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Abstract. We prove that c.c. torsion abelian groups can be described by a Π0
4-predicate

that describes the failure of a brute-force diagonalisation attempt on such groups. We show
that there is no simpler description since their index set is Π0

4-complete. The results can be
viewed as a solution to a 60 year-old problem of Mal′cev in the case of torsion abelian groups.
We prove that a computable torsion abelian group has one or infinitely many computable
copies, up to computable isomorphism. The result confirms a conjecture of Goncharov from
the early 1980s for the case of torsion abelian groups.

1. Introduction

This paper lies within the general area called computable algebra which seeks to under-
stand the extent to which classical algebra can be made effective. The fundamental objects
of computable algebra are groups, rings, Boolean algebras and other algebraic structures that
admit an algorithmic presentation (to be clarified shortly). As a separate area of mathematical
endeavour, computable algebra goes back to van der Waerden [vdW30], Dehn [Deh11], Her-
mann [Her26] and others. Such studies predate the formal definition of an algorithm. In the
1960s, Rabin [Rab60] and Mal′cev [Mal61] used the language of computable function theory
([Soa87, Rog87]) to clarify and extend these early ideas. In particular, Rabin and Mal′cev
suggested the following formal definition of an algorithmically presented algebraic structure.
A computable presentation (a computable copy, a constructivisation) of a countably infinite
algebraic structure A is an isomorphic copy of A whose domain is a Turing computable set and
whose functions, relations, and constants are all Turing computable. Any natural countable
algebraic structure encountered by the working mathematician will have a computable copy.

Much of classical algebra is devoted to the classification of structures up to isomorphism. In
computable algebra, it is natural to view structures up to computable isomorphism which is of
course more fine-grained. For instance, Mal′cev constructed two computably presented torsion-
free abelian groups of infinite rank which were not computably isomorphic [Mal61]. Mal′cev
also realised that there were structures where the classical and the computable isomorphism
types coincided. For example, any two computable copies of the order type of the rationals are
computably isomorphic. Mal′cev called such structures autostable, but nowadays we call them
computably categorical. Mal′cev asked a general question: Which structures are computably
categorical? In fact Mal′cev was mainly interested in abelian groups and specifically asked:

Problem 1.1 (Mal′cev). Describe computably categorical abelian groups1.
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Over the past 60 years, computable categoricity has become one of the central topics in
computable structure theory, see e.g. [Rem81, LaR77, Gon97] and books [AK00, EG00]. Al-
though the notion of computable categoricity arose from the example of an abelian group
suggested by Mal′cev, it is still unknown which abelian groups are computably categorical.

How can we answer such a question? The most pleasing answer would be along the following
lines. Remmel [Rem81] proved that a computably presented linear ordering is computably
categorical iff it has a finite number of adjacencies. The beauty of Remmel’s theorem is that
it gives an algebraic invariant to classify computable linear orderings up to to computable
isomorphism. Our first hope was that Mal′cev’s question might be answered similarly. Down
through the years, partial results have supported this hope. In 1974, Nurtazin [Nur74] proved
that a torsion-free abelian group is computably categorical iff it has finite rank. Around
1980, Smith [Smi81] and Goncharov [Gon80], proved that an abelian p-group is computably
categorical iff it is isomorphic to a direct sum of primary cyclic and quasi-cyclic p-groups,
almost all of which have the same isomorphism type, and Goncharov [Gon80] established
that an abelian group of infinite rank is never computably categorical. Logicians would call
descriptions like those above semantic since they specify algebraic invariant properties of the
structures.

Since around 1980, progress has more or less stopped, but these early investigations covered
three large subclasses of abelian groups, leaving only two cases where the problem remains
open:

(i) torsion abelian groups,
(ii) mixed abelian groups of finite rank.

In the present paper we concentrate on (i). More specifically we attack the following question:

Which torsion abelian groups are computably categorical?

We will see that a semantic (algebraic) description, like the ones above, is highly unlikely. So
we will look towards another method of classification.

How can we illustrate that an algebraic description is impossible, or at least is highly
unlikely? For that, we need to isolate a general enough property that unites all known ex-
amples in the literature where an algebraic description is known. In each of these examples
computable categoricity is equivalent to relative computable categoricity ; that is, any isomor-
phic (not necessarily computable) copy B of the computable structure A is isomorphic to
A via a B-computable isomorphism [AK00]. What is so special about relative computable
categoricity? Using forcing, we can express relative computable categoricity as an internal
syntactical property of the structure [AK00]. In contrast, “plain” computable categoricity
is a computability-theoretic property of the whole class of computable presentations of the
structure. The complexity difference between these two notions is rather significant. One way
to see the difference is to compare their index sets [GK02], in the following sense. Fix an
effective enumeration (Ai)i∈ω of all partial computable structures in a computable signature;
for example, fix the language of graphs. It has been shown that the index set {i : Ai is c.c.}
is Π1

1-complete [DKL+15], and thus computable categoricity is a second-order property in
general. In contrast, the index set {i : Ai is relatively c.c.} is merely Σ0

3-complete [DALD],
showing that relative categoricity is a first-order arithmetical property of a structure.

We return to torsion abelian groups. If some algebraic property could describe computable
categoricity of such groups, then plain computable categoricity and relative computable cat-
egoricity would most definitely coincide in the class. Indeed, this same algebraic property
could be applied to non-computable copies of a computably categorical group, thus witnessing
its relative computable categoricity. This intuition is supported by numerous examples in the
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literature [AK00, EG00]. Rather surprisingly, relative and plain computable categoricity differ
in the class of torsion abelian groups:

Theorem 1.2. There exists a computable torsion abelian group which is computably categor-
ical but not relatively computably categorical.

We note that the theorem above is new for general abelian groups.

Does Theorem 1.2 imply that there cannot be any structure theory of computably cate-
gorical torsion abelian groups (c.c. TAGs)? Some researchers suggest that plain computable
categoricity is so badly behaved that it should not be studied at all. The Π1

1-completeness
result [DKL+15] mentioned above supports this claim. However, when restricted to some nice
subclass of structures, this index set may become arithmetical; it makes a perfect sense to
study computable categoricity within this subclass. It is not too difficult to see that the set
{Ai : Ai is a c.c. TAG} is arithmetical (to be explained in due course).

What kind of answer should we expect? We cannot hope for an algebraic description. Any
criterion for computable categoricity of torsion abelian groups should appeal to the enumer-
ation of a computable copy of the group. There is only one example in the literature where
a plain categoricity notion (even more general than computable categoricity!) admits a nice
explicit characterisation. More specifically, Downey and Melnikov [DM13] described plain ∆0

2-
categoricity of completely decomposable groups in terms of semi-lowness [Soa87]. We omit
the definitions, but we note that semi-lowness is a rather specific index set property which
arose from the study of the lattice of c.e. sets [Soa87].

1.1. The main results. No standard technique or notion seemed to help in obtaining any
valuable structural information about computably categorical TAGs. For example, the index
set seemed to be Π0

5-complete, and it was not clear whether there could be any way of pushing
this complexity down. Quite unexpectedly, there is a subtle Π0

4-property that does describe
c.c. TAGs.

Theorem 1.3. A computable torsion abelian group G is computably categorical if and only if
the computable index of G satisfies a certain Π0

4 predicate Ψ which describes the failure of the
brute-force diagonalisation attempt on G.

The diagonalisation attempt from Theorem 1.3 is brute-force in the following sense. Its
basic strategy is the most straightforward diagonalisation module that monitors two cyclic
summands in G[s] and tries to swap them in another copy of G which it attempts to build.
We delay the formal description of Ψ until Section 3. The complexity of Ψ is optimal:

Theorem 1.4. The index set of computably categorical torsion abelian groups is Π0
4-complete.

Theorem 1.3 and Theorem 1.4 show that plain and relative computable categoricity differ
only very slightly in the class of TAGs. They are only one quantifier apart from each other
(Σ0

3 vs. Π0
4). Also, both relative and plain categoricity notions are effectivisations of the same

purely algebraic weak homogeneity property within the class (Def. 3.1, Prop. 3.10).
But is Theorem 1.3 really a description of c.c. TAGs? We conjecture that one cannot

obtain a criterion significantly better than the one in Theorem 1.3. First of all, Theorem 1.4
shows that the syntactical complexity of Ψ is optimal. Also, any such criterion must appeal
to the computable enumeration of the group, otherwise the criterion would be relativisable,
contradicting Theorem 1.2. On the other hand, the predicate Ψ can be used to derive non-
obvious information about c.c. TAGs. For instance, Ψ allowed us to push the seemingly optimal
index set complexity (Π0

5) down to Π0
4, and to show that almost all primary summands of a

c.c. TAG are weakly homogeneous. It is not clear how to extract this information avoiding
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the use of Ψ. Thus, Theorem 1.3 is not just a reformulation of the definition of categoricity.
We conclude that Theorem 1.3 and Theorem 1.4 settle the 60 year-old problem of Mal′cev for
torsion abelian groups in the sense that our analysis is optimal.

We briefly discuss the proofs of Theorems 1.4 and 1.3. There have been enough arguments
in recursion theory exploiting the failure of a diagonalisation attempt, the most closely related
examples can be found in [Gon75, HKMS15, Mos84]. In our proof both the diagonalisation
attempt itself and its role in the proof are more subtle than in any other proof in computable
structure theory that we are aware of. Although the diagonalisation attempt is merely a finite
injury construction, we will face significant combinatorial difficulties even in meeting one basic
module in isolation. To deal with this combinatorial nightmare we introduce the technique
of tangles which extends the clique technique from [DMN15]. In fact, the situation is so
complicated that we would not know how to run the diagonalisation attempt on the group
itself. Instead, we use a careful uniform reduction from torsion abelian groups to cardinal
sums of equivalence structures. The reduction relies on specific group-theoretic techniques
similar to p-basic subgroup analysis, see [Fuc70]. In fact, the main algebraic Proposition 3.4
extends the main result of [ADH+], but via a totally different proof.

Assuming Theorem 1.3, to obtain Theorem 1.4 it is sufficient to prove that the index set is
Π0

4-hard. The proof of Π0
4-hardness is not too sophisticated, but it uses a new idea. It is not

hard to see that the index set of relatively c.c. TAGs is Σ0
3-complete (Proposition 6.4). Thus,

Theorem 1.2 is follows from Theorem 1.4.

1.2. Computable dimension. Our last result contributes to the theory of computable di-
mension, see book [EG00]. In [Gon81], Goncharov conjectured that every abelian group that
is not c.c. must have infinitely many computable copies, up to computable isomorphism. The
conjecture has been verified for broad subclasses of abelian groups (see [Gon80, Mel14]). There
are only two classes of abelian groups where the conjecture has not been verified. These are
again the torsion abelian groups and the mixed abelian groups of finite rank. We apply our
techniques to confirm the 30 year-old conjecture of Goncharov in the case of torsion abelian
groups:

Theorem 1.5. If a computable torsion abelian group is not computably categorical, then it
has infinitely many computable copies up to computable isomorphism.

The proof of Theorem 1.5 is not that hard, put it does require a new idea. The result
does not follow from the well-known sufficient condition involving two ∆0

2-isomorphic but not
computably isomorphic copies [EG00]. In our case the isomorphisms are not necessarily ∆0

2.

The paper is organised as follows. Section 2 will be a short preliminary section. In Section 3
we prove that there exists a Π0

4-predicate describing categoricity (Theorem 1.3), and Section 4
contains the proof of the Π0

4-hardness of the index set (Theorem 1.4). We prove Theorem 1.5
in Section 5. In Section 6 we discuss relative computable categoricity of TAGs.

2. Preliminaries

All structures in this section, and throughout the paper, are at most countable. All groups
in the rest of the paper are abelian and torsion, unless otherwise stated.

2.1. Abelian groups. The standard reference for this is [Fuc70]. Recall that every abelian
group can be viewed as a Z-module. An abelian group is divisible if for any integer n and any
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element g of the group, the equation nx = g has a solution in the group. For example, the
Prüfer p-group (also known as the quasi-cyclic p-group)

Zp∞ = 〈ai : i ∈ ω | pa0 = 0, pai+1 = ai : i ∈ ω〉

is divisible for any prime p. A group is reduced if it contains no non-zero divisible subgroup.
It is well-known that any divisible subgroup H of an abelian A detaches as a direct summand
of A. In particular, A can be split into its divisible and reduced parts, but the maximal
reduced subgroup is not uniquely defined as a subset of A. It uniquely determined up to
isomorphism.

