
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Annals of Pure and Applied Logic 154 (2008) 51–69
www.elsevier.com/locate/apal

On strongly jump traceable reals

Keng Meng Ng

School of Mathematics, Statistics and Computer Science, Victoria University of Wellington, PO Box 600, Wellington, New Zealand

Received 15 March 2007; received in revised form 13 November 2007; accepted 14 November 2007
Available online 30 January 2008

Communicated by R.I. Soare

Abstract

In this paper we show that there is no minimal bound for jump traceability. In particular, there is no single order function such
that strong jump traceability is equivalent to jump traceability for that order. The uniformity of the proof method allows us to adapt
the technique to showing that the index set of the c.e. strongly jump traceables is Π 0

4 -complete.
c© 2007 Elsevier B.V. All rights reserved.

MSC: primary 03D25; secondary 68Q30

Keywords: Strongly jump traceable; Completeness; Minimal bound

1. Introduction

One of the fundamental concerns of computability theory is in understanding the relative difficulty of computational
problems as measured by Turing reducibility (≤T). The equivalence classes of the preordering ≤T are called Turing
degrees, and it is long recognized that the fundamental operator on the structure of the Turing degrees is the jump
operator. For a set A, the halting problem relative to A is denoted by A′, and if a is the Turing degree of A, then a′

would denote the Turing degree of A′. As it is well known, if a ≤T b then a′
≤T b′, but the jump operator is not

injective on the degrees.
The concern of this paper is computational lowness. Here a set A is low relative to the Turing jump if A′

≡T ∅
′. A

low set A is indistinguishable from the empty set as far as the jump operator is concerned. We would expect that low
sets resemble computable sets, and there is a long and rich literature exploring this idea. This seems particularly true
for the computably enumerable sets, and we mention a few well-known examples.

Soare [19] showed that if A is c.e. low, then the lattice of c.e. supersets of A is isomorphic to the lattice of c.e.
sets modulo finite sets. Robinson [13] extended the Sack’s Splitting Theorem [14] by showing that any c.e. degree
can be split above a low one. A generalization of Lachlan’s Non-Diamond Theorem [7] by Ambos-Spies [1] over low
degrees further show that the interval [a, 0′

] is structurally very similar to [0, 0′
] when a is low.

Shore and Slaman [15] showed that there is no Slaman triple below a c.e. low (in fact, low2) degree, while in [16]
they proved that every high degree (A is high iff A′

≡T ∅
′′) bounds a Slaman triple. This gives an elementary property

E-mail address: Keng.Meng.Ng@mcs.vuw.ac.nz.

0168-0072/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.apal.2007.11.014

Author's personal copy

52 K.M. Ng / Annals of Pure and Applied Logic 154 (2008) 51–69

which separates the high and low (low2) c.e. degrees. Further work by Soare (no low set is speedable [18]), and
Downey and Jockusch (every low Boolean algebra is isomorphic to a computable one [4]) further demonstrate that the
low sets behave just like the computable ones. In an amazing paper, Slaman and Solovay [17] showed that every set A
which was low for E X learning, is also low (in fact 1-generic below ∅

′). It is not important in this paper what lowness
in terms of E X learning means; what is important is that Slaman and Solovay’s result demonstrate that lowness for
various notions of computation can be intertwined. In this case, they demonstrate a relationship between a lowness
concept from the theory of inductive inference and another seemingly unrelated lowness concept from computability
theory. This idea is further explored in this paper, where we will investigate lowness for Kolmogorov complexity and
its relationships.

Because of these results and perhaps also because the “Robinson trick” (see Soare [21], Chapter XI) was so well
understood, the low computably enumerable sets were thought to be reasonably understood in terms of their degree-
theoretical properties.

However, recent work has again turned the spotlight on this class, and demonstrated that low c.e. sets have an
astonishing theory. This is due to their relationship with another computational lowness notion – lowness in terms of
Kolmogorov complexity – and have been shown to be related to the widely studied class of the K -trivials.

The class of K -trivial reals was first introduced in [22]. They are the reals α such that for some constant c,
K (α�n) ≤ K (n) + c for every n.1 That is, the K -trivials have got very low initial segment complexity, similar to
the computable ones. Solovay [22] showed however, that there are noncomputable reals which are K -trivial. In spite
of Solovay’s theorem, the resemblance they bear with the computable reals makes one wonder if they are related to
the low sets. Recent work have shown that this is indeed the case. In particular Nies [11,12] showed that every c.e.
K -trivial was superlow,2 and Cholak, Downey and Greenberg [2] discovered that a certain class of reals exhibiting
very strong “lowness properties” form a proper natural subclass of the K -trivials.

This brings us to the fundamental notion of traceability. An order function h is one which is total computable,
nondecreasing and unbounded. A set A is said to be jump traceable with respect to an order h, if there is a computable
g, such that for all x , |Wg(x)| ≤ h(x), and J A(x) ∈ Wg(x).3 A is said to be jump traceable, if it is jump traceable
with respect to some order h. This is a variation of the concepts of computable traceability (Terwijn and Zambella
[23]), and c.e. traceability (Ishmukhametov [6]). The class of jump traceable reals was introduced by Nies [11] to
study lowness properties. He showed that in the c.e. case, jump traceability and superlowness were the same, but were
different outside of the c.e. sets.

In further work, Nies [11,12] showed that every K -trivial real was jump traceable and hence superlow, with an
order function of growth rate ∼ h(n) = n log n. Inspired by these results, Figueira, Nies and Stephan [5] went on
to study the notion of strong jump traceability. We say that A is strongly jump traceable, if it is jump traceable with
respect to all order functions. Figueira, Nies and Stephan showed the existence of a noncomputable strongly jump
traceable c.e. set, and characterized c.e. strong jump traceability via the notion of well approximability: A set A is
well approximable, if for every order function h, A can be effectively approximated with less than h(x) many changes
at each input x . Figueira, Nies and Stephan showed that if A is c.e., then A is strongly jump traceable if and only if A′

is well approximable.
In an upcoming work, Cholak, Downey and Greenberg [2] show that the c.e. strongly jump traceables form a proper

subclass of the K -trivials. This is the first example of a combinatorial property which implies K -triviality. They show
that like the K -trivials, the c.e. strongly jump traceables are also closed under ⊕, and constructed a K -trivial c.e. real
which is not jump traceable with respect to a bound of size ∼ h(n) = log log n.

Figueira, Nies and Stephan [5] also studied the role that the size of the bound h has on jump traceability. They
showed that for any order function h, there is always some set A which is jump traceable, but not jump traceable
via h. That is, no matter how fast an order h grows, there is always some jump traceable set A for which h grows
too slowly still, for the purpose of jump tracing A. Hence, unlike the case of computable traceability, strong jump
traceability was actually different from jump traceability. Figueira, Nies and Stephan [5] also asked if there was a
minimal bound for jump traceability: Is there an order function h, such that every set A which is jump traceable via h
is already strongly jump traceable? In Theorem 2.1, we answer the question in the negative:

1 K (σ) is the prefix-free Kolmogorov complexity of the string σ .
2 A is superlow, if A′

≡t t ∅
′.

3 J A(x) denotes the value of the universal jump function {x}
A(x), partial computable in A.

Author's personal copy

K.M. Ng / Annals of Pure and Applied Logic 154 (2008) 51–69 53

Theorem 2.1. For any given order function h, there is a c.e. set A and an order function h̃, such that A is jump
traceable via h, but not jump traceable via h̃.

In particular, there is no single order function such that strong jump traceability is the same as jump traceability for
that order.

Nies observed that the K -trivial reals form the first example of a natural nontrivial Σ 0
3 ideal in the c.e. Turing

degrees. Had there been a slowest order we could use to define strong jump traceability, the strongly jump traceables
would also have to be Σ 0

3 . We have already learnt from Cholak, Downey and Greenberg [2] that there are K -trivials
which are not strongly jump traceable, and so the following Theorem 3.3 would show that in terms of the complexity
of the classes, the strongly jump traceables are as complex as they could be, and in fact differ from the K -trivials as
much as they possibly can:

Theorem 3.3. The set {e ∈ N : We is strongly jump traceable} is Π 0
4 -complete.

We will use the technique in the proof of Theorem 2.1 to prove Theorem 3.3. As a corollary, we get the result of
Cholak, Downey and Greenberg [2] that not all K -trivials are strongly jump traceable.

We would like to make a further remark. Cholak, Downey and Greenberg showed in [2] that the c.e. strongly jump
traceables form a nonprincipal ideal. In fact, they showed something stronger: There is an effective procedure Λ, such
that given any order function h, we have another order function Λ(h) growing slower than h, such that if A and B are
c.e. and jump traceable with respect to Λ(h), their join A ⊕ B will be jump traceable with respect to h. For each order
function h, we define

Hh := {Λn(h) : n > 0},

where Λn denotes iterating the Λ-procedure n times. We say that A isHh-jump traceable, if A is jump traceable with
respect to all g ∈ Hh .

Clearly for each order function h, the class of c.e. sets A which are Hh-jump traceable forms an ideal. When h
grows slow enough (h(n) � log log n), the ideal it generates is contained in the ideal of the K -trivials. Since we can
always diagonalize against all the functions in each Hh , it follows from Theorem 2.1 that there are infinitely many
intermediate ideals lying between the ideals of the K -trivials, and the strongly jump traceables.

2. There is no minimal bound for jump traceability

We show that there is no minimal bound for jump traceability, answering a question of Figueira, Nies and Stephan
[5]. In particular, there is no single order function such that strong jump traceability is the same as jump traceability
for that order.

Theorem 2.1. For any given order function h, there is a c.e. set A and an order function h̃, such that A is jump
traceable via h, but not jump traceable via h̃.

