s for some
Qc-subrequirement Q¢ g.

There are two cases to consider. First suppose that I'c s(ve rs) X g Then
Ieys=1cp -1 and Ne s = Neys—1, and the statement holds at stage s.

So suppose that I'e s(Ve r,s) < 4. Since we define v, g at stage s, we are waiting
for further convergence for Q. r at stage s. Suppose that stage t is the last stage
before stage s at which we began waiting for further convergence for Q. r. Then
we may not initialise Q. r at any stage after stage t and before stage s. Let I;, N,
and c. gr+ be as at stage t of the construction. Then since h is an a-order function,

we have that
W) > (D @ aj,tw)) ® 11| ® V.

jely o€Sj ¢

We first claim that I., s < I;. Let j € I.,s. Then v, p, s is defined and
Le s(Ve,p;,s) < p. To show that j € I;, we must show that P; < Q. r and that P;
has been realised by stage t. To show that P; < Qe r, suppose for contradiction
that Qc.r < Pj. Then Q. r < Qe p,;, and since we initialise all subrequirements
of weaker priority than Q. r at stage s, we let v, p, s be undefined, which is a
contradiction. So P; < Q¢ r. We now show that P; has been realised by stage
t. Since ve p; s is defined, P; must have been realised by the beginning of stage
s. Suppose for contradiction that P; was realised at some stage after stage ¢t. If
Pj < Qe g, then realising P; will initialise Q)¢ r at some stage after stage ¢ and
before stage s, which is a contradiction. If P; and Q. r are of equally strong
priority, then P; = R. However, since we began waiting for futher convergence for
Qc,r at stage t, then P; had been realised by stage ¢, which is a contradiction. This
establishes the claim.

We now claim that Ne,s S Ny Let j € Ne,s. Then v n, s is defined,
Fe,s(Ve,Nj,s) < u, and we have not acted for N; in subcase 2b since it was last
initialised. By the definition of Ny, it suffices to show that N; < Q. r. As above,
suppose for contradiction that Q. r < N;. Then Q. r < Qe n,, and since we ini-
tialise all subrequirements of weaker priority than Q¢ r at stage s, we let ve n; s be
undefined, which is a contradiction.

Since for all j € w, {f; s, 0j,s)s<w is an a-change test, we have that for all j € I, ,
and all 0 € Sj 5, 0j,5(0) < 0j+(0). This, together with the above claims, suffices to
show that the statement holds at stage s.

O

The next two lemmas are immediate.

28 MICHAEL MCINERNEY AND KENG MENG NG

Lemma 6.11. Suppose that we act for some R-requirement in either subcase 1a or
subcase 1b at stage s, or that we act for some Q-subrequirement at stage s. Then
q)s(As) = ¢5,1(A5,1).

Lemma 6.12. If v. prs and ve r,s are defined and M < R, then T'e (Ve ms) <
Fe,s(ye,R,s)~

The next two lemmas are shown by a straightforward induction on the stage
number.

Lemma 6.13. Suppose that we act for Q. r at some stage s with s = 0 mod 3.
Then for all M with Qe pm < Qe,r,
(1) if M is a P-requirement and P has been realised by the beginning of stage
s, then Ve ars and e n,s are defined, and we are not waiting for initial or
further convergence for Q. ar at stage s, and
(2) if M is an N -requirement and we have not acted for M in subcase 2b since
it was last initialised, then ve prs and venm,s are defined, and we are not
waiting for initial or further convergence for Q. yp at stage s.

Lemma 6.14. Suppose that we are not waiting for initial or further convergence
Qc,r at stage s. Then if R is a P-requirement and R has been realised by stage s,
or R is an N -requirement and we have not acted for R in subcase 2b since it was
last initialised, then e g.s is defined, and for all strings pr < Te s(Ve,R.s); Ge,s(1t) is
not comparable with Te s(Ye,R,s)-

Lemma 6.15. Suppose that we act for Q. .r at stage s and update the arrow for p.
Suppose that we update the arrow for u at some later stage u. Then there is some
stage t with t € (s,u) at which we either

e act for some P; with j € I, . in subcase Ic, or
e act for some N; with j € N, s in subcase 2b.

