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Abstract. The paper contributes to the theory of recursively presented (see
Higman [22]) infinitely generated abelian groups with solvable word problem.

Mal’cev [35] and independently Rabin [39] initiated the study of such groups

in the early 1960’s.
In the paper we develop a technique that we call iterated effective embed-

dings. The significance of our new technique is that it extends the iteration

technique from the realm of iterated 0′′ arguments to iterated 0′′′ ones. This
is a new phenomenom in computable algebra. As an illustration, we use this

technique to confirm and extend a 30 year old conjecture of Ash, Knight and

Oates [2].
More specifically, Ash, Knight and Oates [2] conjectured that there exists

a reduced abelian p-group of Ulm type ω such that its effective invariants,
limitwise monotonic functions, are not uniform. We construct a computable

reduced abelian p-group of Ulm type ω having its invariants, limitwise mono-

tonic functions, not only non-uniform but at the maximal potentially possible
level of non-uniformity. The result confirms the conjecture in a strong way, and

it also provides us with an explanation of why computable reduced p-groups

of Ulm type ω seem hard to classify in general.
We also use p-basic trees and their iterated embeddings to solve a problem

posed in [4].

1. Introduction

Following Mal′cev [35] and Rabin [39], we say that a countable group H is
constructive or computable if elements of H can be associated with natural numbers
so that the group operation becomes a recursive function on these numbers. The
above mentioned numbering of the group is called a computable presentation or
constructivistion of the group. Equivalently, a group has a computable presentation
if, and only if, the group admits an effective listing of its generators under which
the word problem is solvable.

Mal′cev [35] initiated the systematic study of computable abelian groups. Among
other results, Mal′cev characterized computable subgroups of (Q,+), and also
showed that the additive group

⊕
i∈ω Q admits more than one computable pre-

sentation, up to computable isomorphism. Computable abelian group theory has
developed rapidly along with with other branches of effective algebra. These related
branches include effective field theory (see Frölich and Shepherdson [16], Rabin [39],
Metakides and Nerode [37]), computable Boolean algebras (Goncharov [19], Rem-
mel [40]) and computable linear orders (Downey [11]). Other closely related subjects
are the study of effectively presented vector spaces [7, 8, 36] and the theory of com-
putable ordered groups [12, 20]. For early developments in the field of computable
abelian groups, see Nurtazin [38], Smith [42], Lin [34], and Khisamiev [26]. We
remark that all groups in this paper will be countable abelian groups.
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The modern theory of computable abelian groups is one that not only depends on
tools from classical computability theory [43] such as priority arguments, but also
heavily uses methods of classical abelian group theory [17, 18, 30] and computable
model theory [3, 15], as well as tools specific to the field [32, 10, 1]. Standard
references for the theory of computable ablelian groups are [32, 13].

1.1. The subject of the paper. The underlying problem of the present paper is
one that is fundamental virtually in any area of computable model theory.

Characterize computably presentable members in a given class of strucutres.

Typically, a reasonable answer might entail examining the effective content of a
classical theorem giving some kind of invariants. In the theory of p-groups there is
Ulm’s famous classical characterization of the isomorphism types of such groups.
We briefly remind this characterization in the next few lines.

Let p be prime, and A an abelian additive group. A non-zero element g of A has
infinite height if for every k the equation pkx = g has a solution in A. Elements of
infinite height generate a sub-group A′ of A. Iterating this process1, we can define
A(α) for every ordinal α. The quotients A0 = A/A′ and Aα = A(α)/A(α+1) contain
only (non-zero) elements of finite height. Since A is countable, there must be a
countable α for which

A(α) = A(α+1).

The least such α is called the Ulm type of A and is denoted by u(A). If A(u(A)) = 0,
then A is reduced.

One can show that the Ulm factors Aα are simply direct sums of finite cyclic
groups. Such a direct sum can be fully classified by its Ulm invariant which is
the multiset of sizes of its elementary cyclic summands. This classification can be
generalized:

Theorem 1.1 (Ulm). The isomorphism type of a countable reduced (abelian) p-
group is completely determined by the isomorphism types of its Ulm factors.

Another way of stating Ulm’s theorem is to look at the sequence of dimensions
of the quotients Aα = A(α)/A(α+1) viewed as vector spaces over the Zp, and these
numbers form the Ulm sequence for A.

Since the Ulm invariants classify p-groups up to isomorphism, we might hope that
we can classify computable p-groups by effectivity conditions on Ulm sequences.
Thus, when restricted to the class of countable reduced abelian p-groups, the fun-
damental problem of characterizing computable members reduces to:

Which Ulm invariants correspond to computably presentable groups?

A related question is the following.

If we fail to answer the question above, are there any
reasonable invariants corresponding to computable abelian p-groups?

Given that these are natural questions, one would expect that answers are known.
Nonetheless, we will see that the question is harder than one might expect.

1For a p-group A, the notation A′ can be understood in two significantly different ways (namely,
recursion-theoretically and group-theoretically), but it will be always clear form the context what

exactly we mean.
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1.2. The effective content of Ulm’s theorem. It is easy to see that the if G is a
computable p-group then its Ulm type is ≤ ω1

CK which is the first non-computable
ordinal. [34, 32]. It is reasonably easy to see that given any computable ordinal
α there exists a computable p-group of Ulm type α whose Ulm invariants are uni-
formly computable. The trouble is that the Ulm sequene for a computable p-group
is often far from computable. For example, it would seem that even computing
the elements of finite height in a computable group we need quite a strong oracle
0′′. Khisamiev and independently Ash, Knight and Oates realized that more than
uniform computability is actually required. The formation of sets encoding the
invariants have to be constructed in a special limitwise monotonic way.

Definition 1.2 (Khisamiev [27]). A total function F is limitwise monotonic if
F = λx. supy f(x, y), where f is computable. A set is limitwise monotonic if it is a
range of a limitwise monotonic function.

It is easiest to understand Definition 1.2 via the example of the sizes of cells in a
computable equivalence relation E. Suppose that C is the set of sizes of such cells
and suppose that in E all such sizes are finite. Then E clearly is the range of a
limitwise monotonic set. Conversely, if we have a limitwise monotonic set, then it is
easy to construct a computable equivalence relation whose cells have exactly those
sizes. We remark that whilst all limitwise monotonic sets are Σ0

2, the limitwise
monotonicity of the required cell sizes imposes a restriction, since there are Σ0

2 sets
that are not limitwise monotonic [33].

In the case of p-groups, we will need the definition in relativized form. To wit,
replace f by a 0(n)-computable function in the definition above and obtain the
notion of 0(n)-limitwise monotonicity. A set is 0(n)-limitwise monotonic if it is the
range of a 0(n)-limitwise monotonic function. For infinite Σ0

n+1 sets, the latter is

equivalent to containing an infinite range of a 0(n)-limitwise monotonic function
(see, e.g., [29, 21]). Khisamiev and independently and later Ash, Knight and Oates
proved:

Theorem 1.3. [31, 2] Let A be a reduced (abelian) p-group of Ulm type n < ω.
Then the following are equivalent:

(1) A has a computable copy;
(2) (a) for every i < n, the set

S(Ai) = {(m, k) : at least k summands of Ai are of order pm}
is Σ0

2i+2, and
(b) for every i < n, the set

#Ai = {m : Zpm is a summand of Ai}

is 0(2i)-limitwise monotonic.