2.1. Requirements

We build a c.e. set A, and a trace {Ve}e∈N for J A(e) satisfying the following requirements:

Ne : Trace J A(e) into Ve, with |Ve| ≤ h(e),

Pe : For some x , either |T e
x | > e, or else J A(x) 6∈ T e

x .

Here, we let {T e
x }x∈N be the eth trace in some effective enumeration of all traces {T 0

x }x∈N, {T 1
x }x∈N, . . . , and J A(e)[s]

be the value of the universal A-jump function {e}A(e)[s] at stage s. We let the use of J A(e)[s] (if convergent) be
j (e, s). Note that if h is an order function, we always assume that its range takes positive values. When we say that
we pick a fresh number x at stage s, we mean that we choose x to be the least number x > s, and x > any number
used or mentioned so far.

2.2. Description of strategy

We have two types of requirements to handle — the negative requirementsNe which want to impose a restraint on
A each time it sees a computation J A(e)[s] ↓, and the positive ones Pe which makes enumerations into A to force a
particular trace T e

x to fill up.

Author's personal copy

54 K.M. Ng / Annals of Pure and Applied Logic 154 (2008) 51–69

The way that a particularNe works is described below. Since we have to ensure that |Ve| ≤ h(e), we have to make
sure that restraints imposed byNe are not obeyed on most h(e) − 1 many occasions. It is convenient to think of Ve as
being made up of boxes, which we will fill with values (which are current values of J A(e)[s]). By the time we use up
all of the h(e) many boxes allowed for Ve, we have to ensure that the last value we enumerated is correct. We start the
construction with Ne initially being a (h(e) − 1)-box. (This is represented in the formal construction by the variable
size(e, s), and represents the number of injuriesNe can still sustain). We also say thatNe is an original (h(e)−1)-box.
Every time the restraint that Ne is holding is breached by some positive action, we would decrease size(e, s) by 1,
since a new value for J A(e) might appear in future. By the timeNe becomes a 0-box (corresponding to |Ve,s | = h(e)),
we will have to ensure that no enumerations made in future can destroy the current J A(e)[s] computation. That is, the
restraint imposed by Ne while it is a 0-box must be obeyed by every positive requirement.

Let us now turn our attention to the positive requirement Pe. We describe how to meet such a requirement. Pe
would attempt to defeat the eth trace by doing the following. It will control the value of the universal jump function
J A(x) of A at some location x . The recursion theorem supplies us with such an index x , andPe will enumerate axioms
into the Turing functional Ψ A

e with index x , with use u(e, s) on A. Each time the value Ψ A
e (x)[s] shows up in the trace

T e
x , we would put the use u(e, s) into A to cancel all the previous axioms, and enumerate a new axiom 〈x, y, As�u(e,s)〉

for Ψ A
e (x) (with a fresh y). After doing this at most e times, we would be able to meet the requirement Pe: recall that

we have to build an order function h̃ globally, and all we have to do is to ensure that we define h̃(x) = e. On the other
hand, the negative requirements would be imposing various restraints on Pe, as described in the previous paragraph,
for the sake of making A superlow. At times we would have to initialize Pe, due to these restraints. For instance, if
some Nk is in a state of being a 0-box (these boxes have the highest priority), with restraint larger than u(e, s), then
we would have to make Pe abandon the current index, and begin to enumerate a new functional with a new index x ′.
To ensure the success of Pe, we would have to make sure that it is initialized only finitely often. In fact, to guarantee
that h̃ is computable, we have to know in advance a bound for the number of times that Pe will need to be initialized.
This is because we could then know how many different indices to set aside for Pe, and hence define h̃ = e on these
indices.

The construction will only require finite injury, with dynamic assignment of priority amongst the requirements.
As we will see, the main obstacle we are facing is in having to arrange priority between the positive and negative
requirements, such that we can limit the number of initializations to each Pe to an amount that can be predetermined.
Let us consider the case when the given h satisfies h(0) = h(1) = h(2) = h(3) = 1 and h(4) = 3. Note that in
general, if the given h grows very slowly, then it becomes much harder for numbers to enter A because there are more
small boxes to consider. Consider a requirement P that wants to diagonalize some trace by enumerating into A twice.
Suppose we arrange the requirements in the order:

N0(h = 1) < N1(h = 1) < N2(h = 1) < N3(h = 1) < P < N4(h = 3).

For P to succeed at a particular index x , its cycle for that x has to be

Phase 1: Set J A(x)[s1] ↓. Wait for the corresponding value to show up in the trace. If it does, put the use
into A to reset J A(x).
Phase 2: Set J A(x)[s2] ↓ again and wait for the value to show up in the trace. When it does, put the use into
A to reset J A(x), set a new axiom for J A(x), and we are done.

If P gets blocked in phase 2, it will be initialized and will have to start with a new index x ′ in phase 1. Why is this a
problem in the above example? When P is in phase 1, it will have a follower appointed pointing at A, which it will
put in A when realized. But in the meantime we might have N4 imposing an A-restraint above the P-follower. This
is due to the fact that N4 has seen J A(4) converge with a large A-use, and N4 has put that value into the trace we are
building for J A(4).

Suppose next, the P-follower gets realized. It will then enumerate the P-follower it has appointed and enter phase
2, injuring N4 in the process. Remember that N4 is allowed two mistakes (i.e. it is an original 2-box), and now it has
used up one of them. Therefore, in future it is only allowed one more mistake (i.e. it has now been promoted to a
1-box).
P is now waiting in phase 2 for its follower to be realized. It might be the case that N0 now imposes A-restraint

larger than P’s follower, forcing P to be initialized and start again in phase 1. This looks bad, because the process
could be repeated with N1 in the same manner, and N4 can be promoted yet again, now to a 0-box. When N4 next

Author's personal copy

K.M. Ng / Annals of Pure and Applied Logic 154 (2008) 51–69 55

imposes A-restraint, being a 0-box, its restraint has to be obeyed by everyone, including P above it. Again we could
create any number of 0-boxes in this way, and in turn use them to produce even more 0-boxes further down the list of
requirements, and we are faced with the same problem.

The solution is to arrange priority between P and the negative requirements dynamically. This priority ordering
depends on whether P is in first phase, or in second phase. If P is in the first phase, we place P above (stronger
priority than) all Ne which are currently at least 2-boxes, and place P below (weaker priority than) all Ne which are
currently 0 or 1-boxes. If P is in the second phase then we place it above all Ne, other than those that are currently
0-boxes. At the beginning of the construction, before anything is done, we have the ordering:

N < · · ·︸ ︷︷ ︸
0-boxes,h=1

< N < · · ·︸ ︷︷ ︸
1-boxes,h=2

< P (phase 1) < N < · · ·︸ ︷︷ ︸
2-boxes,h=3

< N < · · ·︸ ︷︷ ︸
3-boxes,h=4

< · · · .

When P enters phase 2, the situation becomes

N < · · ·︸ ︷︷ ︸
0-boxes,h=1

< P (phase 2) < N < · · ·︸ ︷︷ ︸
1-boxes,h=2

< N < · · ·︸ ︷︷ ︸
1-boxes,h=3

< N < · · ·︸ ︷︷ ︸
2-boxes,h=3

< N < · · ·︸ ︷︷ ︸
2-boxes,h=4

< N < · · ·︸ ︷︷ ︸
3-boxes,h=4

< · · · .

If P gets initialized while in phase 2 due to one of the 0-boxes, the ordering becomes

N < · · ·︸ ︷︷ ︸
0-boxes,h=1

< N < · · ·︸ ︷︷ ︸
1-boxes,h=2

< N < · · ·︸ ︷︷ ︸
1-boxes,h=3

< P (phase 1) < N < · · ·︸ ︷︷ ︸
2-boxes,h=3

< N < · · ·︸ ︷︷ ︸
2-boxes,h=4

< N < · · ·︸ ︷︷ ︸
3-boxes,h=4

< · · · .

We claim that this solves the problem, namely that we can count the number of times P is forced to be initialized. The
ability to perform this counting is essential for h̃ to be computable. First, note that no new 0-boxes are ever created,
unless P is permanently satisfied at the same time. That is, the only 0-boxes present are those original ones — namely,
those N with h = 1.

The counting of injuries to P: whilst in the second phase, P can only by initialized by a 0-box, we have already
observed that these must be original 0-boxes. In the first phase, P would be initialized:

(1) either by some N with h = 1 or 2 (i.e. the original 0 and 1-boxes), or
(2) a promoted 1-box.

Suppose case 2 happens at stage s. The only reason why a 2-box is promoted to a 1-box, is because it was injured
by P and P moved from the first phase to the second phase, at some previous stage t < s. But now at stage s, P is
back in the first phase, which means that at some time between t and s, P must have been initialized while in phase 2.
This can only be done by some N with h = 1, i.e. one of the original 0-boxes, since these are the only requirements
stronger than P in phase two. This means that the largest k such that someN with h = k + 1 (original k-box), is ever
promoted to a 1-box, is at most S := 2 + h−1(1), where h−1(i) = # of y such that h(y) = i . That is, if k > S then no
N which is originally a k-box, can ever get promoted to a box size of 1. Therefore, the number of times that P can be
injured, has bounds of h−1(1) from phase 2, and

∑
i≤S+1 h−1(i) while in phase 1.

