
The Journal of Symbolic Logic

Volume 00, Number 0, XXX 0000

ON VERY HIGH DEGREES

KENG MENG NG

Abstract. In this paper we show that there is a pair of superhigh r.e. degree that forms a minimal pair.

An analysis of the proof shows that a critical ingredient is the growth rates of certain order functions.

This leads us to investigate certain high r.e. degrees, which resemble ∅′ very closely in terms of ∅′-jump

traceability. In particular, we will construct an ultrahigh degree which is cappable.

§1. Introduction. The motivation for this paper comes from four sources:

1. The study of the relationship between measure and degree.
2. The study of algorithmic randomness, in particular that of Kolmogorov com-
plexity.

3. Questions arising from the study of pseudojump operators.
4. To develop techniques used in the construction of a proper subclass of the
uniformly almost everywhere dominating degrees.

We prove the following two results, where the motivation, notation and terminol-
ogy are discussed below.

Main Theorem 2.1. There is an r.e. minimal pair of superhigh degree. That is,
there are superhigh r.e. sets A and B, such that ∀D(D ≤T A ∧D ≤T B ⇒ D ≡T ∅).

Main Theorem 3.1. There is a cappable r.e. ultrahigh set. That is, there is an
ultrahigh r.e. set A, and a non-recursive r.e. set B, such that ∀D(D ≤T A ∧ D ≤T
B ⇒ D ≡T ∅).

Our first motivation comes from the study of the relationship between measure
and degree. A is said to be almost everywhere (a.e.) dominating, if for almost all
X ∈ 2ù , and all g ≤T X , there is f ≤T A such that f dominates g. A is said to be
uniformly almost everywhere (u.a.e.) dominating, if there is f ≤T A, such that for
almost allX ∈ 2ù, and all g ≤T X , we havef dominating g. Kurtz [15] showed that
∅′ was u.a.e. dominating. Motivated by Kurtz, Dobrinen and Simpson [7] were led
to study the class of a.e. dominating and u.a.e. dominating reals. They conjectured
that the a.e. dominating reals and the u.a.e. dominating reals coincide, and that the
degrees of such reals were precisely those above 0′. In [5], Cholak, Greenberg and
Miller gave a direct construction of an incomplete r.e. set which is u.a.e. dominating,
while Barmpalias and Montalbán [1] constructed a u.a.e. dominating degree which
is half of a minimal pair. It turns out that the a.e. dominating degrees and the u.a.e.

Received February 14, 2007.

c© 0000, Association for Symbolic Logic

0022-4812/00/0000-0000/$00.00

1

2 KENG MENG NG

dominating degrees do coincide [13, 14], but such degrees are not always complete.
However, it follows from a result of Martin [16] that the u.a.e. dominating degrees
resemble ∅′ in that they are all high. The intuition is that not only are they high,
but they resemble ∅′ very strongly.
Simpson [20] continued the theme of showing that the u.a.e. dominating re-
als resemble ∅′, by showing that every u.a.e. dominating degree is superhigh (i.e.,
A′ ≡tt ∅′′). In a fascinating connection between the theory of algorithmic random-
ness and effective measure theory, it was recently shown that u.a.e. dominating reals
can be defined in terms of relativized Kolmogorov complexity. As we will see, this
concerns the class of reals A such that ∅′ is K-trivial relative to A. Thus we see that
the u.a.e. dominating reals arises quite naturally in two different ways.
The class ofK-trivial reals was first introduced in [21]. They are defined as those
reals A such that the K-complexity1 of each initial segment of A is as low as it can
be. That is, a real A is K-trivial, if

∃c ∀n(K(A↾n) ≤ K(n) + c).

Every initial segment of A contains no more information than just its length. Such
reals might seem very similar to the computable ones. Indeed, Chaitin [3] showed
that if C was used2 in place of K , the only C -trivial reals are the recursive ones.
Solovay however, was the first to construct a non-recursive K-trivial, showing that
the property of K-triviality was different from being recursive.
The K-trivials have aroused great interest in recent years, and are related to
various other classes defined independently. In [8], Downey, Hirschfeldt, Nies and
Stephan showed that the K-trivial reals are natural solutions to Post’s problem in
the sense that they are T-incomplete. In [17, 18], it was shown that “all is one”
i.e., A is K-trivial iff A is low3 for K iff A is Martin-Löf low.4 Subsequently, more
characterizations for theK-trivial reals were found, such as the bases ofMartin-Löf
randomness [10], and the reals low for weak 2-randomness.
How does all these relate to u.a.e. dominating? We say that a ∆02 set A is almost
complete (or ∅′-trivializing), if ∅′ is K-trivial relative to it, namely

∃c ∀n(KA(∅′↾n) ≤ K
A(n) + c).

In upcoming work, Binns, Kjös-Hanssen, Miller and Solomon showed that for
A ≤T ∅′, A has u.a.e. dominating degree iff A is almost complete. Thus we find that
the natural class of u.a.e. dominating reals coincide with the almost complete ones.
Progress in understanding the relation of u.a.e. dominating reals to the degrees has
been slow, and little is known [1, 5, 20]. This paper aims to contribute to the
understanding of this class and its relationship with the Turing degrees.
In spite of the results of Cholak, Greenberg and Miller [5], and Barmpalias and
Montalbán [1], there is no known construction of an almost complete real that
combines with upper cone avoidance.5 The only result related to cone avoidance

1We use K(ó) to denote the prefix-free Kolmogorov complexity of the string ó. KA denotes the
relativized K -complexity with oracle A.
2C to denote plain complexity.
3A is low for K if ∃c ∀ó(K(ó) ≤ KA(ó) + c).
4A is ML-low, if every A-random set is already 1-random.
5That is, given any set B , there is an almost complete real A such that A �T B .

ON VERY HIGH DEGREES 3

is due to Nies and Shore [19]. Nies and Shore gave a direct construction of an r.e.
almost complete real A, avoiding the upper cone of a K-trivial B.
The connection between K-triviality and u.a.e. domination allows for another
construction of a u.a.e. dominating real using the pseudojump techniqueof Jockusch
and Shore. A pseudojump operator V is one that takes each set X to the set
V (X) := X ⊕W X r.e. in and above X (for a fixed r.e. set W). We also say that
A completes the pseudojump operator V , if V (A) ≡T ∅′. Jockusch and Shore
[12] proved the pseudojump inversion theorem, which states that every pseudojump
operator has an r.e. non-recursive completion. Nies [19] showed that in fact every
pseudojump operator has aML-random completion. If we apply Nies’ result to the
construction of a K-trivial, we get a ML-random, almost complete degree.
There are a number of general questions about pseudojump operations and their
ability to combine with various degree-theoretic constraints. In [6], Coles, Downey,
Jockusch and LaForte proved that there is a pseudojump operator V non-trivial
over the r.e. sets (i.e., for all r.e. setsW , we have V (W) >T W), such that V does
not avoid upper cones. They asked the question if V can be strengthened to be non-
trivial over all sets, as any natural operator arising from relativizing constructions
of r.e. sets must be. They also asked if it is true that every operator has a cappable6

completion. We might hope that perhaps the construction of a K-trivial might give
an operator which cannot avoid cones. In Theorem 3.1, we show that the operator
arising from relativizing the construction of a strongly jump traceable (to be defined
soon) has a cappable completion. The results of Barmpalias and Montalbán [1],
and Cholak, Greenberg and Miller [5] are immediate corollaries to our theorem.
The questions regarding completions of pseudojump operators, and the results
of [1] and [5] inspire us to study a proper subclass of the almost complete reals.
An order function h is a recursive, non-decreasing and unbounded function. A
set A is said to be jump traceable with order h, if there is a recursive g, such that
for all x, |Wg(x)| ≤ h(x), and J

A(x) ∈ Wg(x). (Here, J
A(x) denotes the value

of the jump function {x}A(x)). This is a variation of the concepts of recursive
traceability (introduced by Terwijn andZambella [22]), and r.e. traceability (studied
by Ishmukhametov [11]). The class of jump traceable reals was introduced by Nies
[17], initially to study lowness properties. Nies [17] showed that the notions of jump
traceability and superlowness (i.e., A′ ≡tt ∅′, introduced by Bickford and Mills [2])
coincide for r.e. sets, but differed in general.
Nies [17, 18] showed that every K-trivial real is jump traceable (with an order
function of growth rate ∼h(n) = n log n). Inspired by these results, Figueira, Nies
and Stephan [9] further characterized jump traceability in terms of C -complexity,
and went on to define the notion of strong jump traceability: A set is strongly jump
traceable, if it is jump traceable via all order functions. Figueira, Nies and Stephan
showed the existence of a non-recursive strongly jump traceable r.e. set via a cost
function construction similar to the construction of a K-trivial found in Downey,
Hirschfeldt, Nies and Stephan [8].
Recently Cholak, Downey and Greenberg [4] showed that the r.e. strongly jump
traceables form a proper sub-class of the K-trivials. The proper containment was
shown by constructing a K-trivial real which cannot be jump-traced by an order

6A cappable degree is half of a minimal pair.

