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Abstract. We introduce a transfinite hierarchy of genericity notions stronger

than 1-genericity and weaker than 2-genericity. There are many connections
with Downey and Greenberg’s hierarchy of totally α-c.a. degrees [8]. We give

several theorems concerning the strength required to compute multiply generic

degrees, and show that some of the levels in the hierarchy can be separated, and
that these separations can be witnessed by a ∆0

2 degree. Finally, we consider

downward density for these classes.

1. Introduction

The notions of measure and category on the real line give rise to different ways
in which we might think of a real number as being typical. In computability theory,
we are interested in studying these classical notions in the effective setting. With
respect to effective measure, the typical reals are the algorithmically random reals,
where a huge body of recent research is devoted to studying the different properties
of algorithmic randomness. Two books [23, 9] have recently appeared collecting
some of this work. In particular there have been various papers exploring the
interactions between classical Turing degrees and algorithmic randomness [1, 2, 22,
10, 7], and the different structural properties possessed by the Turing degrees of
random reals.

The concern of this paper is to follow up on the more neglected concept of typ-
icality: effective category. The reals with are typical with respect to category are
known as Cohen generic, or simply generic. Intuitively speaking, a (effectively)
generic real is one that is constructed step by step, where at each step we specify
more of a finite initial segment of the real by meeting the next requirement. The re-
quirements are usually described by a sequence of effective topological descriptions,
and since any sufficiently generic real (instead of the one explicitly constructed)
will also meet all the requirements, this class of constructions became known as the
effective analogue of Cohen’s construction.

The most commonly studied notions of genericity are the classes of n-generic sets,
for n > 1. Though originally formulated in terms of forcing n-quantifier arithmetic
sentences, we briefly recall the more common definition given by Jockusch in [15].
Let S be a set of finite binary strings, and A a subset of natural numbers, which
we think of as an infinite binary sequence. We say that A meets S if there is some
σ ă A such that σ P S, and A avoids S if there is some σ ă S such that no
extension of σ is in S. Then A is said to be n-generic if for every Σ0

n set of strings
S, A either meets or avoids S.
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These classes form a proper hierarchy: for all n > 1, the n-generic sets properly
contain the n` 1-generic sets. This was later refined by Kurtz [18] who introduced
the weakly n-generic sets. We say that a set of strings S is dense if every finite
binary string has an extension in S. Then a set is weakly n-generic if it meets
every dense Σ0

n set of string. Kurtz [18] showed that for all n > 1, the n-generic
sets properly contain the weakly n ` 1-generic sets, which properly contain the
n` 1-generic sets. These proper containments even hold for Turing degrees, where
a Turing degree is (weakly) n-generic if it contains a (weakly) n-generic set.

Most of the interest in genericity occurs at the levels n “ 1 and n “ 2. Even at
these low levels, there is a large difference in the behaviour of 1-generic and 2-generic
sets. For example, the class of 1-generic sets has measure 1, whereas the class of
2-generic sets has measure 0. As another example, the 2-generic sets are downward
dense 1 below 2-generic sets, whereas this fails in general for 1-generics. Intuitively,
typical behaviour seems to start with 2-genericity, but can sometimes fail at the
level of 1-genericity. Many such results for genericity, as well as randomness, are
given in [1], and the survey article [2].

Given this, it would seem interesting to develop notions of genericity which
are stronger than 1-genericity, but weaker than 2-genericity. Several such notions
already exist, though they have not received much attention. The most well-known
is pb-genericity, introduced by Downey, Jockusch, and Stob in [12]. Consider a
total function f : 2ăω Ñ 2ăω for which there is a total computable function g :
2ăω ˆ ω Ñ 2ăω and primitive recursive function p : ω Ñ ω such that

(1) lims gpσ, sq “ fpσq,
(2) gpσ, sq < σ, and
(3) |ts P ω : gpσ, s` 1q ‰ gpσ, squ| ă ppσq

for all σ P 2ăω and s P ω. We say that the set A is pb-generic if it meets the range
of all such functions f .

Suppose that we are given functions f, g, and p as above, and that we are trying
to construct a real A to meet the range of f . As usual, we construct A as the
limit of a computable sequence of approximations As for s P ω. Say that we have
decided by stage s0 that we would like σ to be an initial segment of A. Then for A
to meet the range of f , at all stages s > s0, we would simply let As extend gpσ, sq.
Although we do not know what gpσ, sq may be (except that it must extend σ), we
do know that after stage s0, we need to change our approximation to A at most
ppσq many times in order to meet the range of f . The crucial feature here is that p
is primitive recursive. We can think of the bound ppσq as being given “in advance”
– we do not need to perform an unbounded search in order to compute ppσq, and so
we can, for instance, organise permission before the construction begins. Indeed, it
is shown in [12] that every array noncomputable degree computes a pb-generic set.

The first way in which we may generalise pb-genericity is by replacing the prim-
itive recursive function p with a total computable function h. This notion was
called c-genericity by Schaeffer [24], though we will refer to it as weak ω-change
genericity. Here, the bound is no longer given in advance, but can be thought of as
given during the construction: the bound is only declared at the stage s at which
hspσq Ó. As we show in Theorem 4.16, there is an array noncomputable degree
which cannot compute a weakly ω-change generic degree. In order for a degree to
compute a weakly ω-change generic degree, it must be not ω-c.a. dominated, which

1see Section 6 for definitions and more results along these lines
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can be thought of as a non-uniform version of array noncomputability. We give the
definition for this and other notions related to domination in Section 4.

Note that by properties (1) and (2) and the fact that f is total, f must have
dense range. Another way in which we may generalise pb-genericity is to consider
how the function f might be partial, so that its range is not necessarily a dense
set of strings. We must somehow still track the changes in the approximation for
those inputs where f is actually defined. We can do this by instead requiring the
functions f and g as above to be total, but allowing the bounding function h to
be partial computable. We still insist on properties (1) and (2), and that hpσq
bounds the number of changes in the approximation to fpσq for those strings σ
with σ P domh. Then given such functions, we can consider the “range” of the
triple xf, g, hy to be the set of all strings fpσq where σ P domh. We say that a set
is ω-change generic if it either meets or avoids the range (in this sense) of every
such triple.

There is no reason for us to restrict ourselves to a computably bounded number
of mind-changes. In [8], Downey and Greenberg extend the notion of an ω-c.a. func-
tion, that is, a function which can be computably approximated with a computable
number of mind-changes, to α-c.a. functions, for ordinals α 6 ε0. Though there are
many details which are needed to properly define this concept, roughly speaking,
the approximation is equipped with a sequence of functions os : ω Ñ α such that
if the approximation for input n changes at stage s, then we have ospnq ă os´1pnq.
This allows us to track the changes in the approximation. We make use of this idea
for the functions g which approximate the functions f above. This leads to a trans-
finite hierarchy of genericity notions. We will show that pb-genericity coincides
with the first notion in our hierarchy that is stronger than 1-genericity.

Downey and Greenberg [8] also introduce some domination properties in order to
generalise the definition of array computability. We show that there are many deep
and intricate connections between these domination properties and the hierarchy
of genericity notions. These greatly extend the fact that every degree bounds a pb-
generic if and only if it is array noncomputable. Our results rely on a fine analysis
of the forcing and permitting constructions which can be carried out below a degree
with some such domination property. We explore this in Sections 4 and 5. Together
with the results from [21], the sequel to the current article, we show that our results
are as tight as possible with respect to these notions, which gives a separation of
each of the genericity notions in our hierarchy.

2. Background and definitions

We first cover the necessary material from [8] to work with a large collection of
ordinals α. We refer the reader to Chapter 2 of [8] for more details.

Recall that every ordinal α can be uniquely expressed as the sum

ωα1n1 ` ω
α2n2 ` ¨ ¨ ¨ ` ω

αknk

where ni ă ω are nonzero and α1 ą α2 ą ¨ ¨ ¨ ą αk are ordinals. This is the Cantor
normal form of α. Recall also that

ε0 “ sup
!

ω, ωω, ωω
ω

, ωω
ωω

, . . .
)

is the least ordinal γ such that ωγ “ γ, so for all α ă ε0, every ordinal appearing
in the Cantor normal form of α is strictly smaller than α.
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Let R “ pR,6Rq be a computable well-ordering of a computable set R, and
let | ¨ | : R Ñ otppRq be the unique isomorphism between R and its order-type.
The pullback to R of the Cantor normal form function is the function nfR whose
domain is R and is defined by letting

nfRpzq “ xpz1, n1q, pz2, n2q, . . . , pzk, nkqy

where ni ă ω are nonzero, zi P R, z1 ąR z2 ąR ¨ ¨ ¨ ąR zk, and

|z| “ ω|z1|n1 ` ω
|z2|n2 ` ¨ ¨ ¨ ` ω

|zk|nk.

Definition 2.1 ([8]). A computable well-ordering R is canonical if its associated
Cantor normal form function nfR is also computable.

It is shown in [8] that for every ordinal α 6 ε0 there is a canonical computable
well-ordering of order-type α, and further that any two canonical computable well-
orderings of order-type α are computably isomorphic. We therefore identify each
ordinal α 6 ε0 with a canonical computable well-ordering of order-type α.

With all this in place, we are now able to give the main definitions of this paper.

Definition 2.2. Let α 6 ε0, and let 8 denote the greatest element of the linear
ordering α ` 1. An α-change test is a sequence xfs, osysăω of pairs of uniformly
computable functions fs : 2ăω Ñ 2ăω and os : 2ăω Ñ α ` 1 such that for all
σ P 2ăω and s P ω,

‚ fspσq < σ,
‚ os`1pσq 6 ospσq, and
‚ if fs`1pσq ‰ fspσq, then os`1pσq ă ospσq.

For a test xfs, osysăω, we let the range of the test be

range xfs, osysăω “ tlim
s
fspσq : lim

s
ospσq ă 8u.

We will usually write range f for this set.

We use the term test in analogy with randomness tests. We may occasionally
refer to fspσq as the arrow for σ at stage s in the test xfs, osysăω. In α-change
tests that we construct, we may say that we update the arrow for σ at stage s if
fspσq ‰ fs´1pσq.

Proposition 2.3. There is an effective list of all α-change tests.

Proof. We follow the proof of proposition 1.7 from [8]. There exists an effective
list xhs,msysăω of all pairs of partial computable functions where for all s P ω,
hs : 2ăω Ñ 2ăω andms : 2ăω Ñ α, and furthermore, that if hspσqÓ, then hspσq < σ.
We define an effective list xfs, osysăω as follows. Let σ P 2ăω. We let f0pσq “ σ
and o0pσq “ 8. Now let s ą 0. We let tspσq be the greatest t 6 s such that for all
r 6 t,

‚ at stage s we see that hrpσqÓ and mrpσqÓ,
‚ mrpσq ă 8, and if r ą 0, then mrpσq 6 mr´1pσq,
‚ if r ą 0 and hrpσq ‰ hr´1pσq then mrpσq ă mr´1pσq.

If there is no such t, then we leave tspσq undefined. If tspσq is defined, then we
let fspσq “ htspσqpσq and ospσq “ mtspσqpσq. If tspσq is not defined, then we let
fspσq “ σ and ospσq “ 8.

�
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Definition 2.4. Let α 6 ε0 and let a be a Turing degree. We say that a is α-change
generic if there is a set A P a which meets or avoids the range of all α-change tests.

For α “ ω, this notion is equivalent to the definition of ω-change genericity given
in the introduction. We now work towards defining the weak version of this notion.

Definition 2.5. Let xfs, osysăω be an α-change test. We say that xfs, osysăω is
total if for all σ P 2ăω, lims ospσq ă 8.

Proposition 2.6. Let α 6 ε0. Then a set A meets the range of every total α-change
test if and only if it meets the range of every α-change test with dense range.

Proof. For the backwards direction, suppose A meets the range of every α-change
test with dense range, and let xfs, osy be a total α-change test. Then for all σ P 2ăω,
lims fspσq is in the range of the test, and lims fspσq < σ. So the range is dense.

For the forwards direction, suppose A meets the range of every total α-change
test, and let xfs, osy be an α-change test with dense range. We define a test xgs, psy
as follows. Let g0pσq “ f0pσq and p0pσq “ o0pσq for all σ. Given gspσq and
pspσq, if pspσq ă 8 and at some previous stage t ą 0 we set gt`1pσq “ ft`1pτq
for some τ , then we let gs`1pσq “ fs`1pτq and ps`1pσq “ os`1pτq. Otherwise, if
there is some τ < σ such that os`1pτq ă 8, then we choose the least such τ , and
let gs`1pσq “ fs`1pτq and ps`1pσq “ os`1pτq. Then because xfs, osy has dense
range, xgs, psy will be a total test. Therefore A meets the range of xgs, psy, and by
construction, A meets the range of xfs, osy. �

Definition 2.7. We say that a is weakly α-change generic if there is a set A P a
which meets the range of all total α-change tests.

We would now like to see whether we can give a definition of pb-genericity along
these lines, and if possible, extend it to all ordinals α 6 ε0. We follow the approach
taken by Downey and Greenberg in their definition of the uniformly totally α-c.a.
degrees (see Section 3.3 of [8]).