2.3. The general strategy

The requirement Pe will need to enumerate e many times without being initialized; its action will be divided into
e many phases. In the discussion above, the P being considered is just P2. In the example above we had the three
numbers C1

0 = 0, C2
0 = 1 and C2

1 = S, which are called thresholds.4 These are the critical numbers which we use
to determine priority between P2 and the negative requirements. In phase 1, P2 would be injured by C2

0 -boxes (and
smaller ones). In phase 2, P2 would be injured by C1

0 -boxes. To prevent the different positive requirements from
interfering with each other, we ensure that no new C2

1 -boxes are ever created by the actions of P3,P4, Thus, P3

would be injured by C3
1 -boxes in phase 1, by C3

0 -boxes in phase 2, and by C2
1 -boxes in phase 3. The values C3

0 , C3
1 , C3

2
are defined inductively.

4 These values are chosen for discussion purposes, and are slightly different in the formal construction. This is because we had not taken into
account the other positive requirements.

Author's personal copy

56 K.M. Ng / Annals of Pure and Applied Logic 154 (2008) 51–69

Each time Pe is initialized, its threshold would be reset to Ce
e−2. With each enumeration that Pe makes, we will

decrease the threshold accordingly (Ce
e−3, . . . , Ce

0, Ce−1
e−2). When moving from phase 1 to 2, a (Ce

e−2 + 1)-box can be
promoted to a Ce

e−2-box but this newly promoted box cannot initialize Pe while in phase 2 or higher, for its threshold
has now decreased to Ce

e−3 or less. The only way to initialize Pe after it has made m enumerations, would be through

a Ce
e−2−m-box (or less). So as long as we keep the critical thresholds values Ce−1

e−2 , Ce
0, . . . , Ce

e−2 sufficiently spaced
out, we will be all right.

2.4. Notations for the formal construction

Let size(e, s) denote the size of the Ne-box at stage s, i.e. the number of injuries that Ne can still sustain. At the
beginning of the construction, size(e, 0) is set to h(e)−1. Each timeNe is injured, we reduce size(e, s) by 1, and when
size(e, s) reaches 0, the J A(e)-computation will have to be preserved forever. During the construction, all parameters
retain their assigned values, unless they are initialized or reassigned a different value. We append [s] to an expression
to refer to the evaluation of the expression at stage s. On the other hand if the context is clear we drop the stage number
from the expression. For example size(e, s) becomes simply size(e).

For each n, let h−1(n) := {x ∈ N | h(x) = n}, where h is the order function given. Since h is an order, the set
h−1(n) and the value |h−1(n)| are both computable for each n. For each e, let p(e, s) be a counter which records the
number of different values the requirement Pe has managed to put into the trace T e

x(e,s), for the current x(e, s). Note

that p(e, s) + 1 is also the phase number of Pe, as used in the discussion in Section 2.2. Let S(n) =
∑n

r=1 r |h−1(r)|.
That is, S(n) denotes the maximum number of different values j (k, s) can take, for the set of k’s such that h(k) ≤ n.
This number S(n) is used to give a bound on the number of times a particular Pe can get injured by some Nk which
is an original (n − 1)-box or less.

We now define the sequence of numbers {Cn
k | n ≥ 0 ∧ k < n} and the functions |Pn|, Ĩn, In : N − {0} 7→ N as

follows. We start with C0
−1 = 0, and in general for n ≥ 1, we have:

Ĩn = n +

n−1∑
r=1

r Ir ,

Cn
0 = (Cn−1

n−2 + 2) +

n−1∑
r=1

|Pr |,

...

Cn
k+1 = (Cn

k + 2) +

n−1∑
r=1

|Pr | + n Ĩn + nS(Cn
k),

In = S(Cn
n−1) + Ĩn,

|Pn| = (n − 1)In + 1.

We fix the convention Cn
−1 = Cn−1

n−2 . We will explain what each of the symbols represent, for n ≥ 1. The sequence
Cn

−1, Cn
0 , . . . , Cn

n−2 are the different critical threshold values when Pn is in phase n, n − 1, . . . , 1 respectively. The
number Cn

n−1 represents the largest number b + 1 such that a b-box can interfere with the action of Pn . We obviously
do not want Pn+1 to promote any box to a b-box, to keep the effects of different P disjoint; for this reason the critical
threshold values of Pn+1 are all larger than b + 1. In represents the total number of times Pn may be initialized, while
Ĩn is the number of times that Pn may be initialized by the actions of a higher priority Pr . Lastly, |Pn| is the maximum
number of enumerations Pn may make into A; it may make at most n − 1 enumerations before it is initialized, plus
one more to make it permanently satisfied.

To control the value of the universal jump function J A(x) of A at different locations x , we will have an infinite
list of indices (of Turing functionals) supplied by the recursion theorem. We let Ψ A

e denote the functional that the
requirement Pe is enumerating at stage s, with index x(e, s) chosen from the list. The value of x(e, s) will change
from time to time, more specifically, whenever the requirement Pe is initialized. At these stages, Pe will start the
enumeration of a new functional, with a new index taken from the list. The use of the functional with index x(e, s)

Author's personal copy

K.M. Ng / Annals of Pure and Applied Logic 154 (2008) 51–69 57

that Pe is enumerating at stage s is denoted by u(e, s). Thus u(e, s) is a number targeted at A, which we will have to
put into A before we can enumerate a new axiom into Ψ A

e .
In Lemma 2.4(iii) we show that the number of times Pe can be initialized is bounded by Ie. Thus to define the

function h̃, we do the following. We reserve the first I1 + 1 many indices for use by P1, the next I2 + 1 many indices
for P2, and so on. The function h̃ is defined to have value e on all the indices reserved for Pe. Hence h̃ is clearly an
order, and by Lemma 2.4, Pe only uses indices x(e) which are reserved for it, i.e. it never runs out of indices. Hence,
h̃(lims x(e, s)) = e, and it follows that A is not jump-traceable via h̃.

When we initialize a requirement Pe at stage s, we do the following. Do nothing if p(e, s) = e (in this case, Pe
has already been permanently satisfied, and needs to to nothing else). Otherwise, set x(e, s + 1) to be the next value
reserved for Pe, and reset the counter p(e, s + 1) to 0.

Definition 2.2. We say that a requirement Pe requires attention at stage s, if p(e, s) < e and one of (ATT1)–(ATT3)
holds.

(ATT1) Pe has been initialized at some stage t < s, and has not received attention5 at any stage u such that t < u < s.
(ATT2) All of the following hold:

• There is a computation in Ψ A
e which currently apply with use u(e, s) and value r = Ψ A

e (x(e, s))[s],
• For some k < s, we have J A(k)[s] ↓ with use larger than u(e, s),
• If e = 1, we find that size(k, s) = 0. Otherwise for e > 1, we find that

size(k, s) ≤

{
Ce

e−2−p(e,s), if p(e, s) ≤ e − 2,

Ce−1
e−2 , if p(e, s) = e − 1.

(ATT3) There is a computation in Ψ A
e which currently applies with use u(e, s) and value r = Ψ A

e (x(e, s))[s], such
that r has shown up in the trace T e

x(e,s).

If (ATT1) holds, then Pe has just been initialized, and we need to set Pe on a new index x(e). If (ATT2) holds, the
restraint on Pe has increased beyond u(e, s), and we would need to initialize it. This would be due to some high
priority box blocking Pe. If (ATT3) holds, then the follower u(e, s) has been realized, and we will need to take a
positive action to defeat the trace {T e

x }x∈N.

2.5. Construction of A and {Ve}e∈N

At stage s = 0, initialize all requirements and set size(e, 0) = h(e) − 1 for all e. At stage s > 0, we do the
following:

• For all e < s such that J A(e)[s] ↓, we enumerate the value J A(e)[s] into Ve.
• Pick the smallest e < s such that Pe requires attention at stage s. Take the appropriate action listed below, and

declare that Pe has received attention at stage s.

(1) (ATT1) holds: we enumerate a computation Ψ A
e (x(e, s))[s] ↓= s with use u(e, s) > s and u(e, s) > any value

previously chosen as a use.
(2) (ATT1) fails and (ATT2) holds: initialize requirement Pk for all k ≥ e.
(3) (ATT1) and (ATT2) fails but (ATT3) holds: do all of the following.

– For each k < s such that J A(k)[s] ↓ with use j (k, s) > u := u(e, s), we decrease size(k, s) by 1; these are
the boxes which will be promoted.

– Enumerate u into A to clear the Ψ A
e -axioms.

– Increase p(e, s) by 1 to enter the next phase.
– Define a new computation Ψ A

e (x(e))[s] ↓= s with fresh use u(e, s).
– Initialize all requirements Pk for k > e.

5 This will be defined in the construction.

Author's personal copy

58 K.M. Ng / Annals of Pure and Applied Logic 154 (2008) 51–69

2.6. Verification

In the first lemma we show that the maximum number of different restraints held by any original b-box for any
b < n is at most S(n). This is needed for various counting arguments to follow. If X is a set and k is a number then
X�k denotes the string X (0) · · · X (k).

Lemma 2.3. (i) For each k, |{As� j (k,s): J A(k)[s] ↓ ∧ k < s}| ≤ h(k).

(ii) For each n, |{〈As� j (k,s), k〉 : J A(k)[s] ↓ ∧ h(k) ≤ n ∧ k < s}| ≤ S(n).

(iii) For all e, Ne is satisfied. Hence, A is jump traceable via h.

Proof. (i): Suppose on the contrary, there are stages s0 < · · · < sh(k) all larger than the number k, such that
Asi� j (k,si) 6= Asi+1� j (k,si+1) for all i = 0, . . . , h(k) − 1. For each i , the change Asi� j (k,si) 6= Asi+1� j (k,si+1) must have
been caused by some positive requirement receiving attention at some stage t in which we also decrease size(k, t),
where si ≤ t < si+1. This means that by the time we reach stage sh(k)−1, we have size(k, sh(k)−1) = 0, putting it at
the highest priority. Hence no enumeration can be made below j (k, sh(k)−1) at any stage t ≥ sh(k)−1, a contradiction.