The concept of limitwise monotonicity was new to computability theory. Lim-
itwise monotonic functions have found various applications outside the theory of
computable groups [6, 21, 28, 23, 5, 24, 25, 9, 33].

This brings us to the first topic of the present paper. Theorem 1.3 only gives a
characterization of the Ulm sequences which can be realized in computable p-groups
for finite Ulm type n < ω, though as we will see in Proposition 5.2 (and as the
authors of those papers noted), the methods allow us to construct a computable
p-group of Ulm type ω if we replace (b) above by
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(b′) for every i < n, the set

#Ai = {m : Zpm is a summand of Ai}
is uniformly 0(2i)-limitwise monotonic.

The general question of whether Theorem 1.3 holds for groups of Ulm type ≥ ω
has been an open problem for over 30 years.

1.3. The case of Ulm type ω, and the main result. If a reduced abelian
p-group G is computable, the sets #Gi have to be 0(2i)-limitwise monotonic, uni-
formly in i or not. One possible approach to generalizing Theorem 1.3 would be to
establish that the limitwise functions ranging over #Ai are always uniformly given
for any computable p-group A. This is far from true as we will see.

Counting the number of quantifiers (see Fact 2.8) shows that finding (an index
for) a 0(2i)-limitwise monotonic function ranging over #Gi takes at most three
extra jumps on top of 0(2i); in fact, the property is Π0

3(0(2i)) uniformly in i. We
prove that the upper bound (namely, Π0

(2i+3)) is sharp:

Theorem 1.4. The exists a computable reduced abelian p-group G of Ulm type
ω such that the (indices for) 0(2i)-limiwise monotonic functions ranging over #Gi
are not uniformly ∆0

2i+3.

Theorem 1.4 enables us to prove a conjecture of Ash, Knight and Oates [2]:

Corollary 1.5. There exists a computable reduced abelian p-group G of Ulm type
ω for which #Gi are not uniformly 0(2i)-limitwise monotonic.

That is, the Ulm sequence can be a far from being uniformly given as it is possi-
ble for it to be. We have already observed that it is necessary that the sets #Ai are
limitwise monotonic (relative to 0(2i)) if A is computable. One technical remark
about Theorem 1.4 is the following. It gives evidence that characterizing com-
putable p-groups of Ulm type ≥ ω would have to use an iterated 0′′′-construction
since using limitwise monotonicity seems unavoidable in any such proof. Whence,
any proof would have to use an iterated 0′′′-guessing procedure. Numerous combi-
natorial and algebraic issues that would have to be addressed make the task look
very difficult if not hopeless (see Conclusion).

The key technical tool of the present paper is Proposition 3.4 which gives a
uniform embedding performed on top of a strategy potentially having a Π0

3-outcome.
Some elements of the 0′′′-machinery as well as specific purely algebraic techniques
are vital for both construction and its verification. This methodology that we call
iterated embeddings has already found other applications. In particular, we will use
the iterated embeddings to solve a open question on categoricity (to be discussed
in Subsection 1.4).

Our proof of Theorem 1.4 detours through an effective version of another clas-
sification of the Ulm invariants due to Laurel Rogers. Rogers described how to
associate a certain kind of tree with a p-group and conversely. That is, we use the
representation of p-groups by p-basic trees [41] (to be defined in the next section).
Khisamiev’s approach to proving Theorem 1.3 was direct and algebraic. The ap-
proach of Ash, Knight and Oates [2] was to effectivize the methodology of Rogers.
Ash, Knight and Oates [2] showed that if a group G of type n < ω, or has type ≥ ω
and has the uniform properties from the Conjecture, then G is computable if and
only if it can be represented as a computable p-basic tree.
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The group G from Theorem 1.4 possesses a computable p-basic tree that gener-
ates it. Thus, we obtain:

Corollary 1.6. There exists a computable p-basic tree such that the computable
group it generates has no uniform sequence of monotonic functions from the Con-
jecture.

This is the first instance where such a separation of the properties of the p-basic
trees and those of the limitwise monotonic functions inherent in the groups have
separated. We remark that our results also highlight the following question due to
Ash, Knight and Oates [2].

Question 1.7. Can every computable abelian p-group be represented by a com-
putable p-basic tree?

The paper of Ash, Knight and Oates [2] has never appeared in print2. Its methods
are important to our work and hence we will take this opportunity to give a brief
account of their methods in Section 2.

1.4. A categoricity question. Recall that a computable structure is ∆0
α-categorical

if any two computable isomorphic copies of the structure are ∆0
α-isomorphic [3].

Calvert, Cenzer, Harizanov, and Morozov asked (Problem 5.1 in [4]):

Question 1.8. Let G be a computable abelian p-group isomorphic to D⊕H, where
D is a direct sum of finitely many copies of the Prufer group Zp∞ , and H is a direct
sum of cyclic summands of unbounded orders. Can G be ∆0

2-categorical?

Using the technique of iterated embeddings of p-basic trees, we answer the ques-
tion in negative. In fact, we prove more:

Theorem 1.9. Let G be a computable p-group of finite Ulm type n, such that:
(1.) G(n) ∼= ⊕j≤mZp∞ , for some m ∈ ω;
(2.) orders of cyclic summands in Gn−1 are not bounded.

Then G is not ∆0
2n-categorical.

In the special case when n = 1 we get exactly groups satisfying conditions of
Question 1.8. The theorem improves earlier results of Dushenin [14] who used
complex full approximation techniques to construct non-∆0

2n-categorical groups in
these classes, for small n.

2. Background and conventions

We assume that the reader has a sufficient background in computability the-
ory [43] and computable model theory [3, 15]. We will be using basic notions of
abelian group theory, the standard textbooks are [17, 18, 30], but no solid back-
ground in abelian group theory is assumed.

2Many thanks to Julia F. Knight who kindly gave us her permission to upload the unpublished
manuscript onto the web and assign a public link to the location.
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2.1. p-Basic trees. In mathematical practice, it is convenient to use tree-like di-
agrams representing abelian p-groups.

Definition 2.1. [41] A p-basic tree is a set X together with an binary operation ·
of the sort {pn : n ∈ ω \ {0}} ×X → X such that:

(1) there is a unique element 0 in X for which p · 0= 0,
(2) pk · (pm · g) = pk+m · g, for every g ∈ X and k,m ∈ ω, and
(3) for each nonzero element x in X, there is a positive integer n such that

pn · x = 0.

Given a p-basic tree X we can pass to an abelian p-group G(X). We use X \{0}
as the set of generators, and put px = y into the collection of relations if p · x = y
in X. Every countable reduced abelian p-group is generated by some well-founded
p-basic tree [41].

Convention 2.2. We usually identify a p-basic tree T , the corresponding tree with
a distinguished root, and the abelian p-group generated by T . The reader should
keep in mind that a group typically has more than one p-basic tree generating it.

Recall the notion of ordinal tree rank for a well-founded tree: every leaf has
tree rank 0, and the tree rank of any other vertex is the least ordinal greater than
the ranks of all its successors. Notice that every element in G(X) can be uniquely
represented in the form

∑
imivi, where vi ∈ X and mi ∈ {1, . . . , p− 1}.

Definition 2.3. Suppose X is a well-founded p-basic tree, and G(X) is the corre-
sponding group. The rank of

∑
imivi, where vi ∈ X and mi ∈ {1, . . . , p − 1}, is

the minimum of tree ranks of the vi in X.