Definition 2.8. Let h : 2ăω Ñ α be a total computable function. We say that the
α-change test xfs, osysăω is h-bounded if for all σ P 2ăω and s P ω, if ospσq ă 8,
then ospσq 6 hpσq.

Definition 2.9. Let 6L denote the usual length-lexicographic ordering on 2ăω.
We say that h : 2ăω Ñ α is an α-order function if h is total and computable with
range cofinal in α, and such that if σ 6L τ , then hpσq 6 hpτq.

Proposition 2.10. Let α 6 ε0 and let h1, h2 : 2ăω Ñ α be α-order functions. Then
a Turing degree contains a set which meets all total h1-bounded α-change tests if
and only if it contains a set which meets all total h2-bounded α-change tests.

Proof. It suffices to show that given some set A which meets all total h1-bounded
α-change tests, there is some B 6T A which meets all total h2-bounded α-change
tests. We construct a Turing functional Γ such that ΓpAq is the desired set B.

We in fact construct a truth table functional Γ. We define the function h´1
2 :

ω Ñ ω as follows. For any n P ω, let h´1
2 pnq be the least m P ω such that

minth1pσq : |σ| “ m u > maxth2pτq : |τ | “ n u.

Then h´1
2 is total and computable because h1 and h2 are α-order functions. Because

h2 has range cofinal in α, h´1
2 will have range cofinal in ω, and so we may assume

that h´1
2 is strictly increasing. We may also assume that h1pλq > h2pλq.
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We define Γ recursively as follows. Let Γpαq “ λ for all strings α of length
h´1
2 p0q, where λ is the empty string. Now assume that we have defined Γpαq for all

strings α of length h´1
2 pnq. Then for any string α1 of length h´1

2 pn ` 1q, let α be
the initial segment of α1 of length h´1

2 pnq. If α1 < αˆ0, then we let Γpα1q “ Γpαqˆ0,
and if α1 < αˆ1, then we let Γpα1q “ Γpαqˆ1. It is immediate that Γ is consistent
and onto 2ăω. We extend the domain of Γ consistently so that its domain is 2ăω.

We now show that ΓpBq meets all total h2-bounded α-change tests. Suppose
xfs, osysăω is such a test. We define a total h1-bounded α-change test xgs, psysăω
such that if A meets range g, then ΓpAq meets range f .

For any σ, we set gspσq “ σ and pspσq “ 8 until we see a stage t where otpΓpσqq ă
8. We then let gtpσq be some string extending σ such that Γpgtpσqq “ ftpΓpσqq and
ptpσq “ otpΓpσqq. If at some later stage t1 we see that ft1pΓpσqq ‰ ft1´1pΓpσqq, then
we set gt1pσq to be some string extending σ such that Γpgt1pσqq “ ft1pΓpσqq and
pt1pσq “ ot1pΓpσqq. By the definition of h´1

2 and Γ, xgs, psysăω is an h1-bounded
test, and it is total because xfs, osysăω is total.

�

Given the previous proposition, we are able to make the following definition.

Definition 2.11. We say that a is uniformly α-change generic if for all (some)
α-order functions h, there is a set A P a such that A meets the range of all total
h-bounded α-change tests.

We show that the notions of uniform ω-change genericity and pb-genericity are
equivalent up to Turing degree in Theorem 3.2.

It is worthwhile to note the following simple proposition.

Proposition 2.12. Let α 6 ε0, let ν P 2ăω, and let xfs, osysăω be an α-change
test. Then if there is no τ < ν and no s P ω such that fspτq < ν, then any set
A ą ν avoids range f .

Proof. We have lims fspσq < σ for all σ such that lims ospσq ă 8. Then by assump-
tion, the only strings in range f which extend ν are those of the form lims fspρq
for some ρ 4 ν. As there are only finitely many such strings, any set A such that
A ą ν avoids range f . �

3. A hierarchy of genericity notions

It is clear that for any α 6 ε0 and any Turing degree a that α-change generic
implies weakly α-change generic implies uniformly α-change generic. We show that
there is a transfinite hierarchy of these genericity notions, as in [8].

weakly 2-generic

ó

...

ó

ω2-change generic

ó

weakly ω2-change generic

ó

uniformly ω2-change generic
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ó

ω-change generic

ó

weakly ω-change generic

ó

uniformly ω-change generic ” pb-generic

ó

1-change generic ” 1-generic

ó

weakly 1-generic

We will show that the hierarchy collapses to the levels above, that the series
of implications holds, and furthermore, that each implication is strict and can be
witnessed by a ∆0

2 Turing degree. More precisely, we have the following theorem.

Theorem 3.1. Let α 6 ε0.

(i) If α is not a power of ω, and β is such that α P pωβ , ωβ`1q, then the classes
of degrees which are ωβ-change generic, uniformly α-change generic, weakly
α-change generic, and α-change generic, are all equal.

(ii) If α is a power of ω, then if α “ ωβ, the class of degrees which are uniformly
ωβ-change generic is a proper subclass of the class of degrees which are
weakly ωβ-change generic, which is a proper subclass of the degrees which
are ωβ-change generic, which is a proper subclass of the degrees which are
uniformly ωβ`1-change generic. Moreover, these proper inclusions can be
witnessed by a ∆0

2 Turing degree.

We will refer generally to the notions of uniform α-change genericity, weak α-
change genericity, and α-change genericity as notions of multiple genericity.

We first show that our definitions align with the definitions of 1-genericity and
pb-genericity.

Theorem 3.2. A Turing degree is 1-change generic if and only if it contains a
1-generic set, and a Turing degree is uniformly ω-change generic if and only if it
contains a pb-generic set.

Proof. It is easy to see that 1-change tests are in correspondence with c.e. sets of
strings, and so the first statement holds.

Now suppose that the degree a is uniformly ω-change generic. Let h : ω Ñ ω be
some computable order function which dominates all primitive recursive functions,
and let A P a be such that A meets the range of all h-bounded ω-change tests. We
show that A is pb-generic. Let the functions f , g, and p be as in the discussion of
pb-genericity in the introduction. Then because h dominates p, we can produce an
h-bounded ω-change test whose range is equal to the range of f . Then as A meets
the range of this ω-change test, it meets the range of f .

For the opposite direction, suppose that the set A is pb-generic. The function p :
2ăω Ñ ω with ppσq “ |σ| is a primitive recursive ω-order function. Let xfs, osysăω
be a p-bounded ω-change test. We can present the range of this test as the range
of a function that can be approximated with mind-change function bounded by p.
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Then as A is pb-generic, it meets the range of this function, and so meets the range
of this test. �

The following lemma will be used used to prove Part (i) of Theorem 3.1. It is a
straightforward adaptation of Lemma 2.2 from [8] to α-change tests.

Lemma 3.3. Suppose γ 6 ε0. Then for all m P ω, if a set meets or avoids all
γ-change tests, it meets or avoids all γm-change tests.

Proof. Suppose Ameets or avoids all γ-change tests and that xfs, osy is a γm-change
test. We break the test xfs, osy up into m many γ-tests.

For every σ and s there is some unique k ă m such that ospσq P rγ ¨k, γ ¨ pk`1qq;
we denote this k by kspσq. We have ospσq “ γ ¨ kspσq ` βspσq for some βspσq ă γ.
For each k ă m, we define a γ-change test xgk,s, pk,sysăω. We let gk,spσq “ σ and
pk,spσq “ 8 until we see a stage t where ktpσq “ k. Then we define gk,tpσq “ ftpσq
and pk,tpσq “ βtpσq. If at some later stage u we see fupσq ‰ fu´1pσq and kupσq “ k,
then we define gk,upσq “ fupσq and pk,upσq “ βupσq.

Let k˚ be least such that for some σ and s, we have pk˚,spσq ă 8. We know
that A meets or avoids xgk˚,s, pk˚,sy. By the choice of k˚, A must meet or avoid
xfs, osy. �

It is immediate that the previous proposition holds with total tests and/or tests
which are h-bounded for some order function h. Part (i) of Theorem 3.1 now
follows: there is some m P ω such that α 6 ωβm. Then if a set A is ωβ-change
generic, it is ωβm-change generic, and so α-change generic. We noted before that
each α-change generic degree is weakly α-change generic and uniformly α-change
generic.

Proposition 3.4. Let α 6 ε0. If a Turing degree is uniformly pα ` 1q-change
generic, then it is α-change generic.

Proof. Suppose that a is uniformly pα` 1q-change generic and let h : 2ăω Ñ α` 1
be the pα`1q-order function with hpσq “ α for all σ P 2ăω. Let A P a be such that
A meets the range of all total h-bounded pα`1q-change tests. Let xfs, osysăω be an
α-change test. Then it is easy to check that xfs, osysăω is in fact a total h-bounded
pα` 1q-change test. Therefore A witnesses that a is α-change generic. �

With the previous proposition, we now see that the (non-proper) inclusions in
part (ii) of Theorem 3.1 hold. The fact that the inclusions are proper and can be
witnessed by ∆0

2 Turing degrees will be shown in Theorem 4.16, Theorem 5.4, and
in the main theorem of [21].

Finally, we show that the topmost implication in the diagram above holds.

Proposition 3.5. Let X be weakly 2-generic. Then for any α 6 ε0, X is α-change
generic.

Proof. Suppose xfs, osysăω is an α-change test. We define a dense Σ0
2 set S as

follows. For any string σ, we ask H1 whether there exists an s and a τ < σ such
that ospτq ă 8. There are two cases.

Case 1 : the answer is no. Then we enumerate every string τ < σ into S.
Case 2 : the answer is yes. Then let s be the least such, and let τ be the least

such for this s. Ask H1 whether there is a s1 ą s such that os1pτq ă ospτq. If
the answer is no, then we enumerate fspτq into S. If the answer is yes, we ask H1
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whether there is a s2 ą s1 such that os2pτq ă os1pτq, and act as we did before.
We eventually come to some stage where we enumerate some string into S which
is equal to limt ftpτq for some τ .

It is easy to see that S is dense. As X is weakly 2-generic, X meets S. Suppose
X extends the string χ P S. If χ was enumerated into S via Case 1, then there is no
extension of χ in range f , and so X avoids range xfs, osysăω. If χ was enumerated
into S via Case 2, then as noted above, χ is equal to limt ftpτq for some τ , and so
X meets range xfs, osysăω.

�

4. Domination properties and multiple genericity

In this section we begin to investigate the strength required to compute multiply
generic degrees. Our first result is the following simple but important theorem. As
no weakly 2-generic set can be ∆0

2, it shows that there is a degree separation of
each notion of multiple genericity from weak 2-genericity.

Theorem 4.1. For any α 6 ε0, H1 computes an α-change generic degree.

Proof. Let xxfi,s, oi,sysăωyiăω be an effective list of all α-change tests. We build a
set A by finite extension, computably in H1.

Construction

Stage 0 : Let A0 “ λ, the empty string.
Stage s, s > 1: Given As´1, we ask H1 whether there is some τ < As´1 and

t P ω such that os´1,tpτq ă 8. There are two cases
Case 1 : the answer is no. Then we let As “ As´1 and proceed to the next stage.
Case 2 : the answer is yes. Let τ be the least such, and let t be the least such

for this τ . We ask H1 whether there is a t1 ą t such that os´1,t1pτq ă os´1,tpτq. If
the answer is no, then we let As “ fs´1,tpτq and proceed to the next stage. If the
answer is yes, we askH1 whether there is a t2 ą t1 such that os´1,t2pτq ă os´1,t1pτq,
and act as we did before.

End of construction

If we act in Case 2 at stage s, then we will eventually define As “ fs´1,t1pτq
for some t1 such that limu fs´1,upτq “ fs´1,t1pτq, and proceed to the next stage.
This is because the number of t P ω such that fs´1,tpτq ‰ fs´1,t´1pτq is finite, as
the sequence xos´1,tpτqytăω is non-increasing in the ordinal α, and if fs´1,tpτq ‰
fs´1,t´1pτq, then os´1,tpτq ă os´1,t´1pτq.

Let A “
Ť

sPω As. It is clear that A either meets or avoids the range of each
α-change test, and so the degree of A is α-change generic.

�

Using the approach in the proof of the previous theorem, it is now straightforward
to modify the usual proof of the Friedberg jump inversion theorem (for example,
the one given in Section 2.16 of [9]) to show that jump inversion holds for multiply
generic degrees.

Theorem 4.2. For any α 6 ε0, if C >T H
1, then there is an α-change generic

degree a such that a1 ”T C.

For finer results than Theorem 4.1, we look at the domination properties intro-
duced in [8]. We give the required definitions, and again refer the reader to [8] for
details.
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Let R “ pR,6Rq be a computable well-ordering of a computable set R. An R-
computable approximation of a function f is a computable approximation xfsysăω
of f , equipped with a uniformly computable sequence xosysăω of functions from ω
to R such that for all x and s:

‚ os`1pxq 6R ospxq, and
‚ if fs`1pxq ‰ fspxq, then os`1pxq ăR ospxq

Definition 4.3 ([8]). A function f : ω Ñ ω is R-computably approximable (or
R-c.a.) if it has an R-computable approximation.

Definition 4.4 ([8]). Let α 6 ε0. A function f is α-c.a. if it is R-c.a. for some
(all) canonical computable well-ordering R of order-type α.