Every torsion abelian group splits into the direct sum of its maximal p-subgroups, and this
splitting is uniformly effective [Khi98]. We discuss abelian p-groups. For a non-zero g ∈ A,
its p-height is usually defined to be the maximum n such that pnx = g has a solution in A. If
no such maximal n exists, we set the p-height equal to ∞. For reasons that will become clear
later, we will slightly adjust this standard definition by always adding 1 to the height.

Convention 2.1. We agree that the p-height of an element g ∈ A is equal to n + 1 if n is
largest such that ∃x ∈ A (pnx = g), and if no such largest n exists then the p-height will be
∞. We denote this by hAp (g), or simply hp(g) when the context is clear.

For example, the p-height of any non-zero element of A = Zp is 1, and thus it matches the
p-order (i.e., logp(|A|)) of this cyclic group.

A subgroup H of A is p-pure if for any h ∈ H and n ∈ Z, ∃x ∈ A (pnx = h) implies
∃x ∈ H (pnx = h). In other words, the p-height of h ∈ H within G is always witnessed
within H. A subgroup is pure if it is p-pure for every p. A p-pure subgroup of an abelian
p-group is in fact pure. It is well-known that a pure cyclic subgroup always detaches as a
direct summand [Fuc70].

Given an abelian p-group A, we define A′ to be its subgroup consisting of elements having
infinite p-height. Iterating this process, we define A(i) for i ∈ ω, and taking intersections we
define A(α) for any ordinal α. Since A is countable, the sequence must stabilize, and the stable
A(α) must clearly be divisible. The least α such that A(α) = A(α+1) is called the Ulm type of
A. It is well-known that any abelian p-group of Ulm type 1 splits into a direct sum of its cyclic
and quasi-cyclic subgroups. We will call any such decomposition full or complete. Any two
full decompositions of an Ulm type 1 p-group must be isomorphic as decompositions, i.e. must
have the same number cyclic or quesi-cyclic summands of a given isomorphism type [Fuc70].

Recall that the socle [G]p of an abelian p-group G is the collection of all its elements of order
at most p. This is a Zp-vector space and thus it makes sense to speak of Zp-independence in
the space. Since Zp is a finite field, linear independence is decidable in the diagram of the
vector space.

2.2. Infinitary formulae. See [AK00] for a rigorous definition and some basic properties
of Lcω1ω such as the remarkable Barwaise-Kreisel compactness. We note that infinitary com-
putable formulae over a computable A can be re-written into a first-order form but over HF(A),
the hereditarily finite extension of the structure A [Ers00]. The role of Lcω1ω is quite significant
in computable structure theory, see [AK00]. We will be using only some standard operations
on infinitary computable formulae (such as calculating their complexity), these can be found
in the first half of [AK00].

In this paper, L is the language of additive groups. For example, the following Lω1ω-sentence
describes divisibility: ∧

n∈ω
∀g∃x (nx = g),
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Informally, when determining the complexity of a formula, the infinite disjunctions should
be counted as existential quantifiers, and the infinite conjunctions should be thought of as
universal quantifiers. For example, the syntactical complexity of the above sentence is Πc

2.
Clearly, if Φ is a Πc

α Lω1ω-sentence, the the index set {i : Ai |= Φ} is Π0
α (and similarly for

Σc
α), see [AK00]. Furthermore, we can uniformly replace any such formula by a predicate upon

ω of the respective complexity that isolates the computable structures satisfying the formula.
We will use this property without explicit reference.

3. A Π0
4-description of computable categoricity

3.1. A brute-force attempt to describe categoricity. Throughout this section, we iden-
tify a computable structure with its index, e.g. we write ∀G(. . . G . . .) but really mean
(∀e)(. . .Me . . .). The most naive attempt to characterise c.c. TAG would be to say

(∀G)(G ∼= A =⇒ G ∼=c A),

but this is way too complicated as it is Π1
1. It is not hard to see that we can do better. Each

p-component Ap of A =
⊕

p∈ω Ap must be c.c., since otherwise A is clearly not c.c. It is

also known that c.c. implies relative c.c. for abelian p-groups (this easily follows from [Smi81];
simply run the diagonilasation procedure on this p-component and copy the rest). Each Ap
must be of the form

F ⊕ (Zpλ)α,

where F itself splits into finitely many cyclic and quasi-cyclic summands, λ ∈ ω ∪ {∞}, and
α ∈ ω ∪ {ω} (the power indicates the number of direct summands). For example,

Zp2 ⊕ Zp5 ⊕ (Zp∞)ω

is (relatively) c.c., where Zp∞ is the Prüfer group and (Zp∞)ω =
⊕

i∈ω Zp∞ . As noted in
[CCHM06], such groups naturally correspond to equivalence structures, and this correspon-
dence will be heavily used throughout this paper. The reader might now think that the rest of
the paper will be an elementary analysis of equivalence structures, unfortunately the situation
is a lot more complicated.

The existence of an isomorphism for each distinct r.c.c. Ap is merely Σc
3, and thus the

complexity of the statement

(∀G)(G ∼= A =⇒ G ∼=c A),

can be reduced to Π0
5 by saying that for any torsion abelian p-group whose p-components are

r.c.c., if the respective components are isomorphic (this is Σ0
3), then the groups are computably

isomorphic. Clearly, “A is a TAG” can be expressed by a Πc
2-formula. We also say:

(∀p)(Ap is r.c.c.) & (∀G)
(

[G in TAG & (∀p)Gp is r.c.c. & (∀p)Gp ∼= Ap] =⇒ G ∼=c A
)
.

As we already mentioned in the introduction, the property of being relatively c.c. is Σ0
3 [DALD].

(Towards the end of the paper we will also produce a Σ0
3 definition that does not appeal to

a Scott family.) Note that “∀G” ranges over all computable structures G. So the second
conjunct is of complexity (∀)([∀Σ0

3] =⇒ Σ0
3) which is Π0

5.
However, a very simple construction shows that the property of having r.c.c. p-components

fails to characterize c.c. TAGs (we skip it). The idea is that if a TAG is c.c. then, as we will
illustrate later, almost all p-components of it must satisfy the weak homogeneity property. The
weak homogeneity property (WHP) can be used to produce a d-Σ0

4-definition of c.c. TAGs (we
will skip it as well). Although the WHP fails to capture categoricity, it will help in our analysis.
Quite a bit of work will be needed to push the complexity down to Π0

4.
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3.2. The weak homogeneity property.

Definition 3.1. We say that an abelian p-group G satisfies the weak homogeneity property
(WHP) if it is either divisible, or for each non-zero a ∈ G of order p and hp(a) < ∞ there
exist at most finitely many elements of order p and height > hp(a).

Example. The group

Zp2 ⊕ Zp5 ⊕ (Zp∞)ω

does not satisfy the WHP because 2 <∞, but both

Zp5 ⊕ Zp7 ⊕ (Zp∞)4

and

Zp5 ⊕ (Zp2)ω

satisfy the WHP. (Here Aω stands for the infinite direct sum of A with itself, which we also
call the infinite direct power of A.)

The algebraic characterisation of countable abelian p-groups satisfying the WHP is given
by the lemma below:

Lemma 3.2. Suppose A is a countable p-group satisfying the WHP. Then A is of the form

U ⊕H,
where U is a finite direct sum of cyclic and quasi-cyclic p-groups, H is the direct power of
some (fixed) cyclic or quasi-cyclic group Zpλ, and the least α such that Zpα occurs in the
decomposition of U (if there are any) is not less than λ.

Proof of Lemma. Observe that all groups of the isomorphism types claimed by the lemma
satisfy the WHP. Now suppose A satisfies the WHP. If A is divisible, then there is nothing
to prove. Otherwise, let a ∈ A be an element of finite height and of order p. Clearly, in this
case the divisible part must have finite rank, for otherwise the WHP fails (as witnessed by a
and any basis of the divisible component). We prove that, furthermore, the reduced part of
the group has Ulm type 1. Suppose, for the contrary, that x is not a divisible element but has
infinite p-height. Then there exists an infinite collection of elements bi, i = 1, 2, . . ., such that
pbi = x and hp(bi) < hp(bi+1). For almost all i, the height of (bi − bi+1) is greater than the
height of a, contradicting the WHP.

Since the Ulm type of the reduced part is 1, it splits into a direct sum of cyclic p-groups. If
there are infinitely many cyclic summands in this decomposition, then the WHP guarantees
that almost all of these summands are of some fixed finite order. These summands will form H
in the notation of the lemma. Then U will consist of the finitely many cyclic and quasi-cyclic
summands that are left after forming H. Finally, if some cyclic summand in U is of a smaller
order than the order of each summand in H, then the WHP fails. �

We conclude that the WHP implies relative computable categoricity. Also, the lemma justi-
fies the term “weak” in the WHP, since if the finite U is the zero-group then we are left with
a “homogeneous” H.

Lemma 3.3. The syntactical complexity of the WHP is (at most) Πc
3.

Proof of Lemma. Let us first do a careful syntactical analysis of several properties that will
be combined to define the WHP.

Saying that A is reduced involves asking for a non-zero element whose p-height is finite,
this is clearly Σc

2. Also, divisibility of a group is Πc
2-definable.
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The property hp(x) = k′ is equivalent to saying that hp(x) ≥ k′ (which is Σc
1) and not

hp(x) ≥ k′ + 1 (Πc
1). Thus, saying that no element has p-height exactly k′ has complexity

Σc
1 ∧Πc

1, and for our purposes the upper bound Πc
2 is enough.

The property of having infinitely many b in the socle whose heights are greater than some
fixed finite number k can be (informally) expressed as

ψk = (∃∞b) (pb = 0 &hp(b) ≥ k + 1),

and since hp(b) ≥ k + 1 is Σc
1, the property is Πc

2.
Now we go back to the syntactical analysis of the WHP. Recall that G satisfies the WHP

if either G is divisible (which is Πc
2, see above), or [for each non-zero a ∈ G of order p and

hp(a) < ∞ there exists at most finitely many elements of order p and height > hp(a)]. To
express the second disjunct of the definition, we write∧

k∈ω
([(∃a 6= 0)hp(a) = k and pa = 0] =⇒ ¬ψk),

which says that if k if the height of some element in A then there are at most finitely many
elements in the socle having their height greater than k. According to the above analysis, the
formula is of the form ∧

k∈ω
([∃Πc

2] =⇒ ¬Πc
2),

or ∧
k∈ω

Πc
3,

which is Πc
3. �

3.3. An effective correspondence with equivalence structures. It is clear that p-groups
of Ulm type 1 naturally correspond to equivalence structures. The correspondence is defined
as follows. Suppose

G =
⊕
i∈I

Gi,

where for each i the summand Gi is either a cyclic p-group or Zp∞ . The λ such that Zλ ∼= Gi
is either a natural umber n or the symbol ∞, and it will be denoted by #Gi.

The definition of G→ EG. In the notation as above, define EG to be the equivalence structure
in which the i′th equivalence class Ei has size exactly #Gi. (We write #Ei to denote the size
of Ei.)

It is well-known that any two full decompositions of any fixed Ulm type 1 abelian p-group
are isomorphic (as decompositions), see e.g. [Fuc70]. Thus, the isomorphism type of EG does
not depend on the given full decomposition of G. We can pass from an equivalence structure
to a group using the following dual rule.

The definition of E → GE. Given an equivalence structure E =
∑

i∈I Ei, define

GE =
⊕
i∈I

Gi,

where Gi is either cyclic or quasi-cyclic and #Gi = #Ei for each i ∈ I.

It follows that GEA
∼= A and EGU

∼= U for any equivalence structure U and any abelian
p-group A of Ulm type 1. There is nothing specifically deep in this observation. Nonetheless, it
turns out that the effective properties of these functors can be quite intricate. The algorithmic
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content of the functors was first investigated in [CCHM06] and then more recently in [DMN14].
For example, it follows that the functors do not preserve ∆0

2-categoricity [DMN15, DMN14]
which is a rather counter-intuitive feature.