The definition is independent on the choice of the underlying p-basic tree (follows
from Proposition 1 of [41]). We will use the following consequence of Definition 2.3
without explicit reference:

Remark 2.4. The collection of tree-ranks that occur in X is the same as the
collection of ranks realized in G(X).

A non-zero element has rank k ∈ ω if, and only if, it has height k. Non-zero
elements having rank ≥ ω are exactly the elements of infinite height. Thus, we
could define the Ulm factors using ranks rather than heights. Furthermore, the
Ulm invariants of G(X) can be reconstructed using only tree ranks which appear
in X [41].

2.2. Trees which give rise to isomorphic groups. All our trees grow down-
wards. In a tree, a chain is simple if each node in the chain has at most one
successor.

We will not completely describe the congruence relation ∼ on trees defined by
the rule T ∼ X iff G(T ) ∼= G(X). A detailed analysis of ∼ can be found in [41].
We will be using elementary transformations from one tree to another preserving
their ∼-class:

Take a simple chain extending v ∈ T , detach it and then attach this chain to the
root of T .
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Example 2.5. For instance, imagine a tree on vertices v1, v2, v3 and v4 such that
v1 is the root having successor v2, and v3, v4 are the only two children of v2. This
tree corresponds to the abelian group

B = 〈v1, v2, v3, v4 : v1 = 0, pv2 = v1, pv3 = v2, pv4 = v2〉.
Notice that the same group can be represented by another tree: for instance, pick
v1, v2, v3 and v3 − v4 as new generators of the group. Both corresponding p-basic
trees represent B.

The procedure described above is called stripping. We can iterate this process
and obtain a fully stripped tree representing the same group. The only restriction
is that we have to keep some sequence below a node witnessing its tree-rank. For
example, a fully stripped tree for a group of Ulm type 1 is simply a collection of
simple chains attached to 0. Assuming that every countable p-group has a p-basic
tree that generates it [41], we have just proved that every countable reduced p-group
of Ulm type 1 is isomorphic to a direct sum of cyclic p-groups [30].

Another very special case of the general framework on p-basic trees is stated in
the fact below.

Fact 2.6. Suppose T and X are p-basic trees so that 0 has rank ω in X. There
exists a p-basic tree V such that G(V )0 ∼= G(X) and G(V )′ ∼= G(T ).

Proof Sketch. Attach infinitely many finite simple chains to every node in T making
ranks of vertices in (the image of) T infinite within V . The lengths of the finite
chains should be based on the ranks that occur in X. �

Although classically Fact 2.6 is a triviality, the effective analog of it is not
straightforward and is the main technical tool of [2].

Lemma 2.7. [2] Let T be a computable p-basic tree of Ulm type 1 in which 0
has tree-rank ω, and let C be any Π0

2 subtree of ω<ω (C is viewed as a p-basic
tree). There exists a computable p-basic tree U expanding C such that U0

∼= T and
U ′ = C.

Theorem 1.3 follows from Lemma 2.7 and the elementary characterization of
computable groups isomorphic to sums of cyclic summands (see [32]). The latter
involves limitwise monotonicity. Khisamiev proved an analog of Lemma 2.7 without
using p-basic trees and working with groups directly, and the paper of Ash, Knight
and Oates never appeared in print. Since we will be using p-basic trees in our
construction, and since we will refer to Lemma 2.7, we give an extended sketch of
its proof.

Proof. It follows from the characterization of Ulm type 1 groups [32] that there
exists a computable limitwise monotonic function f such that

range sup
y
f(x, y)

is infinite and is contained in the set #T0 of lengths that occur in T . We also fix a
computable predicate R such that σ ∈ C if, and only if, ∃∞yR(y, σ).

Proof idea. Using f and R, we shall imitate the proof of Fact 2.6. More specifically,
if our current approximation to a Π0

2-predicate ∃∞yR(y, σ) “fires” on σ ∈ ω<ω,
as well as on all initial segments of σ, by providing new witnesses y for the corre-
sponding strings, we start growing more simple chains below σ using f . The main
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difficulty is that some of the components we are constructing may become inactive
forever, in this case we need to make sure these components do not produce chains
of wrong sizes after stripping (recall we need U0

∼= T ).

Further assumptions. We list here two extra assumptions that we use to simplify
the proof. The assumptions either do not effect the generality or can be removed
with some extra work (to be discussed later).

(1) Without loss of generality, we assume nx ≤ supy f(x, y) for a computable
increasing sequence (nx)x∈ω and also that supy f(x, y) is strictly monoton-
ically increasing as a function of x. The rate of this increasing can be
adjusted during the construction, and we can always assume that the next
limit is “much larger” than the previous.

(2) For simplicity, we assume that every finite length that occurs in T , up to
stripping, actually occurs infinitely often.

Notations used. Without loss of generality, we assume that the copy of ω<ω con-
taining C is embedded into another copy of ω<ω in which every σ of the original
copy has infinitely many clones. The smaller copy of ω<ω is denoted by L, and the
larger by V .

Recall that we are constructing U =
⋃
s Us. For every τ ∈ L that is ever

enumerated into U and which is terminal in Us, define its essential length at stage
s, in symbols [[τ ]]s, to be the length that would be represented by τ after the full
stripping of Us. More formally, let [[τ ]]s = 0 if τ is not terminal in Us, and otherwise
let

[[τ ]]s = |τ | − |τ0|,
where τ0 is the longest proper initial segment of τ that has an extension τ ′ ∈ Us
with the property |τ ′| − |τ0| ≥ |τ | − |τ0|. We may define [[τ ]] = lims[[τ ]]s for every
terminal τ of U =

⋃
s Us.

The requirements. We need to meet, for every σ ∈ L, the requirement:

Rσ : σ ∈ C → (∃∞τ ∈ V \ L) σ ⊂ τ
together with the global requirement saying that T0 ∼= U0. We would like to split
this global requirement into sub-requirements corresponding to different strings
of U . Apart from making sure that all sizes from T0 have been used infinitely many
times, we need to meet for each τ the requirement

Nτ : [[τ ]] belongs to #T0.

We may assume 0 ∈ T0 without any meaningful interpretation.

The strategies. At stage s, we will reserve a sequence (xi,s)i of length at least
card(Us)-many large and fresh numbers. We suppress s in xi,s. We have xi < xi+1

for every i. The numbers will be put into a stack and used by various R-strategies.
We denote xi corresponding to Rσ by x suppressing its index.

Suppose at stage t we have seen ∃≥nρ,tyRt(y, ρ) for each ρ ⊆ σ. Here nρ,t ∈ N,
and ∃≥nρ,ty has a clear interpretation. If at stage s > t we see ∃≥nρ,t+1yRs(y, ρ),
then we say that Rσ requires attention at stage s.

The strategy for Rσ. If at stage s the strategy Rσ requires attention, then enumerate
σ into U if σ does not belong to U yet. Then do the following:

i. Enumerate into U a new string u ∈ V \ L disjoint from Us and extending
σ = ∅ such that:
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(a) the length of u is supy≤s f(x, y) if σ = ∅, or otherwise
(b) the length of u is supy≤s f(x, y)− 1, if σ 6= ∅.

ii. Put the label x onto u.

We are using supy≤s f(x, y)−1 because, as the reader may check on some simple

examples, this choice will guarantee [[u]]s = supy≤s f(x, y). The label x indicates
[[u]]s = supy≤s f(x, y) and will be used by the Nu-strategy.