We will have occasional use for the following definition as well.

Definition 4.5 ([8]). Let R be a computable well-ordering. An pR`1q-computable
approximation xfs, osy is tidy if:

‚ for all n, f0pnq “ 0, and
‚ for all n and s, if ospn` 1q P R then ospnq P R.

Recall that if C is a class of functions from ω to ω, then a Turing degree a is
C-dominated if every function g P a (or equivalently g 6T a) is dominated by some
function f P C. We say that a Turing degree a is uniformly C-dominated if there is
some function f P C such that every function g P a is dominated by f .

Definition 4.6 ([8]). A Turing degree is α-c.a. dominated if it is C-dominated,
and uniformly α-c.a. dominated if it is uniformly C-dominated, where C is the class
of all α-c.a. functions.

Note that a 0-dominated degree is also called hyperimmune-free.
These notions form a hierarchy as follows. It is easy to see that if α ă β, then

every α-c.a. function is β-c.a., and that for any class C, if a degree is uniformly
C-dominated, then it is C-dominated. Again, it is only possible for these notions to
differ at powers of ω. As our results refer to degrees which are not dominated in
some sense, we present the hierarchy as follows.

...

ó

not ω2-c.a. dominated

ó

not uniformly ω2-c.a. dominated

ó

not ω-c.a. dominated

ó

not uniformly ω-c.a. dominated

ó

not 0-dominated
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Downey and Greenberg show that this hierarchy is proper, and in fact the sep-
aration of each level can be witnessed by a c.e. degree (see Section 3.5 of [8]).

There seems to be a close connection between notions of genericity which involve
meeting dense sets of strings, and domination properties. For a Turing degree b,
we say that a Turing degree a is b-dominated if it is C-dominated, for C the class
of all functions computable in b. The first result in this direction is the following.

Theorem 4.7 ([18, 19]). For all n > 1, every weakly pn` 1q-generic degree is not
0pnq-dominated.

In fact, Kurtz showed ([18], see also Section 2.24 of [9]) that a degree is weakly
1-generic if and only if it is not 0-dominated.

The notion of array noncomputability was originally defined only for c.e. degrees
in [11], but was extended in [12] to the general degrees using a domination property.
In our terminology, a degree is array noncomputable if and only if it is not uniformly
ω-c.a. dominated.

Theorem 4.8 ([12]). Every array noncomputable degree computes a pb-generic set,
and every pb-generic set is of array noncomputable degree.

Stated another way, the previous theorem says that the upward closure (in the
Turing degrees) of the pb-generic sets is exactly the set of array noncomputable
degrees. We give analogous results for the uniformly α-change generic and weakly
α-change generic degrees.

Proposition 4.9. Suppose the Turing degree a computes a weakly α-change generic
degree. Then a is not α-c.a. dominated.

Proof. Suppose that the set A meets the range of all total α-change tests. We show
that the degree of A is not α-c.a. dominated. Then because the property of being
not α-c.a. dominated is upwards closed in the Turing degrees, the proposition will
hold.

Let xxfi,s, oi,sysăωyiăω be an effective list of all tidy pα` 1q-computable approx-
imations whose limits fi “ lims fi,s consist of all α-c.a. functions. Let pA be the
principal function of A. We show that if i is such that fi is a total function, then
there is some n P ω such that pApnq > fipnq.

For all i P ω, we define the α-change test xgi,s, pi,sysăω as follows. For all s P ω

and n P ω, if oi,spmq ă 8 for all m 6 n, then we define gi,spσq “ σ ˆ0fi,spnq and
pi,spσq “ oi,spnq for all strings σ of length n, and otherwise we define gi,spσq “ σ
and pi,spσq “ 8 for all strings σ of length n.

Let i be such that fi is a total function. Then using the fact that xfi,s, oi,sy
is a tidy pα ` 1q-computable approximation, it is straightforward to verify that
xgi,s, pi,sysăω is a total α-change test. Let σ be such that A ą lims gi,spσq. If σ has

length n, then we have lims gi,spσq “ σˆ0fipnq, and so pApnq > fipnq. �

Proposition 4.10. Suppose the Turing degree a computes a uniformly α-change
generic degree. Then a is not uniformly α-c.a. dominated.

Proof. Let h : ω Ñ α be some computable α-order function, and let xxfi,s, oi,sysăωyiăω
be an effective list of all tidy ph ` 1q-computable approximations whose limits
fi “ lims fi,s consist of all h-c.a. functions. The rest of the proof follows the proof
of the previous proposition. �
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To show that every degree with a certain domination property is able to compute
a multiply generic degree of a certain kind, we use forcing. These constructions can
be seen as refinements of the construction of Jockusch and Posner [16] who showed
that every degree which is not generalised low2 computes a 1-generic set.

Theorem 4.11. Every not α-c.a. dominated degree computes a weakly α-change
generic degree.

Proof. Let xxfi,s, oi,sysăωyiăω be an effective list of all α-change tests. For t P ω,
let

range fi,t “ tfi,tpσq : oi,tpσq ă 8u.

Let a be a not α-c.a. dominated degree, and let g 6T a be a function which is
not dominated by any α-c.a. function. We may assume that g is strictly increasing.
We build a set G by finite extensions σ0 4 σ1 4 ¨ ¨ ¨ . We say that e requires
attention at stage s if σs´1 does not meet range fe,gpsq, but there is some τ such
that oe,gpsqpτq ă 8 and fe,gpsqpτq ą σs´1.

Construction

Stage 0 : let σ0 be the empty string, and proceed to the next stage.

Stage s, s > 1:

Case 1 : there is some e 6 s which requires attention at stage s. We choose the
least such e, and the least such τ for this e. We let σs be the initial segment of
fe,gpsqpτq of length s. We say that we act for e at stage s. We proceed to the next
stage.

Case 2 : otherwise. We let σs “ σs´1ˆ0 and proceed to the next stage.

End of construction

The construction is carried out computably in g, and so G 6T a.

Lemma 4.12. G meets the range of every total α-change test.

Proof. Suppose that xfe,s, oe,sysăω is a total α-change test. Assume by induction
that we do not act for any d ă e after stage s˚.

We define a total function p : 2ăω Ñ ω as follows. Let ppσq be the least t such
that for all s > t, oe,spσq “ oe,tpσq. We claim that p is α-computably approximable.
Let tσ be the least stage t such that oe,tpσq ă 8. Let

pspσq “

"

tσ if s ă tσ
pµtqpoe,tpσq “ oe,spσqq if s > tσ

and let

uspσq “

"

oe,tσ pσq if s ă tσ
oe,spσq if s > tσ.

Then xps, usysăω is an α-computable approximation for p.
Let p1pnq “ max t ppσq : σ P 2n u. Then p1 is α-computably approximable too.

For p1spσq “ max t pspσq : σ P 2n u and u1spσq “ ‘tuspσq : σ P 2n u, we have that
xp1s, u

1
sysăω is an α-computable approximation for p1.

Therefore, the function g escapes domination by p1. Let t ą s˚ be least such
that gptq ą p1ptq. Note that for all s P ω, |σs| “ s. At stage t, we will act for e, and
we will continue to act for e at all subsequent stages until some stage t1 > t where
σt1 meets range fe.

�
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�

Theorem 4.13. Every Turing degree computes a weakly α-change generic if and
only if it is not α-c.a. dominated.

Proof. By Proposition 4.9 and Theorem 4.11. �

Theorem 4.14. Every not uniformly α-c.a. dominated degree computes a uni-
formly α-change generic degree.

Proof. Let h : 2ăω Ñ α be a computable α-order function, and let xxfi,s, oi,sysăωyiăω
be an effective list of all total h-bounded α-change tests.

We define a total function r : ω ˆ 2ăω Ñ ω as follows. Let rpe, σq be the least t
such that for all s > t, oe,spσq “ oe,tpσq. Then r is h-computably approximable and
so certainly α-computably approximable. Let r1pnq “ max t rpe, σq : e 6 n, |σ| 6
n u. Then r1 is α-computably approximable too.

Let a be a not uniformly α-c.a. dominated degree and let g 6T a be a function
which escapes domination by r1. Then as before, we run the construction from the
previous theorem to construct a set G 6 a. The proof that G meets the range of
every total h-bounded α-change test is straightforward.

�

Theorem 4.15. Every Turing degree computes a uniformly α-change generic if
and only if it is not uniformly α-c.a. dominated.

Proof. By Proposition 4.10 and Theorem 4.14. �

We are now able to give the first of our theorems which separate levels in the
hierarchy of multiple genericity notions.

Theorem 4.16. Let α 6 ε0 be a power of ω. Then there is a ∆0
2 Turing degree

which is uniformly α-change generic but not weakly α-change generic.

Proof. By Theorem 3.5(2) of [8], there is a c.e. degree a which is totally α-c.a.
but not uniformly totally α-c.a., and by Theorem 5.2 and Theorem 5.4 of [8], a is
α-c.a. dominated but not uniformly α-c.a. dominated. Then by Theorem 4.14, a
computes a uniformly α-change generic degree b. As a is α-c.a. dominated and
b 6T a, b is α-c.a. dominated. Then by Proposition 4.9, b cannot be weakly
α-change generic. �

5. C.e. degrees computing multiply generics

In terms of domination, the best result for computing 1-generics is that every
array noncomputable degree computes a 1-generic set. However, every noncom-
putable c.e. degree computes a 1-generic set. Therefore, the assumption that the
degree is c.e. provides extra strength. A similar situation occurs for the notions
of multiple genericity. If we assume that the degree is c.e., then we can improve
Theorem 4.11 to compute an α-change generic degree.

Theorem 5.1. Every not α-c.a. dominated c.e. degree computes an α-change
generic degree.

Proof. Let a be a not ω-c.a. dominated c.e. degree. Because a is a c.e. degree, by
Theorem 5.2 of [8], a is not totally α-c.a. Recall that this means that there is some
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function g 6T a which is not α-c.a. Let A P a be a c.e. set and let Γ be a Turing
functional such that ΓpAq “ g.

We first fix some technicalities. Suppose xΓsysăω is a computable enumeration
of Γ and xAsysăω is a computable enumeration of A. We assume that if ΓspAs, nqÓ,
then ΓspAs,mqÓ for all m ă n. From the computable enumerations of Γ and A,
we can produce a ∆0

2-approximation to g as follows. For all s, n P ω, if ΓspAs, nqÓ,
then we set gspnq “ ΓspAs, nq, and otherwise we set gspnq “ 0. If ΓspAs, nqÓ, then
as usual, we let γspnq be the length of the least α ă As such that Γspα, nqÓ. If
ΓspAs, nqÒ, then we let γspnq “ γspmq for m ă n greatest such that ΓspAs,mqÓ, or
γspnq “ 0 if there is no such m.

Let xfeyeăω “ xxfe,s, oe,sysăωyeăω be an effective list of all α-change tests. We
build a Turing functional ∆ and meet for every e P ω the requirement

Re : ∆pAq either meets or avoids range fe.

We begin by considering the strategy to satisfy the requirement Re in isolation,
and in the simplified case where for all σ P 2ăω and s P ω, if oe,spσq ă 8, then
oe,spσq “ 0. That is, range fe is simply a c.e. set of strings. At every stage of
the construction, we will have a finite sequence of natural numbers which we call
lengths. If li is the ith length in our sequence at stage s, then the ith substrategy
for Re will begin by looking for a string τ with τ ą ∆s´1pAsq � li and such that
oe,spτq ă 8. If we find such a τ (we say that li is realised), then we would like to
define ∆ such that ∆pAq ą fe,spτq, but may require changes in the approximation
to A in order to allow us to consistently make such a definition for ∆. We know
that A computes the function g which is not α-c.a. function, and so we look for
changes in A which are used to compute the various approximations gtpnq to gpnq.

More precisely, whenever a new length is defined, we assign to it a permitting
number ; in this instance we assign li the permitting number i. We will then grant
permission for li at stage s if we see that gspiq ‰ gs´1piq, and hence As � γs´1piq ‰
As´1 � γs´1piq. If permission is granted, then since xAsysăω is a computable
enumeration, for all t ă s and all s1 > s, we have that As1 � γs´1piq ‰ At � γs´1piq;
that is, the permission can never be retracted. Therefore, we are able to consistently
define ∆spAs � γs´1piqq “ fe,spτq, and Re will be permanently satisfied. As we may
never receive permission on any of the lengths already in our sequence, we choose a
fresh large number to be a new length, and assign it a permitting number. If there
are infinitely many realised lengths, none of which receive permission, then we derive
a contradiction to g being not α-c.a. as follows. Suppose li is realised at stage si. As
we do not receive permission for li after stage si, we know that the approximation
to gpiq cannot change past this stage. Thus we can computably bound the number
of times the approximation to gpiq can change, which is a contradiction. In fact, in
this simplified case, we have that A � γsipiq “ Asi � γsipiq for all i, which contradicts
A being noncomputable.