Clearly, the functor E → GE is uniformly computable. Although it is not hard to show that
G→ EG maps isomorphism types of computable groups to isomorphism types of computable
equivalence structures (follows from [Mel14]), is was not clear whether G → EG is uniformly
computable. It follows from [ADH+] that it is uniformly effective when restricted to G with
finite socle. The proof in [ADH+] exploits combinatorial techniques specific of abelian group
theory and is not completely straightforward. We will need an extension of this result. We
note that the proof below is quite different from the one contained in [ADH+].

Proposition 3.4. The functor G → EG defined above is uniformly effective. Furthermore,
regardless of the Ulm type of the input abelian p-group G, the output of the uniform procedure
is always an equivalence structure.

Proof. The definition of the Turing functional representing G→ EG is fairly straightforward.
We work computably relative to the open diagram of G. Recall that Zp-independence is
decidable in [G]p, relative to the diagram. First, initiate a uniformly effective enumeration of
any basis x0, x1, x2, . . . of the socle of G. For each i such that xi has been found, define

si = sup
m0,...,mi−1∈Zp

hp(xi −
i−1∑
j=0

mjxj),

which is clearly non-computable but can be effectively approximated from below. We allow
si = ∞. Recall that a function ω → ω ∪ {∞} is limitwise monotonic if it total and can
be approximated from below by a non-decreasing computable function [Khi98, KNS97]. The
function s defined above is clearly limitwise monotonic, with all possible uniformity. Initiate
the enumeration of an equivalence structure U in which #Ui = s(i). Note that we never refer
to the Ulm type of the input group.

We now check that the procedure described above satisfies the desired properties. Clearly,
it is uniformly effective. Furthermore, regardless of the Ulm type of G, the function i→ si is
limitwise monotonic and thus U is well-defined. We claim that if the Ulm type of G is 1 then
U ∼= EG. For this purpose we define a full decomposition of G induced by the definition of si
and the choice of the basis x0, x1, . . ., as follows.

Note that s0 = hp(x0). Fix a (maximal) chain of p-divisions below x0 that witnesses hp(x0),
and let C0 be the subgroup of G generated by C0. Then C0 is either a pure cyclic or a
quasi-cyclic subgroup of G. Since C0 is either pure cyclic or divisible, it detaches as a direct
summand of G,

G = C0 ⊕A1.

Fix the projection π1 onto A1. We claim that

hA1
p (π1(x1)) = hG/C0

p (x1) = sup
m0∈Zp

hp(x1 −m0x0) = s1.

Fix a full decomposition of A1 which clearly exists since the Ulm type of A1 is 1 (note A1

could be not reduced). Then

x1 = n0x0 +
∑

niyi,

where the yi come from distinct summands in the induced full decomposition of the socle

of A1. Note that h
G/C0
p (x1) = hp(

∑
niyi) and hp(mx0 +

∑
niyi) ≤ hp(

∑
niyi) for any m. It

follows from the definition of s1 that hA1
p (π1(x1)) = s1, as claimed. Fix a chain of p-divisions
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in A1 that witnesses hA1
p (π1(x1)) = s1, and let C1 be the subgroup of A1 generated by this

chain. Similarly to C0, it must be the case that C1 detaches in A1.
Suppose we have defined C0, . . . , Cn and An+1 where the Ci are either cyclic or quasicyclic,

and

G =

(
n⊕
i=0

Ci

)
⊕An+1.

As above, we can choose Cn+1 that witnesses

hA1
p (πn+1(xn+1)) = h

G/
∑
i Ci

p (xn+1) = sup
m0,...,mi−1∈Zp

hp(xi −
i−1∑
j=0

mjxj) = sn+1,

the proof of which is almost identical to the case n = 1 (here πn+1 is the projection onto
An+1). As before, we get that Cn+1 detaches within An+1 to form An+2.

This way we produce a subgroup B of G that satisfies the properties resembling those of
p-basic subgroups of reduced p-groups ([Fuc70]):

i. B =
⊕

iCi, where the Ci are cyclic or quasi-cyclic subgroups,
ii. [B]p = [G]p, i.e. the socle of B is equal to the socle of G.

Property i. follows from the definition of C0, C1, . . .. To see why ii. holds, recall that
x0, x1, . . . is a basis of [G]p, and

SpanZp{x0, x1 − n0,0x0, x2 − n1,0x0 − n1,1x1, . . .} = SpanZp{x0, x1, . . .} = [G]p

for any choice of ni,j ∈ Zp. The generators of [Ci]p are of the form xi −
∑

j<i ni,jxj , thus
ii. holds.

Recall that by our assumption G is itself a direct sum of cyclic and quasi-cyclic p-groups.
We claim that i. and ii. together imply that B = G. Aiming for a contradiction, assume
α ∈ G \ B. Suppose also that pnα ∈ B while pn−1α /∈ B. Note such an n exists since
[B]p = [G]p (by ii. above). Without loss of generality, we can assume that n = 1. We arrive
at

pα =
∑
i≤k

di,

where di ∈ Ci for each i = 0, . . . , k. We may assume that each di 6= 0, otherwise we re-arrange
the indexing of the Ci. This assumption is used throughout the proof of the claim below.

Claim 3.5. In the notation as above, for each i ≤ k there exists d′i ∈ Ci such that pd′i = di.

Proof of Claim. Suppose such a d′k does not exist (the case when i = k). But then the chain
that generates Ck is not maximal in G/(

∑
j<k Cj) as witnessed by the projection of a suitably

chosen Zp-multiple of the coset of α. Thus, dk = pd′k for some d′k ∈ Ck.
To see why d′k−1 exists, consider p(α−d′k) = pα−dk ∈

⊕
j<k Cj . Just as we had above with

α and dk, the Ck−1-projection of the element (α − d′k) will witness the failure of maximality
(in G/

∑
j<k−1Cj) of the chain used to define Ck−1, unless d′k−1 exists.

We proceed in this manner to find d′k−2, . . . , d
′
0. �

We conclude that pα =
∑

i≤k pd
′
i. Then p(α−

∑
i≤k d

′
i) = 0 and thus

α−
∑
i≤k

d′i ∈ [G]p = [B]p ⊆ B.

Together with
∑

i≤k d
′
i ∈ B this gives α ∈ B, contradicting the choice of α.

Finally, since all full decompositions of G are isomorphic (as decompositions), we have that
U ∼= EG. �
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Corollary 3.6. Given a computable p-group A of Ulm type 1 we can uniformly pass to a
computable presentation H of A that admits an effective full decomposition into cyclic and
quasi-cyclic subgroups. Furthermore, if the input is an abelian p-group whose Ulm type is not
necessarily equal to 1, then the output is an effectively decomposed abelian p-group of Ulm
type 1.

We apply Proposition 3.4 to study the weak homogeneity property. The next lemma will
be very useful in guessing the isomorphism between two groups satisfying the WHP.

Lemma 3.7. The isomorphism type of a countable abelian p-group X satisfying the WHP is
completely determined by the collection of finite substructures of EX .

Proof. Let X and Y be two abelian groups satisfying the WHP. We uniformly pass to the
respective equivalence structures EX and EY . For an arbitrary algebraic structure A, let
Age(A) be the collection of all finite substructures embeddable into A. We claim that X ∼= Y
iff Age(EX) = Age(EY ). One implication is trivial.

Suppose Age(EX) = Age(EY ). Recall that X ∼= Y iff EX ∼= EY . Both EX and EY must
have the same number of classes. We first consider the case when all classes in EX are infinite,
i.e when X is divisible. If EX has only finitely many classes, and all these classes are infinite,
then EY also must be like that. Suppose both EX and EY have infinitely many classes, and all
classes in EX are infinite. Recall that X and Y both satisfy the WHP. In particular, almost
every class in EY must be of some fixed size, thus it must be infinite. Also, it cannot have any
finite class since it would witness the failure of the WHP. Thus, X and Y are simultaneously
divisible and of the same rank, and in this case X ∼= Y .

Suppose X is not divisible, and assume the rank of the socle is finite. As noted above, both
EX and EY must have some fixed finite number of equivalence classes. It is well-known that
equivalence structures having finitely many equivalence classes are completely described by
their finite substructures, up to isomorphism (see e.g. [ADH+] for a recent application).

Suppose now EX has infinitely many classes, and let m be the size of almost every class
of EX . Note such an m exists and must be a natural number, by the WHP and by our
assumption. Then EY must also be of the same form, with a.e. class of size m1 for some m1.
We first argue that m1 = m. If m > m1 then a sufficiently large finite substructure of EX
would not be embeddable into EY .

Recall that both X and Y satisfy the WHP, and therefore m must be no greater than the
sizes of the other finitely many classes in EX (same in EY ), and without loss of generality it
is smaller than these sizes. If EX has k exceptional classes that were not of size > m, then
we claim that EY has at least k such exceptional classes. Indeed, these exceptional classes (if
there are any) must have size greater than m, and thus a large enough finite substructure of
such classes in EX can be embedded only into the part consisting of exceptional classes in EY .
Thus, the number of exceptional classes k is the same for both EX and EY . A large enough
finite substructure with k classes may be embedded only into the exceptional part. It follows
that the collection of all finite structures embeddable into EX determines the isomorphism
type of the exceptional part, and thus of the whole equivalence structure and of the respective
group. �

3.4. Relaxing isomorphism between equivalence structures. All groups in this sub-
section are countable abelian p-groups of Ulm type 1. The information contained in this
section will allow us to completely remove groups from all our arguments and work only with
equivalence structures.

Suppose φ : A→ G is an isomorphism between two (computable) abelian p-groups of Ulm
type 1 with some fixed (effective) full decompositions, A =

⊕
iAi and G =

⊕
iGi. Note that
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φ does not have to agree with the fixed decompositions. For each non-zero αi ∈ [Ai]p (i.e.,
αi ∈ A of order p) its image φ(αi) will be expressed as a linear combination of elements βj
coming from various [Gj ]p,

φ(αi) =
∑
j

mjβj , βj ∈ [Gj ]p,

where the sum is finite. Having in mind the natural correspondence between each Ai and the
respective equivalence class EAi of EA (and similarly for Gi and EG), we define φ∗ that maps
a class of E to a finite set of classes in EG by the rule

φ∗(EAi) = {EGj : mj 6= 0 in φ(αi) =
∑
j

mjβj}.

We define the size of a finite collection F = {S0, . . . , Sk} of equivalence classes Si in E to
be equal to the minimum among the sizes of its members S0, . . . , Sk. We write h(F ) to denote
the size of F . If I is a class then we write h(I) for h({I}) = #I. The size can either be a
natural number or the symbol ∞. This definition agrees with our definition of p-height.

Fix some isomorphism φ : A→ G. Is it true that any class in EG is realized as the least class
in some φ∗(EAi)? Although the question seems somewhat arbitrary, the affirmative answer
that we establish below will be very useful in the next subsection.

Lemma 3.8. In the notation above (assuming φ is an isomorphism), for every class I in EG
there exists a class J in EA such that I ∈ φ∗(J) and h(I) = h(φ∗(J)).

Proof of Lemma. Recall that we fixed full decompositions A =
⊕

iAi and G =
⊕

iGi, and
let B = {x0, x1, . . .} and B′ = {z0, z1, . . .} be bases of the socles of A and G (respectively)
that agree with these decompositions, i.e., xi ∈ Ai and zi ∈ Gi for each i. According to our
conventions, the p-height of each xi [and zi] is equal to λ such that xi ∈ Ai ∼= Zpλ [respectively,
zi ∈ Gi ∼= Zpλ ].

It is sufficient to prove that for each zi ∈ B′ there exists an xk ∈ B such that φ(xk) =∑
jmjzj mentions zi with a non-zero mi ∈ Zp, and furthermore

hp(xk) = hp(zi) = min{hp(zj) : mj 6= 0 in
∑
j

mjzj}.

Aiming for a contradiction, assume that each φ(xk) that mentions zi in its decomposition
φ(xk) =

∑
jmjzj also mentions some zl 6= zi such that hp(zl) < hp(zj) and with a non-zero

coefficient. Since the zi come from distinct direct summands, the minimum of the heights
of the zj that are mentioned in φ(xi) with mi 6= 0 is equal to hp(φ(xk)) = hp(xk). Thus, in
particular, hp(φ(xk)) = hp(xk) is smaller than hp(zi). Since φ is an isomorphism, the elements
φ(x0), φ(x1), . . . form a basis of the socle of G. For some coefficients nk, we have

zi =
∑
k

nkφ(xk).