4 KENG MENG NG

∼h(n) = log log n. Applying the pseudojump inversion theorem to the construction
of a strongly jump traceable, we get an incomplete r.e. set A, such that ∅′ is strongly
jump traceable relative to it. That is, for every A-recursive order hA, there is a
uniformly A-r.e. sequence of traces {V Ae }e∈N, such that for all e, |V Ae | ≤ h

A(e) and

J ∅
′

(e) ∈ V Ae . We call these reals ultrahigh. Using the relativized version of the
results in [4], this new class of reals is seen to be a proper subclass of the almost
complete reals.
The proofs of Main Theorems 2.1 and 3.1 not only involve an analysis of the
growth rates of the order functions, but also require a careful scheduling procedure
which decides when numbers are allowed to be enumerated and when the lengths
of agreement are allowed to rise. We believe this may be of independent technical
interest.
In Section 2 we will construct a minimal pair of r.e. superhigh sets. Shore has
also proved the same result in unpublished work, where he has a different way to
handle the thickness requirements of the construction of a minimal pair of high r.e.
sets. In the the proof of Theorem 2.1, we will code Tot directly into the jump of the
constructed set, such that the trace can be recovered in a tt way. We remark that both
methods essentially run along the same lines; both methods will require keeping
track of whether each minimal pair requirement is currently holding A-restraint, or
holding B-restraint, and will involve coding the true path of the construction into
the jump of the sets we are constructing. However, the presentation of the proof
below was chosen, because it illustrates clearly the scheduling procedure of when
lengths of agreements are allowed to rise—this is a crucial ingredient in the proof
of Theorem 3.1, where we will combine the minimal pair requirements, with the
requirements constructing an ultrahigh set.
This result says that while the questions surrounding minimal pairs of almost
complete reals and minimal pairs of ultrahigh reals remain open, their answers will
depend crucially upon the growth rates of the order functions. In Section 3 we will
construct an r.e. ultrahigh set which is half of a minimal pair.

§2. A minimal pair of superhigh sets. In this section, we will proof the following
theorem.

Theorem 2.1. There is an r.e. minimal pair of superhigh degree. That is, there are
superhigh r.e. sets A and B, such that ∀D(D ≤T A ∧D ≤T B ⇒ D ≡T ∅).

2.1. Requirements. We build r.e. sets A and B satisfying the following require-
ments:

Ne : If Φe(A) = Φe(B) = h is total, then h is recursive,

P
A
e : e ∈ Tot⇔ A

′ � óe (for some truth table óe),

P
B
e : e ∈ Tot⇔ B

′ � ôe (for some truth table ôe).

Here, we let Φe denote the eth Turing reduction, and Tot = {e ∈ N | qe is total},
where qe is the eth partial recursive function of a single variable. We will ensure that
the sequences {óe}e∈N and {ôe}e∈N are recursive.
We adopt the convention of using uppercase Greek letters for functionals, and
lowercase Greek letters for their use. The use of any convergent computation at a

ON VERY HIGH DEGREES 5

stage s is assumed to be bounded by s . We append [s] to parameters, functionals
or their use (e.g., Φ(A;x)[s]) to describe their values at a stage s .

2.2. Strategy of a single requirement. There are two different types of require-
ments in this construction. The negative requirements Ne tries to make A and B
a minimal pair by keeping numbers out of A and B. The positive requirements
P
A
e and P

B
e tries to make Tot ≤tt A

′ or Tot ≤tt B ′ by attempting to control the
configuration of an initial segment of A′ or B ′. As e goes in and out of Tot[s],
we will need to put numbers into A or B to force changes in A′ or B ′. The main
conflicts we need to consider, are when somePAe wants tomake a change inA below
the use of a computation that some negative requirements might want to preserve.
We will firstly remind the reader of the strategy used to satisfy a single negative
(minimal pair) requirement Ne : We will define a (partial) recursive function he
that computes the common value of Φe(A) = Φe(B) (if they are equal). Whenever
we observe Φe(A;x)[s] ↓= Φe(B;x)[s] ↓, we will set he(x) = Φe(A;x)[s] =
Φe(B;x)[s], and preserve either of A↾ϕe(A;x) [s] or B↾ϕe (B ;x) [s]. This allows us
to have a period of time in which numbers are allowed to freely enter, say A (for
the sake of the A-positive requirements) while we preserve B↾ϕe(B ;x) [s]. When the
destroyed A-computation recovers at some stage s ′ > s , we have Φe(A;x)[s ′] =
Φe(B;x)[s

′] = Φe(B;x)[s] = he(x) and so the common value at each recovery
stage is forced to be the same (so that he(x) = Φe(A;x) = Φe(B;x)). At stage s ′

we could now allow numbers to enter B while restraining A to give the numbers a
chance to enter B (for the sake of the B-positive requirements).
Before we go any further, we would like to highlight the difference between a
requirement making A high, and a requirement making A superhigh. If we were
just trying to make A high, we would attempt to define a reduction Tot = ΓA

′

. For
each e, we have an associated ã(e) use targetted atA′, which we could control since
we are building A. As e enters and leaves Tot (membership of Tot is a Σ02/Π

0
2 fact),

we have to put a stream of numbers intoA to flip A′(ã(e)) back and forth. At times
a negative requirement might block A, and prevent us from changing A′(ã(e)).
When that happens we have to abandon the current value of ã(e), and pick another
one. The point is that as long as we limit the amount of negative restraint onA, this
ã(e) value eventually settles; that is all that really matters. In terms of the thickness
requirements, this translates to the fact that we are allowed to miss finitely many
numbers in the eth column before we get to a stage where the requirement is never
injured.
The reader will remember how this combines with the minimal pair requirements
to produce a minimal pair of high r.e. sets—each high coding requirement experi-
ences only a finite amount ofAorB restraint. Howdifferent are our requirements in
this case? We have to now code Tot into A′ and B ′, while putting a recursive bound
on the use. In other words, we have to count in advance, for each superhigh coding
requirement, the number of times a negative requirement of a stronger priority will
block its actions. If we directly adopt the strategy above we would be in trouble,
for we cannot count in advance how many times a minimal pair requirement will
choose to increase its A or B restraint before it hits an x where ΦA(x) 6= ΦB (x).
Extra care has to be taken to fix this problem—we require a careful scheduling of
when aminimal pair requirement is allowed to increase its length of agreement (and

6 KENG MENG NG

hence increase the restraint it imposes). How this is arranged, and the impact it has
on the rest of the construction, will be explained later.
Consider a singleA-positive requirement,PAe . We describe briefly exactly howwe
intend to carry out the coding. We fix in advance the index of twoTuring functionals
çf < ç∞ which we are enumerating, and the membership Tot(e) will eventually
be decided by looking at the configuration A′(çf)A

′(ç∞). Suppose at stage s ,
Tot(e)[s] = 0. We would then put çf into A

′[s] with use u(çf , s) by enumerating
the axiom 〈As↾1+u(çf ,s), çf〉 into Φçf . Note that u(çf , s) is chosen larger than s ,
and therefore its entry into A later will only destroy those N -computations which
converge after stage s .
Suppose that after stage s , we never see an increase in dom(qe). Then, Tot(e) = 0
and A′(çf) = 1. On the other hand if e enters Tot[s

′] at a later stage s ′ > s , we
could put u(çf , s) into A to take çf out of A

′. We would then put ç∞ into A′[s ′]
with use u(ç∞, s ′). If e enters and leaves Tot infinitely often, then Tot(e) = 1 and
A′(çf)A

′(ç∞) = 01, since once ç∞ is put into A
′, it is never removed (we are not

considering any injury toPAe for the time being).

2.3. Interaction among strategies. We begin by considering a single A-positive
requirement P working below a negative requirement N . Suppose that at stage s ,
P puts çf into A

′ with the use u(çf , s) > s . At the next stage s
′ > s where dom(q)

increases, P would want to take çf out of A
′ and put ç∞ in. However, u(çf , s)

might be less than the use of some computation Φ(A;x)[s ′] which had converged
in the meantime (after stage s). If there had already been an enumeration into B
below the use of Φ(B;x), then we would not be able to take çf out of A

′ until
the B-computation Φ(B;x) recovers. Unfortunately, if Φ(B;x) never recover after
stage s ′, we would not be able to make A′(çf) = 0.
The solution to this is the usual—put the requirements on a Π2-guessing tree
(which is possible, since the predicate “e ∈ Tot ” is a Π02 fact). There are now two
versions of the requirement P : Firstly, P∞ which guesses that the hypothesis in
the N -requirement is true and hence will only act at those stages where both sides
Φ(A;x)[s] = Φ(B;x)[s] are convergent. The other version is Pf , which guesses
that Φ(A) 6= Φ(B) and will only get to act when one of Φ(A;x)[s] or Φ(B;x)[s] is
allowed to be injured, for some x ∈ dom(h).
Now, P∞ would handle the functionals with indices ç∞f < ç

∞
∞ , while the other

version Pf of P have the functionals çff < ç
f
∞. We set things up so that ç

f
f <

çf∞ < ç∞f < ç
∞
∞ , and use A

′ on these four values as the truth table. At each N -
expansionary stage, where the N -hypothesis has been further verified, P∞ would
run its (modified) basic strategy:

1. If dom(q) has increased since P∞’s last action, restore the configuration

A′(çff)A
′(çf∞)A′(ç∞f)A

′(ç∞∞) = 0001.