(ii): By part (i).
(iii): Fix an e, and we want to argue thatNe is satisfied. If J A(e) ↓ then clearly it must be enumerated into Ve after

stage e. Suppose that |Ve| > h(e), then |{J A(e)[s] : s > e}| > h(e). Each different value of J A(e)[s] corresponds to
a different string As� j (k,s) for the use, contradicting (i). �

The next lemma is the crucial lemma; it argues that the combinatorics we used work out fine. In particular, we
argue that no original Cn

k -box can ever be promoted to a Cn
k−1-box.

Lemma 2.4. Let n > 0.

(i) If m > Cn
0 , then for all k ∈ h−1(m) and all s, size(k, s) > Cn−1

n−2 .
(ii) For each 1 ≤ r ≤ n − 1, if m > Cn

r , then for all k ∈ h−1(m) and all s, size(k, s) > Cn
r−1.

(iii) The total number of initializations to Pn is bounded by In .

Proof. We prove (i)–(iii) simultaneously by induction on n. Suppose the results hold for all n′ < n. Let ν(e, s) be the
critical value function

ν(e, s) :=

{
Ce

e−2−p(e,s), if p(e, s) ≤ e − 2,

Ce−1
e−2 , if p(e, s) = e − 1.

We have the following facts:

(Fact 1): For all n′ < n, the total number of times an enumeration is made into A by Pn′ , is bounded by |Pn′ |.
(Fact 2): The total number of stages t such that the requirement Pn is initialized at stage t , and Pn did not receive

attention at stage t , is at most Ĩn . To see this, observe that at such a stage t , it must be that Pn′ receives
attention for some n′ < n. At stage t , either Pn′ is initialized as well, or else an enumeration is made into A.
The total number of such stages t is at most

∑n−1
r=1 Ir +

∑n−1
r=1 |Pr | < Ĩn .

(i): Suppose on the contrary that there is some m > Cn
0 such that size(k, s) ≤ Cn−1

n−2 for some s and some

k ∈ h−1(m). We may assume that size(k, s) = Cn−1
n−2 , since the parameter size(k) is never decreased by more than one

at any stage. Since size(k, 0) ≥ Cn
0 , there is a stage s′ < s such that size(k, s′) = Cn

0 . Suppose t ≥ s′ is a stage where
some positive requirement Pe receives attention in which size(k, t) is decreased. It cannot be that e > n, because
ν(e, t) ≥ Cn

0 ≥ size(k, t); Pe’s actions are kept from interfering with Pn’s. If e = n, then p(e, t) has to be e − 1 and
hence there can only be at most one such stage t where Pn receives attention and decreases size(k, t) (since p(e, t)
is increased to e at stage t , and Pn becomes permanently satisfied after that). Hence, the number of times size(k, t)
can be decreased after stage s′, is at most 1 +

∑n−1
r=1 |Pr |. This shows that the smallest value size(k, t) can take at any

stage t ≥ s′, is Cn−1
n−2 + 1 > size(k, s), a contradiction.

(ii): The proof is more or less similar to (i), with more cases involved. Suppose on the contrary that there is some
m > Cn

r such that size(k, s) = Cn
r−1 for some s and some k ∈ h−1(m). Let s′ < s be such that size(k, s′) = Cn

r .
Suppose t ≥ s′ is a stage where some positive requirement Pe receives attention in which size(k, t) is decreased.
Similar to (i), we will now count the maximum number of such stages t . It is clear that e 6> n, and there can be at

Author's personal copy

K.M. Ng / Annals of Pure and Applied Logic 154 (2008) 51–69 59

most
∑n−1

r=1 |Pr | many stages t where Pe receives attention in which size(k, t) is decreased and e < n. Lastly if t is a
stage where Pe receives attention, size(k, t) is decreased and e = n, we must have p(e, t) > n − 2 − r . We split the
counting into the following cases:

- Case 1: t is a stage such that Pn receives attention in which size(k, t) is decreased and p(n, t) = n − 1.
As in (i), there can only be one such t .

- Case 2x: t is a stage such that Pn receives attention in which size(k, t) is decreased and p(n, t) = x, where
n − 1 − r ≤ x ≤ n − 2.

At stage t , p(n, t) is set to x + 1. In order that there is a next stage such that Case 2x applies again, Pn will
have to be initialized — we can blame this on a small sized box. There are (by Fact 2) at most Ĩn many times
where Pn can be initialized by some other P . If Pn is initialized at a stage t ′ > t where it receives attention, then
p(e, t ′) ≥ x + 1 > n − 1 − r . Hence there is some k′ < t ′ such that J A(k′)[t ′] ↓, and

size(k′, t ′) ≤

{
Ce

r−2, if r > 1,
Ce−1

e−2 , if r = 1.

In any case by (i) and induction hypothesis of (ii), we have h(k′) ≤ Ce
r−1 (blaming a box of small size), and by

Lemma 2.3(ii) there can only be at most Ĩn + S(Ce
r−1) many t’s where Case 2x applies.

Putting together the above calculations, we see that the smallest value size(k, t) can take at any stage t ≥ s′, is
Cn

r −
∑n−1

r=1 |Pr | − 1 − n(Ĩn + S(Ce
r−1)) = Cn

r−1 + 1 > size(k, s), a contradiction.

(iii): There are (by Fact 2) at most Ĩn many times where Pn can be initialized without it receiving attention. If Pn
is initialized at a stage t where it receives attention, there is some k < t such that J A(k)[t] ↓, and

size(k, t) ≤

{
Cn

n−2, if n > 1,
C0

−1, if n = 1.

It follows by (i) and (ii) that h(k) ≤ Cn
n−1, and by Lemma 2.3(ii) there can be at most Ĩn +S(Cn

n−1) = In initializations
to Pn . �

Lemma 2.5. For all e, Pe is satisfied.

Proof. Fix an e, and let x := lims→∞ x(e, s), which exists. Suppose that J A(x) ↓∈ T e
x . Let s0 > e be a stage large

enough so that we have x(e, s0) = x , J A(x) ∈ T e
x [s0], and Pe never requires attention after stage s0. Hence, it must

be the case that Ψ A
e (x)[s0] ↓= J A(x), and also that p(e, s0) = e (else (ATT3) holds at stage s0). This means that

there are e many different stages t (before stage s0) where Pe receives attention, and p(e, t) is increased by 1. At
each such stage t we also enumerate a new value for ΦA

e (x)[t], and wait for it to be traced. By stage s0, we have
|T e

x [s0]| > e. �

Lemma 2.4(iii) actually establishes that Pe never uses a forbidden index (an index not meant for it). Hence
h̃(x(e, s)) = e for all e and s, and it follows that A is not jump-traceable via h̃.

3. The c.e. strongly jump traceable sets are ΠΠΠ 0
4-complete

It is easy to see that the index set concerned is Π 0
4 :

Lemma 3.1. The set {e ∈ N : We is strongly jump traceable} is Π 0
4 .

Proof. W is strongly jump traceable ⇔ ∀e (he is an order ⇒ ∃k∀x Q(e, k, x)), where the predicate Q is

Q(e, k, x) = gk(x) ↓ and |Wgk (x)| ≤ he(x) and J W (x) ↓⇒ J W (x) ∈ Wgk (x),

and {he}e∈N and {gk}k∈N are effective listing of all partial computable functions. Clearly “he is an order” is a Π2 fact,
while Q(e, k, x) is a Π2 predicate. �

To perform the coding of a Π 0
4 set into the index set of the c.e. strongly jump traceable sets, we will need to use

the following lemma; the complete proof can be found in Nies [10]:

Author's personal copy

60 K.M. Ng / Annals of Pure and Applied Logic 154 (2008) 51–69

Lemma 3.2. If S is a Π 0
4 set, there is a u.c.e. (uniformly computably enumerable) sequence X y,e,p of initial segments

of ω, such that

y ∈ S ⇒ ∀e∃p(X y,e,p = ω),

y 6∈ S ⇒ For almost all e and p, |X y,e,p| < ∞.

Proof. If S is a Π 0
4 set, then there is a u.c.e. sequence X̄ y,e,p of initial segments of ω, such that y ∈ S ⇔

∀e∃p(X̄ y,e,p = ω). Observe that it is easy for us to define a new u.c.e. sequence Yy,e,p, such that if it is the case
that for some e, |X̄ y,e,p| < ∞ for all p, then we have |Yy,e,p| < ∞ for all p and all e′

≥ e. On top of doing that,
we also need to ensure that each sequence {Yy,e,p}p∈N has got at most one infinite set. To do this, we replace each
sequence {Yy,e,p}p∈N by the sequence {X y,e,〈p,b〉}p,b∈N, where for each p, the set X y,e,〈p,b〉 is allowed to copy Yy,e,p
if b = |Yy,e,0 ∪ · · · ∪ Yy,e,p−1|. Clearly for each y and e, X y,e,r is infinite for at most one r . �

We will devote the rest of this section to the proof of

Theorem 3.3. The set {e ∈ N : We is strongly jump traceable} is Π 0
4 -complete.

3.1. Requirements and an overview

We let S be a Π 0
4 set, and let {X y,e,p} be the corresponding sequence in Lemma 3.2. Fix a y, and we shall build a

c.e. set A, such that

∀e∃p(X y,e,p = ω) ⇒ A strongly jump traceable,

∀
∞e, p(|X y,e,p| < ∞) ⇒ A is not jump traceable via some order.

The requirements are:

Re,p : If |X y,e,p| = ∞ and he is an order, then make

A jump traceable via he.

The requirementRe,p also has a positive role, namely

Re,p : If |X y,e,p| < ∞, make A not strongly jump traceable by defeating

{T k
x }x∈N for some k, with respect to some order.