We now consider the general case, where we no longer necessarily have that
oe,spσq ă 8 implies oe,spσq “ 0. This will mean that a single length may require
multiple permissions, as we now discuss. We begin as above, with the length l0
with permitting number 0. Suppose at stage s, l0 is realized when we see that
there is τ ą ∆s´1pAsq � l0 with oe,spτq ă 8. We associate the string τ with the
length l0 by letting τ0 “ τ . As above, while we wait to receive permission for
l0, we will choose a new length l1 with permitting number 1. If we were to ever
receive permission for l0 at some later stage t, then we would define ∆t such that
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∆tpAtq ą fe,tpτ0q. In the simplified case from before, this action would have been
enough to permanently satisfy Re. Here, in the general case, at some later stage u
we may have that fe,upτ0q ‰ fe,tpτ0q, in which case Re would no longer appear to be
satisfied at stage u. In order to consistently define ∆ so that ∆pAq ą fe,upτ0q, we
may require another permission for l0. If there are infinitely many realised lengths,
none of which receive as many permissions as they require, then we show that we
can build an α-computable approximation for g, which is a contradiction.

Suppose that we do see the stage u as in the previous paragraph. We must decide
how to proceed. We request another permission for l0, and since l0 still has permit-
ting number 0, l0 will receive permission if we see a change in the approximation to
gp0q at some later stage. While waiting for l0 to receive permission, we must define
a new length, and assign it a permitting number. The first candidate we might
consider for the new length is the old length l1, which was defined earlier at stage
s. We would like to be able to argue that if the new length is never realised, then
∆pAq avoids range fe. However, we may have |fe,tpτ0q| ą l1, so if we use l1 for the
new length, we cannot make this argument. Therefore, we choose to clear l1 from
the sequence of lengths when l0 receives permission, and at stage u we will define
the new length to be a fresh large number. We write this now indexed by the stage
number as l1,u.

Now we must assign l1,u a permitting number. Again, the first candidate for the
permitting number of l1,u is the permitting number of the original l1, namely 1.
Recall that in order to show that we do eventually receive enough permissions for
some length, we must define an α-computable approximation, call it xhs, qsysăω,
for the function g. The values of qspnq will depend on the values of oe,spτiq, where
τi is the string found at the stage when li is realised. In particular, if the original
length l1 is realised at a stage t1 before we receive the first permission for l0, then
if τ1 is the string found at t1, we will define qt1p1q “ oe,t1pτ0q ‘ oe,t1pτ1q. However,
if l1,u is realised at some stage v ą u when we find the string τ1,v, we may not
be able to redefine qvp1q to incorporate the value oe,vpτ1,vq, because the sequence
xqspnqysăω must be non-increasing. We therefore must assign l1,u the permitting
number 2.

There is one last complication. At stage v, we have the lengths l0 and l1,u,
both waiting for permission, with permitting numbers 0 and 2, respectively. What
should we do if we see at some later stage w that gwp1q ‰ gw´1p1q? We would like
to use changes in the approximations to the values of gpnq, and so changes in A, as
much as possible. So it would be wasteful to not allow l0 to receive permission when
we see such a change in A. If we think in terms of the approximation xhs, qsysăω,
we must have lims hspnq “ gpnq for all n P ω. Our solution is to simply allow l0
to receive permission when we see a change in the approximation to either gp0q
or gp1q after stage t. In effect, the permitting number has become a permitting
interval. We ensure that if the natural number n is in the permitting interval of
some length at some stage, then at all later stages, it is in the permitting interval of
some (possibly different) length. Then the approximation xhs, qsysăω will correctly
approximate g. We now turn to the formal details for the construction.

At every stage s P ω and for every requirement Re, we may define the natural
number le,i,s for some i P ω. If le,i,s is defined, then we say that le,i,s is a length for
Re at stage s. If le,i,s is defined, then we will also have le,j,s defined for all j ă i. If
le,i,s is defined, then we may also define a string τe,i,s. If we say at stage s that we
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clear a length le,i,s´1, then we let le,i,s and τe,i,s be undefined. The requirement
Re is initialised at stage s by clearing all lengths for Re.

To every length le,i,s we associate a permitting interval Isple,i,sq. This is an
interval of natural numbers; its left end is fixed from when le,i,s is first defined, but
its right end may grow with time (but only finitely often). We say that le,i,s´1 is
permitted at stage s if le,i,s´1 is waiting for permission at stage s, and for some
n P Is´1ple,i,s´1q we have gspnq ‰ gs´1pnq.

We use the following priority ordering among the R-requirements:

R0 ă R1 ă R2 ă ¨ ¨ ¨ .

We say that Re requires attention at stage s if either

(1) le,0,s´1 is undefined,
(2) there is some length le,i,s´1 which is permitted at stage s,
(3) (a) we acted in Case 2 for Re for some le,i,t at some previous stage t,

(b) le,i,s´1 “ le,i,t and τe,i,s´1 “ τe,i,t, but
(c) fe,spτe,i,s´1q ‰ fe,tpτe,i,s´1q, or

(4) for some i such that le,i,s´1 is not realised at the beginning of stage s, there
is some τ such that τ < ∆s´1pAsq � le,i,s´1 and oe,spτq ă 8.

We note that the i as in Case 3 and Case 4 must be greatest such that le,i,s´1 is
defined.

Construction

Stage 0 : for every n P ω, we let ∆0pA0 � γ0pnqq “ 0n. We proceed to the next
stage.

Stage s, s > 1: we follow the instructions in Step 1 and Step 2, and then proceed
to the next stage.

Step 1

We choose the least e such that Re requires attention at stage s, act according
to the cases below, initialise all requirements of weaker priority than Re, and then
proceed to Step 2.

Case 1 : Re requires attention via (1) at stage s. We define le,0,s to be a fresh
large number and let Isple,0,sq “ t0u.

Case 2 : Re requires attention via (2) at stage s. We choose the least i as in the
definition of requires attention. Let n be the greatest element of any permitting
interval for any length for Re at the beginning of stage s. We set ∆spAs � γspnqq “
fe,spτe,i,s´1q. We let le,i,s “ le,i,s´1, and set Isple,i,sq “ rmin Is´1ple,i,sq, ns. We
clear all lengths le,j,s´1 for all j ą i. We do not say that le,i,s is waiting for
permission at stage s` 1. We say that we act in Case 2 for Re via le,i,s at stage s.

Case 3 : Re requires attention via (3) at stage s. Let i be as in the definition
of requires attention. For all j 6 i, we let le,j,s “ le,j,s´1 and let Isple,j,sq “
Is´1ple,j,s´1q. We say that le,i,s is waiting for permission at stage s` 1. We define
le,i`1,s to be some fresh large number, and let Isple,i`1,sq “ tnu, where n is the
least natural number which is not in any Isple,j,sq for j 6 i. We say that we act in
Case 3 for Re for le,i,s at stage s.

Case 4 : Re requires attention via (4) at stage s. Let i be as in the definition
of requires attention. We choose the least such τ as in the definition of requires
attention, and define τe,i,s “ τ . For all j 6 i, we let le,j,s “ le,j,s´1 and let
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Isple,j,sq “ Is´1ple,j,s´1q. We say that le,i,s has been realised at stage s. We say
that le,i,s is waiting for permission at stage s ` 1. We define le,i`1,s to be some
fresh large number, and let Isple,i`1,sq “ tnu, where n is the least natural number
which is not in any Isple,j,sq for j 6 i. We say that we act in Case 4 for Re for le,i,s
at stage s.

Step 2

If we did not act in Case 2 in Step 1, then for every n P ω, if As � γspnq R
dom ∆s´1 and β is such that ∆s´1pAs´1 � γs´1pnqq “ β, we set ∆spAs � γspnqq “ β.

If we did act in Case 2 in Step 1, then for n as in Case 2 and all m > 1, we set
∆spAs � γspn`mqq “ fe,spτe,i,s´1qˆ0m.

End of construction

By the consistency of the functional Γ, if gs´1pnq ‰ gspnq, then we must have
As � γs´1pnq ‰ As´1 � γs´1pnq. Using this fact, a straightforward induction shows
that the functional ∆ is consistent.

Lemma 5.2. Each requirement is met.

Proof. Assume by induction that Re is initialised for the last time at stage s˚.
Suppose for contradiction that we act for Re at infinitely many stages. We build a
tidy pα` 1q-computable approximation xhs, qsysăω for g. We will in addition show
that xhs, qsysăω is eventually α-computable. That is, for all n P ω, there is some
s P ω such that qspnq ă 8. By Lemma 1.6 of [8], this shows that g is α-c.a.

For all n P ω and all s 6 s˚, we set hspnq “ 0 and qspnq “ 8. For all s ą s˚

and n P ω, if we act in Case 3 or Case 4 for Re for some le,i,s at stage s such that
n P Isple,i,sq, then we set hspnq “ gspnq and

qspnq “
à

j6i

oe,spτe,j,sq ‘ pi` 1q.

We say that we update the approximation to hpnq at stage s (though we may define
hspnq “ hs´1pnq). Otherwise, we set hspnq “ hs´1pnq and qspnq “ qs´1pnq.

Suppose that i and s0 are such that le,i,s0 “ le,i is never cleared after stage s0.
We show that there is some stage s1 > s0 at which we act in Case 4 for Re for le,i.
By our assumption on i and s0, for all t > s0, we cannot act in Case 2 for Re for
any le,j,t at stage t where j ă i. A straightforward induction shows that if le,j,s
is defined but there is some k ą j such that le,k,s is defined, then le,j,s must be
waiting for permission at stage s. Therefore, for all t > s0, we cannot act in Case
3 for Re for any le,j,s at stage t where j ă i. As le,i,s0 is defined, we cannot act in
Case 1 for Re after stage s0. As we must act for Re at infinitely many stages after
stage s˚, we must then act in Case 4 for Re for le,i at some stage s1 > s0.

Now suppose that i and s0 are such that le,i,s0 “ le,i is never cleared after stage
s0, and that le,i was realised at some stage s1 > s0. Further suppose that we act in
Case 2 for Re for le,i at some stage s2 ą s1. We show that we must act in Case 3
for Re for le,i at some stage s3 ą s2. Suppose for contradiction that this is not the
case. As in the proof in the previous paragraph, we cannot act in Case 2 or Case 3
for Re for any le,j,t with j ă i at any stage t > s2. At stage s2 we cleared le,j,s2´1

for all j ą i. Therefore, by assumption, we cannot act in any case for Re for any
le,j,t with j ą i at any stage t > s2. We also say at stage s2 that le,i is not waiting
for permission at stage s2`1, and because we do not act in Case 3 for Re for le,i at
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any later stage s3, we cannot act again in Case 2 for Re for le,i at any stage t ą s2.
Therefore, we do not act for Re after stage s2, which is a contradiction.

We now show that xhs, qsysăω is eventually α-computable. By the definition of
qspnq above and the definition of the permitting intervals Isple,i,sq in the construc-
tion, it suffices to show that there are infinitely many stages at which we act in
either Case 3 or Case 4 for Re. Suppose for contradiction we do not act in Case 3
or Case 4 after some stage s ą s˚. As Re is not initialised after stage s˚, there is
some i such that le,i,s is never cleared after stage s. Let i the greatest such, and
let le,i “ le,i,s. There are three possibilities to consider. The first is that le,i has
not been realised by stage s. Then as shown above, we must act in Case 4 for Re
for le,i at some stage s1 ą s, which is a contradiction. The second is that le,i has
been realised by stage s, and le,i is waiting for permission at stage s. Then it must
be the case that there is some j ą i such that le,j,s is defined. By the choice of i,
there is some stage t ą s at which le,j,t´1 is cleared, and at the least such stage t,
we must act in Case 2 for Re for le,i at stage t. Then as shown above, we must
act in Case 3 for Re for le,i at some stage s2 ą s, which is a contradiction. The
last possibility is that le,i has been realised by stage s, but le,i is not waiting for
permission at stage s. Then again by the above, we must act in Case 3 for Re for
le,i at some stage s2 ą s, which is a contradiction.

It follows from the fact that the sequence xoe,spnqysăω is non-increasing for all
n P ω and the definition of Isple,i,sq in Case 2 of the construction that xqspnqysăω
is non-increasing for all n P ω. We must now show that for all n P ω and all s ą 0
that

(1) if we update the approximation to hpnq at stage s, then qspnq ă qs´1pnq.

Fix some n P ω. Let s0 ă s1 ă ¨ ¨ ¨ be the potentially infinite sequence of all
stages at which we update the approximation to hpnq. We have q0pnq “ 8 and
qs0pnq ă 8, so (1) holds at stage s0. Suppose by induction that (1) holds at stage
sk, and that sk`1 is defined. We show that (1) holds at stage sk`1. Suppose that
i and j are such that we act via le,i,sk at stage sk and via le,j,sk`1

at stage sk`1. If
j ă i, then the inclusion of the last term in the definition of qsk`1

pnq is enough to
ensure that (1) holds at stage sk`1. Now suppose j “ i. We must have le,i,t “ le,i,sk
and τe,i,t “ τe,i,sk for all t with sk ă t 6 sk`1. As we act in Case 3 for le,i,sk at
stage sk and stage sk`1, we must act in Case 2 for le,i,sk at some stage t with
sk ă t ă sk`1. At stage t we defined ∆t such that ∆tpAtq ą fe,tpτe,i,tq, and as we
act in Case 3 for le,i,sk at stage sk`1, we must have fe,sk`1

pτe,i,skq ‰ fe,tpτe,i,skq,
and so oe,sk`1

pτe,i,skq ă oe,tpτe,i,skq 6 oe,skpτe,i,skq. This is enough to ensure that
(1) holds at stage sk`1.