The strategy for Nτ . If τ has no label on it, then we do nothing. Otherwise, if τ
carries a label x and [[τ ]]s 6= supy≤s f(x, y), then:

i. If [[τ ]]s 6= supy≤s f(x, y) due to [[τ ]]s increasing (necessarily, by one) since
the last stage Nτ was active, then (a.) extend τ by a new τ ′ ∈ V such that
|τ ′| − |τ | = 1, and (b.) put the label x onto τ ′.

ii. If [[τ ]]s 6= supy≤s f(x, y) due to supy≤s f(x, y) increasing by k > 0 in value
since the last stage Nτ was active, then (a.) extend τ by a new τ ′ ∈ V such
that |τ ′| − |τ | = k, and (b.) put the label x onto τ ′.

Construction. At stage 0, using V , initiate the enumeration of finite simple chains
of lengths supy f(x, y) attached to 0, with infinitely many chains for each x.

Stage s has two substages:

(1) Correct the finite simple chains introduced at stage 0 by extending them
within V to longer simple chains if it is necessary, according to supy≤s f(x, y).

(2) Reserve a sequence of large fresh numbers (xi,s)i of length at least card(Us).
Distribute the numbers among {Rσ : σ ∈ Us} so that if σ ⊂ σ′ then σ
gets assigned to a number larger than the number associated to σ′. Let
the strategies for (Rσ)σ∈L�s and then (Nτ )τ∈V �s act according to their
instructions.

Verification scheme. We need to argue that every requirement is met, and that
T ∼= U0. Every R-requirement is clearly met though, because we act for the sake
of σ using longer and longer chains infinitely often only if σ ∈ C. Whence, the
situation is not much different from what we had in the proof of Fact 2.6.

For the sake of Nτ , we need to show that if τ is terminal in U , then its essential
length agrees with the label x that was put onto τ :

[[τ ]] = sup
y
f(x, y).

We show that every label x , if ever introduced, can be moved at most finitely
often. There are two reasons x can be moved downwards along the tree.

To see the first reason, suppose Rσ was the R-strategy that introduced x to the
construction. Then, if σ 6= ∅, we used a chain u of length supy≤s f(x, y)−1 to extend
σ. It agreed with Nu because an even longer chain gets adjoined to a predecessor of
σ at the same stage (consider some simple examples). If Rσ becomes active again
at some later stage s, then an even longer chain is adjoined to σ at stage s. To keep
the essential length of the node carrying x equal to supy≤s f(x, y), we extend u
by one extra node, and move the label onto this newly introduced node. We will
never need to correct the position of x again unless supy f(x, y) > supy≤s f(x, y).

The latter event is exactly the second reason we might correct the position of x .
Thus, after some stage on, the label x settles on a node v. Using an inductive

argument, we can show that in this case [[v]] = supy f(x, y). We can also show that
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every string from U \ L, except for those introduced at stage 0, has an extension
carrying a label. This is done by induction as well. Whence, we argue that the
actual lengths that occur in U0 agree with T . Because of the extra assumptions we
made about T0 and f , we get T = T0 ∼= U0. This completes the verification scheme.

Removing the extra assumptions. The extra assumption (1) on the choice of f is
removed by a dynamic transformation of f into another (approximation to a) lim-
itwise monotonic f ′ with rangex supy f

′(x, y) ⊆ rangex supy f(x, y). The dynamic
transformation can be done during the construction and it has almost no effect on
the construction.

The extra assumption (2) can be removed by modifying Stage 0 and Substage (1)
of Stage s > 0. More specifically, we guess if a certain length is present in T (this
is a Σ0

2-process), and if we think that yes then we introduce this length using a
new simple chain extending ∅. If later we change our guess, we assign a fresh value
x to the simple chain and work towards making its length equal to supy f(x, y).
We of cause have to be careful and do not use too many simple chains of length
supy f(x, y), the available number of chains is determined by T , but this issue can
be sorted out dynamically. �

The calculation of the upper bound on the uniformity of limitwise monotonic func-
tions in G is given below:

Fact 2.8. In a computable G of Ulm type ω, the sets #Gi are uniformly Π0
3(0(2i))-

limitwise monotonic. (There exists a Π0
(3+2i)-sequence indiex sets witnessing limit-

wise monotonicity.)

Proof of Fact 2.8. Saying that an element g 6= 0 has infinite height in G is Πc
2-

statement. We also say that there is no h ∈ G having infinite height such that
ph = g. The combined complexity is Π0

3. Given such an element, we can effectively
pass to a limitwise monotonic function with the range {n : (∃a)(hp(a) = 0 ∧ png =

a)} ⊆ #G0. A relativized version of this argument gives Π0
3(0(2i)) when considering

#Gi. �

3. Proof of Theorem 1.4

Our goal it showing that the upper bound given by Fact 2.8 is sharp. Throughout
the proof, all groups are reduced abelian p-groups. We will typically identify a p-
basic tree and the group it generates, but the reader should keep in mind that
non-isomorphic trees may generate isomorphic groups.

The proof is divided into parts. In Subsection 3.1 we formally state the re-
quirements and agree on notations. In Subsection 3.2, we describe how to build
G assuming certain uniform operators exist. To define these operators and verify
their properties, we need to do quite a bit of preliminary work which is done in the
next subsections. In Subsection 3.3 we describe a single Π0

2-diagonalization strategy
in isolation. In Subsection 3.3, the input of the strategy is a simple chain. The
situation reflects the simplest way of avoiding a certain length in a p-basic tree in
a way that the resulting tree is non-empty and contains elements of finite height.
Then, in Subsection 3.4, we modify the basic strategy to a strategy which can han-
dle arbitrary finite tree, not just a simple chain. This modification is required since
other strategies may abandon their components, and the diagonalization strategy
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will have to deal with these abandoned components which are not necessarily finite
simple chains. In Subsection 3.5 we merge the diagonalization strategy and a Π0

3-
guessing procedure. In Subsection 3.6 we construct an auxiliary group F produced
by the basic strategy (combined with the Π0

3-guessing), on a specific input. The
construction of G heavily relies on F , since F is used to define the operators (see,
e.g., Fact 3.2). The operators are finally defined in Subsection 3.7. The proof is
finished in Subsection 3.8.

3.1. Preliminary analysis, and the requirements. Recall that for a group G,
the set of finite heights which occur in Gi is denoted by #Gi.

We aim to construct a computable reduced abelian p-group G of Ulm type ω
for which the indices of functions witnessing limitwise monotonicity of #Gi are not
uniformly ∆0

3(0(2i)). Although it is intuitively clear which requirements we need to
satisfy, we prefer to formally state them. Let (F0,j)j∈ω, (F1,j)j∈ω, . . . be the effective
listing of all uniformly c.e. sequences of predicates. Based on this listing, and using
alternating projections and complementations, we can associate every (uniformly)
Σ0

(3+2i) sequence of predicates with a single index e, and denote it (Re,i)i∈ω, where

Re,i is Σ0
3+2i uniformly in i. We say that j witnesses 0(e)-limitwise monotonicity of

a set X if f(x) � supy Φj(0
(e);x, y) is total, rngx f(x) is infinite, and

rngxf(x) ⊆ X.
A set S witnesses 0(e)-limitwise monotonicity of X if each j ∈ S witnesses 0(e)-
limitwise monotonicity of X. We meet, for every e, the requirement:

Le : Re,3e does not witness 0(6e)-limitwise monotonicity of #G3e.

The reason we are using G3e instead of Ge is related to the outcomes of the basic
diagonalization strategy and will be explained in the next subsection.