According to the above assumption, each of the φ(xk) that mention zi non-trivially in their
decomposition must also non-trivially mention some zl of a smaller height.

In the notation as above, let a be the sum of all nkφ(xk) such that nk 6= 0 and hp(φ(xk)) ≥
hp(zi). It follows that a does not mention zi in its decomposition, as each such φ(xk) does
not. (If they did then they’d have a smaller p-height, see above.) Then the element zi − a is
non-zero (since a does not mention zi at all) and also must satisfy:

(1.) hp(zi − a) is at least hp(zi), because hp(a) is at least hp(zi)
(2.) zi − a =

∑
k n
′
kφ(xk), where each xk (equivalently, φ(xk)) has height < hp(zi), by our

choice of the φ(xk).
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Now recall φ is an isomorphism, so we have φ−1(zi − a) is not zero and

φ−1(zi − a) =
∑
k

n′kxk,

where each xk with n′k 6= 0 has height < hp(zi). But these xk come from distinct direct
components of A, and thus

hp(φ
−1(zi − a)) = hp(

∑
k

n′kxk) = inf
k
hp(xk) = hp(xs)

for one such xs. But we have hp(xs) = hp(φ(xs)) < hp(zi) (see condition (2.) above), while
condition (1.) gives:

hp(φ
−1(zi − a)) = hp(zi − a) ≥ hp(zi).

So we conclude that hp(zi) ≤ hp(φ−1(zi − a)) < hp(zi), a contradiction. �

3.5. A construction that must fail. In this subsection we describe an effective priority
construction which, if successful, will build M ∼= A such that M 6∼=c A. If A is c.c., then the
construction must fail to satisfy its requirements. Since the construction will be uniform in
the diagram of A and will be a finite injury one, this fact can be expressed by a Σ0

3-predicate
which says that for some e ≥ 0 there are infinitely many expansionary stages (to be clarified).
The construction will be used to “safe” one quantifier in the description of a c.c. TAGs, in the
following sense. The existence of infinitely many e-expansionary stages (which is Σ0

3) can be
used to show that almost every p-component of A satisfies the WHP, while the latter statement
is Σc

4 in general.

Remark 3.9. We invite the reader to verify that the index set of TAGs A such that a.e. Ap satisfies the WHP
forms a Σ0

4-complete set (within all computable TAGs whose p-components have Ulm type 1). The proof is
fairly straightforward. Thus, the complexity Σc4 of “a.e. Ap satisfies the WHP” is optimal, and this is one of
the major obstacles in producing a Π0

4-definition of computable categoricity.

We identify a computable group with its index.

Proposition 3.10. There exists Σ0
3 predicate Ξ such that for any computable TAG A whose

p-components are all relatively c.c.,

¬Ξ(A) =⇒ A is not c.c.,

and
Ξ(A) =⇒ a.e. Ap satisfies the WHP.

Corollary 3.11. If a TAG A is c.c. then Ap satisfies the WHP for almost every p.

Proof of Proposition. Suppose A is a computable TAG each p-component Ap of which is (rel-
atively) c.c. By Proposition 3.4, we can uniformly pass to

⊕
pGEAp

∼= A which possesses

a computable complete decomposition into cyclic and quasi-cyclic summands, for various p.
Therefore, w.l.o.g. we may assume that A has a computable full decomposition.

3.5.1. Informal description. Since A has an effective full decomposition, it will be convenient
to identify EA with A. Indeed, all that will matter in the construction is the sizes of the cyclic
summands in the decomposition. We will construct a computable M ∼= A and attempt to
diagonalise against each potential isomorphism ϕe : M → A. The group M will also be given
together with an effective decomposition. Since we will be working mainly with EA and EM , it
will be sufficient to diagonalise against all ϕ∗e that satisfy the property from Lemma 3.8 (saying
that each class in EA is realized as a minimal class in the ϕ∗e-image of some EA-class). This
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property will be the only explicit trace of group theory in the construction, the rest will be
purely combinatorial. Nonetheless, sorting out this combinatorics will be a rather non-trivial
task.

We will explicitly construct ψ : M → A and will attempt to make it a ∆0
2 isomorphism. At

every stage the map ψ will agree with the full decompositions of A and M thus ψ∗ will map
classes to classes (not merely to finite sets of classes). Although ψ will perhaps fail to be an
isomorphism or perhaps might even fail to be total, we will use the partial ψ to illustrate that
A ∼= M .

The basic idea that we try to implement is rather brute-force. We restrict ourselves to
some fixed prime p and the respective p-components in both M and A. For simplicity, we
first describe the situation when ϕe : M → A happens to agree with the full decompositions
of M and A, and thus ϕ∗e maps classes to classes. Suppose x ∈ EA is within a class currently
of size k, and assume at a stage some other class y is ready to outgrow the class of x in size,
according to the enumeration of EA. We may assume that ϕ∗e has already provided us with
the pre-images of z and y. Furthermore, we may adjust ψ so that these pre-images agree with
their ψ∗-preimages (to be clarified in the formal proof). After the necessary adjustment is
done, we first “swap” the ψ∗-images of these pre-images, and then grow the class of y and the
class of its new ψ∗-preimage in M . If the size of the class of x was final, we guarantee that
ϕe is not an isomorphism since ϕ∗e does not preserve # (equivalently, ϕe it does not preserve
p-heights).

Before we informally explain what can go wrong with this naive strategy, the reader should
pause and convince themselves that something along these lines perhaps should work if Ap
does not have the WHP. Indeed, in this case there will be infinitely many classes y that
will attempt to pass some fixed x in size, and thus hopefully we will eventually succeed in
our diagonalisation. On the other hand, if we fail then some strategy will eventually control
almost all Ap, and thus we can hopefully argue that all these Ap must satisfy the WHP.

Unfortunately, the naive strategy above is quite different from the actual strategy we
will have to implement. First of all, ϕe does not have to agree with the fixed decomposi-
tions/classes, but Lemma 3.8 will be particularly helpful here. Second, making sure that the
ψ∗-preimages line up nicely with ϕe will introduce some extra noise to the construction, and
this will need to be addressed carefully. Finally, even the naive strategy above can be iterated
as follows. In the notation above, suppose we have swapped ψ∗ on x and y according to the
basic naive strategy. Now the class of x may try to pass some other class x′ in size, and surely
the priority of x′ will be very high. In this case we will have to “swap” ψ on x and x′, which
will result in x, y and x′ now forming a tangle with three respective classes in M . These
tangles (to be defined) will significantly influence the construction. For example, if the classes
keep growing, under which conditions can they leave the tangle? Can a class be contained in
more than one tangle? Questions of this sort need to be answered explicitly.

As we see, there is quite a bit of work to be done. Since the construction is a finite injury
one, we will be able to produce the desired Σc

3 formula Ξ.

3.5.2. The requirements. So we have a TAG A which has a computable full decomposition,
and in which every p-component is (relatively) c.c. We build a computable M ∼= A and
attempt to meet, for every e, the requirement:

Re : ϕe : M → A is not an isomorphism.

Regardless of the outcomes, we will build M total and isomorphic to A (this is a global require-
ment). Furthermore, we will also explicitly and effectively construct a full decomposition of
M into cyclic and quasi-cyclic summands. The full decompositions will never be re-arranged,
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i.e. the full decomposition of M [s+1] will be naturally extending the full decomposition of M [s]
component-wise (the same for A). We also attempt to build a ∆0

2 isomorphism ψ : M → A. At
every stage s the map ψ[s] will be a true isomorphism from M [s] onto A[s] which furthermore
respects the full decompositions, i.e., maps distinct cyclic summands of the fixed decomposi-
tion of M [s] onto distinct cyclic summands of the fixed decomposition of A[s]. Although we
may fail to make ψ total at the end, the partial ∆0

2 map ψ will be used to prove that M ∼= A.

3.5.3. Notation and conventions. At every stage of the construction, Re will have several p-
components of A assigned to it. Each such p-component (at every stage) will be effectively
split into a number of cyclic finite p-groups, and these cyclic summands can be equivalently
thought of as distinct equivalence classes of EAp . More specifically, every cyclic C in the fixed
decomposition of Ap[s] is in the natural 1-1 correspondence with the respective equivalence
class in EAp [s], and it will be very useful to identify these objects. The decompositions of
neither A nor M will never be re-arranged (as noted above), and the construction will only
refer to the sizes of various cyclic summands in the decomposition. Thus most of group theory
can be completely stripped away (to be clarified in the convention below).

Convention 3.12. From this point on, and throughout the proof, we will identify a class x
in EAp with the respective cyclic Cx in the fixed decomposition of Ap, and also with some
element in [Cx]p whose p-height is equal to #Cx. In fact, the p-1 distinct non-zero elements
in the socle of Cx will also be all identified. We will call such elements class-elements. All
that matters for the construction is the size of the respective class/summand that contains
the class-element. The same convention will be used in M . We will also identify the maps ψ
and ψ∗, and also ϕe with the respective ϕ∗e.

Recall that we are using a non-standard definition of the p-height (which is equal to the
standard plus 1).

Definition 3.13. For a class-element x, we write h(x) to denote the size of Cx, which is equal
to hp(x) for the respective p and x (according to our conventions).

As we already noted above, for an isomorphism

φ : M → A,

the φ-image of a class-element x could be not among the class-elements of the fixed above
decomposition of A. It will be sufficient for us to identify the image with the finite collection
of the class-elements in A that generate φ(x) with non-zero Zp-coefficients.

Definition 3.14. For a finite set X of class-elements, we define h(X) equal to the least h(y)
among all members y of X.

The above definition is consistent with the properties of p-height, with the properties of φ∗

which is identified with φ. Thus in particular h(z) = h(φ(z)) for any isomorphism φ : M → A
and each class-element z ∈M . It also makes sense to write x ∈ φ(z) for class-elements x ∈ A
and z ∈M . By Lemma 3.8, if ψ is an isomorphism then each class-element x ∈ A is contained
in ψ(z) for some class-element z ∈M which satisfies h(x) = h(φ(z)).

From this point on, we completely reduce the situation to the case when both A and M
are viewed as cardinal (i.e., disjoined and ordered) sums of uniformly computable equivalence
structures EAp and (respectively) EMp . To illustrate that M 6∼=c A, it is sufficient to to
diagonalise against each computable total and injective φ that satisfies h(x) = h(φ(x)) and
also has the property (∀x ∈ EAp)(∃z ∈ EMp)[x ∈ φ(z) &h(x) = h(φ(z))] for each p (see above,
and see Lemma 3.8).
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3.5.4. The subrequirements. For each individual class-element x in EAp (or/and the corre-
sponding cyclic Cx), we will attempt to satisfy:

Re,x : [∃∞y (h(y) > h(x))] =⇒ [(∃z ∈Mp)h(z) 6= h(ϕe(z))],

unless ϕe proves that it is not an isomorphism for some global reason (such as non-totality, to
be clarified).

3.5.5. Priority. In both M and A, the class-elements will be ordered according to the index
(number) that represents the respective class/summand in the presentation of M or A, respec-
tively. We assume that class-elements having smaller indices appear earlier in the construction.
If a class-element x has a smaller index than a class-element x′ of the same p-component, then
we say that x has a higher priority than x′, or x is on the left of x′. The priority order
on the requirements Re is standard for finite injury constructions, while for the fixed e the
subequirements Re,x are ordered according to the priority of their witnesses x. No priority
tree will be necessary.

3.5.6. Informal diagrams. We will be using informal diagrams to represent parts of M and
A. In such diagrams, line segments represent class-elements, and the length of the segment
reflects the height/size of the respective class-element with longer segments representing class-
elements of greater heights. Recall that ϕe(x) (which is identified with ϕ∗e) is equal to a finite
collection of class-elements in A. This situation will be reflected on the diagrams as well, and
for this we group the respective class-elements of A into a clique (the technique of cliques was
introduced in [DMN15]). In many occasions we will suppress cliques to simplify a diagram.
Then the clique is replaced with a class (typically of the highest priority among those) having
the height equal to the height of the whole clique (i.e., the smallest in size). The structure
M (identified with EM ) will always be at the bottom of any diagram, and A (or EA) will be
at the top. Classes of a higher priority will be to the left of classes having lower priority. We
will define ψ so that at every stage it matches a class-element in A with a single class-element
in M (and not with merely a finite set of those). We use dashed lines to represent ψ (which
is identified with ψ∗). And we use arrows to represent computations of ϕe, and we circle the
class-elements that share the same pre-image under ϕe. See an example below.