Finally, we show that xhs, qsysăω is an approximation for g. That is, for all
n P ω, lims hspnq “ gpnq. Fix some n P ω. The fact that (1) holds at all stages
together with the well-foundedness of the ordinal α shows that we update the
approximation to hpnq at only finitely many stages. Let t be the last such stage.
We claim that gpnq “ htpnq. At stage t we set htpnq “ gtpnq, so it suffices to show
that gupnq “ gtpnq for all u ą t. Suppose for contradiction that gupnq ‰ gtpnq for
some u ą t, and let u be the least such. Let i be such that n P Itple,i,tq. By the
choice of u, we have le,i,u “ le,i,t and n P Iuple,i,uq. Then for all j 6 i, le,j,u is
waiting for permission at stage u. At all stages s, if m is the greatest element of
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any permitting interval for any length for Re at stage s, then every l 6 m is in
some permitting interval for some length for Re at stage s. Therefore, for some
j 6 i, le,j,u´1 is permitted at stage u, and we act in Case 2 for Re for le,j,u at stage
u. As Re is not initialised after stage s˚, there is some k 6 i and some v such
that n P Iwple,k,wq for all w > v. Let v be the least such. By assumption, at any
stage y with t ă y 6 v, we cannot act in Case 3 for Re for any length le,j,y with
n P Iyple,j,yq. By the choice of k, le,k,v “ le,k is never cleared. Then as shown above,
we must act in Case 3 for Re for le,k at some stage z ą v. We have n P Izple,kq, so
we will update the approximation to hpnq at stage z. This is a contradiction. This
completes the proof that we act for Re at finitely many stages.

We are now in a position to show that ∆pAq either meets or avoids range fe. Let
t be the last stage at which we act for Re, and let i be greatest such that le,i,t is
defined. First suppose that we act in Case 1, Case 3, or Case 4 for Re at stage t.
Then le,i,t is not realised at stage t, and because we do not act for Re after stage t,
le,i,t is never realised. We initialise all requirements of weaker priority than Re at
stage t, and we do not act for Re after stage t, so the construction will ensure that
∆tpAtq � le,i,t ă ∆upAuq for all u ą t. Then because le,i,t is never realised, there
is no τ such that τ < ∆tpAtq � le,i,t and oe,upτq ă 8. Therefore, by Proposition
2.12, ∆pAq avoids range fe. Finally, suppose that we act in Case 2 for Re at stage
t. We define ∆t such that ∆tpAtq ą fe,tpτe,i,tq. We initialise all requirements of
weaker priority than Re at stage t, and we do not act for Re after stage t, so the
construction will ensure that ∆upAuq ą fe,tpτe,i,tq for all u ą t. Then because we do
not act in Case 3 for Re for le,i,u at any stage u ą t, we have fe,upτe,i,tq “ fe,tpτe,i,tq
for all u ą t, and so ∆pAq meets range fe.

�

�

We now have the following characterisation.

Theorem 5.3. A c.e. degree computes an α-change generic degree if and only if
it is not totally α-c.a.

Proof. Theorem 5.2 of [8] says that a c.e. degree is totally α-c.a. if and only if it
is α-c.a. dominated. Suppose that a is a c.e. degree which computes an α-change
generic degree b. Then b is weakly α-change generic, and so by Theorem 4.11, a is
not α-c.a. dominated. The other direction follows from the previous theorem. �

Theorem 5.1 allows us to separate further levels in the hierarchy of multiple
genericity notions.

Theorem 5.4. Let α 6 ε0 be a power of ω and let β be such that α “ ωβ. Then
there is a ∆0

2 degree which is ωβ-change generic but not uniformly ωβ`1-change
generic.

Proof. By Theorem 3.5(1) of [8], there is a c.e. degree a which is uniformly totally
ωβ`1-c.a., but not totally ωβ-c.a., and by Theorem 5.2 and Theorem 5.4 of [8], a is
uniformly ωβ`1-c.a dominated and not ωβ-c.a. dominated. Then by Theorem 5.1,
a computes an ωβ-change generic degree b. As b 6T a and a is uniformly ωβ`1-
c.a. dominated, b is uniformly ωβ`1-c.a. dominated. Now by Proposition 4.10, b
cannot be uniformly ωβ`1-change generic. �
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6. Downward density

We say that a class of degrees D is downwards dense below a degree a if for every
noncomputable degree b 6T a, there is some c P D with c 6T b. There are several
results regarding downward density and genericity. Martin showed (see Theorem
4.1 in [15]) that for all n > 2, the n-generic degrees are downwards dense below n-
generic degrees. The case for n “ 1 is more involved though. Chong and Jockusch
[5] showed that the 1-generic sets are downwards dense below ∆0

2 1-generic sets.
However, it was later shown by Chong and Downey [4], and independently Kumabe
[17], that there is a 1-generic degree below H2 which bounds a minimal degree, and
so downward density of 1-generics below 1-generic degrees fails in general.

Downey and Nandakumar [13] have recently shown that there is a weakly 2-
generic set which bounds a minimal degree, and so downward density cannot hold
in general for any notion of multiple genericity. We can still ask whether it holds
below H1, as it does for 1-genericity. Schaeffer [24] has shown that there is a pb-
generic below H1 which bounds a noncomputable superlow degree. By Proposition
6.3 of [24], no superlow degree can bound a pb-generic degree, and so pb-generics
are not downwards dense below pb-generics below H1. We show that downwards
density does not hold below H1 at any uniform or weak level in the hierarchy of
multiple genericity notions.

Theorem 6.1. Let α 6 ε0 be a power of ω. Then there is a weakly α-change
generic degree a 6T H

1 which bounds a noncomputable degree b which does not
bound a uniformly ω-change generic degree. Therefore the weakly α-change generic
degrees are not downward dense below weakly α-change generic degrees below H1,
and similarly for the uniformly α-change generic degrees.

Proof. We construct a set A and a Turing functional Φ such that a “ degTpAq and
b “ degTpΦpAqq are as required. Let xxfe,s, oe,sysăωyeăω be an effective list of all
α-change tests. So that a is of weakly α-change generic degree, we meet for every
i P ω the requirement

Pi : if fi “ xfi,s, oi,sysăω is a total α-change test, then A meets range fi.

We construct Φ such that ΦpAq is total, and in order to make ΦpAq noncom-
putable, we meet for every i P ω the requirement

Ni : ΦpAq ‰ ϕi

where xϕiyiăω is an effective list of all partial computable functions.
Let h : 2ăω Ñ α be some computable α-order function with hpσq ą 0 for all

σ P 2ăω. So that b does not bound any uniformly α-change generic degree, we
meet for every e P ω the requirement

Qe : if ΓepΦpAqq is total, then it does not meet the range of every h-change test

where xΓeyeăω is an effective list of all Turing functionals. To meet Qe, we build
an h-change test te “ xge,s, pe,sysăω such that if ΓepΦpAqq is total, then ΓepΦpAqq
does not meet range te.

The basic strategy for a P -requirement Pi is straightfoward. We pick a follower
σ for Pi and wait until a stage s where we see that oi,spσq ă 8. At such a stage s,
we say that Pi is realised, and we let As ą fi,spσq. If at some later stage t we see
that fi,tpσq ⊀ At´1, then we define At to extend fi,tpσq. Since fi is an α-change
test, this strategy is finitary.
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The basic strategy for an N -requirement Ni is also straightforward. We begin at
some stage s by defining some string τi,s for Ni. We will have defined only finitely
many axioms for Φ by stage s, so Φs´1pAs´1q is some finite string, say, β. We
define Φpτi,sq “ β. We also define Φpτi,sˆ0q “ βˆ0. We then wait for some stage t
where for all n 6 |β| ` 1, ϕi,tpnqÓ and Φt´1pAt´1q “ ϕipnq. At such a stage t, we
act for Ni by letting At extend τi,sˆ1, and defining Φpτi,sˆ1q “ βˆ1.

Now suppose that we having one Q-requirement Qe together with all the N -
requirements, with the priority ordering Qe ă N0 ă N1 ă ¨ ¨ ¨ . The action of
the N -requirements will ensure that ΦpAq is total. Suppose that e is such that
ΓepΦpAqq is total. We will need to build an h-change test te such that ΓepΦpAqq
does not meet the range of te.

Suppose that we begin the strategy for Ni at stage s. We keep A above τi,s ˆ0
so that ΦpAq extends βˆ0. Suppose we see at some later stage t that there is some
γ P dom Γe,t with γ 4 Φt´1pAt´1q. It seems as though we should look to update
arrows in the test te. Therefore, for every string µ such that µ ă Γepγq, we define
ge,tpµq to be some string properly extending µ that is incomparable with Γepγq.

If γ ă ΦupAuq for all u > t, then Γepγq ă Γe,upΦupAuqq for all u > t, and so
we will never again need to update the arrow for any such µ. Suppose though that
at some later stage u, we see that we need to act for Ni. We let Au ą τi,s ˆ1 and
define Φpτ ˆ1q “ βˆ1. However, if γ ⊀ ΦupAuq, the opponent is now free to define
axioms in Γe in such a way that Γe,upΦupAuqq ą ge,tpνq, which means that we will
again need to update the arrow for ν. Moreover, action for any N -requirement of
stronger priority than Ni may also force us to update the arrow for µ. Since te
must be an h-change test, we must be careful that we do not update the arrow for
µ too many times.

In this restricted scenario, it is quite easy to manage this; each N -requirement
Ni is able to act at most once and force us to change ΦpAq, requiring at most one
update to the arrow for µ due to Ni. In light of this, we revise our strategy for
defining the test te.

Suppose that we begin our strategy for Ni at some stage s by defining some
string τi,s and defining Φpτi,sq “ β, as above. Suppose that there are n many
requirements of stronger priority than Ni for which we have not already acted. We
seek a string ν 4 ΦpAq such that ν P dom Γe and hp|ν|q > n ` 1. Since ΓepΦpAqq
is total and h is an α-order function, we will eventually see such a stage. Suppose
we see such a string ν at stage t.

First suppose that Ni is never initialised after stage t. We would like to restart
the strategy Ni so that we may keep ΦpAq above the string ν. If we can do so,
then acting for Ni will cause a change in ΦpAq above ν, and ΓepΦpAqq must remain
above Γepνq, which is sufficiently large to accommodate any update to the arrows
in the test te as a result of action for Ni.

We restart Ni at stage t as follows. We let At “ At´1, and define τi,t to be some
intial segment of At of a fresh large length. For β “ Φt´1pAtq, we enumerate xτi,t, βy
and xτi,tˆ0, βˆ0y into Φ. Having done this, we then act for Ni at some later stage
u if for all n 6 |β| ` 1, ϕi,upnqÓ and Φu´1pAu´1q “ ϕipnq. While waiting to act for
Ni, we look at stage u for some string γ P dom Γe,u with β ˆ0 4 γ 4 Φu´1pAu´1q.
Only once we see such a string γ do we update arrows in te.

In effect, the requirement Qe is broken into infinitely many Qe-subrequirements
Qe,Ni for each N -requirement Ni. The subrequirement Qe,Ni will look for some



22 MICHAEL MCINERNEY AND KENG MENG NG

string ν as above (waiting for initial convergence) and then will look for a string
γ as above (waiting for further convergence). Only once further convergence has
been found will we look to update arrows in te.

If at any stage we act for some N -requiement Nj of stronger priority than Ni,
we initialise Ni, and we no longer update the arrow for any µ as part of action for
Qe,Ni ; this responsibility then falls to Qe,Nj .

Now consider introducing the P -requirement Pi, with the priority ordering

Pi ă tN0, Qe,N0
u ă tN1, Qe,N1

u ă ¨ ¨ ¨

and where Ni and Qe,Ni are of equally strong priority for all i P ω. We begin
the strategy for Pe by choosing a follower σ. We proceed with the strategy above,
acting for many N -requirements, and updating many arrows in the test te. Only
after this do we see at some stage s that oe,spσq ă 8.

The problem is readily apparent. We may have updated the arrow for some
string µ for which oe,spσq ą hp|µ|q. Acting for Pi is then able to force A to move
through a very large number of strings, and because of the action taken for N -
requirements, this will force ΦpAq to move through a very large number of strings.
No matter our definition of the arrow for µ in the test te, the opponent is able to
manoeuvre ΦpAq and define axioms for Γe in such a way that ΓepΦpAqq extends the
arrow for µ.

Note however that the opponent has revealed to us the value oe,spσq, which gives
us some upper bound on the number of times this can occur. Our strategy for Qe,Pi
is reminiscent of the strategy we adopted above. We seek a string ν 4 ΦpAq such
that ν P dom Γe and hp|ν|q ą oe,spσq. Since ΓepΦpAqq is total and h is an α-order
function, we will eventually see such a stage. Suppose we see such a string ν at
stage t.