3.2. Describing G. We need to construct a computable reduced abelian p-group
G of Ulm type ω and meet:

Le : Re,3e does not witness 0(6e)-limitwise monotonicity of #G3e,

where the Re,i are Σ0
3+2i uniformly in i.

The strategy for Le will be discussed in the later subsections. We will relativize
this strategy to 0(6e). As a result, Le will uniformly produce a 0(6e) -computable
p-basic tree A(3e) having Ulm type either 1, 2, or 3, depending on the true outcome
of Le.

We wish to construct computable G such that G3e = A(3e)0, for every e. If we
succeed, then Re will be met for every e. We will also make sure G3e+1

∼= G3e+2
∼=⊕

m,n Zpmam,n for every e.

How do we construct G? Instead of constructing the whole G at once, we will
construct a uniformly computable sequence of p-basic trees (B(i))i∈ω such that
B(i) is of Ulm type i. We will have B(i)3e ∼= A(3e) and B(i)3e−1 = B(i)3e−2 ∼=⊕

m,n∈ω Zpmam,n, for every 3e ≤ i. We will set G =
⊕

i∈ω B(i).

Why do we homogenize G3e+1 and G3e+2? We will need to put the groups A(j)
together in a tower (this is the main difficulty), but in some cases our diagonalization
modules (L-strategies) will produce “junk” which will contain elements of high
rank. We will show that the tree-ranks of the “junk” elements will be less than
ω · 3, and they could potentially effect at most two more “levels” of the group. We
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circumvent this potential difficulty homogenizing two levels in-between the levels
used by different L-strategies.

How do we build B(i)? We construct B(i) using operators which map Π0
2-subtrees

of ω<ω to computable trees. Recall that every ∆0
2-tree is isomorphic to a Π0

1-subtree
of ω<ω, with all possible uniformity.

Given a Π0
2 p-basic tree D, we can uniformly produce a a computable p-basic tree

H such that H0
∼=

⊕
m,n Zpmam,n and G′ ∼= D (see Proposition 3.3). We will also

prove that, given the computable tree F constructed by one of the diagonalization
strategies (think of L0 and A(0)) and a Π0

2 subtree C of ω<ω such that C0
∼= C1

∼=⊕
m,n Zpmam,n, we can uniformly construct a computable tree U such that U0

∼= F0

and U ′ ∼= C (see Proposition 3.4). Assuming these operators exist, we can uniformly
construct the trees/groups B(i), and then uniformly pass to G =

⊕
i∈ω B(i). The

group G will have the desired properties.

3.3. The basic strategy. In this subsection we describe the basic diagonalization
strategy. The strategy will be then modified, and then merged with a Σ0

3-guessing
procedure.

Recall that for a group G, the collection of finite heights which occur in G0 is
denoted by #G0. Suppose we wish to uniformly construct a computable group G
in which #G0 is infinite and not limitwise monotonic via supy f(x, y) for a given
(partially) computable f :

#G0 6= range λx. sup
y
f(x, y).

We assume that G initially has no elements of infinite height. We furthermore
assume that G is initially (at stage 0) represented by a p-basic tree which is the
collection of finite simple chains (i.e., with no splittings) attached to the root.

Note 3.1. We assume that we know the lengths of the chains in advance.

The strategies’ main task is to make sure there is no chains of length supy f(x, y)
in the tree representing G. In the simplest case, we can work with each simple chain
separately, and modify it trying to make sure its length is not equal to supy f(x, y)
for some specifically chosen x. Thus, we initially start with a single simple chain
attached to 0 of length k ≥ 2 and having a as its terminal node.

Strategy.

(1) Wait for s and x such that supy≤s fs(x, y) is defined and equals to k. If
we ever see such a computation, introduce a new element h and declare
p2h = pa.

(2) At a stage s′ > s, let m be largest such that pmh = pa. Wait for a stage
t ≥ s′ such that supy≤t ft(x, y) = k + m − 1. If such a stage is found,

introduce a new generator h′ and declare pm+1h′ = pa.

If the strategy proceeds by iteration of (2) above for larger and larger m, we end
up with a having tree rank ω. The strategy produces a finite tree, otherwise. In
both cases the requirement is clearly met.
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3.4. The modified strategy. We are aiming to build a group having a computable
p-basic tree. The basic strategy described in the previous subsection will not be
sufficient for this goal, since other strategies may possibly effect the isomorphism
type of G0 producing “junk”. This “junk” will typically be a finite tree attached
to the root. Thus, we need explain how the basic strategy deals with an arbitrary
finite tree, not simply with a finite simple chain. This situation will occur in
Proposition 3.4 which is the key technical tool of the paper.

This, we explain how to meet

#G0 6= range λx. sup
y
f(x, y),

in the case when G0 is not represented by a collection of finite simple chains. It will
be represented, in general, by a disjoint collection of computable finite trees (all
sharing the same root 0). Thus, it is sufficient to explain what happens on input a
finite p-basic tree which we denote V .

So, at stage 0 we have a finite tree V . The strategy will produce a potentially
infinite tree T extending V . Its main task is making sure there are no chains of
length supy f(x, y) in T . At stage s, we will have a finite tree T [s], and T =

⋃
s T [s].

The key idea is:

Never add extra chains to elements from T [s] \ V .

We shall argue that the procedure below implements this idea, and consequently
only elements of V will possibly have infinite heights in T . Since V is finite, we will
have T ′′ = 0.

Recall that every finite tree can be transformed to an ∼-equal collection of finite
chains growing from a single root 0. It is possible to effectively trace images of
finite chains under such a transformation and see which chains may contribute to
the collection of heights realized in T [s] (see, e.g., the definition of [[σ]]s in the proof
of Lemma 2.7). We say that g ∈ T [s] is dangerous if it could potentially witness
the failure of the requirement, i.e.:

(1) g is a terminal node, and
(2) there exists a finite chain which terminates at g and witnesses that

lf,s = sup
y≤s

fs(x, y)

can be realized as a height after the full stripping of T [s].

Modified strategy restricted to T [s]. If g ∈ T [s] is dangerous, then consider the
cases:

Case 1. We have g ∈ V . Then add a new element x to T [s] and declare px = g.
Case 2. We have g ∈ T [s] \ V , and there exists m such that h = pm+1g is in V but

pmg ∈ T [s] \V . Add a new element x to T [s] and declare pm+2x = h (thus
also adding pkx for 0 < k ≤ m+ 1).

In both cases, declare g not dangerous. Once there are no dangerous elements left,
go to the next stage.

Verification. Note that g can not represent height lf,s in T0. The action adds a
chain which either extends g by 1 point (Case 1) or represents the new relation
h = pm+1g (Case 2). In the first case g is not an end-point anymore, and can not
represent any finite height in #T0 itself anymore. In the second case, notice that
h = pm+1g is a terminal node in V . Thus, in the second case g belongs to a simple
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chain of length less than lf,s, and will represent a direct summand of order smaller
than lf,s (see the preliminary section).

We could argue (possibly modifying the strategy) that the element x can not
become dangerous unless lf changes. But notice that even if x was dangerous
without lf changing, we would repeat the strategy above with x in place of g, using
the same h. Eventually we would add a chain of length lf,s below h. Since h is
a terminal node in V , that new added chain can no longer represent height lf,s.
Consequently, its end-vertex can not be declared dangerous unless lf increases.