Figure 1. Here z ∈M and ϕe(z) contains x ∈ A, but ψ(z) is outside ϕe(x).
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Disclaimer : Although such informal diagrams may help the reader to understand the
construction, the formal proof does not rely on the diagrams. The reader should not
completely rely on the suggested graphical intuition which is often misleading.

3.5.7. Tangles. At every stage of the construction a class x of Ap or a class z of Mp can be
put into a tangle. The tangles appear from several repeated applications of the basic diago-
nalisation strategy. We will define tangles formally later (by recursion in the construction).
At this point we note that a “typical” configuration of classes and maps that form a tangle
can be (informally) described by the diagram below.

Figure 2. A “typical” tangle.

Note that the heights/sizes of class-elements increase from left to right in Ap (top), while
the sizes/heights are shifted in Mp (bottom). Recall the dashed lines stand for ψ and the
arrows refer to ϕe. The diagram is quite informal, since the ϕe-image of a class-element of
Mp is in general a linear combination of class-elements in Ap. In the tangle, we show only the
class-element of the highest priority in ϕe(z) that realizes its height. Note also that we require
h(ϕe(z)) = h(z) for any z in the bottom, unless ϕe(z) is undefined (this could be the case for
the right-most class-element on the diagram). All tangles will necessarily have at least two
distinct class-elements of A in it. Several elementary properties of tangles will be stated later
in the verification.

3.5.8. Condition for Re,x to be eligible to act. Let x be a class-element of Ap. The class-
element will be permanently assigned to Re,x and will be assumed to be currently not a part
of any tangle. Recall that at most one class of EA may grow at any stage. We say that Re,x
is eligible to act if:

(1) There is some class-element z in M for which x ∈ ϕe(z)↓ and h(x) = h(ϕe(z)).
(2) For every class-element z ∈ Mp with index less than the index of x we have ϕ(z) ↓,

and furthermore for each such z either h(ϕ(z)) = h(z) or alternatively both h(ϕ(z))
and h(z) have grown larger than h(x).

(3) For every class-element x′ < x either h(x′) > h(x) or there is some z′ ∈M such that:
(a) x′ ∈ ϕe(z′) ↓,
(b) h(x′) = h(z′) (see Lemma 3.8),
(c) ϕe(z

′) does not include the unique class-element y of Ap that is ready to increase
its height height since the previous stage (it follows from (4) that there is such a
class).
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(4) There exists a unique class-element y ∈ Ap[s− 1] that is now ready to grow its height
since the previous stage (according to the fixed enumeration of A) and satisfies:
(a) the index of y is greater than the index of x,
(b) y has never been declared used with respect to x (to be defined)
(c) y tries to pass x in height. That is, h(y)[s− 1] = h(x)[s− 1].

(Note that (c) of (3) and (4) share the same class-element y.)

3.5.9. Action at stage s. Assume a class y ∈ A is ready to grow in size (by 1), according to the
enumeration of A. Before we let it grow, we attempt to meet Re (which controls the respective
p-component Ap 3 x ). Pick the highest priority Re,x eligible to act at the stage. Then act
for Re,x as follows:

(1) Extending a tangle. If y is not currently a part of any tangle, or is the left-most
element of a tangle, then first perform the line-up and then the swap substeps as
described below (do nothing otherwise). This way we either adjoin x to the tangle of
y or will create a new tangle with y.

(1.1): Line-up. Let z be such that ϕs(z) 3 x and h(z) = h(x). If ψ(z) = x then do

nothing. Otherwise, let a = ψ−1(x) and x′ = ψ(z).

Figure 3. A “typical” line-up.

Note h(z) = h(x) by assumption on x (it realizes the minimum height among all
members of z). Reset ψ on z and a by swapping their images:

ψ(z) = x and ψ(a) = x′.

(1.2): Swap. Suppose y is the left-most A-class of a tangle T , and let b = ψ−1(y).
Then b is the right-most M -class of the same tangle T . The swapping substage
is performed in two phases:

Phaze 1. Interchange the ψ-images of z and b by setting ψ(z) = y and ψ(b) = x.
Phaze 2. Grow y in size thus increasing h(y) by one, and grow z accordingly, to

maintain h(z) = h(ψ(z)) = h(y). Declare y used with respect to x.
(2) Refining the tangle T . If the class y has become equal in size/height to another element

u in its tangle T (in which case it is necessarily the element right-adjacent to u in T ),
then swap ψ−1 between y and u by interchanging their ψ-preimages, and then remove
the pair (y, ψ−1(y)) from the tangle T . Note in this case the height/size the new
ψ-preimage of the class u (that stays in T ) must be increased.

3.5.10. Initialisation and e-expansionary stages. There exists a Π0
2 predicate that holds on

e ∈ ω and two infinite structures A and B (the latter two taken as oracles) iff ϕe : A → B is
an onto-isomorphism.

Declare a stage e-expansionary if the predicate “fires” on A and M but does not “fire” on
any e′ < e. Then initialize all Re′′ with e′′ > e by setting all their parameters undefined, and
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Figure 4. A “typical” swap. In the left-most part of the diagram, y is ready
to increase its height (as indicated by the extra segment on top of y).

Figure 5. A “typical” refining operation.

assign all the p-components previously used by the Re′′ (plus at least one extra p-component
on top of these) to Re. From these point onwards, unless Re gets initialized, these p-boxes
will be permanently associated with Re.

Remark 3.15. One may come up with a detailed careful definition of what it means for ϕe to look more like
an isomorphism at a given stage, but it is clearly a Π0

2-condition. For our purposes the above crude approach
is equally fine. Nonetheless, two such carefully designed properties have already appeared in (2) and (3) for
eligibility of Re,x-action. These properties will be used in the verification.

3.5.11. Construction. In the construction, we assume that A has a complete effective decom-
position (otherwise, uniformly pass to

⊕
pGEAp ). We do not distinguish between the elemen-

tary summands (in the fixed decomposition of A) and the respective equivalence classes in
EA. Under this identification, we adjust the enumeration of A so that at most one class of
EAp grows by at most one element at every stage, and furthermore this happens for at most
one prime p.

We follow the definition of an e-expansionary stage to see which p-components are controlled
by which requirements. If at the beginning of stage s the structure Ap[s − 1] is ready to
increase the height/size of one of its class-elements (according to its enumeration), we first
let the respective requirement act according to its instructions (see action at stage s), and
then we resume the enumeration of Ap. If a new class-element c is introduced to A, we also
introduce a new class-element u to Mp and set ψ(u) = c.

3.5.12. Verification. The following properties of tangles follow (by induction) from the de-
scription of the construction.
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(1) Each class-element x of A can be a part of at most one tangle at any stage of the
construction. Indeed, to enter a new tangle, a class-element must be currently not in
any tangle. Since ψ is an injection at any stage, and furthermore if x ∈ A is in a tangle
then ψ(x) must also be in the same tangle, we also conclude that every z ∈M can be
a member of at most one tangle at any stage.

(2) A class-element x ∈ Ap the height of which is not maximal in its tangle leaves the
tangle only if h(x) increases in the construction. Indeed, according to refining the
tangle substep, the only possibility for a class-element in Ap to leave its tangle is to
increase in size, unless the class-element has the largest height among all elements in
the tangle.

(3) If z ∈Mp is in a tangle, and ψ(z) changes due to some other classes leaving the tangle,
then h(z) must have increased. This follows from the refining the tangle substage (see
the last line of its description).

(4) If x ∈ Ap, and h(x) <∞ has reached its maximum at stage s, then either x will never
enter any tangle after stage s, or it will be eventually in a stable tangle that it will
never leave. Indeed, if x is currently in some tangle but its height is not the largest
among the other class-elements in the tangle, then there will always be at least one
element in the same tangle having its height greater than h(x). In this case the tangle
cannot be completely dissolved (follows from refining the tangle substage). If h(x) is
the largest among the other elements in the tangle, then it could leave the tangle. In
any case, if x ever finds itself outside any tangle, it cannot enter a new tangle as the
right-most class (see extending the tangle substage), for it would have to increase its
height. Then it either stays forever untangled, or it enters some new tangle (but not
as the largest-height class-element), in the latter case it will stay there forever.

Lemma 3.16. For any p, Ap ∼= Mp.

Proof. Recall at every stage of the construction we had an isomorphism ψ[s] : M [s] → A[s]
that agree with the full decompositions. Thus, regardless of the true outcomes, we always build
M such that each Mp has Ulm type 1. We split the lemma into several claims. Although
we usually suppress index s, all our considerations refer to a situation at some stage of a
construction (unless specifically said otherwise).

Claim 3.17. Suppose a class-element x ∈ Ap has finite height h(x) = k. Then ψ−1(x) will be
redefined at most finitely often in the construction.

Proof of Claim. Note that, regardless of the outcomes, each particular Ap can be controlled
by at most finitely many Re (one after another) during the construction, and eventually Ap is
stably associated with some Re. In the cases below we assume that the stage is large enough
so that Ap is always controlled by some fixed Re. The case when Ap = 0 gives Mp = 0
for free, since according to the construction we never get to start enumerating Mp. So we
assume that x ∈ Ap and h(x) > 0 is finite. We also assume that h(x) has reached its stable
finite value, i.e. x will never “grow”. There could be several reasons for ψ(x) to be redefined
during the construction, these are exhausted by x being potentially involved in either the
line-up procedure, or the swap, or the refining a tangle. Each of these possibilities has several
possible subcases, we go through these subcases carefully.

Case 1. Line-up in which x is involved as a class “on the left”. That is, x is in ϕe(z) but
ψ(z)[s] /∈ ϕe(z). Then we set ψ(z) = x. Once we perform this particular line-up
procedure, x will join (start) a new tangle in which x will become the left-most element.
Note Case 1 cannot occur again before x leaves the tangle, because Re,x cannot be
active again while x is a part of any tangle. (But Case 2 might hold, see below.) Note,
however, that x leaves the tangle only if h(x) increases (see properties of tangles).
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Figure 6. A “typical” Case 1.

Case 2. Line-up in which x is involved as a class “on the right”. In this case, for some x′ ∈

Figure 7. A “typical” Case 2.

ϕe(ψ
−1(x)) the requirement Re,x′ initiates the line-up and asks for ψ to be redefined

on z = ψ−1(x) and to be set equal to x′ (on z). Note that x′ must be equal to x in
size, and also x′ must be of a higher priority than x. Case 2 cannot happen again to
x with the same x′ because x′ will now be placed in some tangle, and h(x′) will have
to be increased before Re,x′ acts again (if ever).

Remark 3.18. Note that Case 2 can potentially occur even if x is currently involved in a tangle, but
only if x is the left-most class in its tangle. To see why x has to be left-most in its tangle, note that
otherwise h(ϕe(ψ

−1(x))) < h(x) contrary to the necessary condition h(x′) = h(x). Therefore, since x
is left-most in its tangle, the swap will result in particular in swapping the ψ-preimages of x and x′

which have equal height/sizes, and it will be consistent with our definition of a tangle.

Case 3. Swap in which x is involved as a class “on the left”. Once this swap is done, x will
become the left-most element of a tangle, and Re,x will not act again unless the class
leaves the tangle (and thus h(x) increases). Thus, this case cannot hold again.
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Figure 8. A “typical” Case 3.

Case 4. Swap in which x is involved as a class “on the right”. Note in this case h(x) must be
ready to grow, contrary to the hypothesis.

Figure 9. A “typical” Case 4.

Case 5. x is involved in refining a tangle. By our assumption, h(x) has reached its maximum
value. Therefore, there are only two possible subcases in which x could be involved
in a refining a tangle substep. In both subcases below we may assume that the cases
discussed above (such as line-up involving x) no longer apply to x.

Figure 10. A “typical” refining operation in the case when x is not the right-
most class.
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(1) x is the right-most class in its current tangle. In this case x leaves the tangle. If
it never enters any other tangle, then ψ−1(x) is stable. It can later be involved
in some other tangle, due to Re,x acting, but only as the left-most class. If it
does enter some tangle, then it will become the stable left-most class of the tangle
(since h(x) is stable). In the latter case ψ−1 will never have to be changed either.