Proof. Let v be as at stage s of the construction. Since we update the arrow for p
at stage s, we have that p < T'. 5(7). We also have that T'c s(ve r,s) < Te s(7). So
wand e (Ve r,s) are comparable. There are two cases to consider.

The first case is that T s(ve,r,s) < pt. We first show that we must act for some
P- or N-requirement M with M < Q. g at some stage ¢ with ¢ € (s, u). Suppose for
contradiction that we do not act for any P- or N-requirement M with M < Q¢ r
at any stage t with ¢ € (s,u). We have that ®;(A4,) = . At stage s, we initialise
all P- and N-requirements of weaker priority than Q. r. Then by the choice of
followers for P- and N-requirements, and the axioms for ® that we define at stages
at which we act for P- and N-requirements, we have that ®;(A;) = « for all ¢ with
t € (s,u). This contradicts the fact that we update the arrow for u at stage u.

Suppose that we do not act for any N-requirement IN; with N; < Qg at any
stage t with ¢ € (s,u). By the result of the previous paragraph, and Lemma 6.11,
we must act for some P-requirement P; in subcase 1c with P; < Q. r at some stage
t with ¢ € (s,u). We show that j € I. , 5. First suppose that P; and Q. g are of
equally strong priority. Then R = P}, and so v, p; s is defined and I'¢ s(ve pjs) <
p. Therefore, j € I, s. Now suppose that P; < Q. r. We have that Q. p, <
Qe,r- Then by Lemma 6.13 and Lemma 6.12, v, p, s is defined and ' s(ve,p; s) <
Les(Ve,r,s). Now since I'c s(Ve,rs) < s Teys(Ve,py s) < i, and j € Iy .

Now suppose that we do act for some N-requirement N; with N; < Q¢ r at
some stage ¢t with ¢ € (s,u). We may assume that ¢ is the least such. We show that

MULTIPLE GENERICITY: A NEW TRANSFINITE HIERARCHY OF GENERICITY NOTIONS9

Jj € Neys. If we do act for some P-requirement P; with P; < Q¢ r at some stage
after stage s and before stage t, then, as above, we must act for P; in subcase lc
and j € I, s. So suppose that we do not. By the instructions we follow at stage
s, Tjs—1 is defined. Now by assumption, we cannot act for IV; in subcase 2a at
stage ¢, and so we must act for /V; in subcase 2b at stage ¢. Therefore, we have not
acted for N; in subcase 2b since it was last initialised. First suppose that IN; and
Qe,r are of equally strong priority. Then R = Nj;, and so ve n; s is defined, and
Tes(Ve,p;,s) < p. Therefore, j € N, . Now suppose that N < Q. r. We have
that Q¢ n, < Qe,r. Then by Lemma 6.13 and Lemma 6.12, j € N, ,, 5.

The second case is that g < I'e (Ve r,s). We show that we must act for some
P- or N-requirement M with M < R at some stage ¢t with ¢t € (s,u). Suppose for
contradiction that we do not. Then we will have that T'c s(ve r,s) < ®:(As) for all
t > s, which contradicts the fact that we update the arrow for p at stage u.

Let S be the set of P- and N-requirements of stronger priority than Q. g, ex-
cluding those N-requirements for which we have acted in subcase 2b by stage s.
Using the result of the previous paragraph, it can be shown that S is nonempty.
Let M be the requirement in S of weakest priority.

We claim that e a5 is defined and Te s(7e,ar,s) < 1. The fact that ve ar s is de-
fined follows from the choice of M and Lemma 6.13. To show that T'c s(ve ar.s) < i,
suppose for contradiction that e s(Venrs) ¥ p. Since M < R, we have that
Tes(Vem,s) < Tes(Ve,rs). So both T'e s(venm,s) and p are initial segments of
Te s(Ver,s), and are therefore comparable. So p < T s(7e,n,s). Since we act
for Q. r and update the arrow for p at stage s, ge s(p) must be comparable with
e s(Ye,r,s)- We also have that T'c s(ven,s) and T'e s(7e r,s) are comparable. So
< Tes(Yerrs) and ge s(u) is comparable with T'e (Ve ar,s), which contradicts
Lemma 6.14. This establishes the claim.