Here, we let {he}e∈N be an effective list of all partial computable functions such that ∀e∀n > 0 (0 < he(n) ≤ n).
We shorten notation, and write Xe,p for X y,e,p, since y is fixed in the construction. We identify sets with their
characteristic functions, and initial segments of functions with finite strings. That is, when we write A�k , we mean the
finite string A(0)A(1) · · · A(k − 1).

Basically, Lemma 3.2 helps us to arrange the coding requirements on the construction tree, which is a tree of
strategies, in the style of a ∅

′′′-priority argument. This method is originally due to Lachlan [8], and is also presented
in Chapter XIV.4 of [21]. The reader is assumed to be familiar with standard tree arguments, a good exposition on this
topic can be found in [20]. The true path of the construction is defined as usual, as the leftmost path visited infinitely
often during the construction.

We will use the construction in Theorem 2.1 as an atomic strategy in this construction. The discussion on how this
is to be carried out will be developed over the next few pages. For now, we first give the reader a brief preview of how
this is to be done. Basically we want to code a given Π 0

4 set S into the index set of the strongly jump traceable sets.
For each y, we perform a separate construction, and uniformly produce a set A at each construction. The trouble is
that y ∈ S or y 6∈ S is a Π 0

4 /Σ 0
4 fact. We arrange for guesses to take place on the construction tree, and with the help

of Lemma 3.2, the true path of the construction will reflect whether or not y ∈ S. However, the construction, having to
be effective, can only act on approximations to the true path. Hence there will be some stages where y looks like it is
in S; at these stages we try and make A strongly jump traceable. At other stages, y will look like it is out of S. At these
stages, we will try and make A not jump traceable via some order function h̃ which we build. However, y 6∈ S, being
a Σ 0

4 fact, can still cause us to have finitely many objects exhibiting infinitary behaviour. Each of these will force us
to make A jump traceable via some order he. Therefore, at each stage of the construction where y looks like it is out

Author's personal copy

K.M. Ng / Annals of Pure and Applied Logic 154 (2008) 51–69 61

of S, we have to make A jump traceable via some collection he0 , . . . , hek of orders, and run the previous construction
to make A not jump traceable via some h̃ � min{he0 , . . . , hek }.

The facts “X y,e,p = ω” and “X y,e,p < ∞” are Π 0
2 and Σ 0

2 facts respectively, so each such statement can be
measured at a single node on the construction tree, measuring infinitary or finitary behaviour. Lemma 3.2 says that the
Π 0

4 fact “y ∈ S” can be broken down into a Π 0
2 statement regarding the true outcomes of nodes on the construction

tree. That is, y ∈ S would be equivalent to the fact that “∀e∃p such that the node measuring |X y,e,p| has true infinitary
outcome”. Similarly, if y 6∈ S then “for almost all e, p, the node measuring |X y,e,p| has true finitary outcome”. Hence
y ∈ S or y 6∈ S will determine the true path of the construction, i.e. which nodes are visited infinitely often and which
are not. We will arrange the strategies on the construction tree to align our actions with the true path.

3.2. Description of strategies

Each node α on the construction tree has two different strategies. Suppose α is assigned the requirement Re,p,
then α will have to test if |Xe,p| = ∞. Each time some number enters Xe,p, α will have to direct its efforts towards
making A he-jump traceable (corresponding to applying negative restraints on A). This is represented by the infinitary
outcome. If some time has elapsed with no changes in |Xe,p|, then α will have to try and make A not strongly
jump traceable, by attempting to defeat some trace {Tx }x∈N (corresponding to taking positive action on A). This is
represented by the finitary outcome f . Each node α has a dual role — at expansionary stages when |Xe,p| increases,
α pursues the negative strategy, while at nonexpansionary stages α pursues the positive strategy.

The negative α-strategy (to ensure he-jump traceablility) is the usual. It splits its task into infinitely many
substrategies ST0, ST1, For each k ∈ N, the kth substrategy STk works by the following: it waits for he(k) ↓,
and when J A(k)[s] next converges, we would enumerate the value into V α

k (the sequence {V α
x }x∈N is build at α), and

restraint A on the use. At this time, we set sizeα
k = he(k) − 1 (to indicate that V α

k can take at most that many more
injuries). When the sizeα

k = 0, V α
k is totally filled and any restraint α imposes for it must be permanent. If we arrange

for each substrategy STk to be assigned to an entire level below α, we immediately meet with a technical obstacle.
Recall that in Theorem 2.1, the positive requirements had priority (relative to some STk), which was determined
dynamically. This would not be easy to arrange on a tree of strategies.

Note that we could however, arrange for all of the α substrategies to be carried out at α itself. This means that
α could impose an ever increasing restraint on the positive strategies below it, even though each substrategy STk
contributes a finite amount. To get around this problem, we arrange for there to be infinitely many restraint functions
r0, r1, . . . , where rk is the restraint function for STk , and let different positive strategies be restrained by a different
rk . Suppose each positive strategy below α only wants to enumerate once. We could then let the first positive strategy
obey restraint r0, the second positive strategy obey restraints max{r0, r1}, and so on. This would be fine if h is the
identity order function (otherwise we just adjust accordingly). For details of this, see Theorem 7.3 of [3], where this
idea was used to give a direct construction of a noncomputable c.e. set which is strongly jump traceable. Carrying out
all the α-substrategies at α has the effect of complicating the mechanism at a single node, but simplifies the global
considerations and the notations. Each node α on the construction tree builds an entire sequence {V α

x }x∈N — each α

makes a separate attempt to ensure jump traceability at some order.
In Theorem 2.1 we had shown that there is an effective procedure Λ, such that given any order function h, the

procedure Λ(h) outputs a set A and an order function h̃ such that A is h-jump traceable but not h̃-jump traceable. We
will attempt to repeat this construction Λ at each node α. At stages when α runs its positive strategy, we would make
α diagonalize some trace {Tx }x∈N. The same atomic strategy is used for this: we can take control of J A(x) for some
x . Enumerate J A(x)[s] ↓= s with use u. Each time J A(x)[s] appears in Tx , we put u into A and set J A(x)[s′

] ↓ with
another value. If we do this n times (for some chosen n), we would succeed in diagonalizing against {Tx } at some
order h̃, which we build.

The positive and negative strategies clearly conflict with each other. Why is it not possible to simultaneously run
the positive and negative strategies of all requirements? This is equivalent to making A strongly jump traceable, and
not h̃-jump traceable for some h̃. The trouble is that the eth positive strategy has to obey restraints set up for the sake
of making A jump traceable via min{h0, . . . , he}. Even though the threshold values defined in Section 2.4 are fixed
in advance, it is not possible to compute |h−1

k (r)| for every k and r . We really have to make guesses as to whether or
not each hk is an order, and so the h̃ built this way will have to be computable in a ∅

′′-oracle. This is explored in [9],
where the relativization of strong jump traceability is studied.

Author's personal copy

62 K.M. Ng / Annals of Pure and Applied Logic 154 (2008) 51–69

To make sure h̃ is computable, we will build a different version of h̃ at each of infinitely many nodes on the
construction tree. These nodes are called top nodes. If τ is a top node, and lives below nodes assigned to requirements
Re0,p0 , . . . ,Re j ,p j , such that τ believes that he0 , . . . , he j are all orders, then the positive strategy of τ would repeat the
construction Λ and make A not jump traceable with respect to the order function Λ(g), where g = min{he0 , . . . , he j }.
The following shows the tree of strategies, and how the strategies may be arranged. In the following diagram, λ

represents the root node (the empty string). The left branch represents the infinitary outcome which will be visited
during expansionary stages, while the right branch represents finitary outcomes at non-expansionary stages. For
instance, at λ-expansionary stages, we will run the negative λ-strategy of making A jump traceable (abbreviated
below by jt) via h0. At non- λ-expansionary stages we will run the positive λ-strategy of trying to defeat the trace
{T 0

x }x∈N, by applying the procedure Λ(∅).

The top nodes are marked out in the diagram above using the star symbol. At each of these top nodes, a new application
of Λ is started, with a new order function h̃. For instance, λ is a top node where Λ is applied at non-λ-expansionary
stages to diagonalize the trace {T 0

x }x∈N. The λ-counterexample to strong jump traceability would be the order function
h̃λ = Λ(∅), since λ has no stronger priority order functions to respect. The node α0 gets to act at λ-expansionary
stages, and therefore will have to live in harmony with λ’s negative strategy. Thus α0 will start its own version of Λ
by building the counterexample h̃α0 = Λ(h0), at non-α0-expansionary stages. On the other hand, the node α1 would
continue λ’s positive strategy by diagonalizing the trace {T 1

x }x∈N at the same order h̃λ, at non-α1-expansionary stages.
α1 is said to be a child of λ. λ’s other children are α_ f, α_ f _ f, . . . (where _ is the string concatenation operator),
which will all help to carry out the λ-version of procedure Λ, by diagonalizing the traces {T 2

x }, {T 3
x }, . . . respectively,

at their nonexpansionary stages.
If y ∈ S, then there will be infinitely many nodes α on the true path with true infinitary outcome. At these nodes

we would succeed in making A jump traceable via arbitrarily slow growing orders, and so A would be strongly jump
traceable. On the other hand, if y 6∈ S, then there is a maximal node τ− on the true path which has true infinitary
outcome, and all of its successors τ, τ_ f, τ_ f _ f, . . . will have true finitary outcome. In this case, τ is the final top
node. Each of the τ -children will stop running its negative strategy after a finite number of stages have elapsed. The
set A would not be jump traceable via the counterexample hτ .