If lf ever stabilizes, we end up with a finite tree T such that lims lf,s /∈ #T0.
If lf keeps increasing forever, we end up constructing a (possibly infinite) tree
T containing V such that only elements of the finite V can possibly have infinite
height. Thus, heights of elements in T ′ are bounded in T ′, and consequently T ′′ = 0.

3.5. The strategy combined with a Π0
3-guessing. In this subsection we explain

how we diagonalize against a single Σ0
3 predicate. All procedures in the subsection

are effective. In general, we will be relativizing to an appropriate oracle.
Given a Σ0

3-predicate represented in the form {e : ∃x∃∞yU(x, y, e)}, where U is
c.e., we will guess which pair 〈e, x〉 is least such that ∃∞yU(x, y, e) (if there is any).
Each pair 〈e, x〉 will be associated with a basic diagonalization strategy working
with the function having index e. At stage s the basic module associated with 〈x, e〉
will be working within interval Ie,x[s] of size at least sup{n : ∃ny ≤ sUs(x, y, e)}
(i.e., the interval is increased if the predicate “fires” again). At stage s we have a
partitioning of ω into sub-intervals:

I0,0[s], I0,1[s], I1.0[s], . . . ,

from left to right, where

Ia,b[s] = [ma,b[s], na,b[s] ].

We may additionally assume that if 〈c, d〉 = 〈a, b〉+1 then mc,d[s] ≥ na,b[s]+〈a, b〉+
1, so that the intervals are sufficiently far apart.

The basic strategy associated with 〈e, x〉 will also be aiming to introduce its
witness, a natural number le,x,s representing the supremum of Φe(·, ·) on some
(first found) input (z, w) such that Φe(z, w) ≥ me,x[s]:

le,x,s = inf{sup
z≤s

Φe(z, w), ne,x[s]}.

We visualize the configuration at a stage s as follows. We have intervals corre-
sponding to the influence of each sub-strategy, and labels le,x,s representing lengths
which need to be avoided when constructing a tree. We initialize the basic module
associated with 〈e, x〉 if one of the modules with smaller index increases its interval
or newly introduces/grows its label. In this case me,x will be lifted to a fresh large
number (larger than any number seen so far in the construction) and le,x,s will be
set undefined.

Notice each label may move only to a larger value, and every time one of the
interval increases in size all larger labels will be removed and then possibly put on
numbers which are very large. (It is crucial for the construction.)
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3.6. The definition of F. The aim of this subsection is proving:

Fact 3.2. There exists a uniform procedure which, given a Σ0
3 predicateR, produces

a computable p-basic tree F of Ulm type at most 2 such that:

a. F0
∼= F0 ⊕ F0 (thus, every finite height is represented in F0 by infinitely

many elements);
b. R is not a collection of indices of functions witnessing limitwise monotonic-

ity of #F0.

The rest of the subsection is devoted to the proof of Fact 3.2. The group F
is the output of the basic module combined with a Σ0

3-guessing (see the previous
subsection) on input

⊕
m,n∈ω Zpnam,n represented by a tree consisting of simple

chains growing from the root 0. We additionally assume that the lengths of simple
chains in the tree representing

⊕
m,n∈ω Zpnam,n are known in advance (Note 3.1).

Before stage s begins we have a finite collection of finite trees {Vi[s − 1] : i ≤
s− 1}. The tree Vi[s− 1] contains either one of the am,n or is built around a newly
introduced simple chain. All the Vi[s− 1] share the same root 0.

Construction. At stage s, let each of the sub-strategies indexed by pairs 〈e, x〉 ≤ s
act on Vi[s − 1], for each m,n ≤ s, according to the instructions given in Subsec-
tion 3.4. One extra restriction is that the basic strategy associated with 〈e, x〉 is
not allowed to use simple chains of sizes le′,x′,s, for 〈e′, x′〉 < 〈e, x〉, all other sizes
are available3. If the label le,x is removed or is put onto a larger number, we intro-
duce infinitely many simple chains representing this currently unoccupied length
and attach them to 0.

The following outcomes are possible:

(e, x,∞): The interval Ie,x grows to infinity with eventually stable left-most point,
and the eventually stable witness corresponding to 〈e, x〉 tends to infinity.

(e, x, k): The interval Ie,x grows to infinity with eventually stable left-most point,
and the eventually stable witness corresponding to 〈e, x〉 is stuck at k. It
includes the case when eventually no witness can be chosen (an outcome of
the form (e, x, f) with symbol f).

g: This Π0
3-outcome is a global win corresponding to all intervals being even-

tually finite.

If (e, x,∞) is the true outcome, no labels to the left of Ie,x ever move after a stage
s. At every stage t ≥ s at which Ie,x increases in size, all labels of sub strategies
associated with larger pairs will be moved beyond Ie,x to fresh large numbers. In
fact, they will be lifted up so large that no tree among Vm,n which were influenced
by their actions will ever be modified by these strategies again. Consequently, we
can argue as in Subsection 3.4 and see that in the limit we construct a p-basic tree
F with F ′′ = 0.

If (e, x, k) is the true outcome, we will end up with a p-basic tree F such that
#F0 = ω \ S, where S is a finite set containing all eventually stable l-labels. In
fact, F ′ = 0 in this case. Similar argument applies when the true outcome is g, but
in this case #F0 = ω \ S where F is potentially infinite. (Recall that the intervals
are sufficiently far apart, thus we do not have the situation when one l-label is an
immediate successor of another l-label, say.) In this case we again have F ′ = 0.

3Recall that intervals and, whence, labels corresponding to different strategies are sufficiently
far apart.
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In any of these cases we succeed in constructing a p-basic tree avoiding an index
from the given Σ0

3-set.

3.7. The operators mapping Π0
2-trees to computable ones. Recall that we

identify a p-basic tree with the group it generates. We will need the following two
propositions. The first proposition is a special case of a known technical result [2, 31]
(stated in Lemma 2.7 above), the second proposition is new.

Proposition 3.3. Given a Π0
2 p-basic tree D, we can uniformly produce a com-

putable p-basic tree H such that H0
∼=

⊕
m,n∈ω Zpmam,n and H ′ ∼= D.

Proof. Adjoin more finite chains of greater length below x is there is more evidence
that x ∈ D. Since all finite lengths may occur, no further work needs to be done.
Also immediately adjoin infinitely many chains of each finite size to the root. �

Throughout this subsection, the p-basic tree from Fact 3.2 will be called R-avoiding
and will be denoted by F .

Proposition 3.4. There exists a uniform procedure which, given a Σ0
3 predicate

R and a Π0
2 p-basic tree C such that C0

∼= C1
∼=

⊕
m,n∈ω Zpmam,n, produces a

computable p-basic tree U such that U0
∼= F0 and U ′ ∼= C. (Here F is R-avoiding.)

Proof. For future convenience, we modify outcomes described in Subsection 3.6 by
splitting them further. We have (e, x,∞i) indicating that there has been i stages
at which some 〈e′, x′〉 < 〈e, x〉 increased its interval or moved/newly introduced its
l-label. Similarly, we have (e, x,∞i), with similar interpretation. This modification
will allow us to permamentrly abandon certain blocks in the construction.

We construct a computable group U represented by a computable p-basic tree.
The group will be of the form

U = F ⊕
⊕
α

H(α),

where α ranges over all outcomes of the procedure avoiding R, and F is the group
(p-basic tree) of Ulm type at most 2 given by Fact 3.2. If α is the true outcome of the
procedure then H(α)′ ∼= C, and H(α)′′′ = 0 otherwise. Additionally,

⋃
α #H(α)0 ⊆

#F0, whence the diagonalization against R will be successful. It is sufficient to
uniformly and independently construct the trees H(α) for different α. We explain
the simpler case when α 6= g first, and then describe H(g).