Suppose that we do not act for any N-requirement N; with N; < Q. r at any
stage ¢t with ¢ € (s,u). Then we must act for some P-requirement P; in subcase 1lc
with P; < Qe s at some stage ¢t with ¢ € (s,u). The remainder of the argument is

as in the first case above, with M now replacing R.
O

Lemma 6.16. For all e € w, t. is an h-change test.

Proof. Fix some p € 2<¥. Recall that at stage 0, we set pe o(p) = h(u). Therefore,
it suffices to show that for all s > 0, if ge s(1t) # ge,s—1 () then pe s(1) < pe,s—1 ().
If we never update the arrow for i, then we are done. So suppose that we do update
the arrow for p at some stage, and let S = {sy < s1 < ...} be the nonempty, and
possibly infinite set of all stages at which we update the arrow for u. We must show
that for all k such that s, is defined, pe s, (1t) < Pe,s,—1(1)-

We first claim that pe s, (1) < De,so—1(1). By the definition of s, we have that
De,so—1 (1) = h(1). By Lemma 6.10, the claim follows.

Now suppose by induction that sy is defined, and that for all j < k, pe s, (1) <
Pe,s;—1(#). If spy1 is not defined, then we are done. So we assume that sjy is
defined. We must show that p. s, ., (1) < pes,—1(1). In fact, it suffices to show
that pe,s,, (1) < Pe,s, (10)-

Note that if we define some string v, r s at stage s, then if we define some
string v4 e at any later stage ¢, the length of v4 57 is fresh and large at stage ¢.
Therefore, by the definition of I, , , and N, s, if s < t, then I, < I., . and
Ne,u,t < Ne,y,s-

30 MICHAEL MCINERNEY AND KENG MENG NG

Since we update the arrow for p at stage spy1, by Lemma 6.15, we must either
act for some P; with j € I, , s, in subcase lc, or act for some N-requirement N;
with j € N, , s in subcase 2b at some stage t with ¢ € (sg, sk+1).

First suppose that we do not act for any N-requirement N; with j € N¢
in subcase 2b at any stage ¢ with ¢ € (sg,Sg+1). Then we must act for some
P-requirement P; with j € I, . at some stage t with t € (si, sg41). There are
two cases to consider. The first case is that I, , s, , is a proper subset of I, , s, .
Then it is clear from the definition of p. s, ., (1) that pe s, (1) < pe,s,(1). The
second case is that I, 5, ., = Ic s, Since we act for P; in subcase 1c at stage t,
there is some o € Sp, 5, for which 0, (0) < 0, (). This suffices to show that
Desiir (1) < Pe,sy (14)-

Now suppose that we do act for some N-requirement N; with j € Ng, ,, in
subcase 2b at some stage t with ¢t € (sy, sg4+1). Then N, , 5, ., is a proper subset of

Ne,u,sk and p€75k+1 (:U’) < Pe,sy, (:U’) U
Lemma 6.17. FEvery Q-requirement is met.

Proof. Let e € w be such that T',(®(A)) is total. By Lemma 6.16, ¢, is an h-change
test. We therefore must show that T'.(®(A4)) does not meet the range of t..

Note that there are infinitely many ¢ € w such that f; is a total a-change
test. Therefore, since I'.(®(A)) is total, there is an infinite set S of P- and N-
requirements such that for all R € S, at all but finitely many stages, we are
not waiting for initial or further convergence for Q). r. Then for all R € S,
Ye.r = limg Ve r s exists, and {ve,g : R € S} is infinite and cofinal along T'.(®(A)).
So let u < Te(®(A)). Then by Lemma 6.14, g.(u) is not an initial segment of
Le(P(A)). O

O

Although downward density of weakly a-change generics below A9 weakly -
change generic degrees fails, we do have the following.

Theorem 6.18. Let a < gg be a power of w and let a <1 0’ be a weakly a-change
generic degree. Then there is a weakly a-change generic degree b <t a.

Proof. Let A € a be a set which meets the range of every total a-change test, and
let (As)s<w be a computable approximation to A. We construct a Turing functional
® and meet for every i € w the requirement

R; :if f; is total, then ®(A) meets the range of f;

where (fiYi<w = {{fi.s, 0i.s ys<wi<w is an effective list of all a-change tests, and for
every e € w the requirement

Qe : \I]e((b(A)) # A

where (U,)., is an effective list of all Turing functionals.