There is a major modification to the basic construction Λ we have to make to ensure it runs smoothly on a tree of
strategies. Suppose τ is a top node running a version of Λ, at the order h̃τ . Let α1 ⊂ α2 ⊂ · · · be the τ -children nodes,
where αn is devoted to the diagonalization of {T n

x } at nonexpansionary stages.
There are two instances where we have to choose a new index x for αn . The first happens when some β ⊂ τ

increases A-restraint while running its negative strategy — as we have seen in Theorem 2.1, this is expected and τ

is perfectly prepared for it by choosing the thresholds Cn
0 , . . . , Cn

n−1 to be sufficiently spaced out. The second case
happens due to the fact that requirements are now arranged on a tree: at each αi -expansionary stage (for some i ≤ n),
we would also have to choose a new index x ′ for αn because stronger requirements have now acted and may need to be
respected. Even though this happens only finitely often, we do not know how often. Thus it now becomes impossible
for us to know how many indices to set aside for αn .

The solution is to divide the indices into intervals called regions. The mth region contains all the indices x such
that h̃τ (x) = m, based on the calculations in Section 2.4. Instead of getting αn to use indices from the nth region all

Author's personal copy

K.M. Ng / Annals of Pure and Applied Logic 154 (2008) 51–69 63

the time, we would make αn move on to a new region number n′, at each αi -expansionary stage, i ≤ n. Thus, each
time αn has to choose a new index due to reasons that τ is not prepared for, we would start with the smallest index in
a fresh region. This ensures that αn never runs out of indices.

3.3. Construction tree layout

Due to technical reasons, the construction will take place on the full ternary tree 3<ω, instead of a binary tree as
discussed Section 3.2. This is because before a node can begin its positive strategy, it would have to first compute all
the relevant threshold values, and thus it would have to know which functions are real orders.

Nodes of length 〈e, p〉 are assigned the requirement Re,p, with three outcomes: ∞∞ < ∞ f < f . Outcome f
means that we believe Xe,p is finite, and we have to start the positive strategy. Outcome ∞∞ means that Xe,p is
infinite, and he is an order. Thus, we have to continue with the negative strategy of making A he-jump traceable.
Finally, outcome ∞ f means that we believe Xe,p is infinite, but he is not an order. In this case, we have to initialize
every node which believes that Xe,p is finite, and do nothing else. Let α <left β denote that α is strictly to the left of
β (i.e. there is some i < min{|α|, |β|} such that α�i= β�i and α(i) < β(i)). The construction tree grows downwards.
We write “α is a Q-node” to denote the fact that α is assigned the requirement Q.

3.4. Notations

If α is a Re,p-node, we let order(α) = e. We also let Z−(α) := {β ⊂ α | β_
∞∞ ⊆ α}, which are all the nodes

running the negative strategy extended by α. Similarly we let Z+(α) := {β ⊂ α | β_ f ⊆ α}, which are the nodes
attempting the positive strategy extended by α. For each node α, we define trace(α) by the following: trace(λ) = 0,
and for α of positive length, we let α− be the predecessor of α, and set

trace(α) =

{
1 + trace(α−), if α(|α−

|) = f ,
0, otherwise.

trace(α) denotes the number k such that α needs to defeat the kth trace {T k
x }x∈N for its positive strategy. We say

that α is a top node, if trace(α) = 0. For any node α on the tree, we define τ(α), the top of α to be the maximal
τ ⊆ α such that τ is a top node. We say that α is a child of τ if α has top τ . Thus the children of τ are exactly
τ ⊂ τ_ f ⊂ τ_ f _ f ⊂ · · · .

Each Re,p-node α has a number of parameters associated with it. The parameters used for its positive strategy are
the following:

• If α is a top node, it will build a partial order function h̃α . We will get a chance to extend dom(h̃α)[s] := {x ∈ N :

h̃α(x)[s] ↓}, whenever one of α’s children begins its positive strategy.
• x(α, s), which denotes the index of the functional that α is currently enumerating at stage s. It will try and cause

T trace(α)
x(α,s) to fill up with numbers.

• u(α, s), which is the use of the most recent computation α has enumerated into J A
x(α,s). This is a number pointing

at A, which α may decide at a later stage to put into A, when the trace T trace(α)
x(α,s) increases in size.

• region(α, s), which denotes the number of elements that α has to try to fill T trace(α)
x(α,s) up with.

• attempt(α, s), this is a counter which reflects the progress of α in its positive strategy. This plays the same role as
the parameter p(e, s) in Theorem 2.1.

The parameters associated with the negative strategy of α are the following:

• At α, we build a uniformly c.e. sequence {V α
k }k∈N. This will trace J A in the event that ∞∞ is its true outcome.

• We let sizeα
k [s] denote the size of the V α

k -box at stage s, similar to Theorem 2.1. It records the number of injuries
the V α

k -box can still take. At the beginning, sizeα
k is set to he(k) − 1, and will be reduced by 1 each time a J A(k)-

computation is injured after being traced in V α
k .

Author's personal copy

64 K.M. Ng / Annals of Pure and Applied Logic 154 (2008) 51–69

For e ∈ N, we define the length of convergence for he at stage s, to be

l(e, s) = max{y < s | (∀x ≤ y) (he,s(x) ↓ ∧ he(x) ≥ he(x − 1)) ∧ he(y) > he(y − 1)}.

We will sometimes write l(α, s) instead of l(e, s). For each n, s ∈ N, let

S(α, n)[s] =

n∑
r=1

r · |{k < l(α, s) : sizeα
k [s] = r − 1}|.

Furthermore, if τ is a top node, we let

S(τ, n)[s] =

∑
β∈Z−(τ)

S(β, n)[s].

This has the same intended purpose as the parameter S(n) of Theorem 2.1, with two marked differences. First, each
τ has to now consider the total effect of all {V β

k } for every β ⊂ τ which it believes will make A jump traceable via
horder(β) (unlike in Theorem 2.1, where we only had a single order to consider). Second, because the strategy of τ

is based on the fact that its guesses are correct, so τ has to wait for various computations to converge before it can
proceed further. Therefore, threshold values will have to be computed during the construction itself, and their values
will depend on the current situation. In particular, the cardinality in the sum of S(α, n)[s] is computed using current
(r − 1)-boxes, instead of using original (r − 1)-boxes as in Theorem 2.1.

Suppose τ is a top node. The parameters {Cτ
n,k | n > 0 ∧ k < n} and {I τ

n | n > 0} helps us keep track of the
threshold values, and as mentioned above, will be computed during the construction. These parameters are all set to
↑ initially. The values Cτ

n,1, . . . , Cτ
n,n−1, and I τ

n are associated with the nth region, similar to their counterparts in
Theorem 2.1.

There are infinitely many indices ν0 < ν1 < · · · set aside for use by τ -children. If α is a child of τ , then x(α) will
be chosen from this list. h̃τ will be set to a constant value over each interval {x ∈ N | νi−1 < x ≤ νi }, for i ∈ N. Thus,
whenever we refer to x(α) or h̃τ , we mean the values modulo intervals partitioned by the νi ’s. That is, h̃τ (i) will refer
to the (common) value of h̃τ (x) for νi−1 < x ≤ νi , and we write x(α) = i instead of x(α) = νi . We let Ψ A

α denote
the functional α is enumerating at stage s, with index x(α, s). The value of x(α, s) will change from time to time,
specifically at those stages when α is initialized or reset (the meaning of these two terms will be explained soon). At
these stages, α will start enumeration of a new functional, with a new index. α will pick the new index according to
the following:

• If it is the case that α is reset, we increment x(α) by 1.
• If α is initialized, it will be asked to start on a fresh region n. In this case, we will set x(α) = n.

For a node α and stage s, we define threshold(α, s) by

threshold(α, s) = Cτ(α)
r,r−2−a,

where r = region(α, s) and a = attempt(α, s). This refers to the current threshold value that α has to obey. When we
initialize α at stage s, we do the following:

• Pick a fresh number n for region(α).
• Set attempt(α) = 0.
• Set x(α) = n.
• Set u(α) =↑.
• Set Cτ(α)

n,−1 = n, and Cτ(α)
n,0 = n + 2.

That is, α has to restart its negative strategy due to reasons that τ(α) had not foreseen. If α is injured because of
activity above τ(α), we will reset α (at stage s) by doing the following: If attempt(α, s) = region(α, s) (α’s negative
strategy has succeeded) or x(α) = region(α, s) + I τ(α)

region(α,s) (i.e. α has run out of indices), do nothing. Otherwise
increase x(α) by 1, set u(α) =↑, and set attempt(α) = 0.

Definition 3.4. We say that a node α requires positive attention at stage s, if attempt(α, s) < region(α, s), and one of
the following (ATT0)–(ATT3) holds.

Author's personal copy

K.M. Ng / Annals of Pure and Applied Logic 154 (2008) 51–69 65

(ATT0) One of Cτ(α)
n,1 , . . . , Cτ(α)

n,n−1, or I τ(α)
n has not yet received a value, where n = region(α, s).

(ATT1) There is no computation in Ψ A
α which currently applies.

(ATT2) All of the following hold:
• there is a computation in Ψ A

α which currently applies with use u(α, s),
• there is some β and k such that β ∈ Z−(α), and k < l(β, s), and we have J A(k)[s] ↓ with use larger than

u(α, s),
• sizeβ

k [s] ↓≤ threshold(α, s).
(ATT3) There is a computation in Ψ A

α which currently apply with use u(α, s) and value r = Ψ A
α (x(α, s))[s], such

that r has shown up in the trace T trace(α)
x(α,s) .