(2) Otherwise, i.e. x is not the right-most class in its tangle. Then the only possibility
for x to leave the tangle is that h(x) increases, thus it stays. But ψ−1(x) may be
changed due to some y to the left of x leaving the tangle, in which case we have
h(y) ≥ h(x) and y can no longer be involved in such action again. Since there are
only finitely many y < x, the case will eventually no longer apply.

Note that we were excluding the possibility of Case j, j < k when we were looking at Case
k. It is crucial that there is no circularity in this assumption in this particular proof. Thus,
regardless in which order the cases discussed above occur (if this happens at all), we eventually
have ψ−1(x) stable. �

Claim 3.19. Let z ∈ Mp be a class-element such that h(z) is eventually stably finite. Then
ψ(x) eventually gets a stable definition that will never be changed in the construction.

Proof. Unfortunately, we cannot use the previous claim. We have to go through similar cases
here, but with z being in M rather than in A. The cases are quite similar to those in the
previous claim, but they are more subtle. For instance, some cases will be using the conditions
for Re,x to be eligible to act. We assume that h(z) has reached its stable value.

Case 1. ψ(z) is re-defined during a line-up. Suppose z is involved in the line-up substep of
Re,x, for some x. There are several subcases to consider.

Figure 11. A “typical” Case 1.

(1) The subcase when x ∈ ϕe(z) and consequently z needs to be lined-up with x,
is impossible for the following reason. After such a line-up is finished, we would
have lined-up z with the class-element which tries to pass x in height/size, in
particular increasing h(z) which is impossible by our assumption on the stage.

(2) The subcase when z satisfies ψ(z) = x ∈ ϕ(y), but ψ(y) 6= x (where x is the
witness of Re,x which is eligible to act). Each R-subrequirement can possibly
involve z into its line-up at most once, for the following reason. Indeed, each time
Re,w acts its witness w enters a tangle as the left-most class. It will not leave
the tangle unless h(w) increases (see properties of tangles). However, for z to be
involved in a line-up with w me must have h(w) = h(z), and we assumed h(z) is
stable.
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Recall that we identify class-elements with their indices in the construction. Note
that there are only finitely many subrequirements that have witnesses with smaller
indices than the index of z, and each such subrequirement can swap z at most
once. We assume this has already happened, and thus it remains to see what
happens with Re,x for x > z.
If ϕe(z) ↑ then Re,x is forbidden from acting (see the conditions for Re,x to be
eligible to act). If ϕe(z) ↓ but h(z) 6= h(ϕ(z)) then again Re,x is not allowed to
act. Thus, we assume that ϕe(z) ↓ and h(ϕe(z)) = h(z) (at a stage). In fact, we
can assume that the equality h(ϕe(z)) = h(z) is stable, for the following reason.
If it is not stable, then we’d have an evidence that ϕe cannot be an isomorphism
(Lemma 3.8) and Re would eventually never act again on Mp and Ap (see the
expansionary stage definition). In particular, ψ would be eventually stable on
Mp 3 z.

So let x0 ∈ ϕe(z) be a class-element with h(x0) = h(z). In fact, we can assume
that h(x0) is stable (if such an x0 does not exist, then h(ϕe(z)) 6= h(z)). There
are only finitely many finitely many subrequirements Re,x′ with x′ < x0 that can
only use z in their line-up. As we have noted above, each of these Re,x′ will line-up
with z at most once. If x > x0 then Re,x would not act since Re,x0 would be acting
instead. This means that x0 will be put into a tangle as the left-most class. But
since we have agreed that h(x0) is stable, this means that x0 will never leave its
tangle (as we have already discussed above). This means all Re,w of lower priority
than Re,x0 (including Re,x) will be permanently blocked from acting.

Case 2. z is involved in a swap. Without loss of generality, we have reached the stage after
which z is never involved in any line-up (Case 1). Since there are exactly 2 classes of
M that are involved in a swap, there are two possibilities.

Figure 12. A “typical” Case 2.

(1) ψ(z) = x ∈ ϕe(z) and h(ψ(z)) = h(z), and consequently the new ψ-image of z
will have to be the class-element y trying to outgrow x of Re,x. But this situation
is impossible, since h(z) will have to be increased, contrary to the hypothesis on
the stage (h(z) is stable).

(2) ψ(z) = y, where y is ready to outgrow x of Re,x in height. In this case, since Re,x is
assumed to act on y, the class-element x must be of a higher priority than y. Note
that z could be involved in a tangle, but then z must be the right-most class in its
tangle. (In fact, assuming z is no longer involved in any line-up procedure, z can
leave its tangle only if z increases its height.) According to the swap procedure,
ψ−1(x) and z will exchange their ψ-images, which will necessarily result in moving
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ψ(z) to a higher priority class (namely, from y to x). We conclude that in this
scenario ψ(z) can change only to a higher priority class due to a swap.

Case 3. ψ−1(z) is reassigned due to refining a tangle. We also assume that Cases 1 and 2 no
longer apply. If z stays in the tangle but is involved in re-arranging of ψ due to some
other class leaving, then h(z) necessarily increases, contrary to our assumption. Thus,
for Case 3 to be applicable z must leave the tangle. By our assumption Cases 1 and
2 no longer apply, thus if z leaves the tangle then it will never enter any other tangle
again.

�

The two claims above imply that all class-elements of finite sizes in Ap and Mp are eventually
stably and bijectively matched by ψ. (Bijectivity follows from ψ[s] being bijective at every
stage.) It follows also that ψ restricted to finite classes preserves height/size.

When it comes to infinite classes, ψ may have no stable definition (we leave an example to
the reader). Nonetheless, using that Ap is relatively c.c. and the properties of ψ established
above, we demonstrate that Ap ∼= Mp.

First, assume that the rank of the socle of Ap is finite. Equivalently, EAp has finitely many
classes. At every stage the number of classes in both EAp and EMp is the same. By the
property of ψ demonstrated above, the number of finite classes in both EAp and EMp is the
same. Thus, the number of infinite classes in both EAp and EMp is the same as well, and
consequently Ap ∼= Mp.

If EAp has infinitely many classes, then Ap being r.c.c. implies that almost all classes in EAp
are equal in size. Assume that this size is finite and is equal to m. The images of all finite
class-elements (in both Ap and Mp) will eventually match both ways. Then Ap will have at
most finitely many class-elements of infinite height. Go to a stage s after which the height of
all these finitely many elements is greater than m. Then Mp[s] will also have the same number
of class-elements to match these finitely many class-elements of Ap[s]. Although ψ can keep
changing between these finitely many class-elements, Mp will end up with the same number
of class-elements having infinite height.

Finally, suppose EAp has only finitely many finite classes and infinitely many infinite classes.
Since the finite class-elements must match, it is sufficient to observe that both EAp and EMp

must have infinitely many classes. Indeed, there will be infinitely many stages at which new
class-element are introduced to both Ap and Mp. Since the finite-height ones must match
bijectively, the rest must be infinite-height class-elements. We conclude that Ap ∼= Mp in this
case as well. �

Note that there exists a uniform Σ0
3 predicate Ξ such that ΞA holds if and only if the con-

struction described above has infinitary many e-expansionary stages for some e. Although
the construction refers to

⊕
pEAp (and not to A itself) with all possible uniformity, Propo-

sition 3.4 ensures that it could instead refer to A itself without any loss of uniformity. The
construction does not really use the fact that Ap is c.c. for every p, we use this property only
to illustrate that under this hypothesis the construction has nice properties.

Now suppose Ξ holds on A.

Lemma 3.20. If there exist infinitely many e-expansionary stages for some e, then Ap satisfies
the WHP for almost every p.

Proof. Fix e least such. It is sufficient to consider any Ap which is eventually controlled by
Re, say after stage s. Assume Ap is does not satisfy the WHP. This means that for some
class-element x of Ap with h(x) = k < ∞ there exist infinitely many class-elements y ∈ Ap
such that h(x) < h(y). Without loss of generality, k is the least possible and x is the highest
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priority class with h(x) = k. Recall that Ap is relatively c.c. by assumption. Fix a stage s0 > s
large enough such that:

I. Each of the finitely many class-elements x′ of Ap with the property h(x′) = k (including
x itself) has reached its final height. (Note Ap being relatively c.c. combined with the
assumption on x imples there could be at most finitely many such x′.)

II. Each of the finitely many x′ (as above) with h(x′) = k are either stably involved in
some tangle, or will never be involved in any tangle. (Note that x has stable height.)

III. For each y ∈ Ap of priority higher than x, h(y)[s0] > k. (Each such y must have height
larger than k, by the choice of x and k.)

If x is involved in a tangle itself, then the tangle will necessarily be stable. Indeed, all y on
the left of x are large, and therefore x must be not the right-most class-element in its tangle
(indeed, A-elements increase in height from left to right in any tangle). In this case there will
be at least one class-element permanently involved in the tangle of x which will be of a greater
height than x. This tangle will witness that Re is met, contrary to the choice of e. The same
can be said about any tangle which will ever be formed by Re,x after stage s0.

Aiming for a contradiction, assume x is not in any tangle at and after stage s0. First of
all, note that there are only finitely many class-elements y ∈ Ap such that y is ever declared
x-used. Furthermore, there will be only finitely many class-elements in Ap that had been
declared used by x′ < x before they try to grow their height larger than k = h(x) (recall
all such x′ are eventually very large). Fix s1 ≥ s0 at which all these finitely many classes
listed above have size at least k. Since ϕe is an isomorphism, we may assume that for some z,
ϕe,s1(z) ↓3 x and k = h(x) = h(ϕe(z)) = h(z), and that Re,x is eligible to act when necessary.

Take the highest priority class-element z∗ which is not in ϕe(z) (and not in ϕe(z
′) 3 x′ for

all x′ < x) and which attempts to grow its height greater than h(x) at a stage t > s1. By the
choice of z∗, each class-element to the left of z∗ which is not declared used by any x′ ≤ x must
have already demonstrated that its height is greater than h(x∗) (and w.l.o.g. than h(x)). This
means that none of the classes to the left of z∗ can force z∗ to be tangled with them, since
all these classes are too large. Although z∗ can still be tangled with some classes on its right,
Re,x will be eligible to act with z∗ and thus Re will be permanently met. �

This gives the second half of the proposition. �

3.6. A predicate Ψ describing categoricity. The property Ψ is the conjunction of the
following:

a. A is a TAG.
b. For very p, Ap is relatively c.c.
c. Ξ(A) from Proposition 3.10.
d. For every computable G (identified with its index),

if G is a TAG and there exists k ∈ ω such that:
i. ∀p > k Gp and Ap satisfy the WHP, and
ii. ∀p ≤ k Gp and Ap are relatively c.c., and
iii. ∀p > k EGp

∼= EAp , and
iv. ∀p ≤ k Gp ∼= Ap,

then G ∼=c A.

We view predicate Ψ as both a statement in a meta-language and a predicate on ω. Its
computability-theoretic complexity will be analysed shortly. Regardless of the complexity
of Ψ, we first prove the most important lemma below.

Claim 3.21. A satisfies Ψ iff A is a c.c. TAG.
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Proof. Suppose A satisfies the predicate. Then the first three conjuncts and Proposition 3.10
imply that for every p the p-component Ap has Ulm type 1, and furthermore almost all p-
components of A satisfy the WHP. Now let G ∼= A, also computable. Then, since A has the
listed above properties, so does G. Thus, there exists a k with the properties listed in the
conditions i.-iv. that works for both A and G. Since A satisfies the predicate, we must have
A ∼=c G.

Now suppose A is a c.c. TAG. Then a. and b. are satisfied trivially. Since ¬Ξ(A) is impossible
(see Proposition 3.10), c. must hold as well. Proposition 3.10 in conjunction with a. and b.
implies that a.e. Ap satisfies the WHP. Pick any G so that for some k conditions i.-iv. hold.
It is clear that i.-iv. together imply that A ∼= G. (Use Lemma 3.2 to see that iii. implies
isomorphism of the respective p-components). Now, since A is c.c., G ∼=c A holds. �

Claim 3.22. The complexity of Ψ is Π0
4.