For every requirement R;, we will build an a-change test ¢; = {gi s, Pi,s)s<w. In
the case that f; is total, then we will ensure that ¢; is total as well. We define ¢;
in such a way that if A > lim, g; +(7) for some 7, then ®(A) > lim, f; s(2(7)). In
order to implement this strategy while keeping the functional ® consistent, we will
ensure that the arrows in the test ¢;, and the strings in the domain of ®, are chosen
sparsely. Essentially, we need to make sure that for any string 7, we can choose the
arrow for 7 to be some string which does not extend any string p with p € dom ®4

MULTIPLE GENERICITY: A NEW TRANSFINITE HIERARCHY OF GENERICITY NOTIONS1

and p > 7. This can be easily managed by simply requiring the strings enumerated
into the domain of ® be increasing in length.

If we say at stage s that we reset the test ¢;, then we abandon the test ¢;, and
will at later stages build a new test, which, abusing notation, we will also call ¢;.
If a test ¢; is reset at stage s, then we set g; ¢ (0) = o and p; ¢(0) = oo for all
s’ < s and all ¢ € 2<¥. Unless otherwise specified, we will let g; s41(0) = g;.5(0)
and pi,s+1(0) = Pv;,s(U)-

The strategy for Q. will look for strings o < Ay in the domain of ®, such that
U, (Ps_1(a)) < As. If we see such a string «, then we will want A to move to some
string which is incomparable with W.(®(«)), while keeping ®(«) < ®(A). To bring
about such a change in A, we will challenge its genericity. For every requirement
Q., we will define a c.e. set of strings C.. The set C, will consist of strings that
we would like A to extend for the sake of this strategy. We use the fact that A is
AY and 1-generic to show that A must indeed meet C..

Similar to the tests above, if we say at stage s that we empty the set C,, then
we abandon the set C,, and will at later stages define a new set of strings, which
we will also call C,. If a set C, is emptied at stage s, then we set C, s = . Unless
otherwise specified, we will let C¢ 541 = Ce .

We fix some computable bijection (-, : w x w — w. We order the R- and
Q-requirements as follows:

R0<Q0<R1<Q1<"'.

Construction

Stage 0: we set ®(\) = A. For all i € w and 7 € 2<%, we set g;0(7) = 7 and
pio(T) = 0. For all e € w, we set Ce g = .

Stage s, s > 1:

s =4n + 1 for some n € w:

Let ¢ and m be such that n = (i, m). If A; does not meet range f; s, then we do
the following. Suppose that d is greatest such that p; s_1(7) < oo for all strings 7
of length strictly less than d. Let

I =max {|Ps_1(7)| : |7| =d}.

If 0; s(0) < oo for all strings o of length at most [, then for all strings 7 of length d,
we let p; s(7) = 0;,5(Ps—1(7)), and choose some string v of a fresh large length which
extends 7 but does not extend any string in dom ®5_; which properly extends T,
and set g; s(7) = v and ®5(v) = fi s(Ps—1(7)). We say that we act for R; at stage
s. We reset all tests ¢; for j > 4, and empty all sets C'y for f > i. We proceed to
the next stage.

s =4n + 2 for some n € w:

Let e and m be such that n = {e,m). If A; does not extend some string in
Ce¢ s—1, then we do the following. Suppose d is the length of the longest string in
Ce’sfl. Let

I =max{y : (Vo <y)As(x) = Vo (Ps_1(45)) () }.

If I > d, then let o < A4 be some string in the domain of ®,_; which is of length
greater than [, and such that [P, ;(®(«))| = I. Let o be the sibling of ¥.(P(a)),

32 MICHAEL MCINERNEY AND KENG MENG NG

and let v be some string of a fresh large length which extends o but does not extend
any string in dom ®,_; which properly extends o. We enumerate v into C,, and
we define ®5(y) = ®(«). We say that we act for Q. at stage s. We reset all tests
t; for j > e, and empty all sets Cy for f > e. We proceed to the next stage.

s =4n + 3 for some n € w:

Let ¢ and m be such that n = (i, m). If A; does not meet range f; s, then we do
the following. For all strings 7 such that p; s_1(7) < 00, if ®(g; s—1(7)) # fi.s(D(7)),
then we choose some string v of a fresh large length which extends 7 but does not
extend any string currently in the domain of ® which properly extends 7, and set
9is(7) =v and O4(v) = f; s(Ps_1(7)). If we do update the arrow for some such 7,
we reset all tests t; for j > ¢, and empty all sets C¢ for f > 7. We say that we act
for R; at stage s. We proceed to the next stage.

s = 4n for some n > 0:

Let oo < A be greatest such that oo € dom ®5_;. We choose some string 8 < A,
of a fresh large length which does not extend any string in dom ®,_; which properly
extends «, and set ®,(8) = ®(«) "0. We proceed to the next stage.

End of Construction

Lemma 6.19. The construction can be successfully carried out.

Proof. We show by induction on the stage number that at all stages s and for all
strings T € 2<%, there is a string v which extends 7 but does not extend any string
in dom ®,_; that extends 7. Note that at any stage ¢, if we define ®.(J) for some
string 4, then § is chosen to be of a fresh large length. Therefore, the domain of ®
consists of strings which are of different lengths. Then we may take v to be some
string which extends 7, and such that no initial segment of v of length greater than
|7| is already in dom ®,_;. O

Lemma 6.20. ® is consistent.

Proof. We show this by induction on the stage number. We define ®(\) = X at
stage 0. Therefore, ®(is consistent. Suppose by induction that ®4_; is consistent.
We consider the different ways in which we can act at stage s, which depend on the
value of s mod 4.

First suppose that s = 1 mod 4 and that we define ®4(v) for some v extending
a string 7 as in the construction. By the choice of the string v, the only strings
in dom ®,_; which are comparable with v are the initial segments of 7. Given our
inductive assumption, we only need to show that ®4(v) %= ®(7). This follows from
the fact that for all strings o, f; (o) = 0.

Now suppose that s = 2 mod 4 and that we define ®4(~y) for some v as in the
construction. Let o and o be as in the construction. By the choice of v, the only
strings in dom ®,_; which are comparable with ~ are the initial segments of 0. Let
B be the greatest initial segment of o which is in dom ®;_;. Given our inductive
assumption, we only need to show that ®4(y) = ®(5). We set 4(y) = (), and by
the choice of @ and our inductive assumption, we have o > 3 and so ®(a) = ®(5).

If s = 3 mod 4, then ®, remains consistent by the same proof as when s = 1
mod 4, and it is easy to see that ®4 remains consistent if s = 0 mod 4.

O

MULTIPLE GENERICITY: A NEW TRANSFINITE HIERARCHY OF GENERICITY NOTIONS$3

Lemma 6.21. ®(A) is total.

Proof. There are infinitely many stages of the form 4n for some n > 0, and at each
such stage, we make a definition for ®. Therefore, dom ® is an infinite c.e. set of
strings. We show that A cannot avoid dom ®. Suppose for contradiction that there
is some 7 < A such that no extension of 7 is in dom ®. Let ¢ be such that A, > 7
for all t > s. Then at some stage u > t of the form 4n for some n > 0, we will
enumerate some extension of 7 into dom ®. This is a contradiction. As A is weakly
a-change generic, it is 1-generic, and so must meet dom ®. In fact, A must meet
dom @ infinitely many times, which is sufficient to show that ®(A) is total. O

Lemma 6.22. Fvery R- and Q-requirement is met.

Proof. Let i be such that f; is a total a-change test. Assume by induction that
we do not act for any requirement of stronger priority than R; after stage s. Then
the test ¢; is never reset after stage s. We assume for contradiction that ®(A) does
not meet range f;. Then because f; is a total test and by the previous lemma, we
will act at infinitely many stages of the form 4{i,m) + 1 for some m € w, and ¢;
will too be a total a-change test. As A is weakly a-change generic, A must meet
the range of t;. By the action taken at stages of the form 4{i, m) + 3 for some
m € w and the definitions we make for the functional ®, if 7 < A is such that
A > limg g; (7), then lim, f; o(®(7)) < ®(A). Therefore, ®(A) does meet range f;,
which is a contradiction.