The case of α 6= g. Notice that all outcomes α 6= g have the property that the
whole H(α) is either 0 or will be forever abandoned if α is not the true outcome.
If α = (e, n,∞i) for some i, then it will be using only lengths that are too small
compared to le,x,s a stage s. It will additionally make sure that lengths le′,x′,s for
〈e′, x′〉 < 〈e, x〉 are not present in #H(α)[s], at every s. Similarly, if α = (e, n, ki)
of α = (e, n, fi), we make progress in approximating C but not using chains of
lengths le′,x′,s for 〈e′, x′〉 ≤ 〈e, x〉. The rest is the same as in Proposition 3.3.

If one of the intervals Ie′,x′ ever increase, or one of the le′,x′ ever is assigned to a
new number, or if the current guess on le,x was finitary and now changed, then the
whole H(α) will be permanently abandoned. We will then follow the modified basic
strategy (Subsection 3.5) on the finite tree that α left behind. Recall that a newly
active strategy will always be using labels which are too large compared to the tree.
A straightforward induction shows that, if α is the true outcome then H(α)′ ∼= C,
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and H(α)′′ = 0 otherwise (iterate the argument in Subsection 3.5 finitely many
times). In both cases clearly #H(α)0 ⊆ #F0.

The Π0
3-outcome g and H(g). The procedure constructing H(g) will be working

within a copy of ω<ω which may be viewed as a complete ω-branching tree growing
downwards, with root ∅. At the end, the Π0

2-tree C will be imaged into ω<ω so that
nodes of depth n in C are mapped to nodes of depth n in ω<ω(i.e., level-by-level).

At stage s, the procedure believes that all sizes except for the ones in Y = {le,x,s :
e, x ≤ s} are available, and it will be using chains of lengths not in Y , unless Y
changes. It will add finite chains to elements in ω<ω currently corresponding to C,
following the usual strategy. If an element is indeed in C then it will be put into
H(α)′ in the limit. Recall that le,x,s ≤ le,x,t for t ≥ s.
Construction. At a stage s, only one of the three situations (and corresponding
actions) may occur:

(1) One of the Ie,x increases in size. In this case all sub-strategies associated
with 〈e′, x′〉 > 〈e, x〉 lift their intervals up to large fresh numbers. For every
σ ∈ ω<ω such that |σ| = 〈e, x〉, permanently abandon all τ ’s extending
σ which have ever been used by the construction. Approximating C will
now proceed under σ within the segment of the Baire space extending σ
disjoint from all such τ ’s. (Note: The only reason we may again visit τ or
its extension is due to le′,x′ increasing for some 〈e′, x′〉 ≤ 〈e, x〉, since all
other l-labels will be too large.)

(2) One of the le,x increases within a stable Ie,x. In this case all sub-strategies
associated with 〈e′, x′〉 > 〈e, x〉 lift their intervals up to large fresh numbers.
Then we follow the generalized basic strategy (Subsection 3.4) possibly
adding further splittings to chains that could potentially represent size le,x,s.
We add a finite chain to a predecessor of τ if there exists a scenario in
the construction4 in which τ could potentially represent size le,x,s. These
include only finitely many options, since there are only finitely many initial
segments of τ . We use only simple chains of sizes < le,x,s not in {le′,x′,s :
〈e′, x′〉 < 〈e, x〉}.

(3) Ie,x and le,x are stable, for 〈e, x〉 ≤ s. In this case we make progress in
approximating C. We use chains of lengths not in

⋃
〈e,x〉 Ie,x,s and adjoin

chains of these sizes to σ if our current guess is σ ∈ C. We also ensure that
if a new simple chain of length y is added below a node σ, then
(i.) y + i /∈

⋃
〈e′,x′〉 Ie,x,s for each i ≤ |σ|;

(ii.) y is larger than the maximal length among the chains already extend-
ing σ, if there are any.

(Note: Recall that we have reserved plenty of sizes in-between the intervals.)

Verification for H(g). There are two cases in which a segment of the tree built
by the procedure can be abandoned by the construction. The first case is when
the Π0

2-predicate representing C is eventually silent on input a. The finite sub-
tree extending σ ∈ ω<ω associated to a may never be visited again for the sake of
approximating C. The second case corresponds to one of the Ie,x becoming active
again; in this case all subtrees built by the strategy and rooted at level 〈e, x〉 + 1
of ω<ω will never be active again for the sake of C-approximation.

4This depends on which ρ ⊆ τ truly represent an element of C.
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Remark 3.5. Suppose T is a subtree which looks abandoned (first case, Σ0
2) or

is permanently abandoned (second case, Σ0
1). It could have happened that the

finite lengths which occur in the tree, after stripping, were not allowed (equal to l-
labels). For instance, in [2, 31] (see Lemma 2.7) one has to extend the longest chain
present in T carefully using the limitwise monotonic function, and then monitor the
construction. We do not have to do that in our construction because of (i.) and
(ii.) in (3), unless one of the sufficiently small l-labels moves to a larger number.

The construction is organized so that there are only two cases at which we might
have to act due to le,x increasing:

Case 1 We permanently left behind a finite tree T due to Ie,x or some other interval
increasing. Starting from this stage, we follow the generalized basic strategy
(Subsection 3.4) in our actions on this finite tree. The tree will never be
used to approximate C.

Case 2 We have left behind a finite tree due to C being silent on one of its inputs,
say on c. The node σ currently representing c in Baire space may have
arbitrary long finite chains attached to it. We follow the basic strategy
(Subsection 3.3) on each of the chains, thus possibly further branching
some of the chains extending σ. Note that σ may be visited again due to a
new C-activity on c.

In Case 1, the are only finitely many l-labels which are small enough and can
potentially force us to add new simple chains to T . Based on this idea, we prove:

Claim 3.6. In Case 1, tree-ranks of nodes in T are bounded by ω+k at every stage
of the construction, for some fixed k ∈ ω not depending on the stage (but depending
on the tree).

Proof. Suppose T is abandoned at stage s. There are only finitely many l-labels
which can potentially increase the rank of a node σ ∈ T . If all of these labels are
eventually stable or too large, the rank of σ ∈ T is finite in the limit. Let li be the
least among these labels which tends to infinity. It follows that all labels lj with
j > i are lifted up to large numbers at a stage t ≥ s, and they can not effect the
ranks of nodes in T anymore. We may suppose t is a stage after which all labels less
than lj are stable. Let k be the maximal length in the tree T ′, where T ′ consists of
T and all chains added for the sake of avoiding l-labels at stages ≤ t. From stage
t on, we follow the modified diagonalization strategy (Subsection 3.4). Thus, the
ranks of nodes in T ′ are at most ω in the limit. �

Remark 3.7. The same argument shows that a simple chain added by the pro-
cedure when approximating C within ω<ω (see (3) of the construction) will be
expanded to a tree V having V ′′ = 0.