Proof. Property a. of being a TAG can be expressed by a Πc
2-formula. Property b. saying

that for very p, Ap is relatively c.c. is Π0
4 since being a relatively c.c. TAG is a (uniformly)

Σ0
3-property (Prop. 6.4). From Proposition 3.10 we know that Ξ has complexity Σ0

3. Property
d. requires more care.

Note that the WHP is a Πc
3-property (Lemma 3.3), thus i. is Π0

3. As we noted above,
being relatively c.c. is Σ0

3 in general, with all possible uniformity. Since the quantifier ∀p ≤
k is bounded, the property ii. is Σ0

3. Before we look at iii., note that in iv. isomorphism
can be equivalently replaced with a computable isomorphism, and existence of a computable
isomorphism is Σ0

3. Although iii. looks like a Π0
4-property, we claim that iii. is in fact Π0

2.
Indeed, by Lemma 3.7 to express that EGp

∼= EAp it is sufficient to say that, for each finite

equivalence structure D, D ⊆ EGp (a uniformly Σ0
1-fact) iff D ⊆ EAp . Thus, iii. is indeed Π0

2

as claimed. Finally, existence of a computable isomorphism between G and A is Σ0
3. We now

collect the complexities:

Π0
2 & Π0

4 & Σ0
3 &∀(Π0

2 & [∃ (Π0
3 & Σ0

3 & Π0
2 & Σ0

3)] =⇒ Σ0
3)

which simplifies to Π0
4 &∀(Σ0

4 =⇒ Σ0
3) and finally boils down to Π0

4. �

4. Proving Π0
4-completeness

Throughout the proof, we fix some Π0
4-complete set S. For any e we will uniformly produce

a computable torsion abelian group M e which satisfies:

e ∈ S ⇐⇒ M e is computably categorical.

Given any e, we can uniformly produce a double array of uniformly c.e. sets {V x
y } such

that:

e /∈ S =⇒ (∃x)(∀y) V x
y is finite,

e ∈ S =⇒ (∀x)(a.e. y) V x
y is infinite.

Indeed, using a standard technique we may guarantee that if e /∈ S then for x and y that
witness V x

y is infinite, all sets V x
y′ with y′ > y are also infinite.

4.0.1. The basic diagonalisation strategy. We suppress e and write M e. Suppose we are build-
ing a TAG M and an auxiliary TAG T and want to make sure that ϕe : M → T is not an
isomorphism. We use the following brute-force diagonalisation against ϕe:
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(1) Reserve a prime p which will be used only by the strategy.
(2) Keep both Ap and Mp isomorphic to Zp and wait for ϕe to converge on some generator

x of Mp.
(3) Extend Ap to Zp2 . (In the construction, we will also be waiting for certain higher

priority strategies to respond, this is why we made (3) a separate substep).
(4) Make both Ap and Mp isomorphic to Zp2 ⊕ Zp, but so that x ∈ Zp in Mp while

ϕe(x) ∈ Zp2 in Ap.

It is clear that we have diagonalised against ϕe.

4.0.2. Guessing combined with the diagonalisation strategy. According to the notation intro-
duced above, if e /∈ S =⇒ (∃x)(∀y) V x

y is finite, then we need to produce an isomorphic
computable copy of M that is not computably isomorphic to M .

Each potential existential witness x will be associated with its own substrategy responsible
for building Tx and guessing whether (∀y) V x

y is finite. Each set V x
y will be associated with

infinitely many primes p〈x,y,n〉, n ∈ ω, and thus with the respective p-components of Tx and
M . Although Tx will contain all p〈x′,y,n〉-components with x′ 6= x, the strategy guessing x will
be acting non-trivially only on the p〈x,y,n〉-components of Tx and A, while the other primary
components of Tx will be simply copying the respective primary components of A.

Initially, we keep all px,e,k-components equal 0. At stage s, the action of the guessing-
diagonalisation strategy depends on whether V x

e has grown (e ≤ s):

Case 1: If |V x
y [s]| (the cardinality) has not increased from the previous stage, then set

n = |V x
e [s]| and p = p〈x,e,n〉 and implement (or continue implementing) the basic

diagonalisation strategy against ϕe within the p-components of Tx and M .

Case 2: Otherwise (if |V x
y [s]| = |V x

y [s − 1]| + 1), make the p-components of both Tx and M
isomorphic to Zp2 ⊕ Zp2 , where p = p〈x,e,n〉 and n = |V x

e [s− 1]|.

If it is indeed the case that (∀y) V x
y is finite, then for every e there will be a stage at which

the basic strategy will get a stable control over some p-component, and thus we will diagonalise
against ϕe. The only difference with the basic diagonalisation strategy is that we don’t know
in advance in which p-component the diagonalisation will be successful (if ever).

On the other hand, if (a.e. y) V x
y is infinite, then we are left with at most finitely many

distinct primary components that are not isomorphic to Zp2 ⊕ Zp2 for the respective p. This
feature will be used to non-uniformly build a computable isomorphism with the e’th potential
isomorphic copy of M in the case when M needs to be c.c. (to be explained later).

The strategy will not have any meaningful outcomes useful for the other strategies in the
construction (although its success or failure can be measured in a Π0

3 way). We introduce one
neutral outcome just for the sake the tree of strategies.

4.0.3. The basic pressing strategy. Fix an effecive enumeration A1, A2, . . . of all partial com-
putable structures in the language of additive groups. The basic pressing strategy associated
with e will attempt to satisfy

Ae ∼= M =⇒ Ae ∼=c M.

The strategy will attempt to build a computable isomorphism ψe : M → Ae. Even if it
fails to build an isomorphism, in certain cases the map ψe can be adjusted to a computable
isomorphism (to be explained).
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In the construction, the strategy will be given a priority. The definition of ψe will be
different within different p-components, depending on whether the p-component is controlled
by a higher or lower priority strategy.

Case 1: If Mp is controlled by a higher-priority guessing-diagonalisation strategy, then we map
an arbitrarily chosen basis of the socle of Mp onto the first found basis of the socle
of [Ae]p. If x ∈ [M ]p is an element of such a basis and there is a y such that py = x,
then we map y to a z ∈ Ae such that pz = ψe(x).

Case 2: Otherwise, if Mp is controlled by a lower-priority guessing-diagonalisation strategy σ,
at its substage (3) σ will wait for a confirmation that the p-component of Ae has also
grown from Zp to Zp2 . At this point we would have already mapped the generator of
Mp
∼= Zp to the generator of the respective Zp in Ae, and once Ae responds by growing

we extend ψe naturally.
If the lower priority σ initializes the p-component due to some V x

y increasing in size,
we immediately stop waiting and treat the p-component as if it had a higher priority
(see above).

If the p-component of Ae enumerates itself too quickly, or proves that it is not
isomorphic to Mp by giving a finite substructure not embeddable into Mp, we freeze
Mp and restart the lower priority diagonalisation strategies by forcing them to use new
fresh primary components.

Note that our definition of ψ will be effective on a p-component controlled by a lower priority
strategy. The verification of this fact is trivial and is left to the reader2.

Also note that if all the higher priority strategies end up failing to diagonalise, then almost
all of their p-components will be homogeneous (i.e., of the form Zp2⊕Zp2 for the respective p).
This means that our naive definition of ψe will be correct for almost all such components. On
the other hand, if one such higher-priority strategy succeeds in its diagonalisation, it means
that M is not c.c. and it is quite natural that ψe is not an isomorphism.

The outcomes are∞ and w, the former corresponds to Ae responding and following M , the
latter incorporates the finitary winning and the waiting outcomes.

4.0.4. The tree of strategies, and initialisation. The priority ordering is standard, and the tree
of strategies is usual for infinite injury constructions, thus we skip their formal definitions.
We note that the guessing-diagonalisation strategies will be cloned and will act according to
their guesses, and will use distinct arrays of primes. In contrast, the basic pressing strategies
will not be cloned, and one level of the tree will work with exactly the same pressing strategy.

The definition of the current true path is usual. We initialize all guessing-diagonalisation
strategies to the right of the current true path by instanteneously making their p-components
isomorphic to Zp2 ⊕ Zp2 . We also assign the strategies with new fresh p-components. From
this point on, the homogenized p-components will be treated by pressing strategies via thier
Case 1, i.e. as higher priority p-components. The pressing strategies are never initialized.

4.0.5. Finalizing the proof. The construction is standard, and the most significant part of its
verification was incorporated into the description of strategies. We put the pieces together. If
(∃x)(∀y) [V x

y is finite] then the clone of the guessing-diagonalisation strategy associated with
x and along the true path will build Tx ∼= M but Tx 6∼=c M , thus M is not c.c. On the other
hand, if (∀x)(a.e. y) [V x

y is infinite], as we have noted above each pressing strategy assigned
with Ae ∼= M will end up building a computable ψe which will be different from an actual

2Note that any basis of the socle of Zp2 ⊕ Zp2 induces its full decomposition. Also note that any element
of the socle of Zp ⊕ Zp2 not divisible by p generates a Zp-direct summand of the group. Thus, our actions in

Case 2 always lead to an isomorphism.
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isomorphism at only finitely many inputs. We can non-uniformly correct ψe and see that
Ae ∼=c M , as desired.

5. Proof of Theorem 1.5

Suppose A =
⊕

pAp is a torsion abelian group which is not computably categorical. Our
task it to produce infinitely many computable copies of A that are not pairwise computably
isomorphic. If for some p the p-component Ap of A is not c.c., then we can produce infinitely
many computable copies of Ap which are not computably isomorphic [Gon80]. Then we can
copy the other primary components trivially to get infinitely many copies of the whole A that
are not pairwise computably isomorphic.

Now suppose each of the Ap is computably categorical, but A is not. Then fix some other
computable copy B of A that is not computably isomorphic to A. Unfortunately, it could
be the case that B 6∼=∆0

2
A, thus we cannot simply refer to a meta-theorem of Goncharov

(see, e.g., [EG00]) saying that in this case there exist infinitely many computable copies of A
up to computable isomorphism. The other general methods (e.g. [EG00]) seem to be of no
significant help either. A new idea is required to prove the theorem.

For each j = 0, 1, 2, . . . we build a computable copy

Cj =
⊕
p

Cjp,

of A. We need to satisfy

Re,j,k : ϕe is not and isomorphism of Cj onto Ck.

We will also define (computable) isomorphic maps φjp from Cjp onto either Ap or Bp, the final

choice will be determined by the construction. In fact, our guess on the range of φji can be
changed (at most) finitely many times, but we will see that it will not effect the isomorphism
type of Cj .

5.0.1. Expansionary stages and initialisation. Recall that “ϕe is an onto isomorphism of Ci
onto Ck” is a uniformly Π0

2-property. Using the (uniform) recursion theorem, we assume that
the correctness of this statement will be measured by a Π0

2 predicate ∃∞xR(e, i, j;x), and at
every stage the length of agreement le,i,j will be set equal to the maximal number n such that
we have seen ∃nxR(e, i, j;x) at stage s. (In fact, we could avoid using the recursion theorem
here by allowing R to use the copies as oracles.) A stage is (e, i, j)-expansionary if le,i,j has
been increased from the previous stage. We note that regardless of the outcomes, each Ci ∼= A.

At every stage each active Re,i,j-requirement will be given control over at most (le,i,j + 1)-
many distinct primes p, and thus over the respective p-components of Ci and Cj . (If 1, . . . , pi
are the primes currently controlled by the higher priority R-strategies, then Re,i,j will be given
control over pi+1, . . . , pi+le,i,j+1.) If some higher priority strategy increases its respective le′,i′,j′

then we initialize Re,i,j by (perhaps) giving the control over φjp and φip to the next highest

priority strategy (if its l-parameter is large enough). In this case the current definitions of φip
and φjp may be changed, according to the instructions of the higher priority strategy.

5.0.2. The strategy. Fix a prime p controlled by Re,i,j at stage s. The strategy for Re,i,j is
rather straightforward:

Case 1. Suppose φpi and φpj has never been defined on any part of Cip and Cjp, respectively.

Then define φpi and φpj so that Cip and Cjp copy Ap and Bp, as follows. Declare the

ranges of φip[s] and φjp[s] to be Ap[s] and Bp[s], respectively, and enumerate Cip and Cjp
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so that the group operation is obtained by the straigthforward pull-back along φip[s]

and φjp[s].

Case 2. Suppose φpi and φpj has already been defined on Cip[s] and Cjp[s], respectively. If

currently φpi : Cip → Ap and φpj : Cjp → Bp, then keep extending the definition just as in

Case 1. Otherwise, if currently φpi : Cip → Bp according to the instructions of the lower
priority strategy that has now been initialized, then search for a finite substructure
F ∼= Cip[s] of Ap (this exists since Ap ∼= Bp). Then redefine φpi : Cip → F 5 Ap and
from now on extend this definition naturally as in Case 1, unless later initialized. (The
adjustment of φpj is similar).