2. If dom(q) has not increased sinceP∞’s last action, we force the configuration

A′(çff)A
′(çf∞)A′(ç∞f) = 001.

The reader should note that either of the actions taken above would result in an
enumeration of a historical use into A (because of the first two bits of the truth
table), which might be below the use of ΦA-computations. This is alright since N
only needs to preserve one of the two sides of the newly converged computations.

ON VERY HIGH DEGREES 7

At those stages which are notN -expansionary, that is, we are waiting for one of
the two computations ΦA(max dom(h)) or ΦB (max dom(h)) to recover, and at the
same time preserving the other one, Pf would be able to have a chance to run its
basic strategy:

1. If dom(q) has increased since Pf ’s last action, force the configuration

A′(çff)A
′(çf∞) = 01.

2. If dom(q) has not increased since Pf ’s last action, set A′(çff) = 1.

In 1. above, Pf would have to make an enumeration of a historical use u(çff)

into A, which might be less than the A-restraint that N is currently putting up.
This situation will arise from the following sequence of events: At the last N -
expansionary stage s , we had enumerated numbers into B instead of A. Thus even
though P∞ has had a chance to act at stage s , it did not do so in order to allow

numbers into B. This is bad, for now N will increase its A restraint above u(çff).

IfN never sees a recovery on the B side, Pf would be stuck.
Note that if we were not required to make the reduction tt, we could simply let

P
f move on to another index ç′ > çff and repeat. Unfortunately this is illegal in

our case—we really have to make do with what we are given.
In order to overcome this difficulty, we will further split Pf into two versions,
P
fA and PfB . Hence, the requirement P has now three different versions—P∞

as above, and PfA ,PfB which respectively get to act at stages whereN is holding
A and B restraint. PfA now get to work with the indices çAf and ç

A
∞, andP

fB will

workwith the indices çBf and ç
B
∞. Wewill code the totality of q into the configuration

A′(çAf)A
′(çA∞)A

′(çBf)A
′(çB∞)A

′(ç∞f)A
′(ç∞∞), a truth table of size 6. Depending on

whether or not e ∈ Tot when P∞,PfB ,PfA are visited, each requirement above
respectively tries to restore the configuration 000001 or 00001w, 0001w ′ or 001w ′′,
and 01w ′′′ or 1w ′′′′. For more details on the truth table, we refer the reader to
Section 2.6.
To ensure that this strategy works, one will also need to carefully schedule when
we allow the length of agreement for N to rise; more precisely we need to arrange
when we extend dom(h), which is the function computing the common value of
both sides of the computations measured atN .
Suppose PfA had already defined u(çAf) when it acted at some stage where N

was waiting for the recovery of ΦB(x), where x = max dom(h). Suppose recovery
occurs at the next N -expansionary stage t, where we also have ΦA(x + 1)[t] ↓=
ΦB (x+1)[t] ↓, and we extend dom(h) to include x+1. Although it is the case that
u(çAf , t) > ϕ(A;x), but Φ

A(x + 1) can very well converge with a use larger than

u(çAf , t). This would be a problem if P
fA wants to act before we have a chance to

clear u(çAf , t) < ϕ(A;x + 1)[t].
However, we can see that at stage t, even though the length of agreement between
ΦA and ΦB has increased, there is really no hurry to define h(x + 1) at stage t.
The correctness and totality of h only matters if the N -hypothesis is correct, in
which caseP∞ would definitely get a chance to enumerate u(çAf , t) into A at some

time in the future. After P∞ places u(çAf , t) into A (and destroys the Φ
A(x + 1)[t]

computation at stage t), we could then wait until the next N -expansionary stage

8 KENG MENG NG

t′′ when ΦA(x + 1)[t′′] ↓= ΦB (x + 1)[t′′] ↓ again, and see if the situation at stage
t occurs again at stage t′′ (i.e., u(çAf , t

′′) < ϕ(A;x + 1)[t′′]). The point is that
if the N -hypothesis is true, there must be an N -expansionary stage v such that
ΦA(x + 1)[v] ↓= ΦB (x + 1)[v] ↓, and the computation ΦA(x + 1)[v] is believable,
that is, u(çAf , v) ≮ ϕ(A;x + 1)[v]. We can then extend the definition of h when

ΦA(x + 1)[v] (and ΦB (x + 1)[v]) become believable. Controlling the definition
of h in this manner allows us to ensure that we never accept an agreement in the
computations ΦA(x+1) = ΦB (x+1), until we are certain that any followers below
both uses will only get enumerated duringN -expansionary stages.
The steps taken by a general X -positive requirement P below a number of
negative requirements is essentially the same. If P is arranged to be of a lower
priority than k manyN -requirements, then there will be 3k many different versions
of P ; Each version of P acts at stages where its guess about the states of the
N -requirements above are correct.
We remark that the reader should really think of the positive requirements as
acting on “boxes”. Each of the 3k many different versions of P will lie on the
same level of the construction tree. Each of these nodes are assigned a different
location of the jump X ′(ç), i.e., a box. Thus, the truth table at this level is just the
configuration of the row of 3k boxes. Setting X ′(ç) = 0 is known as “emptying the
box X ′(ç)”, achieved by making an enumeration into X , while setting X ′(ç) = 1 is
known as “filling the box X ′(ç)”, achieved by enumerating a new axiom into that
part of the jump. Thus a box has to be emptied before it can be filled with a new
axiom.
When a version of P acts, it will empty all boxes assigned to the other versions
of P to its right. It will either fill or empty its own box X ′(ç) depending on the
situation ofTot, thus setting up the truth table to look how it wants (see Section 2.6).
This helps to give us a visual image of what is to come—as we will see, the main
difficulty in Theorem 3.1, is that the ultrahigh coding requirements require us not
only to place a bound on the number of boxes used, but all the positive requirements
at the same level have to “share boxes”, i.e., each version of the same P no longer
have the luxury of working on its own boxes; two or possibly more of the positive
requirements at the same level have to work on the same box.
On a final note, we remark that in the proof, one actually codes the true path into
A′ andB ′, because the configuration of each truth table recorded in the jump during
the construction not only specifies the membership of Tot, but also records which
outcomes were played infinitely often during the construction. This is a crucial
refinement of the priority tree used to produce a minimal pair of high sets—in
addition to guessing the outcomes and doing the coding based on these guesses, we
also have to code in the state of theN nodes (i.e., whether they are holding A or B
restraints).

2.4. Construction tree layout. The construction takes place on the full binary
tree. Nodes of length |α| = 4e + 1 are assigned the requirement PAe , while nodes
of length |α| = 4e + 3 are assigned the requirement PBe . The outcomes are
labelled ∞ corresponding to a qe-expansionary stage, and f corresponding to a
non-expansionary stage for qe . We place∞ to the left of f.

ON VERY HIGH DEGREES 9

Nodes α of length |α| = 2e are assigned the requirement Ne . Instead of having
two separate finite outcomesfA andfB , which are to be playedwhen α is holdingA
and B restraints respectively, we will identify both outcomes together, call it f. We
will however, need to introduce a separate variable state(α) (to be defined below)
to record whether α is currently holding A or B restraint. Again we arrange the
infinite outcome∞ (stands for infinitely many N -expansionary stages) to the left
of the finite outcome f (N settles on a final restraint; whether the final restraint is
on A or B is recorded in state(α)). The construction tree grows downwards, i.e.,
we say that α is above â , if α ≺ â .
We say that α <left â , if there is some i < min{|α|, |â |}, such that α↾i= â↾i ,
α(i) =∞, and â(i) = f. That is, α is to the left of â on the construction tree.
A node α is said to be a Q -node, if it is assigned the requirement Q . α is a
negative node, if α is a Ne-node for some e. The node α is an X -positive node if
α is aPXe -node for some e. At each stage s during the construction, we will define
the approximation to the true path, äs of length s . A node α is visited at stage s , if
äs ≻ α.