We would like to restart the strategy for Pi in a way that allows us to keep ΦpAq
above ν. However, if we were to simply follow our current strategy for Pi, we must
always let Au extend fi,upσq, but doing so may force us to move ΦpAq away from
ν. Note that we are only interested in meeting the range of fi if fi is a total test.
Therefore, we are free to define a set Si “ tσ0, σ1u of incomparable strings, and
wait until we see oi converge on all strings in Si. Suppose that we see oi,spσq ă 8
for all σ P Si at some stage s. We say that Pi is realised at stage s. We let As
extend fi,spσ0q, and will let Au extend fi,upσ0q at subsequent stages u.

We slightly modify the strategy for Qe,Pi by now requiring that the string ν is
such that hp|ν|q ą oe,spσ0q ‘ oe,spσ1q. Suppose we see such a string in the domain
of Γe at stage t. We may now restart Pi by letting At extend fi,tpσ1q, and will
let Au extend fi,upσ1q at subsequent stages u. It is straightforward to organise the
construction in a way that allows us to then keep ΦpAq above ν.

The introduction of further P - and Q-requirements poses no significant challenge.
We proceed to the formal argument.

Definitions and conventions for the construction

At each stage s P ω, and for each i P ω, we define for a set Si,s Ă 2ăω. The
requirement Pi is initialised a stage s by setting Se,s “ H.

At each stage s P ω, and for each i P ω, we may define a string τi,s and a natural
number li,s. The requirement Ni is initialised at stage s by letting τi,s and li,s be
undefined.
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For each e P ω and each i with e 6 i, we have the Qe-subrequirements Qe,Pi and
Qe,Ni . At each stage s P ω, for each e P ω, and for each P - or N -requirement R, we
may define a natural number ce,R,s, and strings νe,R,s and γe,R,s. We may say that
we are waiting for initial convergence for Qe,R at stage s, or that we are waiting
for further convergence for Qe,R above the string β at stage s for some string β.
The subrequirement Qe,R is initialised at stage s by letting ce,R,s, νe,R,s, and γe,R,s
be undefined. Additionally, we do not say that we are waiting for initial or further
convergence for Qe,R at stage s` 1.

As usual, all definitions and statements made at stage s will apply at stage s`1
unless otherwise specified.

We use the convention that a commutative ordinal sum over an empty set is
equal to zero.

We say that Pi requires attention at stage s if either

(1) Si,s´1 “ H,
(2) Si,s´1 ‰ H, Pi has not been realised by the beginning of stage s, and for

all σ P Si,s´1, oi,spσq ă 8, or
(3) Pi has been realised by the beginning of stage s, and there is some σ P Si,s´1

such that σ ă As´1 but fi,spσq ⊀ As´1.

We say that Ni requires attention at stage s if either

(1) τi,s´1 is not defined,
(2) τi,s´1 is defined, and for all n 6 li,s´1, ϕi,spnqÓ and Φs´1pAs´1, nq “ ϕipnq.

We say that Qe,R requires attention at stage s if either

(1) we are waiting for initial convergence for Qe,R at stage s, and there is some
ν P dom Γe,s such that ν 4 Φs´1pAs´1q and |Γe,spνq| > ce,R,s´1, or

(2) we are waiting for further convergence for Qe,R above the string β at stage
s, and there is some γ P dom Γe,s such that β 4 γ 4 Φs´1pAs´1q.

We use the following priority ordering on the P - and N -requirements and the
Q-subrequirements:

tP0, Q0,P0u ă tN0, Q0,N0u ă tP1, Q0,P1 , Q1,P1u ă tN1, Q0,N1 , Q1,N1u

ă tP2, Q0,P2
, Q1,P2

, Q2,P2
u ă ¨ ¨ ¨

where the requirements and subrequirements in the same set are considered to be
of equally strong priority.

Construction

Stage 0: we set A0 “ 0ω. We let Φ0 “ H. For all e P ω and all µ P 2ăω, we let
ge,0pµq “ µ and pe,0pµq “ hpµq. We initialise all requirements and subrequirements
and proceed to the next stage.

Stage s, s > 1:

s ” 1 mod 3

Step 1

Let R be the P - or N -requirement of strongest priority which requires attention
at stage s. We act according to the cases below, and then initialise all requirements
and subrequirements of weaker priority than R. We say that we act for R at stage
s. If we act in subcase 1b or subcase 2a, then we proceed to step 2, and otherwise,
we proceed to the next stage.
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Case 1 : R “ Pi for some i. We act according to the subcases below.

Subcase 1a: Pi requires attention at stage s via (1). Let τ ă As´1 be of a fresh
large length, and let Si,s consist of i` 2 many pairwise incomparable strings which
extend τ . We choose some string σ P Si,s and let As “ σˆ0ω.

Subcase 1b: Pi requires attention at stage s via (2). We say that Pi is realised
at stage s.

Subcase 1c: Pi requires attention at stage s via (3). Let σ be as in the definition
of requires attention. We set As “ fi,spσqˆ0ω.

For all e 6 i, if we are not waiting for initial convergence for Qe,Pi at stage s, then
we let γe,Pi,s be undefined, and we say that we are waiting for futher convergence
for Qe,Pi above the string Φs´1pfi,spσqq at stage s` 1.

Case 2 : R “ Ni for some i. We act according to the subcases below.

Subcase 2a: Ni requires attention at stage s via (1). We let As “ As´1. Define
τi,s to be some inital segment of As of a fresh large length. Let β “ Φs´1pAsq. We
enumerate xτi,s, βy and xτi,sˆ0, βˆ0y into Φ.

Subcase 2b: Ni requires attention at stage s via (2). Define ρ to be some string ex-
tending τi,s´1 of a fresh large length, and such that there is no string α P dom Φs´1

such that τi,s´1 ă α ă ρ. We set As “ ρˆ0ω. Let β “ Φs´1pτi,s´1q. We enumerate
xρ, βˆ1y into Φ.

For all e 6 i, we do the following. We do not say that we are waiting for initial
convergence for Qe,Ni at stage s ` 1. If we are not waiting for initial convergence
for Qe,Ni at stage s, then we say that we are waiting for further convergence for
Qe,Ni above the string βˆ1 at stage s` 1.

Step 2

Let R be the requirement for which we acted in step 1, and let i be such that
R “ Pi or R “ Ni. For all e 6 i, we do the following.

If we are not waiting for initial or further convergence for any Qe-subrequirement
of stronger priority than Qe,R at stage s, then we do the following. Let Is be the
set of all j such that Pj 6 Qe,R and Pj has been realised by the beginning of stage
s. Let Ns be the set of all j such that Nj 6 Qe,R and such that we have not acted
for Nj in subcase 2b since it was last initialised. We define ce,R,s to be a fresh large
number such that for all strings ν with |ν| > ce,R,s,

hpνq ą

ˆ

à

jPIs

à

σPSj,s

oj,spσq

˙

‘ |Is| ‘ |Ns|

We say that we are waiting for initial convergence for Qe,R at stage s ` 1. We
proceed to the next stage.

s ” 2 mod 3

If there is some Q-subrequirement which requires attention via (1) at stage s,
then we follow the instructions below, and otherwise, we proceed to the next stage.

Let R be the strongest P - or N -requirement for which there is some e P ω such
that Qe,R requires attention via (1) at stage s, and choose the least e for this R. Let
ν be as in the definition of requires attention. We do not say that we are waiting
for initial convergence for Qe,R at stage s` 1. We define νe,R,s to be ν.

If R is a P -requirement, then we do the following. Let i be such that R “ Pi.
Suppose that we last acted for Pi in subcase 1a or subcase 2a at stage q. We choose



MULTIPLE GENERICITY: A NEW TRANSFINITE HIERARCHY OF GENERICITY NOTIONS25

some σ P Si,s´1 such that At � σ for all t P rq, sq, and set As “ σ ˆ 0ω. Let
β “ Φs´1pAs´1q. We enumerate xσ, βy into Φ.

If R is an N -requirement, then we do the following. Let i be such that R “ Ni.
We let As “ As´1. Define τi,s to be some inital segment of As of a fresh large
length. Let β “ Φs´1pAsq. We enumerate xτi,s, βy and xτi,sˆ0, βˆ0y into Φ. We let
li,s “ |β| ` 1. We say that we are waiting for further convergence for Qe,R above
the string βˆ0 at stage s` 1.

We say that we act for Qe,R at stage s. We initialise all requirements and
subrequirements of weaker priority than Qe,R, and proceed to the next stage.

s ” 0 mod 3

If there is some Q-subrequirement which requires attention via (3) at stage s,
then we follow the instructions below, and otherwise, we proceed to the next stage.

Let R be the strongest P - or N -requirement for which there is some e P ω such
that Qe,R requires attention via (2) at stage s, and choose the least e for this R. If
there is some N -requirement Ni with Ni 6 Qe,R such that τi,s´1 is undefined then
we proceed to the next stage. Otherwise, we follow the instructions below.

We initialise all requirements and subrequirements of weaker priority than Qe,R.
Let γ be as in the definition of requires attention. We define γe,R,s to be γ. For
every string µ such that µ ă Γe,spγq and ge,s´1pµq is comparable with Γe,spγq, we
do the following.

We define ge,spµq to be some proper extension of µ which is not an initial segment
of Γe,spγq. Let Ie,µ,s be the set of all j such that νe,Pj ,s is defined and Γe,spνe,Pj ,sq 4
µ. Let Ne,µ,s be the set of all j such that νe,Nj ,s is defined, Γe,spνe,Nj ,sq 4 µ, and
we have not acted for Nj in subcase 2b since it was last initialised. We set

pe,spµq “

ˆ

à

jPIe,µ,s

à

σPSj,s

oj,spσq

˙

‘ |Ie,µ,s| ‘ |Ne,µ,s|.

We do not say that we are waiting for further convergence for Qe,R at stage s` 1.
We say that we act for Qe,R at stage s. We proceed to the next stage.

End of Construction

Lemma 6.2. The construction can be carried out as described.

Proof. The only difficulty is showing that if we wish to act for Qe,Pi at some stage
s with s ” 2 mod 3, then we can choose a string σ as described. Suppose that
we act for Pi in subcase 1a at some stage q. We may assume that we do not
initialise Pi at any stage after stage q. Then for all s ą q, it is straightforward to
see that the number of strings σ in Si,s´1 for which there is some stage t P pq, sq
such that At ą σ is equal to the number of d 6 i such that we have acted for
Qd,Pi at some stage u P pq, sq with u ” 2 mod 3. Since Si,q consists of i` 2 many
pairwise incomparable strings, we can choose a string σ as described in stage s of
the construction. �

Lemma 6.3. Suppose that Si,s ‰ H. Then there is some σ P Si,s such that σ ă As.

Proof. This follows from Lemma 6.2. �

Lemma 6.4. The functional Φ is consistent.

Proof. By induction on the stage number. �
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Lemma 6.5. Suppose that Pi is initialised for the final time at stage s˚. Then we
may act for Pi at at most finitely many stages after stage s˚.

Proof. We act for Pi in subcase 1a at stage s˚ ` 1, and by assumption, we may
not act for Pi in subcase 1a at any later stage. We may act at most once for Pi in
subcase 1b at some stage after stage s˚. By assumption, we have that Si,t “ Si,s˚`1

for all t ą s˚. Now since Si,s˚`1 is finite, and xfi,s, oi,sysăω is an α-change test, we
can act at most finitely many times for Pi in subcase 1c after stage s˚. �

Lemma 6.6. Suppose that Ni is initialised for the final time at stage s˚. Then we
may act for Ni at at most finitely many stages after stage s˚.

Proof. This is immediate. �

Lemma 6.7. Suppose that Qe,R is initialised for the final time at stage s˚. Then
we may act for Qe,R at at most finitely many stages after stage s˚.

Proof. R is either a P -requirement or an N -requirement. First suppose that R is a
P -requirement, and let i be such that R “ Pi. We may act for Qe,Pi at some stage
s with s ” 2 mod 3 at most once after stage s˚. Suppose that we act for Qe,Pi at
some stage s with s ” 0 mod 3 after stage s˚. We do not say that we are waiting
for further convergence for Qe,Pi at the beginning of stage s ` 1. Now suppose
that we act for Qe,Pi at some later stage t with t ” 0 mod 3. By the definition of
requires attention, we must be waiting for further convergence for Qe,Pi at stage t.
Therefore, we must have acted for Pi in subcase 1c at some stage u with u P ps, tq.
As in the proof of Lemma 6.5, we may act for Pi in subcase 1c at at most finitely
many stages after stage s. This establishes the lemma for this case.

Now suppose that R is an N -requirement, and let i be such that R “ Ni. We
may act for Qe,Ni at some stage s with s ” 2 mod 3 at most once after stage s˚.
Suppose that we act for Qe,Ni at some stage s with s ” 0 mod 3 after stage s˚. If
we act for Qe,Ni at some later stage t with t ” 0 mod 3, then we must act for Ni
in subcase 2b at some stage before stage t, and we will not be able to act again for
Qe,Ni . This establishes the lemma.

�

Let A “ lim infsÑ8As.

Lemma 6.8. ΦpAq is total and A is ∆0
2.

Proof. That ΦpAq follows from the fact that we act for infinitely many Ni require-
ments. By Lemma 6.5, Lemma 6.6, Lemma 6.7, and the initialisation performed
during the construction, A is ∆0

2. �

Lemma 6.9. Each P - and N -requirement is met.