In Case 2, the worst scenario is when σ representing c is of length smaller than
the least 〈e, x〉 for which Ie,x grows to infinity. Then C may fire on c in-between
Ie,x-expansionary stages, and longer simple chains will be added to σ. Then these
chains will become infinitely branching due to le,x,s increasing. In this case we end
up with σ having rank ω · 2 + k, for some k ≤ 〈e, x〉. We summarize these ideas in
the claim below:

Claim 3.8. Suppose the true outcome of the main R-avoiding procedure is not g.
Then H(g)′′′ = 0.
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Proof. Suppose the true outcome is of the form (e, x, ·). It corresponds to the case
when every σ having length ≥ 〈e, x〉 + 1 ever introduced by the construction is
permanently abandoned at some stage. Then every σ exceeding 〈e, x〉+ 1 in length
may have rank at most ω + k, for some k (Claim 3.6 or Remark 3.7). Whence,
every node in ω<ω � 〈e, x〉+ 1 has successors of ranks bounded by ω · 2. Therefore,
the rank of the root ∅ is at most ω · 2 + 〈e, x〉+ 1. �

Finally, we prove:

Claim 3.9. If g is the true outcome of the R-avoiding procedure, then H(g)′ ∼= C.

Proof. Observe that the only reason a permanently abandoned node (Case 1) may
have an infinite rank is when one of the l-labels tend to infinity, which is not the
case. Therefore, all permanently abandoned nodes may contribute only to H(g)0.
The same argument applies if a node is abandoned due to C being eventually silent
on the corresponding input (Case 2).

We need to verify that, if c ∈ C, ranks of nodes in the simple chains added to a
node σ representing c will be kept finite in the limit. Note that the simple chain can
be further branched, using chains of smaller length, only due to one of sufficiently
small l-labels moving. Only finitely many labels may force us to further branch the
simple chain, all other labels will occupy numbers which are too large. All labels, if
defined, have to be eventually settled at finite locations. Thus, we may potentially
end up with a finite tree properly containing the original simple chain. It follows
that σ will have rank at least ω + |σ| if c ∈ C. It may have a larger rank only if
there exists c′ ∈ C extending c . �

We have verified that H(g)′ ∼= C if g is the true outcome, and H(g)′′′ = 0,
otherwise. It is also clear from the construction that in both cases #H(g)0 ⊆ #F0.
It completes the verification for H(g). �

3.8. Finalizing the proof. Using Fact 3.2, we can produce a uniformly Π0
(6e)-

sequence (A(3e))e∈ω of Re,3e-avoiding p-basic trees. By Propositions 3.3 and 3.4,
there exist a uniformly computable sequence (B(i))i∈ω of computable p-basic trees
such that, for each k ≤ i, B(i)k ∼= A(k) if k = 3e, and B(i)k ∼=

⊕
m,n Zpmam,n

otherwise.
We set G equal to

⊕
i∈ω B(i). By the definition of G, and since A(3e) ∼= A(3e)⊕

A(3e) for every e, the requirement Le is met for each e. Since the operation of
taking a direct sum (of p-basic trees, defined naturally) is uniform, and the p-basic
trees (B(i))i∈ω are computable uniformly in i, the p-basic tree for G is computable.

4. An application of p-basic trees to categoricity

In this section, we use the machinery of p-basic trees to prove:

Theorem 1.9. Let G be a computable p-group of finite Ulm type n, such that:
(1.) G(n) ∼= ⊕j≤mZp∞ , for some m ∈ ω;
(2.) orders of cyclic summands in Gn−1 are not bounded.

Then G is not ∆0
2n-categorical.

Proof. The group G can be represented as

G = H ⊕D,
where D ∼= ⊕j≤mZp∞ , and H is reduced of type n. We need:
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Fact 4.1 (Folklore). G has a computable copy if, and only if, H has a computable
copy.

Proof sketch. The right-to-left implication is elementary. For the left-to-right impli-
cation, non-uniformly fix the finite subspace of the socle of Gk, k ≤ n, consisting of
the elements of D. Then define a monotonic function approximating heights of the
remaining elements in Gk. The heights are the same as in Hk. Apply Theorem 1.3
to H. �

Encode Tot as a Π0
2 path through ω<ω. Denote the resulting Π0

2-tree (a singe
path) by P . The coding of Tot and the fact above can be relativized to a coding
of a Π0

2n-complete set into elements of rank ∞ of a ∆0
2n−1-tree. We can define

a ∆0
2n−1-isomorphism of this ∆0

2n−1-tree onto a Π0
2n−2 subtree of ω<ω, and then

apply Lemma 2.7 to expand the resulting Π0
2n−2 to a ∆0

2n−3-tree. We repeat until
we get a computable p-basic tree S. Note that the embeddings that we used were
at most ∆0

2n−1 or less complex. In fact, the construction can be organized so that
the maps are the inclusions.

We can effectively adjoin m-1 infinite chains to the root of S and obtain a p-basic
tree representing a computable copy A of G. We can also take a computable copy
of H (represented by a p-basic tree) and adjoin m infinite chains to its root. Let B
denote the resulting group (tree).

If A and B are isomorphic via a ∆0
2n-isomorphism f , then we can reconstruct

the Π0
2n-complete set encoded into A considering images of a ∈ A in the group B

(in which the divisible part is a computable subgroup). �

5. Conclusion

We expect that Theorem 1.4 can be pushed to any computable ordinal. We note
that the group constructed in Theorem 1.4 has a complex uniformity property, but
we circumvented many algebraic difficulties by specifically choosing Ulm invariants
(homogenizing G3e+1 and G3e+2) and their representations (Note 3.1, Remark 3.5).
It also seems crucial for the construction that the l-labels can only be moved to
larger numbers. Dropping at least one of these restrictions would result serious
problems such as a simultaneous interaction of infinitely many strategies. It is
not surprising that the classification of computable p-groups of Ulm type ≥ ω is a
largely unexplored area.

The group witnessing our main result is represented by a computable p-basic
tree. We leave open:

Problem 5.1 (Ash, Knight, Oates). Does every computable p-group have a com-
putable p-basic tree representing it?

The answer is “yes” for p-groups of finite Ulm type, and also for some specifically
classes of infinite Ulm type p-groups. The authors of the present paper have not
agreed on a conjecture for Problem 5.1.

5.1. A hierarchy of ω-type groups. Although we have an evidence the general
problem of describing computable Ulm type ω groups is hard, in some special cases
we may potentially obtain a satisfactory answer. Consider the following hierarchy.
Given m ≤ 4, let Rωp (m) be the class of computable reduced p-groups A of Ulm
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type ω in which 0(2n)-indices for limitwise monotonic functions ranging over #An
are uniformly ∆0

2n+m. It is readily checked that

Rωp (1) = Rωp (2),

methods developed in our paper can be applied to show

Rωp (2) ( Rωp (3),

and Theorem 1.4 implies
Rωp (3) ( Rωp (4).

The following result is well-known:

Proposition 5.2. [2] Groups in Rωp (1) are in 1− 1 correspondence with uniformly

0(2n)-limitwise monotonic collections of Ulm invariants.

Proof idea. We can split each limitwise monotonic set into infinitely many infinite
disjoint (unitormly) limitwise monotonic subsets. We then uniformly run the proof
of Theorem 1.3 and obtain a uniform sequence of computable groups (Hn)n∈ω,
using more of the limitwise monotonic disjoint subsets for larger n, and so that all
disjoint subsets are used in one of the Hn. We then pass to

⊕
n∈ωHn which has

the desired invariants. �

Problem 5.3. Prove an analog of Proposition 5.2 for Rωp (2).

The first case to consider would be groups G having #Gi co-finite, or even #Gi
either ω or a co-singleton. There are some obstacles even in this simplest case.
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