2.5. Notations. The symbol X is to be be used as a set variable, which will refer
to eitherA or B. Let X c be B if X = A, and vice versa. At eachNe-node α, we will
define a partial recursive function hα . If ΦAe = Φ

B
e is total, we will ensure that hα

is total and that hα = ΦAe = Φ
B
e . The function hα initially starts off as ∅, and from

time to time we will increase the domain of hα , denoted by dom(hα). We will not do
this at every α-expansionary stage however, and will hold back until the relevant
computations become believable.
For each Ne-node α we use the notation R(α, s) to record whether α is holding
A or B restraint at non-expansionary stages s ; R(α, s) = X indicates that α is
holding X -restraint at stage s . At each stage s of the construction, numbers will be
enumerated into either A or B but not both. We call s an X -stage, if numbers are
enumerated into X during construction stage s .
If ä is a node on the construction tree, there may be several negative nodes (say
for instance ô0, . . . , ôk such that ô

⌢
i f ≺ ä, for i ≤ k). At each stage s , each of the

ôi ’s might be trying to preserve an A or B computation. To keep a record of this
fact, we define for each node ä and stage s , the string

state(ä, s) = X0X1 . . . X|ä|−1,

where for all i < |ä|, the value Xi ∈ {A,B,∞, f} is determined by the following: If
ä↾i is a positive node, let Xi = ä(i). If ä↾i is a negative node such that ä(i) = ∞,
then let Xi =∞. Otherwise we let Xi = R(ä↾i , s).
The introduction of the state(α) variable require us to define new orderings <A
and <B , used to determine priority amongst the different possible state-values. We
let∞ <A f <A B <A A and also define∞ <B f <B A <B B. We extend <A and
<B lexicographically to orderings <A and <B on {A,B,∞, f}<∞. The orderings
are defined this way to be consistent with the style of the ordering <left of the nodes
on the construction tree—ã <A ó means that ã is lexicographically left of ó, i.e., of
a higher <A priority.
At each odd level n of the construction, we have boxes çã∞ and ç

ã
f for each

ã ∈ {A,B,f,∞}n . These are actually Turing functionals which we define during
the construction, and we let uãx be the use of the box ç

ã
x (henceforth, x is one

10 KENG MENG NG

of ∞ or f). Note that for each fixed n, the axioms for the different boxes çãx
form a uniformly r.e. set; hence we are able to compute an index for each box çãx ,
which we also denote as çãx . There are 2.4n many boxes at level n, indexed by
ã ∈ {A,B,f,∞}n . In addition, we call çãx an A-box if |ã| = 4e + 1 for some e, and
call it a B-box if |ã| = 4e + 3 for some e. To empty the X -box çãx means that we
enumerate the use uãx into X . To fill the X -box ç

ã
x at stage s with use u, means that

we enumerate the axiom 〈Xs↾u+1, 0〉 into ç
ã
x , and set the use u

ã
x = u.

At an A-stage s if α of length n is visited (say α is A-positive), it will work on

the boxes çstate(α)f , çstate(α)∞ . By this, we mean that α will fill the çstate(α)∞ box and

clear the çstate(α)f box if it is an α-expansionary stage, and fill the çstate(α)f box if it is

not an α-expansionary stage. In either case α will also clear all ã-boxes of a lower
<A-priority than (or to the right of) the current boxes, i.e., ã >A state(α). The
variable state(α) should be viewed as a pointer, which points at the two boxes where
α is currently working on. The truth table at level n will eventually be specified by
the α on the true path, as well as the final value of state(α).
At level n, state(α) will point at different boxes at various stages of the construc-
tion, depending on the state of the negative nodes above it. However, at no time
will an state(α) point at a box which another α′ at the same level has used before;
this means that the boxes at level n “are not shared” amongst the different α. As
we will see, in the proof of Theorem 3.1, different α will have to share boxes, and
two α at the same level might have to point at the same box.
All variables and parameters retain their assigned values until the next assigna-
tion. If the context is clear we omit the stage number from the parameters.

Definition 2.2. For a negative node α, we say that a computation ΦA(n)[s] with
A-use w is α-believable at stage s , if

1. for all A-positive nodes â with â⌢∞ � α, the box çstate(â)f is either empty, or

has use > w,
2. for all ã >A state(α)⌢B, both A-boxes ç

ã
f , ç

ã
∞ are empty or have use > w.

Condition 1. ensures that there are no pending changes below the use w due to
incorrectly filled boxes of higher priority, while condition 2. ensures that the A-
boxes of lower <A-priority will not be blocked by an increased α-restraint—these
boxes can always be cleared when α is visited at an A-stage. A similar definition
follows for B-computations, with B and <B in place of A and <A.

At eachNe-node α, we define the length of agreement between the eth reductions
of A and B, based on believable computations:

l(α, s) = max{y < s | (∀x < y) (ΦAe (x)[s] ↓= Φ
B
e (x)[s] ↓

are both α-believable computations)}.

We say that a stage s is α-expansionary, if α is visited at stage s , and l(α, s) ≥
| dom(hα)[s]|. That is, we require only that l(α, s) is equal to dom(hα)[s] to be
expansionary, and not strictly greater. This is to ensure that certain boxes can
always be emptied, and that correct computations eventually become α-believable.
For aPXe -node α, we define l(α, s), the length of convergence of qe as:

l(α, s) = max{y < s | (∀x < y) (qe(x)[s] ↓)}.

ON VERY HIGH DEGREES 11

In this case, we say that s is α-expansionary, if α is visited at stage s and l(α, s) >
l(α, s−) where s− < s is the largest stage such that α was visited at stage s−.

2.6. The truth table. We define the truth table óe ; a similar definition holds for ôe
with B and 4e + 3 in place of A and 4e + 1. We first label all the {A,B,f,∞}-
sequences of length 4e + 1 by ã1 <A · · · <A ãn . The truth table óe is then:

A′(çãnf) A
′(çãn∞) A′(ç

ãn−1
f) A′(ç

ãn−1
∞) . . . A′(çã1f) A

′(çã1∞)

0 1 ? ? . . . ? ?
0 0 0 1 . . . ? ?
...

...
...

...
...

...
...

0 0 0 0 . . . 0 1

Thus, reading the truth table from left to right, we would see a string of zeroes,
followed by a first entry with a 1. Everything that follows the first 1 is unhelpful
garbage, and are accessed only when we visit the left of the true path, or when the
states along the true path have not yet settled. To decide if e ∈ Tot we see if this
entry with the first 1 belongs to a çãf box, or a ç

ã
∞ box. If it is the former then

e ∈ Tot, otherwise e /∈ Tot.

2.7. The construction. Each stage s of the construction will either be an A-stage
enumerating into A, or a B-stage enumerating into B. When we pick a fresh
number at a stage s , we mean that we pick a number > s and > any number used
or mentioned so far. At stage s > 0, do the following in the order given:

1. Inductively define the stage s approximation to the true path, äs of length s .
Suppose that äs↾d has been defined for d < s . If s is äs↾d -expansionary, let
äs (d) =∞. Otherwise, let äs (d) = f.

2. Declare that s is anX -stage, whereX is to be decided below. If s = 0 or s = 1,
let X = A. Otherwise, look for the longest â ≺ äs such that â has been visited
prior to stage s . Let s− < s be the most recent stage such that äs− ≻ â . If s−

is an A-stage, let X = B, otherwise let X = A.
3. Take actions for each expansionary negative node on äs . For each negative
Ne-node â such that â⌢∞ � äs ,
(a) Set R(â, s + 1) = X c (since the X -side of the â-computations will be
destroyed at this stage).

(b) For each n < l(â, s) we set hâ(n) ↓= Φ
A
e (n)[s], if not already defined.

4. Injure the negative nodes to the right of äs .
(a) For each negative â >left äs , set hâ = ∅ and set R(â, s + 1) = A.

5. Clear all X -boxes of lower <X -priority than the current state.
(a) For each ã >X state(äs), we clear the X -boxes ç

ã
f , ç

ã
∞.

6. Take actions for each X -positive node on äs .

(a) For each X -positive node â such that â⌢∞ � äs , clear the box ç
state(â)
f .

(b) For eachX -positive node â ≺ äs , fill the box ç
state(â)
x with fresh use u > s ,

where x = äs (|â |).

2.8. Verification. Let TP = lim inf s äs be the true path of the construction under
<left, i.e., the leftmost path visited infinitely often. At each stage s , numbers (possibly
none) are enumerated into either A or B but not both.

12 KENG MENG NG

For any node α, the state of the nodes above α does not change unless the
construction visits left of α. Hence if α is on the true path, then state(α) eventually
settles at some value ã, pointing to the two boxes çãf and ç

ã
∞. We also point out

that during the construction, any box filled at stage s is filled with a use> s . Hence
any convergent computation ΦX (n)[s] ↓ at stage s , can only be destroyed later due
to the enumeration of an X -box use, which was filled prior to stage s .
We begin with a preliminary lemma:

Lemma 2.3. Suppose α is visited infinitely often. Then for each X ∈ {A,B}, there
are infinitely many X -stages s such that äs ≻ α.

Proof. If α is visited at anA-stage s , then the next visit to α would be a B-stage,
unless some â ≻ α causes us to choose X = A at step 2 of the construction. Once
all such â are visited at least once after stage s , we would have to choose X = B at
step 2. ⊣

Hence any α on the true path will be visited at infinitely manyA-stages, as well as
at infinitely manyB-stages. This gives every positive node on the true path infinitely
many chances to act.

Lemma 2.4. Along the true path of construction, all the negative requirements are
satisfied.

Proof. Let α be an Ne-node on true path, such that ΦAe = Φ
B
e is total. Let s0

be a stage large enough such that the construction never visits left of α after that.
After s0, hα is never injured and so it is recursive.

Claim 2.4.1. In between α-expansionary stages, at least one side of the Φe-
computations is preserved. That is, if s1 ≥ s0 is an α-expansionary X -stage such
that X cs1↾m 6= X

c
s2↾m for some s2 > s1, wherem = the use of Φ

X c

e ↾dom(hα) [s1], then there
must be an α-expansionary stage u, such that s1 < u < s2.