Proof. Fix some P -requirement Pi. By Lemma 6.5, Lemma 6.6, and Lemma 6.7,
suppose that we last initialise Pi at stage s˚. If fi is not a total α-change test, then
Pi is met. So assume that fi is a total α-change test. Again by Lemma 6.5, there is
a last stage t at which we act for Pi, and by assumption and Lemma 6.3, we must
act for Pi in subcase 1c at stage t. Let σ be as in the definition of requires attention
at stage t. Then we have that fi,upσq “ fi,tpσq for all u > t, and fi,tpσq ă Au for
all u > t, which shows that Pi is met.

Now fix some N -requirement Ni, and suppose that we last initialise Ni at stage
s˚. There are at most finitely many stages t ą s˚ such that τi,t ‰ τi,t´1. Given
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this, it is clear that the instructions in case 2 of the construction ensure that Ni is
met. �

For all e P ω, µ P 2ăω, and s P ω, define Ie,µ,s and Ne,µ,s as in the construction.

Lemma 6.10. Let e P ω and µ P 2ăω. Then for all s P ω,

hpµq ą

ˆ

à

jPIe,µ,s

à

σPSj,s

oj,spσq

˙

‘ |Ie,µ,s| ‘ |Ne,µ,s|.

Proof. We show this by induction on s. We have that Ie,µ,0 “ H and Ne,µ,0 “ H,
and so since hpµq ą 0, the statement holds at stage 0. Suppose by induction that
s ą 0 and that the statement holds for all t with t ă s. If we do not define
some string νe,R,s at stage s, then Ie,µ,s “ Ie,µ,s´1 and Ne,µ,s “ Ne,µ,s´1, and the
statement holds at stage s. So suppose that we define νe,R,s at stage s for some
Qe-subrequirement Qe,R.

There are two cases to consider. First suppose that Γe,spνe,R,sq ę µ. Then
Ie,µ,s “ Ie,µ,s´1 and Ne,µ,s “ Ne,µ,s´1, and the statement holds at stage s.

So suppose that Γe,spνe,R,sq 4 µ. Since we define νe,R,s at stage s, we are waiting
for further convergence for Qe,R at stage s. Suppose that stage t is the last stage
before stage s at which we began waiting for further convergence for Qe,R. Then
we may not initialise Qe,R at any stage after stage t and before stage s. Let It, Nt,
and ce,R,t be as at stage t of the construction. Then since h is an α-order function,
we have that

hpµq ą

ˆ

à

jPIt

à

σPSj,t

oj,tpσq

˙

‘ |It| ‘ |Nt|.

We first claim that Ie,µ,s Ď It. Let j P Ie,µ,s. Then νe,Pj ,s is defined and
Γe,spνe,Pj ,sq 4 µ. To show that j P It, we must show that Pj 6 Qe,R and that Pj
has been realised by stage t. To show that Pj 6 Qe,R, suppose for contradiction
that Qe,R ă Pj . Then Qe,R ă Qe,Pj , and since we initialise all subrequirements
of weaker priority than Qe,R at stage s, we let νe,Pj ,s be undefined, which is a
contradiction. So Pj 6 Qe,R. We now show that Pj has been realised by stage
t. Since νe,Pj ,s is defined, Pj must have been realised by the beginning of stage
s. Suppose for contradiction that Pj was realised at some stage after stage t. If
Pj ă Qe,R, then realising Pj will initialise Qe,R at some stage after stage t and
before stage s, which is a contradiction. If Pj and Qe,R are of equally strong
priority, then Pj “ R. However, since we began waiting for futher convergence for
Qe,R at stage t, then Pj had been realised by stage t, which is a contradiction. This
establishes the claim.

We now claim that Ne,µ,s Ď Nt. Let j P Ne,µ,s. Then νe,Nj ,s is defined,
Γe,spνe,Nj ,sq 4 µ, and we have not acted for Nj in subcase 2b since it was last
initialised. By the definition of Nt, it suffices to show that Nj 6 Qe,R. As above,
suppose for contradiction that Qe,R ă Nj . Then Qe,R ă Qe,Nj , and since we ini-
tialise all subrequirements of weaker priority than Qe,R at stage s, we let νe,Nj ,s be
undefined, which is a contradiction.

Since for all j P ω, xfj,s, oj,sysăω is an α-change test, we have that for all j P Ie,µ,s
and all σ P Sj,s, oj,spσq 6 oj,tpσq. This, together with the above claims, suffices to
show that the statement holds at stage s.

�

The next two lemmas are immediate.
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Lemma 6.11. Suppose that we act for some R-requirement in either subcase 1a or
subcase 1b at stage s, or that we act for some Q-subrequirement at stage s. Then
ΦspAsq “ Φs´1pAs´1q.

Lemma 6.12. If νe,M,s and νe,R,s are defined and M ă R, then Γe,spνe,M,sq ă

Γe,spνe,R,sq.

The next two lemmas are shown by a straightforward induction on the stage
number.

Lemma 6.13. Suppose that we act for Qe,R at some stage s with s ” 0 mod 3.
Then for all M with Qe,M ă Qe,R,

(1) if M is a P -requirement and P has been realised by the beginning of stage
s, then νe,M,s and γe,M,s are defined, and we are not waiting for initial or
further convergence for Qe,M at stage s, and

(2) if M is an N -requirement and we have not acted for M in subcase 2b since
it was last initialised, then νe,M,s and γe,M,s are defined, and we are not
waiting for initial or further convergence for Qe,M at stage s.

Lemma 6.14. Suppose that we are not waiting for initial or further convergence
Qe,R at stage s. Then if R is a P -requirement and R has been realised by stage s,
or R is an N -requirement and we have not acted for R in subcase 2b since it was
last initialised, then γe,R,s is defined, and for all strings µ ă Γe,spγe,R,sq, ge,spµq is
not comparable with Γe,spγe,R,sq.

Lemma 6.15. Suppose that we act for Qe,R at stage s and update the arrow for µ.
Suppose that we update the arrow for µ at some later stage u. Then there is some
stage t with t P ps, uq at which we either

‚ act for some Pj with j P Ie,µ,s in subcase 1c, or
‚ act for some Nj with j P Ne,µ,s in subcase 2b.

Proof. Let γ be as at stage s of the construction. Since we update the arrow for µ
at stage s, we have that µ ă Γe,spγq. We also have that Γe,spνe,R,sq 4 Γe,spγq. So
µ and Γe,spνe,R,sq are comparable. There are two cases to consider.

The first case is that Γe,spνe,R,sq 4 µ. We first show that we must act for some
P - or N -requirement M with M 6 Qe,R at some stage t with t P ps, uq. Suppose for
contradiction that we do not act for any P - or N -requirement M with M 6 Qe,R
at any stage t with t P ps, uq. We have that ΦspAsq < γ. At stage s, we initialise
all P - and N -requirements of weaker priority than Qe,R. Then by the choice of
followers for P - and N -requirements, and the axioms for Φ that we define at stages
at which we act for P - and N -requirements, we have that ΦtpAtq < γ for all t with
t P ps, uq. This contradicts the fact that we update the arrow for µ at stage u.

Suppose that we do not act for any N -requirement Nj with Nj 6 Qe,R at any
stage t with t P ps, uq. By the result of the previous paragraph, and Lemma 6.11,
we must act for some P -requirement Pj in subcase 1c with Pj 6 Qe,R at some stage
t with t P ps, uq. We show that j P Ie,µ,s. First suppose that Pj and Qe,R are of
equally strong priority. Then R “ Pj , and so νe,Pj ,s is defined and Γe,spνe,Pj,sq 4
µ. Therefore, j P Ie,µ,s. Now suppose that Pj ă Qe,R. We have that Qe,Pj ă
Qe,R. Then by Lemma 6.13 and Lemma 6.12, νe,Pj ,s is defined and Γe,spνe,Pj ,sq ă

Γe,spνe,R,sq. Now since Γe,spνe,R,sq 4 µ, Γe,spνe,Pj ,sq ă µ, and j P Ie,µ,s.
Now suppose that we do act for some N -requirement Nj with Nj 6 Qe,R at

some stage t with t P ps, uq. We may assume that t is the least such. We show that
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j P Ne,µ,s. If we do act for some P -requirement Pj with Pj 6 Qe,R at some stage
after stage s and before stage t, then, as above, we must act for Pj in subcase 1c
and j P Ie,µ,s. So suppose that we do not. By the instructions we follow at stage
s, τj,s´1 is defined. Now by assumption, we cannot act for Nj in subcase 2a at
stage t, and so we must act for Nj in subcase 2b at stage t. Therefore, we have not
acted for Nj in subcase 2b since it was last initialised. First suppose that Nj and
Qe,R are of equally strong priority. Then R “ Nj , and so νe,Nj ,s is defined, and
Γe,spνe,Pj ,sq 4 µ. Therefore, j P Ne,µ,s. Now suppose that N ă Qe,R. We have
that Qe,Nj ă Qe,R. Then by Lemma 6.13 and Lemma 6.12, j P Ne,µ,s.

The second case is that µ ă Γe,spνe,R,sq. We show that we must act for some
P - or N -requirement M with M ă R at some stage t with t P ps, uq. Suppose for
contradiction that we do not. Then we will have that Γe,spνe,R,sq 4 ΦtpAtq for all
t > s, which contradicts the fact that we update the arrow for µ at stage u.

Let S be the set of P - and N -requirements of stronger priority than Qe,R, ex-
cluding those N -requirements for which we have acted in subcase 2b by stage s.
Using the result of the previous paragraph, it can be shown that S is nonempty.
Let M be the requirement in S of weakest priority.

We claim that γe,M,s is defined and Γe,spγe,M,sq 4 µ. The fact that γe,M,s is de-
fined follows from the choice of M and Lemma 6.13. To show that Γe,spγe,M,sq 4 µ,
suppose for contradiction that Γe,spγe,M,sq ę µ. Since M ă R, we have that
Γe,spγe,M,sq ă Γe,spνe,R,sq. So both Γe,spγe,M,sq and µ are initial segments of
Γe,spνe,R,sq, and are therefore comparable. So µ ă Γe,spγe,M,sq. Since we act
for Qe,R and update the arrow for µ at stage s, ge,spµq must be comparable with
Γe,spγe,R,sq. We also have that Γe,spγe,M,sq and Γe,spγe,R,sq are comparable. So
µ ă Γe,spγe,M,sq and ge,spµq is comparable with Γe,spγe,M,sq, which contradicts
Lemma 6.14. This establishes the claim.

Suppose that we do not act for any N -requirement Nj with Nj ă Qe,R at any
stage t with t P ps, uq. Then we must act for some P -requirement Pj in subcase 1c
with Pj 6 Qe,M at some stage t with t P ps, uq. The remainder of the argument is
as in the first case above, with M now replacing R.

�

Lemma 6.16. For all e P ω, te is an h-change test.

Proof. Fix some µ P 2ăω. Recall that at stage 0, we set pe,0pµq “ hpµq. Therefore,
it suffices to show that for all s ą 0, if ge,spµq ‰ ge,s´1pµq then pe,spµq ă pe,s´1pµq.
If we never update the arrow for µ, then we are done. So suppose that we do update
the arrow for µ at some stage, and let S “ ts0 ă s1 ă . . .u be the nonempty, and
possibly infinite set of all stages at which we update the arrow for µ. We must show
that for all k such that sk is defined, pe,skpµq ă pe,sk´1pµq.

We first claim that pe,s0pµq ă pe,s0´1pµq. By the definition of s0, we have that
pe,s0´1pµq “ hpµq. By Lemma 6.10, the claim follows.

Now suppose by induction that sk is defined, and that for all j 6 k, pe,sj pµq ă
pe,sj´1pµq. If sk`1 is not defined, then we are done. So we assume that sk`1 is
defined. We must show that pe,sk`1

pµq ă pe,sk´1pµq. In fact, it suffices to show
that pe,sk`1

pµq ă pe,skpµq.
Note that if we define some string νe,R,s at stage s, then if we define some

string νd,M,t at any later stage t, the length of νd,M,t is fresh and large at stage t.
Therefore, by the definition of Ie,µ,s and Ne,µ,s, if s ă t, then Ie,µ,t Ď Ie,µ,s and
Ne,µ,t Ď Ne,µ,s.
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Since we update the arrow for µ at stage sk`1, by Lemma 6.15, we must either
act for some Pj with j P Ie,µ,sk in subcase 1c, or act for some N -requirement Nj
with j P Ne,µ,s in subcase 2b at some stage t with t P psk, sk`1q.

First suppose that we do not act for any N -requirement Nj with j P Ne,µ,sk
in subcase 2b at any stage t with t P psk, sk`1q. Then we must act for some
P -requirement Pj with j P Ie,µ,s at some stage t with t P psk, sk`1q. There are
two cases to consider. The first case is that Ie,µ,sk`1

is a proper subset of Ie,µ,sk .
Then it is clear from the definition of pe,sk`1

pµq that pe,sk`1
pµq ă pe,skpµq. The

second case is that Ie,µ,sk`1
“ Ie,µ,sk . Since we act for Pj in subcase 1c at stage t,

there is some σ P SPj ,sk for which oj,sk`1
pσq ă oj,skpσq. This suffices to show that

pe,sk`1
pµq ă pe,skpµq.