If (ATT0) holds, then α is not yet ready to start its positive strategy; wait until all the relevant parameters have been
defined. If (ATT1) holds, we need to place an axiom into Ψ A

α . If (ATT2) holds, the restraint on α from β above has
increased beyond u(α, s) — there is some high priority box blocking the positive strategy of α. We have to reset α. If
(ATT3) holds, we will need to take positive action to defeat the trace(α)th trace.

3.5. Construction of A

At each stage s of the construction, we will define the approximation to the true path of the construction, δs of
length < s. We say that α is visited at stage s, if δs ⊃ α. We will also state the actions to be taken by the nodes on δs .
At stage s = 0, set δs = λ and do nothing else.

Let s > 0, and assume that α = δs �d has been defined for d < s. Suppose α is a Re,p-node. We now have
to determine which of the three outcomes to take. Check if |Xe,p| has increased since the last visit to α. If not, let
δs(d) = f . Otherwise, we let t < s be the stage number of the most recent visit to α in which δt (d) 6= f . If:

• l(α, t) < l(α, s), and
• he(l(α, s)) > Cτ

n,r for every n, r ∈ N, and every top node τ ⊇ α_
∞∞,

we will let δs(d) = ∞∞. Otherwise let δs(d) = ∞ f . Let s− be the stage number of the previous visit to α. If:

• s− does not exist (i.e. this is the first visit to α), or
• δt <left α for some s− < t < s, or
• some σ ∈ Z+(α) enumerates in A between the two visits to α at s− and s,

we will initialize α and set V α
k = ∅ for all k, and set sizeα

k = he(k) − 1 for all k < l(α, s). Next, we will take the
corresponding actions depending on the outcome δs(d) of α determined above:

(1) δs(d) = ∞∞: we run the negative strategy for α. For all k < l(α, s) such that J A(k)[s] ↓, we enumerate the
value J A(k)[s] into V α

k . For all k < l(α, s) such that sizeα
k has not yet been assigned a value, we do the update

sizeα
k = he(k) − 1.

(2) δs(d) = ∞ f : do nothing.
(3) δs(d) = f : we run the positive strategy for α. If δs−(d) 6= f , we initialize α. Next, if α does not require positive

attention, we do nothing. Otherwise, take the appropriate action listed below, and declare that α has received
positive attention at stage s.
(a) (ATT0) holds: if α has just been initialized at this current stage, terminate the definition of δs , do nothing else

and go to stage s + 1. Otherwise, do the following:
• Pick the smallest r < n := region(α, s) such that Cτ(α)

n,r ↑, and set Cτ(α)
n,r = Cτ(α)

n,r−1 + 2 + n +

nS(τ (α), Cτ(α)
n,r−1)[s].

• If Cτ(α)
n,r ↓ for all r < n, set I τ(α)

n = S(τ (α), Cτ(α)
n,n−1)[s]. Additionally, we set h̃τ(α)(x) = n for all

x ≤ n + I τ(α)
n such that x 6∈ dom(h̃τ(α))[s].

• We terminate the definition of δs , and go to stage s + 1.
(b) ¬(ATT0)∧(ATT1): we enumerate a computation Ψ A

α (x(α, s))[s] ↓= s with fresh use u(α, s).
(c) ¬(ATT0)∧¬(ATT1)∧(ATT2): reset α.

Author's personal copy

66 K.M. Ng / Annals of Pure and Applied Logic 154 (2008) 51–69

(d) ¬(ATT0)∧¬(ATT1)∧¬(ATT2) ∧(ATT3): for each k such that there is some β ∈ Z−(α) and k < l(β, s), such
that J A(k)[s] ↓ with use j (k, s) > u := u(α, s), we decrease sizeβ

k [s] by 1. Enumerate u into A, and increase
attempt(α, s) by 1.

This ends the construction. The purpose of terminating the definition of δs under step 3(a), is because we do not want
the other τ(α)-children to pick their threshold values before α finishes with its own. The true path of the construction
is defined as the leftmost path visited infinitely often during the construction.

3.6. Verification

The following fact is rather obvious, but important: if a node σ is initialized and region(σ) set to n, then σ can
make at most 1 + (n − 1)(I τ(σ)

n + 1) many enumerations into A before it is next initialized.
Since δs can sometimes have length < s, we have to see that the true path of the construction exists, and is infinitely

long: suppose α is a node visited infinitely often, and δt <left α for finitely many t . We need to see that only finitely
often, α is visited and the definition of δs is terminated at α. This is an issue only when α stops playing the outcomes
∞∞ and ∞ f after a finite number of stages. Clearly each σ ∈ Z+(α) enumerates into A only finitely often, by the
above fact. Hence α is initialized only finitely often, and so step 3(a) of the construction applies only finitely often.

Thus, for each node α on the true path, we can let True(α) be the least stage t , such that:

• α is visited at stage t ,
• for all u > t ⇒ δu 6<left α,
• no σ ∈ Z+(α) enumerates into A after stage t .

Clearly if α ⊂ β are both on the true path, then True(α) ≤ True(β).

Lemma 3.5. Let α be aRe,p-node on the true path:

(i) If |Xe,p| < ∞, then f is the true outcome of α.
(ii) If |Xe,p| = ∞, but he is not an order, then ∞ f is the true outcome of α.

(iii) If |Xe,p| = ∞, and he is an order, then ∞∞ will be the true outcome of α.

Proof. Clearly (i) holds because if Xe,p is finite, then eventually no new numbers show up and α will always play
outcome f at each visit past a certain stage. For (ii) and (iii), observe that he is an order iff l(α, s) → ∞. (ii) is clear
enough, so we prove (iii). Suppose that |Xe,p| = ∞, and he is an order, but α never plays the outcome ∞∞ after
stage s.

Let s0 > s be the least stage such that he(l(α, s0)) > Cτ
n,r for every top τ ⊇ α_

∞∞ and n, r ∈ N. The
number s0 exists because no top τ ⊇ α_

∞∞ is ever visited after stage s. Let s1 > s0 be the least stage such that
l(α, s1) > l(α, s0). We also let s2 > s1 be the least such that Xe,p[s2] − Xe,p[s1] 6= ∅. Finally let t ≥ s2 be the least
stage such that α is visited at stage t .

If α is visited at any stage u, s1 ≤ u < s2, then α must play outcome f . To see this, suppose not, and let u− be the
previous visit to α prior to stage u. Note that u−

6< s1, otherwise l(α, u−) < l(α, s1) ≤ l(α, u). But we also cannot
have s1 ≤ u− < u, otherwise Xe,p[u] ! Xe,p[u−

] ⊇ Xe,p[s1].
Since α does not play outcome f at any stage u, s1 ≤ u < s2, it follows that δt ⊃ α_

∞∞, a contradiction. �

The following is the analogue of Lemma 2.3, applied to the current situation. In part (i) we show that the maximum
number of different restraints that a current b-box can hold is at most b + 1. Part (ii) says that the maximum number
of different restraints held by any current b-box for b < n of stronger priority, is at most S(τ, n)[s].

Lemma 3.6. (i) Let β be on the true path, with true outcome ∞∞. Let k ∈ N, and t0 be a stage ≥ True(β) such that
sizeβ

k [t0] ↓. Then,

|As� j (k,s): J A(k)[s] ↓ ∧ δs ⊃ β_
∞∞ ∧ s ≥ t0| ≤ 1 + sizeβ

k [t0].

(ii) Let τ be a top node on the true path, n ∈ N, and t1 ≥ True(τ). Then, the number of pairs 〈As� j (k,s), k〉 for which

Author's personal copy

K.M. Ng / Annals of Pure and Applied Logic 154 (2008) 51–69 67

(a) J A(k)[s] ↓,
(b) For some β ∈ Z−(τ), we have sizeβ

k [t1] < n,
(c) δs ⊃ τ and s ≥ t1,
is at most S(τ, n)[t1].

Proof. (i): The proof is the same as in Lemma 2.3(i); we include it here for the sake of completeness. Suppose that
there are stages t0 ≤ s0 < s1 < · · · < sm such that Asi � j (k,si) 6= Asi+1� j (k,si+1) for all i = 0, . . . , m − 1 (where

m = 1 + sizeβ
k [t0]). For each i , the change Asi� j (k,si) 6= Asi+1� j (k,si+1) must have been caused by some σ ⊇ β_

∞∞

receiving positive attention at some stage t where si ≤ t < si+1. It must also be the case that we had decreased sizeβ
k

at stage t . This means that by the time we reach stage sm−1, we have sizeβ
k = 0. Hence at all stages t ≥ sm−1, no

σ ⊇ β_
∞∞ can make an enumeration below j (k, sm−1), a contradiction.

(ii): Using part (i). �

The following is the counterpart to Lemma 2.4. We show that if Cτ
n,r [s0] has been defined, then no box of a current

size at least Cτ
n,r [s0] can be promoted to a Cτ

n,r−1[s0]-box.

Lemma 3.7. Let α be on the true path with true outcome f , τ = τ(α), and limt→∞ region(α, t) = n. Then, the
following are true.

(i) For each 0 ≤ r ≤ n − 1, β ∈ Z−(τ), each stage s0 such that Cτ
n,r [s0] ↓, and k such that sizeβ

k [s0] ≥ Cτ
n,r , we

have

∀t (t ≥ s0 ⇒ sizeβ
k [t] > Cτ

n,r−1).

(ii) The total number of times which α can be reset after its last initialization, is bounded by I τ
n .

Proof. (i): We proceed by induction on r . Suppose the results hold for all r ′ < r .
Suppose on the contrary that there is some β ∈ Z−(τ), stage s0 and number k such that sizeβ

k [s0] ↓≥ Cτ
n,r , and

some s > s0 such that sizeβ
k [s] ≤ Cτ

n,r−1. We may as well assume that sizeβ
k [s0] = Cτ

n,r . Since Cτ
n,r [s0] ↓, it follows

there is some stage s̄0 ≤ s0, such that α is visited at stage s̄0 in which Cτ
n,r receives its definition.