Proof of claim. Suppose on the contrary there are no such u. Since s is an
X -stage, the number k < m has to enter X c at some stage t, where s1 < t < s2.
By assumption that there is no such u, we have ät >left α⌢∞. The number k has
to be enumerated under step 5(a) or 6(a) of the construction at stage t. Since
R(α, t) = X c it follows that state(ät , t) >X c state(α, s1)⌢X . However, due to
the α-believability of the ΦX

c

e -computations at stage s1, neither of 5(a) nor 6(a) is
possible. ⊣

Claim 2.4.2. There are infinitely many α-expansionary stages.

Proof of claim. The idea is that we will show that any correct computation has
to eventually becomeα-believable, using Lemma 2.3. Suppose there are only finitely
many expansionary stages, and let s1 be the last α-expansionary stage. Each time
the construction visits left of α, we will set hα = ∅, so we certainly have s1 ≥ s0 as
well as hα = hα,s1 6= ∅. Suppose that s1 is anA-stage, a similar argument can be run
if s1 is a B-stage instead.
Let s2 > s1 be a stage such that As2↾m′= A↾m′ where m′ = use of ΦAe ↾dom(hα). By

Claim 2.4.1, it follows that Bs1↾m= B↾m where m = use of ΦBe ↾dom(hα) [s1]. Since
B has not changed below m, and state(α) never changes after stage s1, it follows
that the ΦB↾m computations must be still believable at stage s2. Hence, if s2 is not
expansionary, it must be because the computation ΦAe (j)[s2] is not α-believable, for
some j ∈ dom(hα). This means that at stage s2, one or both of the following is true:

ON VERY HIGH DEGREES 13

1. There is an A-positive node â such that â⌢∞ � α, such that the box çstate(â)f

has use < m′.
2. For some ã >A state(α)⌢B, the box ç

ã
x has use < m′.

For (2), note that at the last α-expansionary A-stage s1, all such boxes are cleared.
Hence the box çãx has to be filled after stage s1. However note that R(α) is set to
B at stage s1 and can only change if we visit left of α, or have an α-expansionary
stage, neither of which is possible after stage s1. So, it follows that ã >A state(α)
because only the nodes â >left α can fill such a box. This case, together with (1) is
impossible because α will eventually be visited again at an A-stage, and enumerate
into A below m′, a contradiction.
Thus, the ΦAe -computations at stage s2 must also be α-believable, hence s2 is
α-expansionary. ⊣

Note that Claim 2.4.2 is not enough to show that hα is total, as l(α, s) need not
be strictly increasing at expansionary stages. The fact that hα is total follows from
the fact that any correct computation must eventually become α-believable:

Claim 2.4.3. hα is total.

Proof of claim. Letp be any number, andwewant to show that hα(p) eventually
receives a definition after stage s0. Consider a stage s3 > s0 such that As3↾m′′ and
Bs3 ↾m′′ are correct up to m′′, where m′′ = larger of the two uses ΦAe ↾p+1 and
ΦBe ↾p+1. Now s3 has to be α-expansionary with l(α, s3) > p, otherwise there is
some X -box with pending action below m′′. Such a box will be cleared at the next
α-expansionary X -stage, causing a change in X↾m′′ , a contradiction. ⊣

Thus hα is total, and computes correctly since one side of ΦAe = Φ
B
e is always

preserved between expansionary stages. ⊣

Lemma 2.5. Along the true path of construction, all the positive requirements are
satisfied.

Proof. We consider the A-positive requirements, a similar argument follows for
the B-positive requirements. Let α be a PAe -node on the true path, and óe is the
truth table in Section 2.6. We want to show that qe is total iff A′ � óe . Let s0 be
a stage after which we never visit left of α, also let ã0 = state(α, s0), the final state
value.
It is clear that every A-box çãx for every ã >A ã0 cannot be permanently defined,
because we will clear such a box at each visit to α at an A-stage larger than s0.
Therefore we only need to show that

• qe is total⇒ ç
ã0
∞ is permanently defined, while ç

ã0
f is never permanently defined.

• qe is not total⇒ ç
ã0
f is permanently defined.

Webegin by assuming that qe is total, hence there are infinitelymanyα-expansionary
A-stages. At these stages, çã0f has to be emptied, so it is never permanently defined.

Suppose that çã0∞ is filled at the α-expansionary A-stage s1 > s0, with use u
ã0
∞. We

must show that it is never emptied after that; suppose on the contrary that some
number k ≤ uã0∞ is enumerated at the A stage t > s1. Suppose k is the use u

ã
x . The

possibilities for ã are:

1. ã ≻ ã0⌢∞: Since uses are always chosen fresh, it follows that the box ç
ã
x must

have been filled at some α-expansionary A-stage s2 < s1, in which the box

14 KENG MENG NG

çã0∞ must also be filled with use u
ã0
∞[s2] < u

ã
x[s2], if it is not already occupied.

Hence we have to empty the box çã0∞ after s2, before it can be filled at stage s1,
but this action would also empty the box çãx , contrary to assumption.

2. ã >A ã0⌢∞: Such a box would be emptied at s1, and even if they were filled
later, the use would have to be larger than uã0∞.

3. ã <A ã0: If this applies, then the construction has to visit left of α at stage t.

4. ã � ã0: Then, k is the use of some box ç
state(â)
f [t] for some â with â⌢∞ �

α⌢∞. As above, such a box would have to be emptied at stage s1.

So, çã0∞ has to remain permanently defined. If qe is not total, a similar argument
applies to show that çã0f will be permanently defined. ⊣

§3. A cappable ultrahigh set. In this section, we construct an ultrahigh r.e. set A,
which is half of a minimal pair:

Theorem 3.1. There is a cappable r.e. ultrahigh set. That is, there is an ultrahigh r.e.
set A, and a non-recursive r.e. set B, such that ∀D(D ≤T A ∧D ≤T B ⇒ D ≡T ∅).

3.1. Requirements. We build the r.e. sets A and B with B coinfinite, satisfying
the following requirements.

Ne : If Φ
A
e = Φ

B
e = h is total, then h is recursive,

P
A
e : If Φ

A
e is an order, make ∅

′ A-jump traceable via ΦAe ,

P
B
e : |We | =∞, make B ∩We 6= ∅.

Here, we let Φe denote the eth Turing reduction, and J ∅
′

(k) denote the value of the
universal ∅′-partial recursive function Φ∅′

k (k). If Φ
A
e is an order, the requirement

P
A
e will build an A-u.r.e. sequence {V

A
k }k∈N such that for all k, |V

A
k | ≤ Φ

A
e (k) and

J ∅
′

(k) ∈ V Ak . To do this,P
A
e will divide the task into infinitely many substrategies,

or modules. The the kth module will be responsible for building V Ak . The require-
ment PAe will be split into infinitely many subrequirements P

A
e,0,P

A
e,1, Each

subrequirement will be responsible for ensuring the success of finitely many of these
modules. The modules that each subrequirementPAe,i is allocated will change from

time to time, during the construction, and depends on the values of ΦAe [s].

3.2. The atomic strategy. The negative requirements Ne are as before—at each
nodeα assigned a negative requirementNe , wewill build a partial recursive function
hα , that records the common value of Φ

A
e = Φ

B
e observed at α-expansionary stages.

We ensure that in between α-expansionary stages, at least one side of the Φe-
computations is preserved.
We first outline the strategy to make A ultrahigh. For simplicity, let us first
consider the situation in which we want to trace J ∅

′

(k) with bound f(k) for some
recursive order f. That is, we only need ∅′ to be jump traceable relative to A
via a single bound f. We are building an A-uniformly r.e. sequence {V Ak }k∈N so

that for all k, we have J ∅
′

(k) ∈ V Ak , and |V Ak | ≤ f(k). In actual fact, we are
enumerating an A-recursive functional ΨA(k, n) such that for every k, the range
{ΨA(k, n) | n ∈ N} = V Ak . Therefore, if we enumerate a certain number p into V

A
k

with use u, at a later stage we are allowed to change our mind. That is,, we can
remove p from V Ak , at a cost of putting u into A. If we were instead building a plain

ON VERY HIGH DEGREES 15

u.r.e. sequence (without oracle A), we would be unable to change our mind in this
way; any enumerated number has to increase the size of the trace permanently.
The freedom for us to change our mind could be exploited in the following way:
Whenever the opponent plays J ∅

′

(k)[s] ↓, we could trace the value J ∅
′

(k)[s] into
V Ak . When the opponent next changes the value of J

∅′

(k)[t] and shows us a new

value (note that he could in fact do this infinitely often, so that J ∅
′

(k) ↑), we could
remove the earlier trace and replace it with the new one.
Things are not so simple, of course, for if we could always do this, then |V Ak | = 1
for all k, so that A is already Turing complete. We will have to remember that
there are negative requirements which might be imposing A-restraint, at the time
when our opponent shows us a new value to be traced. Therefore, at times we
might be forced to leave a wrong trace in V Ak , and continue with the strategy using
a new location. We return to the “box” intuition used in Theorem 2.1. This time
round, we think of each traced J ∅

′

(k) value as occupying a “box” location. Hence
each V Ak is allowed f(k) many locations, or boxes which we may fill with potential

candidates for J ∅
′

(k). If the positive strategy fills a box with an incorrect value, and
at a later stage, the negative requirements above it decide to drop the A-restraint,
we could go back and clear the box by removing the wrong trace. In this way we
are able to re-use the box in future.
We will discuss the problems faced, and the solutions, for two typical scenarios
in the construction: Firstly we describe how a negative requirement might survive
the infinite positive action of some A-positive requirement living above it (of higher
priority). Secondly, we will talk about how an A-positive requirement living below
(of lower priority than) a negative requirement survives the A-restraint put on it.
As in Theorem 2.1, the construction tree grows downwards.