5.0.3. Construction. We order the strategies linearly according to some natural effective pri-
ority order. Initially, we set the length of agreement le,i,j = 0 for every e, i and j. At stage s we
let the first s strategies (in the order of decreasing priority) act according to their instructions.

5.0.4. Verification. We prove that one requirement in isolation is met. Indeed, suppose ϕe is an
isomorphism from Ci onto Cj , then we would have no more expansionary stages. However, we

would have effectively copied A and B into Ci and Cj , and thus the composition φj ◦ϕe ◦φ−1
i :

A→ B would contradict the assumption A 6∼=c B.
Now, in the general case, suppose that a stage is large enough that all the higher priority

requirements have no expansionary stages. There will be only finitely many p in which φpi
permanently copies Bp (and not Ap as the requirement Re,i,j prescribes), and similarly for φpj .
Those finitely many p are controlled by the higher priority requirements.

But recall that each of the Ap (or Bp) is computably categorical. Therefore, as above,
if Re,i,j had infinitely many expansionary stages then we would produce a computable map

φj ◦ϕe◦φ−1
i : Ap → Bp for every p eventually controlled by the strategy. Although φj ◦ϕe◦φ−1

i
would be wrong on the finitely many p that are controlled by the higher priority strategies,
we would be able to non-uniformly reconstruct the finitely many indices of actual computable
isomorphisms between these Cip and Cip thus producing a computable map between A and B,
contrary to the hypothesis.

Finally, Ci ∼= A because we let each strategy permanently copy at least one p-component
of either A of B. Inedeed, recall we used le,i,j + 1, so even if in the limit le,i,j = 0 at least one
p-component is permanently copied by the strategy.

6. Relative categoricity

All known algebraic descriptions of computable categoricity in natural classes are also de-
scriptions of relative computable categoricity in these classes. Of course, relative computable
categoricity does not have to have an algebraic description in a class. For example, there is
no reasonable algebraic characterisation of relatively c.c. graphs. The best we can say is that
a relatively c.c. graph has a c.e. ∃-Scott family. Although relatively c.c. TAGs possess many
nice uniform properties, they are not as nicely behaved as one would hope for. We open the
section with a non-trivial example of a relatively c.c. TAG.

Example 6.1. Let (pi)i∈ω be an effective enumeration of all primes. Suppose the ith primary component of
A has the form:

Api = (Zp∞i ⊕ Zp∞i ⊕ Zpii ⊕ Z
pi−1
i

⊕ . . .⊕ Zp2i ) ⊕
⊕
j∈ω

Zpi , i = 0, 1, . . . .

We claim that A is relatively c.c. Suppose B is some other copy. To match cyclic and quasi-cyclic elementary
summands in Api and Bpi , wait until some cyclic subgroup of size > i appears in Api and in Bpi . As soon
as they appear, it is safe to map them to each other and then extend this mapping at later stages naturally.
The same applies to the second quasi-cyclic summand. Clearly, we cannot assume that B has a computable



32 ALEXANDER G. MELNIKOV AND KENG MENG NG

full decomposition into elementary summands, but it is not a problem here. We run a back-and-forth on the
divisible parts. For that, it is sufficient to search for an element b below the given element x in the divisible
part (i.e., pb = x) whose height is great enough, in this case greater than pi. Similarly, we can match the cyclic
summands of sizes ≥ p2i , as follows. We first wait for long enough initial segments of Zp∞i ⊕ Zp∞i to appear

in both Api and Bpi , and then we wait for (an independent) Zpii to be enumerated in both groups. Once

this happens it is safe to match them. Then we look for Z
pi−1
i

, etc. As soon as we are done with the cyclic

summands of sizes ≥ p2i , we run a back-and-forth on
⊕

j∈ω Zpi .

Remark 6.2. In the example above, we could define the isomorphism type of a relatively
c.c. group dynamically instead of using a nice formula. For example, once the initial segments
of the two quasi-cyclic summands of the pth component have grown large enough, we can safely
change our mind and declare them to be large primary cyclic of equal size. It won’t change the
property of being relatively c.c., but it will make the isomorphism type fairly unpredictable.
For example, we could code a Π0

1 set into the primes pi for which Gp is reduced (i.e., has no
quasi-cyclic summands).

Relative computable categoricity in the class of TAGs is a property of an effective enumera-
tion of the group, and not of its algebraic isomorphism type. The nature of this combinatorial
complexity is best illustrated by the rather unexpected Proposition 6.3 below. To state the
proposition, we need a notation.

Suppose G is a torsion abelian group which splits into a direct sum of primary cyclic and
quasi-cyclic groups. Define EG to be the cardinal sum of the equivalence structures EGp over
all primes p. We know that the functor G → EG is uniformly effective. From the purely
algebraic standpoint, the isomorphism invariants of G and EG are essentially the same. From
the categoricity standpoint, the only essential difference between G and EG is that G does not
necessarily have a computable full direct decomposition into elementary summands. However,
the functor preserves relative computable categoricity for abelian p-groups. It is bizarre that
the functor does not preserve relative computable categoricity for torsion abelian groups.

Proposition 6.3. There exists a computable TAG G which splits into a direct sum of cyclic
and quasi-cyclic p-groups, such that EG is relatively c.c. but G is not even c.c.

Proof. We will construct a computable TAG G such that for every p,

Gp = Bp ⊕
⊕
i∈ω

Zp,

where Bp will be either Zp2 or Zp3 . We always start with Bp = Zp2 , and we may grow it later
to Zp3 if necessary. No matter what our uniformly computable choice on the isomorphism
type of Bp will be, EG is clearly relatively c.c. To see why, note that there is exactly one class
of size > 1 in EGp . We can wait for a class of size at most 2 within the pth summands of
both copies and safely match them. We then extend the isomorphism to the rest of the pth
summands naturally.

However, it is not hard to ensure that G is not even computably categorical, as follows. We
are constructing G and another copy A of G. We diagonalise against ϕe : G → A using the
primary component Gpe , as follows. Initially, Ape copies Gpe .

(1) Wait for ϕe to converge on a generator xe of Bpe
∼= Zp2e in Gpe .

(2) Assuming y = ϕe(xe) has order p2
e in Ape , introduce a new z ∈ Ape and declare

p2
ez = pey.

(3) Grow Bpe to Zp3e in Gpe by making xe divisible by pe.
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If z is never created, then ϕe cannot be an isomorphism, becasue any isomorphism must
preserve orders of elements. Otherwise, if we eventually introduce z, then pe|xe but pe 6 |ϕe(xe).
It is not hard to see that z (if it is ever created) generates a pure cyclic subgroup of Ape of
order p3

e. The element (pez-y) has order pe, is not divisible by pe, and thus contributes to the
infinite direct sum of Zpe . We conclude that Ape

∼= Gpe for all e. �

We discuss the meaning of Proposition 6.3 a bit more. We strongly conjecture that rela-
tively c.c. cardinal sums of equivalence structures admit a rather tedious and seemingly useless
combinatorial “description” in terms of settling stages ([DM13]); we omit the exact long formu-
lation and only note that it is not purely algebraic. Proposition 6.3 says that any description
of relative computable categoricity of TAGs must additionally respect the dynamic process
of finding a complete decomposition of the group, thus making any potential combinatorial
description of relative categoricity unbearable.

It seems the existence of a c.e. ∃-Scott family is the most convenient (definitely the most
compact) local criterion of relative computable categoricity for the class of TAGs. Although we
are sceptical, we of course encourage the reader to try finding a local combinatorial description
of relative categoricity for TAGs that takes less than a page to state. However, some of the
many nice uniform properties that relatively c.c. TAGs possess might be interesting on their
own right, but we leave this direction open. Instead, to finish the paper we outline the proof
of the easy:

Proposition 6.4. The index set of relatively c.c. TAGs is Σ0
3-complete.

Proof. It is known that the index set of all relatively c.c. structures in a given computable
language is Σ0

3 [DALD]. Since the class of torsion abelian groups is Πc
2-axiomatisable, the

upper bound remains Σ0
3 when the index set is restricted to the class.

For completeness, combine the main diagonalisation strategy from the proof of the Π0
4-

completeness result in Section 4 with a Σ0
3-guessing, as follows. As before, every local diag-

onalisation strategy will be working within its own primary summand, and the location can
be abandoned. Whenever it is abandoned due to an action of the Σ0

3-guessing, it is instantly
homogenised: it is set equal to Zp2 ⊕ Zp2 .

The Σ0
3-guessing can be organised in a movable markers fashion, so that in the Π0

3-case
every strategy gets to act within a stable component, thus producing a TAG that is not c.c.
In the Σ0

3-case all except for finitely many primary components will be homogenised. Since
those which are not homogenised are actually finite, the group is relatively c.c. We leave the
elementary details to the reader. �
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[Gon75] S. S. Gončarov. Selfstability, and computable families of constructivizations. Algebra i Logika,
14(6):647–680, 727, 1975.

[Gon80] S. Goncharov. Autostability of models and abelian groups. Algebra i Logika, 19(1):23–44, 132, 1980.
[Gon81] S. Goncharov. Groups with a finite number of constructivizations. Dokl. Akad. Nauk SSSR,

256(2):269–272, 1981.
[Gon97] S. Goncharov. Countable Boolean algebras and decidability. Siberian School of Algebra and Logic.

Consultants Bureau, New York, 1997.
[Her26] Grete Hermann. Die Frage der endlich vielen Schritte in der Theorie der Polynomideale. Math.

Ann., 95(1):736–788, 1926.
[HKMS15] Denis R. Hirschfeldt, Ken Kramer, Russell Miller, and Alexandra Shlapentokh. Categoricity prop-

erties for computable algebraic fields. Trans. Amer. Math. Soc., 367(6):3981–4017, 2015.
[Khi98] N. Khisamiev. Constructive abelian groups. In Handbook of recursive mathematics, Vol. 2, volume

139 of Stud. Logic Found. Math., pages 1177–1231. North-Holland, Amsterdam, 1998.
[KNS97] B. Khoussainov, A. Nies, and R. Shore. Computable models of theories with few models. Notre

Dame J. Formal Logic, 38(2):165–178, 1997.
[LaR77] P. LaRoche. Recursively presented boolean algebras. Notices AMS, 24:552–553, 1977.
[Mal61] A. Mal′cev. Constructive algebras. I. Uspehi Mat. Nauk, 16(3 (99)):3–60, 1961.
[Mel14] Alexander G. Melnikov. Computable abelian groups. Bull. Symb. Log., 20(3):315–356, 2014.
[Mos84] Michael Moses. Recursive linear orders with recursive successivities. Ann. Pure Appl. Logic,

27(3):253–264, 1984.
[Nur74] A. Nurtazin. Computable classes and algebraic criteria of autostability. Summary of Scientific

Schools, Math. Inst. SB USSRAS, Novosibirsk, 1974.
[Rab60] M. Rabin. Computable algebra, general theory and theory of computable fields. Trans. Amer. Math.

Soc., 95:341–360, 1960.
[Rem81] J. B. Remmel. Recursively categorical linear orderings. Proc. Amer. Math. Soc., 83(2):387–391,

1981.
[Rog87] H. Rogers. Theory of recursive functions and effective computability. MIT Press, Cambridge, MA,

second edition, 1987.
[Smi81] R. Smith. Two theorems on autostability in p-groups. In Logic Year 1979–80 (Proc. Seminars and

Conf. Math. Logic, Univ. Connecticut, Storrs, Conn., 1979/80), volume 859 of Lecture Notes in
Math., pages 302–311. Springer, Berlin, 1981.

[Soa87] R. Soare. Recursively enumerable sets and degrees. Perspectives in Mathematical Logic. Springer-
Verlag, Berlin, 1987. A study of computable functions and computably generated sets.

[vdW30] B. van der Waerden. Eine Bemerkung über die Unzerlegbarkeit von Polynomen. Math. Ann.,
102(1):738–739, 1930.

Massey University, Auckland, New Zealand
E-mail address: alexander.g.melnikov@gmail.com

Nanyang Technological University, Singapore
E-mail address: selwyn.km.ng@gmail.com