Suppose t ≥ s0 is a stage where some σ enumerates into A, resulting in a decrease in sizeβ
k . It is clear that:

(i) σ <left α,
(ii) σ ⊇ α_

∞∞ or σ ⊇ α_
∞ f ,

(iii) σ ∈ Z+(α),

cannot hold, lest α gets initialized after stage s0. It cannot also be the case that:

(iv) σ_
∞∞ ⊆ α or σ_

∞ f ⊆ α,
(v) σ >left α,

(vi) σ ⊇ α_ f ,

because otherwise region(σ, t) has to be larger than Cτ
n,r when σ enumerates at stage t . This is because α is visited

at stage s̄0 ≤ s0, and before Cτ
n,1, . . . , Cτ

n,r receives their definition, we never get to visit any node δ ⊇ α_ f . This

means that sizeβ
k [t] ≤ Cτ

n,r < region(σ, t) ≤ threshold(σ, t), a contradiction.

This leaves only the case when σ = α; that is, the only node that can bring down sizeβ
k after stage s0, is α itself.

We want to count the number of possible such stages t . At stage t , we must have Cτ
n,r ≥ sizeβ

k [t] > threshold(α, t) =

Cτ
n,n−2−attempt(α,t), which puts attempt(α, t) > n − 2 − r . As before, we split the counting into the cases:

− Case x: t is a stage where α makes an enumeration which results in a decrease in sizeβ
k , and attempt(α, t) = x,

where n − 1 − r ≤ x ≤ n − 1.
If x = n − 1, then attempt(α) will be increased to n and α never enumerates again. So, suppose that x < n − 1

(and hence r > 0). In order for Case x to apply again, α has to be reset at some (least) stage t ′ > t , where
attempt(α, t ′) ≥ x + 1 > n − 1 − r . This means that for some β ′ and k′ with β ′

∈ Z−(τ), we have J A(k′)[t ′] ↓

and sizeβ ′

k′ [t ′] ≤ threshold(α, t ′) ≤ Cτ
n,r−2.

Author's personal copy

68 K.M. Ng / Annals of Pure and Applied Logic 154 (2008) 51–69

We firstly claim that sizeβ ′

k′ [s̄0] ↓. Suppose not. Since r > 0, it follows that horder(β ′)(l(β ′, s̄0)) > Cτ
n,r−1, and

that horder(β ′)(k′) > Cτ
n,r−1. Applying induction hypothesis (on r − 1) gives us a contradiction.

We can further conclude that sizeβ ′

k′ [s̄0] < Cτ
n,r−1 (by applying induction hypothesis on r − 1), and by

Lemma 3.6(ii), there can be at most 1 + S(τ, Cτ
n,r−1)[s̄0] many stages t where Case x applies (by associating

each t with the string At ′� j (k′,t ′)).

Considering all the different cases, we see that the smallest value sizeβ
k can take, is Cτ

n,r −1 > Cτ
n,r−1, if r = 0. On the

other hand if r > 0, the smallest value sizeβ
k can take, is Cτ

n,r − 1 − n(1 + S(τ, Cτ
n,r−1)[s̄0]) = Cτ

n,r−1 + 1 > Cτ
n,r−1.

(ii): Let t0 be the stage where I τ
n receives its definition. If α is reset at stage t > t0, then for some β and k with

β ∈ Z−(τ), we have J A(k)[t] ↓ and sizeβ
k [t] ≤ threshold(α, t) ≤ Cτ

n,n−2. By part (i), it follows that sizeβ
k [t0] ↓, and

furthermore that sizeβ
k [t0] < Cτ

n,n−1. Again by Lemma 3.6(ii), there can be at most S(τ, Cτ
n,n−1)[t0] = I τ

n many such
stages t (by associating each t with the string At� j (k,t)). �

Lemma 3.8. y ∈ S ⇔ A is strongly jump traceable.

Proof. (⇒): Suppose y ∈ S, and we let h = he be an order function. There is some p such that |Xe,p| = ∞, so let α

be the node on the true path assigned the requirement Re,p. By Lemma 3.5, α has true outcome ∞∞. Fix a k ∈ N.
If J A(k) ↓, then clearly it will be enumerated into V α

k after stage True(α). Each distinct value in V α
k corresponds to

a string As� j (k,s), where J A(k)[s] ↓, δs ⊃ α_
∞∞ and s ≥ True(α) and l(α, s) > k, so by Lemma 3.6(i) it follows

that |V α
k | ≤ he(k).

(⇐): Suppose now y 6∈ S. By Lemma 3.5, let τ be the maximal top node on the true path. h̃τ is total because all of
τ ’s children α are on the true path, and each α will extend dom(h̃τ) at least once. Furthermore, each time α defines a
piece of h̃τ , it picks a value larger than anything used before, so that h̃τ is an order.

Let α ⊇ τ be on the true path, and let n = limt→∞ region(α, t). By Lemma 3.7(ii), α never runs out of indices after
its last initialization. We let x = limt→∞ x(α, t), and clearly we have h̃τ (x) = n. Suppose that J A(x) ↓∈ T trace(α)

x .
Let s0 > True(α) be large enough so that J A(x) ∈ T trace(α)

x [s0], and x(α, s0) = x . It must be the case that
Ψ A

α (x)[s0] ↓= J A(x) (because any axiom 〈x, y, σ 〉 we enumerate into Ψ A
α after stage s0, must have y ≥ s0 > J A(x)).

Hence, it must be the case that attempt(α, s0) = n, otherwise (ATT3) would hold and we would destroy the correct
axiom in Ψ A

α . This means that there are n many different stages t (before stage s0) where α receives positive attention,
and attempt(α, t) is increased by 1. After each such stage t we also enumerate a new value for Ψ A

α (x), and wait for it
to be traced. By stage s0, we have |T trace(α)

x [s0]| ≥ n. �

The proof of Theorem 3.3 is complete, upon observation that the construction of A is uniform in y, by using a
uniform version of the recursion theorem.

References

[1] K. Ambos-Spies, An extension of the nondiamond thoerem in classical and α-recursion theory, Journal of Symbolic Logic 49 (1984) 586–607.
[2] P. Cholak, R. Downey, N. Greenberg, Strong jump-traceability 1 : The computably enumerable case, Advances in Mathematics (in press).
[3] R. Downey, The sixth lecture on algorithmic randomness, in: Proceedings of the IMS Workshop on Computational Aspects of Infinity,

Singapore, 2007 (in press).
[4] R. Downey, C. Jockusch, Every low boolean algebra is isomorphic to a recursive one, Proceedings of the American Mathematical Society

122 (3) (1994) 871–880.
[5] S. Figueira, A. Nies, F. Stephan, Lowness properties and approximations of the jump, in: Proceedings of the Twelfth Workshop of Logic,

Language, Information and Computation, WoLLIC 2005, in: Electronic Lecture Notes in Theoretical Computer Science, vol. 143, 2006,
pp. 45–57.

[6] S. Ishmukhametov, Weak recursive degrees and a problem of spector, Recursion theory and complexity (Kazan, 1997) 2 (1997) 81–87.
[7] A. Lachlan, Embedding nondistributive lattices in the recursively enumerable degress, in: Conference in Mathematical Logic, London,

in: Lecture Notes in Mathematics, vol. 255, 1970, pp. 149–177.
[8] A. Lachlan, A recursively enumerable degree which will not split over all lesser ones, Annals of Mathematical Logic 9 (1975) 307–365.
[9] K.M. Ng, Beyond strong jump traceability (in preparation).

[10] A. Nies, On a uniformity in degree structures, in: Complexity, Logic and Recursion Theory, in: Lecture Notes in Pure and Applied
Mathematics, Feb. 1997, 1997, pp. 261–276.

[11] A. Nies, Reals which compute little, CDMTCS Research Report 202, The University of Auckland, 2002.

Author's personal copy

K.M. Ng / Annals of Pure and Applied Logic 154 (2008) 51–69 69

[12] A. Nies, Lowness properties and randomness, Advances in Mathematics 197 (2005) 274–305.
[13] R. Robinson, Interpolation and embedding in the recursively enumerable degrees, Annals of Mathematics 93 (2) (1971) 285–314.
[14] G. Sacks, On the degrees less than 0′, Annals of Mathematics 77 (2) (1963) 211–231.
[15] R. Shore, T. Slaman, Working below a low2 recursively enumerable degree, Archive of Mathematical Logic 29 (1990) 201–211.
[16] R. Shore, T. Slaman, Working below a high recursively enumerable degree, Journal of Symbolic Logic 58 (1993) 824–859.
[17] T. Slaman, R. Solovay, When oracles do not help, in: Fourth Annual Conference on Computational Learning Theory, 1971, pp. 379–383.
[18] R. Soare, Computational complexity, speedable and levelable sets, Journal of Symbolic Logic 42 (1977) 545–563.
[19] R. Soare, Automorphisms of the lattice of recursively enumerable sets, part 2 : Low sets, Annals of Mathematical Logic 22 (1982) 69–107.
[20] R. Soare, Tree arguments in recursion theory and the ∅

′′′-priority method, Proceedings of Symposia in Pure Mathematics 42 (1985) 53–106.
[21] R. Soare, Recursively enumerable sets and degrees, in: Perspectives in Mathematical Logic, Springer-Verlag, 1987.
[22] R. Solovay, Draft of paper (or series of papers) on chaitin’s work, unpublished notes, 215 pages, 1975.
[23] S. Terwijn, D. Zambella, Algorithmic randomness and lowness, Journal of Symbolic Logic 66 (2001) 1199–1205.