Scenario 1: N living belowPA.
We consider a requirement PA, devoted to tracing J ∅

′

(k) into V Ak . Since P
A

might make infinitely many enumerations into A, we have to arrange for it to be
equipped with two outcomes: Firstly, we need to have the infinitary outcome ∞,
which represents the situation in which the opponent shows us infinitely many
different values to be traced. The other outcome is finite f, which says that the
opponent eventually makes up his mind on a certain value (i.e., J ∅

′

(k) ↓). In this
case,PA would trace the final value and never remove it from the appropriate box.
The purpose of equipping PA with two outcomes is so that we can have two

versions N and N̂ of the same negative requirement below PA, guessing the
outcomes ∞ and f respectively. Thus, N will never believe in a ΦA-computation
until PA clears the relevant boxes with use below the ΦA-computations. This is
alright, because correct ΦA-computations must eventually become believable. On

the other hand N̂ will always believe in new ΦA-computations whenever they show
up—it acts on the guess thatPA never needs to clear any of its boxes.

Scenario 2: PA living belowN .
There are two versions of the positive requirement—PA which guesses that there

are infinitely manyN -expansionary stages, and P̂A which guesses otherwise.

16 KENG MENG NG

At stage s0, suppose that P̂A gets to act while N is waiting for the recovery of
an A-computation ΦA(x) for some x ∈ dom(h). Suppose further that at stage s0,

P̂A traces the current value J ∅
′

(k)[s0] into V Ak with use u[s0]. At some later stage
s1 > s0, we might get recovery of ΦA(x) (with an A-use above u[s0]). It might well
be the case that at stage s1, enumeration is made into B and notA (we have to allow

for the B-restraint to be dropped infinitely often). When P̂A gets to act later at
stage s2 > s1, it would not be able to clear the box should the opponent challenge
it to, since N has dropped B-restraint and is currently holding A-restraint above
u[s0]. The following diagram describes the situation at stage s2:

��������*
ϕA(x)

x

AB

dom(hN)[s2]

A-use

B-use

u[s0]

What P̂A needs to do now is to trace the new value into a second box, say with use
u[s2] > ϕA(x)[s2]. Suppose the situation repeats again, namely, at a later stage the
B-computation ΦB (x) recover, and we have a length of agreement larger than some

new x′ > x, with ϕA(x′) > u[s2]. N then drops B restraint again and when P̂A

next gets to act at stage s3, it finds itself in the following situation:

��������*

x

�
�

�
�

�
�

�
�3

x′

AB

dom(h)[s3]

A-use

A-use

B-use

u[s0]

u[s2]

This would be bad, for P̂A would have to move on and occupy yet another box.
The solution to this, as in Theorem 2.1, is to delay extending dom(h) until the
ΦA-computations become believable. When N first saw the length of agreement
increase beyond x, it should not have expanded dom(h) to include x′, for u[s2]—the
use of the second box—was actually below ϕA(x′). N could actually wait until the
next expansionary A-stage, where both of the boxes can be cleared. The point is,

ON VERY HIGH DEGREES 17

once again, that if ΦA(x′) = ΦB(x′), then eventually N would be able to place x′

into dom(h).
The reader might ask, what exactly is the difference between this (ultrahigh)
strategy and the previous (superhigh) strategy, for the same method was used
to decide when we allow dom(h) to rise. The above discussion shows that the

requirement with the two different versions PA and P̂A at that level, requires 2
boxes to run its strategy. Generally if a positive requirement lives on level m of the
construction tree with 2m different versions, it will need 2m many boxes to handle
all the possible combinations of A/B-restraint each negative requirement above it
is currently holding. If the tracing order f(n) has an exponential growth rate of
∼2n, the above strategy would work fine, because we could alternate the positive
and negative strategies in the priority order PA < N < PA < N < At the
2kth level, the positive requirement will be responsible for tracing J ∅

′

(k), and have
have 22k many different versions. Each of the 22k many different versions of the
positive requirement will be allocated a different box, and each version will work on
tracing the jump value into its own box when it is visited in the construction. So we
will need altogether something like 22k ∼ f(k) many boxes at level 2k. The reader
will note that this is actually the situation in Theorem 2.1—the proof in Theorem
2.1 can be easily seen to be one which also produces a minimal pair A, B, such that
∅′ is jump traceable relative to both A and B via an order function of exponential
growth rate.
The problem now of course, is that f is given to us—it is an arbitrarily slow-
growing order. The main difference is that we cannot arrange our requirements
as in the case when f(n) ∼ 2n. The cost of having an extra negative requirement
above a particular PA would have the effect of doubling the number of boxes it
needs, because of the extra information we have to keep track of. We would have to
arrange the requirements in the following order instead:

P
A < · · · < PA︸ ︷︷ ︸
f̃(1) many

< PB < N

< PA < · · · < PA︸ ︷︷ ︸
f̃(2)−f̃(1) many

< PB < N

< PA < · · · < PA︸ ︷︷ ︸
f̃(3)−f̃(2) many

< . . . ,

where f̃(n) := min{k | f(k) > 2n}. We will now discuss how to ensure that
this arrangement succeeds—the trick involves allowing negative restraint to transfer
sideways, and making positive requirements at the same level share boxes.
Let us consider the simple casewhen f̃(1) = 0, hence the first positive requirement
appears at level 2 as shown below, with four different versions:

18 KENG MENG NG

�
��

Q
QQ

P
B

N N̂

J
JJ

J
JJ

P
A

P
A

P
A

P
A

At this level, we will be allowed only two boxes for PA (instead of four, as in the
strategy we have discussed above). Hence each version of PA no longer has the
luxury of having its own box—all of its siblings have to share the two boxes available
to them. If f grows very slowly, then there might be many levels (corresponding to
each k such thatf(k) < 2) below level 2 which are allowed two boxes. Box-sharing
is therefore a necessary feature in this construction (compare it to the previous
construction); we need it to resolve the complications introduced by an f which we
do not have control of, as the box size is not always allowed to increase as we move
down the construction tree.
The observation we need to make is that both versions N and N̂ of the same
negative requirement are actually trying to do the same thing, namely they are
both measuring the same length of agreement. The only difference between the
two, is that they would each believe in different computations, i.e., for instance the

A-computation ΦA(x)[s] converges, and N̂ believes in it but not N . Also assume

thatN and N̂ are building recursive functions h and h̃ respectively. The plan is to

allow B-restraint to transfer sideways from the left (N) to the right (N̂).
Suppose N was visited, and the two versions of PA below N fills up the two

boxes allocated to level 2. When N̂ is next visited, the versions of PA below N̂
would not have enough boxes left to use, if N is holding A-restraint (i.e., waiting

for B-recovery). However, N̂ can wait until all the B-computations in dom(h) have

recovered, before it decides to do anything. When this happens, N̂ can restraint
B on the use of these computations. Since N no longer cares what we put into
A (as long as we hold the B-restraint and continue preserving the common value

recorded by h),N could drop its A-restraint, and the versions ofPA below N̂ can
recycle the boxes used earlier. In general, a negative node α on the construction
tree will wait for the lengths of agreement of all the nodes to its left and at the same
level to recover, before α plays its expansionary stage. Once that happens, α would
then drop A restraint to allow boxes below it to become accessible once again.
The downside is of course, we would increase the B-restraint by a huge amount
each time. This “transferred” B-restraint has to be obeyed even at α-expansionary
B-stages, and will increase only at each visit to the left of α. Since the amount of
transferred B-restraint is finite if α is on the true path, the B-positive requirements
would be satisfied.
In this theorem we only make B non-recursive. Suppose we wanted to make
B ultrahigh, using the method described above. The problem is that now, the B-
positive requirements also has a number of pre-determined B-boxes at each level.
In the strategy above, we had allowed the restraint to be transferred from the A

ON VERY HIGH DEGREES 19

side to the B side, so that certain A-boxes can become accessible again. However
by doing so we might block some B-boxes and cause them to become unusable.
Therefore, the strategy above does not immediately produce an ultrahigh, or even
just a superhigh B. Indeed, it is not known if there is a minimal pair of A and B,
such that ∅′ is jump traceable relative to both A and B, via an arbitrary order f.