Now suppose that we do act for some N -requirement Nj with j P Ne,µ,sk in
subcase 2b at some stage t with t P psk, sk`1q. Then Ne,µ,sk`1

is a proper subset of
Ne,µ,sk and pe,sk`1

pµq ă pe,skpµq. �

Lemma 6.17. Every Q-requirement is met.

Proof. Let e P ω be such that ΓepΦpAqq is total. By Lemma 6.16, te is an h-change
test. We therefore must show that ΓepΦpAqq does not meet the range of te.

Note that there are infinitely many i P ω such that fi is a total α-change
test. Therefore, since ΓepΦpAqq is total, there is an infinite set S of P - and N -
requirements such that for all R P S, at all but finitely many stages, we are
not waiting for initial or further convergence for Qe,R. Then for all R P S,
γe,R “ lims γe,R,s exists, and tγe,R : R P Su is infinite and cofinal along ΓepΦpAqq.
So let µ ă ΓepΦpAqq. Then by Lemma 6.14, gepµq is not an initial segment of
ΓepΦpAqq. �

�

Although downward density of weakly α-change generics below ∆0
2 weakly α-

change generic degrees fails, we do have the following.

Theorem 6.18. Let α 6 ε0 be a power of ω and let a 6T 01 be a weakly α-change
generic degree. Then there is a weakly α-change generic degree b ăT a.

Proof. Let A P a be a set which meets the range of every total α-change test, and
let xAsysăω be a computable approximation to A. We construct a Turing functional
Φ and meet for every i P ω the requirement

Ri : if fi is total, then ΦpAq meets the range of fi

where xfiyiăω “ xxfi,s, oi,sysăωyiăω is an effective list of all α-change tests, and for
every e P ω the requirement

Qe : ΨepΦpAqq ‰ A

where xΨeyeăω is an effective list of all Turing functionals.
For every requirement Ri, we will build an α-change test ti “ xgi,s, pi,sysăω. In

the case that fi is total, then we will ensure that ti is total as well. We define ti
in such a way that if A ą lims gi,spτq for some τ , then ΦpAq ą lims fi,spΦpτqq. In
order to implement this strategy while keeping the functional Φ consistent, we will
ensure that the arrows in the test ti, and the strings in the domain of Φ, are chosen
sparsely. Essentially, we need to make sure that for any string τ , we can choose the
arrow for τ to be some string which does not extend any string ρ with ρ P dom Φs
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and ρ ą τ . This can be easily managed by simply requiring the strings enumerated
into the domain of Φ be increasing in length.

If we say at stage s that we reset the test ti, then we abandon the test ti, and
will at later stages build a new test, which, abusing notation, we will also call ti.
If a test ti is reset at stage s, then we set gi,s1pσq “ σ and pi,s1pσq “ 8 for all
s1 6 s and all σ P 2ăω. Unless otherwise specified, we will let gi,s`1pσq “ gi,spσq
and pi,s`1pσq “ pi,spσq.

The strategy for Qe will look for strings α ă As in the domain of Φs such that
Ψe,spΦs´1pαqq ă As. If we see such a string α, then we will want A to move to some
string which is incomparable with ΨepΦpαqq, while keeping Φpαq ă ΦpAq. To bring
about such a change in A, we will challenge its genericity. For every requirement
Qe, we will define a c.e. set of strings Ce. The set Ce will consist of strings that
we would like A to extend for the sake of this strategy. We use the fact that A is
∆0

2 and 1-generic to show that A must indeed meet Ce.
Similar to the tests above, if we say at stage s that we empty the set Ce, then

we abandon the set Ce, and will at later stages define a new set of strings, which
we will also call Ce. If a set Ce is emptied at stage s, then we set Ce,s “ H. Unless
otherwise specified, we will let Ce,s`1 “ Ce,s.

We fix some computable bijection x¨, ¨y : ω ˆ ω Ñ ω. We order the R- and
Q-requirements as follows:

R0 ă Q0 ă R1 ă Q1 ă ¨ ¨ ¨ .

Construction

Stage 0: we set Φpλq “ λ. For all i P ω and τ P 2ăω, we set gi,0pτq “ τ and
pi,0pτq “ 8. For all e P ω, we set Ce,0 “ H.

Stage s, s > 1:

s “ 4n` 1 for some n P ω:

Let i and m be such that n “ xi,my. If As does not meet range fi,s, then we do
the following. Suppose that d is greatest such that pi,s´1pτq ă 8 for all strings τ
of length strictly less than d. Let

l “ max t |Φs´1pτq| : |τ | “ d u.

If oi,spσq ă 8 for all strings σ of length at most l, then for all strings τ of length d,
we let pi,spτq “ oi,spΦs´1pτqq, and choose some string ν of a fresh large length which
extends τ but does not extend any string in dom Φs´1 which properly extends τ ,
and set gi,spτq “ ν and Φspνq “ fi,spΦs´1pτqq. We say that we act for Ri at stage
s. We reset all tests tj for j ą i, and empty all sets Cf for f ą i. We proceed to
the next stage.

s “ 4n` 2 for some n P ω:

Let e and m be such that n “ xe,my. If As does not extend some string in
Ce,s´1, then we do the following. Suppose d is the length of the longest string in
Ce,s´1. Let

l “ max t y : p@x 6 yqAspxq “ ΨepΦs´1pAsqqpxq u.

If l ą d, then let α ă As be some string in the domain of Φs´1 which is of length
greater than l, and such that |Ψe,spΦpαqq| “ l. Let σ be the sibling of ΨepΦpαqq,
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and let γ be some string of a fresh large length which extends σ but does not extend
any string in dom Φs´1 which properly extends σ. We enumerate γ into Ce, and
we define Φspγq “ Φpαq. We say that we act for Qe at stage s. We reset all tests
tj for j ą e, and empty all sets Cf for f ą e. We proceed to the next stage.

s “ 4n` 3 for some n P ω:

Let i and m be such that n “ xi,my. If As does not meet range fi,s, then we do
the following. For all strings τ such that pi,s´1pτq ă 8, if Φpgi,s´1pτqq ‰ fi,spΦpτqq,
then we choose some string ν of a fresh large length which extends τ but does not
extend any string currently in the domain of Φ which properly extends τ , and set
gi,spτq “ ν and Φspνq “ fi,spΦs´1pτqq. If we do update the arrow for some such τ ,
we reset all tests tj for j ą i, and empty all sets Cf for f ą i. We say that we act
for Ri at stage s. We proceed to the next stage.

s “ 4n for some n ą 0:

Let α ă As be greatest such that α P dom Φs´1. We choose some string β ă As
of a fresh large length which does not extend any string in dom Φs´1 which properly
extends α, and set Φspβq “ Φpαqˆ0. We proceed to the next stage.

End of Construction

Lemma 6.19. The construction can be successfully carried out.

Proof. We show by induction on the stage number that at all stages s and for all
strings τ P 2ăω, there is a string ν which extends τ but does not extend any string
in dom Φs´1 that extends τ . Note that at any stage t, if we define Φtpδq for some
string δ, then δ is chosen to be of a fresh large length. Therefore, the domain of Φ
consists of strings which are of different lengths. Then we may take ν to be some
string which extends τ , and such that no initial segment of ν of length greater than
|τ | is already in dom Φs´1. �

Lemma 6.20. Φ is consistent.

Proof. We show this by induction on the stage number. We define Φpλq “ λ at
stage 0. Therefore, Φ0 is consistent. Suppose by induction that Φs´1 is consistent.
We consider the different ways in which we can act at stage s, which depend on the
value of s mod 4.

First suppose that s ” 1 mod 4 and that we define Φspνq for some ν extending
a string τ as in the construction. By the choice of the string ν, the only strings
in dom Φs´1 which are comparable with ν are the initial segments of τ . Given our
inductive assumption, we only need to show that Φspνq < Φpτq. This follows from
the fact that for all strings σ, fi,spσq < σ.

Now suppose that s ” 2 mod 4 and that we define Φspγq for some γ as in the
construction. Let α and σ be as in the construction. By the choice of γ, the only
strings in dom Φs´1 which are comparable with γ are the initial segments of σ. Let
β be the greatest initial segment of σ which is in dom Φs´1. Given our inductive
assumption, we only need to show that Φspγq < Φpβq. We set Φspγq “ Φpαq, and by
the choice of α and our inductive assumption, we have α ą β and so Φpαq < Φpβq.

If s ” 3 mod 4, then Φs remains consistent by the same proof as when s ” 1
mod 4, and it is easy to see that Φs remains consistent if s ” 0 mod 4.

�
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Lemma 6.21. ΦpAq is total.

Proof. There are infinitely many stages of the form 4n for some n ą 0, and at each
such stage, we make a definition for Φ. Therefore, dom Φ is an infinite c.e. set of
strings. We show that A cannot avoid dom Φ. Suppose for contradiction that there
is some τ ă A such that no extension of τ is in dom Φ. Let t be such that As ą τ
for all t > s. Then at some stage u ą t of the form 4n for some n ą 0, we will
enumerate some extension of τ into dom Φ. This is a contradiction. As A is weakly
α-change generic, it is 1-generic, and so must meet dom Φ. In fact, A must meet
dom Φ infinitely many times, which is sufficient to show that ΦpAq is total. �

Lemma 6.22. Every R- and Q-requirement is met.

Proof. Let i be such that fi is a total α-change test. Assume by induction that
we do not act for any requirement of stronger priority than Ri after stage s. Then
the test ti is never reset after stage s. We assume for contradiction that ΦpAq does
not meet range fi. Then because fi is a total test and by the previous lemma, we
will act at infinitely many stages of the form 4 xi,my ` 1 for some m P ω, and ti
will too be a total α-change test. As A is weakly α-change generic, A must meet
the range of ti. By the action taken at stages of the form 4 xi,my ` 3 for some
m P ω and the definitions we make for the functional Φ, if τ ă A is such that
A ą lims gi,spτq, then lims fi,spΦpτqq ă ΦpAq. Therefore, ΦpAq does meet range fi,
which is a contradiction.

Now assume by induction that we do not act for any requirement of stronger
priority than Qe after stage s. Then the set Ce is never reset after stage s. Assume
for contradiction that ΨepΦpAqq “ A. Then we will act at infinitely many stages
of the form 4 xi,my ` 2 for some m P ω, and the set Ce will be infinite. We show
that A cannot avoid the set of strings Ce. Suppose for contradiction that τ ă A is
such that there is no extension of τ in Ce. Let t be such that Au ą τ for all u > t.
Note that Ce must contain strings which are arbitrarily long. Let u ą t be a stage
where we enumerate some string γ of length strictly greater than |τ | into Ce. Then
γ ą τ , which is a contradiction. It is clear by construction that if A meets Ce, then
ΨepΦpAqq ‰ A. As A is weakly α-change generic, it is 1-generic, and so must meet
Ce. This is a contradiction.

�

�

Using the approach from Proposition 2.10, we can modify the proof of the pre-
vious theorem to show the following.

Theorem 6.23. Let α 6 ε0 be a power of ω and let a 6T 01 be a uniformly α-
change generic degree. Then there is a uniformly α-change generic degree b ăT a.

7. Further directions

In [21], we show the following.

Theorem 7.1. Let α 6 ε0 be a power of ω. Then there is a ∆0
2 Turing degree

which is weakly α-change generic but not α-change generic.

This theorem, together with Theorem 4.16 and Theorem 5.4 shows that the sep-
aration of each level in the hierarchy of multiple genericity notions can be witnessed
by ∆0

2 Turing degree.
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The main open question left from the topics we have investigated in this paper
is whether the α-generic degrees are downwards dense below ∆0

2 α-change generic
degrees. We conjecture that this fails in the strongest possible sense.

Conjecture 7.2. For every α 6 ε0 which is a power of ω, there is an α-change
generic degree a 6T H

1 which bounds a noncomputable degree b which does not
bound a uniformly ω-change generic degree.

This would show that a conjecture of Schaeffer [24] holds. The first author’s thesis
[20] contains some discussion of the basic strategy for the previous conjecture.

For any notion of randomness or genericity, it is important to determine its
associated lowness notion. We can define a real being low for any of the notions of
multiple genericity by relativising the definition of an α-change test. In fact, there
are two ways we could relativise an α-change test to an oracle A. We could fully
relativise by allowing both sequences of functions xfsysăω and xosysăω access to
A, or we could instead partially relativise by allowing only xfsysăω access. Liang
Yu, in personal communication with the authors, has pointed out that Shore and
Slaman’s extension [25] of the Posner-Robinson theorem to all computable ordinals
should show that for any α 6 ε0, the reals which are low for α-change genericity
are exactly the computable reals.

Another basic question is whether van Lambalgen’s theorem holds for these
notions. We suspect that it would fail for the uniformly and weakly α-change
generic degrees, but hold for the α-change generic degrees.

More generally, it would be interesting to see how these new notions refine the
results of [1] and [2] regarding typical behaviour for generic degrees. Our investi-
gation into downward density is an example of this.

Other possible directions include interaction with the computably bounded ran-
doms of [3], and lattice embeddings below multiply generic degrees.
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