Now assume by induction that we do not act for any requirement of stronger
priority than . after stage s. Then the set C. is never reset after stage s. Assume
for contradiction that ¥.(®(A)) = A. Then we will act at infinitely many stages
of the form 4 {4, m) + 2 for some m € w, and the set C, will be infinite. We show
that A cannot avoid the set of strings C,. Suppose for contradiction that 7 < A is
such that there is no extension of 7 in C,. Let ¢t be such that A, > 7 for all u > .
Note that C, must contain strings which are arbitrarily long. Let u > t be a stage
where we enumerate some string v of length strictly greater than |7| into C.. Then
~ > 7, which is a contradiction. It is clear by construction that if A meets C,, then
U, (P(A)) # A. As A is weakly a-change generic, it is 1-generic, and so must meet
C.. This is a contradiction.

O

O

Using the approach from Proposition 2.10, we can modify the proof of the pre-
vious theorem to show the following.

Theorem 6.23. Let o < g9 be a power of w and let a <t 0’ be a uniformly o-
change generic degree. Then there is a uniformly a-change generic degree b <r a.

7. FURTHER DIRECTIONS
In [21], we show the following.

Theorem 7.1. Let a < g9 be a power of w. Then there is a AY Turing degree
which is weakly a-change generic but not a-change generic.

This theorem, together with Theorem 4.16 and Theorem 5.4 shows that the sep-
aration of each level in the hierarchy of multiple genericity notions can be witnessed
by A Turing degree.

34 MICHAEL MCINERNEY AND KENG MENG NG

The main open question left from the topics we have investigated in this paper
is whether the a-generic degrees are downwards dense below A9 a-change generic
degrees. We conjecture that this fails in the strongest possible sense.

Conjecture 7.2. For every a < €g which is a power of w, there is an «a-change
generic degree a <1 @' which bounds a noncomputable degree b which does not
bound a uniformly w-change generic degree.

This would show that a conjecture of Schaeffer [24] holds. The first author’s thesis
[20] contains some discussion of the basic strategy for the previous conjecture.

For any notion of randomness or genericity, it is important to determine its
associated lowness notion. We can define a real being low for any of the notions of
multiple genericity by relativising the definition of an a-change test. In fact, there
are two ways we could relativise an a-change test to an oracle A. We could fully
relativise by allowing both sequences of functions {(fs)s<., and {0s)s<, access to
A, or we could instead partially relativise by allowing only {fs)s<. access. Liang
Yu, in personal communication with the authors, has pointed out that Shore and
Slaman’s extension [25] of the Posner-Robinson theorem to all computable ordinals
should show that for any a < €¢, the reals which are low for a-change genericity
are exactly the computable reals.

Another basic question is whether van Lambalgen’s theorem holds for these
notions. We suspect that it would fail for the uniformly and weakly a-change
generic degrees, but hold for the a-change generic degrees.

More generally, it would be interesting to see how these new notions refine the
results of [1] and [2] regarding typical behaviour for generic degrees. Our investi-
gation into downward density is an example of this.

Other possible directions include interaction with the computably bounded ran-
doms of [3], and lattice embeddings below multiply generic degrees.

REFERENCES

[1] George Barmpalias, Adam Day, and Andy Lewis-Pye. The typical Turing degree, Proceedings
of the London Mathematical Society, 109(1), 1-39, 2014.

George Barmpalias and Andy Lewis-Pye. The information content of typical reals, in Tur-
ing’s Ideas - Their Significance and Impact, G. Sommaruga, T. Strahm (eds.), Birkhauser /
Springer, Basel, 2014.

Paul Brodhead, Rod Downey, and Keng Meng Ng. Bounded randomness. M.J. Dinneen et al.
(Eds.), Workshop on Theoretical Computer Science 2012 (Calude Festschrift), LNCS 7160,
59-70. Springer, Heidelberg, 2012

Chi Tat Chong and Rod Downey. Minimal degrees recursive in 1-generic degrees, Annals of
Pure and Applied Logic, 48, 215-225, 1990.

Chi Tat Chong and Carl Jockusch. Minimal degrees and 1-generic sets below 0’ in Borger
E., Oberschelp W., Richter M.M., Schinzel B., Thomas W. (eds), Computation and Proof

Theory. Lecture Notes in Mathematics, vol 1104. Springer, Berlin, Heidelberg, 1984.