3.3. The global considerations. In the previous section we had described how to
make a minimal pairA, B such that ∅′ isA-jump traceable via an arbitrary recursive
order, and B is non-recursive. In general a positive requirement living on level k
will only need to use 2n many boxes, where n is the number of levels < k of the
construction tree devoted to negative requirements.
The full construction requires us to have requirements PAe which wants to do its

tracing at order ΦAe . We now need to trace J
∅′

(k) with respect to all A-recursive
orders, instead of just one. Hence, the arrangement of the A-modules on the
construction tree cannot be pre-determined, and will have to be decided as more
and more of ΦAe shows up.
Suppose ô is assigned the requirementPAe . ô wouldmeasure the length of conver-
gence l(ô, s) of ΦAe , that is, the initial segment of Φ

A
e [s] such that Φ

A
e [s]↾l(ô,s) looks

like it is an order. ô will divide its job amongst infinitely many sub-requirements
{PAe,i}i∈N, which are all spread out at different levels below ô. Let

môi = |j ∈ N : ô < Nj < P
A
e,i |,

which is the number of levels j of the construction tree devoted to a negative
requirement, between ô and its i th sub-requirement.
Suppose α is a node on the construction tree assigned the requirement PAe,i .

Instead of tracing J ∅
′

(k) for a single k at level |α|, we let α (and all the other nodes
on the same level) handle several of these k-modules, for all k ∈ L(|α|, s), such that

L(|α|, s) := {k < l(ô, s) | 2m
ô
i < ΦAe (k)[s] ≤ 2

môi+1}.

The atomic strategy described above is used for each of these k-modules. However,
α will require two outcomes (k,∞) and (k,f) for each k-module it is looking after,
hence requiring altogether 2|L(|α|,s)| many outcomes, which we could fix in advance
if not for the fact that L(|α|, s) itself might change as the construction proceeds.
Thus, the construction tree will have to be infinite branching at the levels assigned
to subrequirement nodes.
When ô first detects that the length of convergence is long enough so that
ΦAe (l(ô, s))[s] > 2

môi+1 , it will make all the nodes at level |α| start their atomic strate-

gies. These nodes will start the process of tracing all the J ∅
′

(k) for k ∈ L(|α|, s).
Note that all the traces will be made with A-use larger than s . In future if
L(|α|, t) 6= L(|α|, s), it must be the case that there is a change in A below s .
Hence the next time ô sets its i th sub-requirement to work with the new L(|α|, t),
all of the earlier traces (which we no longer want) would have been automatically
removed; no intervention by ô is needed for this. It might also be possible that
L(|α|) changes infinitely often (as in the case when ΦAe is not an order), so we will
have to arrange a leftmost outcome 0 for α. Each time before α can start work with
a new set of ô-modules L(|α|), we will make α play outcome 0 once. This ensures
that the true path is well-defined, in the case when α never receives a permanent set
of instructions.

20 KENG MENG NG

3.4. Construction tree layout. The construction takes place on a subtree of ù<ù .
Nodes of length 3e are assigned the requirement Ne with the outcomes ∞ for
infinitely many expansionary stages, and f for finitely many expansionary stages,
with∞ <left f.
Nodes of length 3〈e, i〉 + 1 are assigned the requirement PAe if i = 0, and the
subrequirement PAe,i−1 if i > 0. The possible outcomes of P

A
e are ∞ <left f,

which stands respectively for infinite (finite) action taken. The outcomes of PAe,i
are 0 <left 1 <left 2 <left Outcome 0 to the extreme left means no action, i.e.,
the atomic strategies have not started. The other outcomes each represent the code
number of a finite sequence of pairs (n0, x0), (n1, x1), . . . ,(nj , xj) where the ni ’s are
distinct natural numbers, and xi ∈ {∞, f}, in some effective coding 〈·〉 with range
N\{0}. The important point here is to ensure that if ó and ç are two such sequences,
then 〈ó, (n,∞), ç〉 < 〈ó, (n,f), ç〉.
We say that m specifies the pair (k, x), if m is the code number of a sequence of
pairs in which (k, x) appears. An outcome specifying (k,∞) is played when α is
charged with the task of tracing J ∅

′

(k), and a new value has just been shown by the
opponent. An outcome specifying (k,f) on the other hand, will be played when α
is assigned to trace J ∅

′

(k), but no clearing of boxes are pending.
Finally, nodes of length 3e + 2 are assigned the requirement PBe , with outcome
s for success (in meeting the simplicity requirement), placed to the left of w, for
waiting.
Let α <left â denote that node α is strictly to the left of node â , extended
lexicographically from the ordering among the outcomes. We say thatα is a Q -node
if α is assigned the requirement Q . A negative node is an Ne-node for some e. We
say that α is amother node, if α is aPAe -node for some e, and that α is anA-positive
node if α is aPAe,i -node for some e, i . A B-positive node is aP

B
e -node for some e.

A node ô is said to be the mother node of α, if ô ≺ α, and ô is a PAe -node and
α is a PAe,i for some e, i . In this case we also call α an i-daughter node of ô. If α is
an A-positive node, then ô(α) denotes its unique mother node. α and â are sibling
nodes, if ô(α) = ô(â), and |α| = |â |.
If α is an A-positive node, we let Left(α) denote all the sibling nodes of α,
strictly to the left of α. If α is any other type of nodes, Left(α) simply denotes the
set of all nodes â <left α such that |â | = |α|. We let Right(α) be defined similarly
with the inequality reversed.

3.5. Notations. Suppose that ô is aPAe -node. The k
th module of ô, which wants

to trace J ∅
′

(k), is also called the (ô, k)-module. We divide a cofinite segment of N

into infinitely many partitions {M ôi }i∈N, where

M ôi = {x : 2〈e,i+1〉−〈e,0〉 < x ≤ 2〈e,i+2〉−〈e,0〉}.

Basically 〈e, i + 1〉 − 〈e, 0〉 = môi , i.e., the number of levels j between ô and its
i th subrequirement containing negative nodes. An i-daughter node α of ô will be
allowed 2m

ô
i many boxes at its level. Hence α will be entrusted with the task of

ensuring the success of the (ô, k)-module for every k such that ΦAe (k) ∈M
ô
i .

ô’s job is to coordinate the actions of all of its daughter nodes, and build the
A-u.r.e. sequence {V ôk }k∈N (note that oracle A is suppressed from the notationV

ô
k).

In actual fact we are constructing, at the node ô, the Turing functional ΨA(k, n)

ON VERY HIGH DEGREES 21

so that for every k, Range(ΨA(k, ·)) = V ôk . We refer to each value Ψ
A(k, n) as a

box, which we will fill with a number. Fixing an effective coding 〈·〉 of all finite
{A,B}-sequences, we will call ΨX (k, 〈ó〉) a ó-box of V ôk . That is, we think of each
set V ôk as a row of boxes, where each box is labelled by a finite string ó ∈ {A,B}<ù .
The purpose of this definition, is that during the period of time where α (and all
its sibling nodes at the same level) is running the (ô, k)-module, it will be allowed
to place numbers in, as well as take numbers out of the ó-boxes of V ôk , for every

ó ∈ {A,B}<∞ of length môi . Hence at level |α| we have access to 2
môi many boxes.

At a particular stage s , when we say that we fill a ó-box ofV ôk with use u, we mean

that we enumerate the axiom 〈〈k, 〈ó〉〉, y, As↾u+1〉 into Ψ. The s th stage use of the
computation ΨA(k, n)[s] is denoted by uôk,n[s]. To clear, or to empty the ó-box of
V ôk at a stage s , means that we enumerate u

ô
k,〈ó〉[s] into A. As usual we associate

finite strings with their code numbers, and write uôk,ó in place of u
ô
k,〈ó〉. During a

stage s of the construction in which we enumerate into A, if an A-positive node α
is visited and we filled some box for the sake of α, we will say that the box is filled
by α at stage s . This remains true until the box is next emptied.
Define the length of convergence for ΦAe at stage s , to be

l(e, s) = max{y < s | (∀x ≤ y) ΦAe (x)[s] ↓≥ Φ
A
e (x − 1)[s]}.

Since ô is measuring l(e, s), we also write l(ô, s) in place of l(e, s). A stage s is
ô-expansionary, if either s = 0, or else ô is visited at stage s of the construction, and
l(ô, s) > l(ô, s−) where s− < s is the largest ô-expansionary stage smaller than s .
α has a list of instructions at stage s , defined as:

L(α, s) = {k < l(ô, s) | ΦAe (k)[s] ∈M
ô
i },

which is a list of ô-modules thatα has to run. This list will change as the construction
proceeds, and when more of ΦAe is revealed. All sibling nodes of α will have the
same list of instructions at all times, so they will all run the same modules, until ô
says otherwise.
We will say that α is active at stage s , if ô allows α to start running the modules
in the instruction list L(α). That is, α is active at s , if α ≻ ô⌢∞ and we have the
following:

• (AC.1): ΦAe (l(ô))[s] /∈M
ô
i .

[Hence we do not expect new numbers to appear in the instruction list L(α),
unless there is an A-change.]

• (AC.2): L(α, s) 6= ∅.
[Otherwise α has nothing to do.]

• (AC.3): There is some largest t < s where α is visited at both stages t
and s , L(α, t) = L(α, s), and for every k ≤ 1 + maxL(α, s), the computa-
tion ΦAe (k)[s] has persisted for at least two visits to α (i.e., A↾ϕe(A;k) [t] =
A↾ϕe(A;k) [s]).
[To ensure that the true path is well-defined, that is, we ensure that α switches
from being active to inactive each time there is a change in instructions.]

We also say that α is permanently active at stage s , if it is active at every visit to α
after stage s , i.e., it never gets interrupted in running the modules.