[6] Rod Downey and Amy Gale. On genericity and Ershov’s hierarchy. Mathematical Logic
Quarterly, vol. 47, 161-182, 2001.

[7] Rod Downey and Noam Greenberg. Pseudo-jump inversion, upper cone avoidance, and strong
jump-traceability. Advances in Mathematics, 237 (2013), 252-285.

[8] Rod Downey and Noam Greenberg. A transfinite hierarchy of lowness notions in the com-
putably enumerable degrees, unifying classes, and natural definability. Annals of Mathematics
Studies, 2020.

[9] Rod Downey and Denis Hirschfeldt. Algorithmic Randomness and Complezity. Theory and
Applications of Computability. Springer, New York, 2010.

[10] Rod Downey, Denis Hirschfeldt, Andre Nies and Frank Stephan. Trivial reals. Proceedings of
the 7th and 8th Asian Logic Conferences, (2003), 103-131.

[2

3

[4

[5

MULTIPLE GENERICITY: A NEW TRANSFINITE HIERARCHY OF GENERICITY NOTIONS$5

(11]

(12]

(13]
(14]

[15]

(16]
(17)
(18]

[19]
20]

21]
(22]

23]
24]

[25]

SIN

Rod Downey, Carl Jockusch, and Michael Stob. Array nonrecursive sets and multiple per-
mitting arguments, in Recursion Theory Week. Proceedings of the Conference Held at the
Mathematisches Forschungsinstitut, Oberwolfach, March 19 25, 1989, K. Ambos-Spies, G.
H. Miiller, and G. E. Sacks, editors, volume 1432 of Lecture Notes in Mathematics, pages
141-174. Springer, Berlin, 1990.

Rod Downey, Carl Jockusch, and Michael Stob. Array monrecursive sets and genericity, in
Computability, Enumerability, Unsolvability: Directions in Recursion Theory, Edited by S.
B. Cooper, T. A. Slaman, and S. S. Wainer, pages 93-105, 1996.

Rod Downey and Satyadev Nandakumar. A weakly-2-generic which bounds a minimal degree.
The Journal of Symbolic Logic, 84(4), 1326-1347, 2019.

Christine Haught. The degrees below a 1-generic degree < 0, The Journal of Symbolic Logic,
51(3), 770-777, 1986.

Carl G Jockusch, Jr. Degrees of generic sets. In Recursion Theory: its Generalisations and
Applications, Cambridge University Press, London Mathematical Society Lecture Note Series,
110-139, 1980.

Carl G Jockusch, Jr. and David Posner. Double jumps of minimal degrees. The Journal of
Symbolic Logic, 43(4), 715-724, 1978.

Masahiro Kumabe A 1-generic degree which bounds a minimal degree. The Journal of Sym-
bolic Logic, 55(2), 733-743, 1990.

Stuart Kurtz. Randomness and genericity in the degrees of unsolvability. PhD thesis, Uni-
versity of Illinois, Urbana-Champaign, 1981.

Stuart Kurtz. Notions of weak genericity. The Journal of Symbolic Logic, 48, 764770, 1983.
Michael McInerney. Topics in algorithmic randomness and computability theory. PhD thesis,
Victoria University of Wellington, 2016.

Michael McInerney and Keng Meng Ng. Separating weak a-change and a-change genericity,
submitted

Andre Nies. Lowness properties and randomness. Advances in Mathematics, 197 (2005), 274—
305.

Andre Nies. Computability and Randomness. Oxford University Press, 2009.

Benjamin Schaeffer. Dynamic notions of genericity and array noncomputability. Annals of
Pure and Applied Logic, vol. 96, 37-69, 1998.

Richard A. Shore and Theodore A. Slaman. Defining the Turing jump. Math. Res. Lett.,
6(5-6) : 711-722, 1999.

SCHOOL OF PHYSICAL AND MATHEMATICAL SCIENCES, NANYANG TECHNOLOGICAL UNIVERSITY,
GAPORE

	1. Introduction
	2. Background and definitions
	3. A hierarchy of genericity notions
	4. Domination properties and multiple genericity
	5. C.e. degrees computing multiply generics
	6. Downward density
	7. Further directions
	References