22 KENG MENG NG

Let â be an Ne-node. At â we define a partial recursive function hâ to record
the common value of ΦAe = Φ

B
e . As in the previous proof, we do not increase

dom(hâ) at all â-expansionary stages, instead we hold back until an appropriate
time. We also let R(â, s) = X if â is holding X -restraint at stage s . Each stage s
of the construction is either an A-stage where numbers are enumerated into A, or a
B-stage in which numbers are enumerated into B.
Suppose ô is a mother node, and ä ≻ ô is any node. Let â0 ≺ · · · ≺ âk−1 ≺ ä be
precisely all the negative nodes lying on the path between ô and ä. As in the previous
proof, we need to record at each stage s , whether each of these âi is holding A or B
restraint. We are allowed less storage space now—we will only record the outcomes
of these negative nodes: let

state(ô, ä, s) = X0X1 . . . Xk−1,

where for all i < k, the value Xi ∈ {A,B} is determined by the following: if
â⌢i ∞ � ä then let Xi = B, otherwise we let Xi = R(âi , s).
If ä is a daughter node of ô, we abbreviate state(ô, ä, s) by state(ä, s). If ä is
a PAe,i -node, then | state(ä, s)| = môi . As in the previous construction, state(ä, s)
functions as a pointer telling ä to run all of its modules using the state(ä, s)-box.
It might be that several of ä’s sibling nodes are also pointing simultaneously at the
same box—unlike in the previous proof—and we have to ensure that ä’s progress
will not be undone by another of its sibling node. It also follows trivially from the
definition that if ä1 � ä2, then state(ô, ä1) � state(ô, ä2).
We fix a partial ordering <A on the set of all finite {A,B}-sequences, which will
be used to determine priority amongst the different state values. Let ñ <A ó, iff
there is some least i < min{|ñ|, |ó|}, such that ñ↾i= ó↾i , and ñ(i) = B 6= ó(i).
An A-positive node α will start work only if it is active. The variable state(α)
points at a particular box in the kth row of boxes (for each k in the instruction list
L(α)). α will fill the box in the kth row each time it plays an outcome specifying
(k,f), and will clear the box in the kth row each time the outcome specifies (k,∞).
As the situation in the negative nodes above α changes, α may move on to other
boxes in the same row; however α only has access to 2m

ô
i boxes in each row.

All sibling nodes on the same level will share boxes; all of them will have access
to all the boxes available to that level. Because of this, and because of the transfer
of restraints, we might actually return to a box of higher <A-priority, as we move
from the left to the right of the construction tree. We have to be a bit careful with
notations, in particular when considering α-believablity of A-computations. There
are now more cases to consider:

Definition 3.2. For a negative node α, we say that a computation ΦA(n)[s] with
A-use w is α-believable at stage s , if

1. for all A-positive nodes â ≺ α, and each k such that α(|â |) specifies (k,∞),

the state(â, s)-box of V ô(â)k is either empty, or has use > w,
2. for all A-positive nodes â which has been visited prior to stage s , such that

ô(â)⌢∞ ≺ â⌢0 � α, and all k ∈ L(â, s), the state(â, s)-box ofV ô(â)k is either
empty, or has use > w,

3. for all mother nodes ô ≺ α, all strings ã >A state(ô, α, s)⌢B and all x, the
ã-box of V ôx is either empty, or has use > w,

ON VERY HIGH DEGREES 23

4. for all A-positive nodes â ≺ α, and all A-positive nodes ó >left â , with

ô(ó) ≺ α, and all strings ã � state(ô(ó), â, s), and all x, if the ã-box of V ô(ó)x

is currently full and was filled by ó, then the use is > w.

We now give an explanation for having each of the conditions 1–4 above. Con-
dition 1 ensures that there are no pending changes due to incorrectly filled boxes
from above. For condition 2, we note that if â has true outcome 0, then all the
relevant boxes will have to be eventually cleared, so we don’t want to believe in an
α-computation until they are cleared. Condition 3 ensures that boxes of a lower
<A-priority will not be blocked by an increased restraint. Condition 4 is present
because at each visit to â on the true path, we want to clear all the boxes filled by
some ó >left â (even though these boxes might be of a higher <A-priority).

Suppose α <left α′ are negative nodes at the same level. As discussed previously,
the two nodes are measuring the same length of convergence. Thus, our plan was to
let α′ wait until all theB-computations below | dom(hα)| recover, before we allow α

′

to play an expansionary stage. However, α and α′ may actually believe in different
computations. In particular there might be some A-computation ΦA(x) for some
x ∈ dom(hα) which α believed in (and hence placed in dom(hα)), but which α′

does not believe in. It would be unreasonable for us to insist that α′ wait for the
recovery of such computations—instead we allow α′ to neglect these computations
when considering α′-expansionary stages. Doing so might cause hα to record the
wrong value, but as we will see, things will work out fine—hα can only be wrong at
finitely many values if α is to be on the true path.
Apart from considering lengths of agreement, we define a new parameter called
the length of believability. The intention for this is to let α′ assess the believability
of dom(hα): if α is anNe-node, we define the length of believability to be

lb(α, s) = max{y < s | (∀x < y) (Φ
A
e (x)[s] ↓, and is α-believable)}.

We also define the length of agreementmeasured at α to be:

l(α, s) = max{y < s | (∀x < y) (ΦAe (x)[s] ↓= Φ
B
e (x)[s] ↓),

and lb(α, s) ≥ y}.

We say that a stage s is α-expansionary, if α is visited at stage s , and both of the
following hold:

1. l(α, s) ≥ | dom(hα)[s]|,
2. For each â ∈ Left(α) such that R(â, s) = A, and lb(α, s) ≥ | dom(hâ)[s]|,
we require that l(α, s) ≥ | dom(hâ)[s]|.

3.6. The construction. Each stage s will either be an A-stage with enumerations
into A, or a B-stage with enumerations into B. When we pick a fresh number at a
stage s , we mean that we pick a number > s and> any number used or mentioned
so far. At stage s > 0, we inductively define the stage s approximation to the true
path, äs of length s . Suppose that α = äs ↾d has been defined for d < s . If α
is an Ne-node or a P

A
e -node, then we let äs(d) = ∞ if s is α-expansionary, and

äs (d) = f otherwise. If α is a PBe -node, then we check if Bs ∩We,s = ∅. If so, we
let äs (d) = w, else we let äs (d) = s .
Finally, suppose thatα is aPAe,i -node. Ifα is currently not active, we let äs (d) = 0.
Otherwise, for each k ∈ L(α, s), we have to let äs (d) specify either (k,∞) or (k,f).

24 KENG MENG NG

For each k ∈ L(α, s), we check if the following holds (we will explain the choices
for OUT.1–3 in the paragraph that follows):

• (OUT.1): The current box that α is pointing at in the kth row (i.e., the

state(α, s)-box of V ô(α)k) is either unoccupied, or it is occupied by the correct

value (i.e., contains J ∅
′

(k)[s]).
• (OUT.2): J ∅

′

(k)[s] ↓, andwe require that the computation has persisted for at
least two visits to α. We let t < s be the least stage such that the computation
J ∅

′

(k)[s] ↓ applies at stage t (i.e., J ∅
′

(k)[t] ↓ with ∅′t↾j(k)[t]= ∅′s↾j(k)[t]). Hence,
α is visited at some stage u, t ≤ u < s .

• (OUT.3): Wealso check that for everyk′ ∈ L(α, s)−{k}, such thatJ ∅
′

(k′)[t] ↓
and ∅′t↾j(k′)[t] 6= ∅′s↾j(k′)[t], there is a stage u such that t < u < s , α is visited at
stage u, and ∅′t↾j(k′)[t] 6= ∅′u↾j(k′)[t].

If all of the above hold, we let äs (d) specify (k,f), otherwise we let äs (d) specify
(k,∞). That is, we let äs (d) = 〈(k0, x0), . . . , (kp, xp)〉, where ki ’s are precisely all
the distinct elements of L(α, s), and the xi ’s are specified above.
As promised, we will justify the choices for the conditions OUT.1–3 above—these
are implemented purely for technical reasons. OUT.1 ensures that if the current box
is occupied by the wrong value, then we immediately force outcome (k,∞)—this
ensures that the box will be cleared at the next possible chance. The combination of
OUT.2 and 3 ensures that the true path is consistent with the “truth of outcome”.
In particular, consider the following scenario: suppose that {k0, k1} ⊂ L(α, s).

It might be the case that both J ∅
′

(k0) ↑ and J ∅
′

(k1) ↑, in which case the correct
outcome which we expect is (k0,∞), (k1,∞). Because we combined both modules
at the single node α, we have to ensure that this outcome is played infinitely often.
This might be a problem if J ∅

′

(k0) and J ∅
′

(k1) take turns to show us a new value.
The solution to this is to ensure the following. If it is the case that J ∅

′

(k) ↓ and
has settled by stage t, then we will delay playing the outcome (k,f) until all the
other modules k′ ∈ L(α) which has not yet settled on J ∅

′

(k′), has had a chance to
play (k′,∞).
This completes the definition of äs . We now give the actions to be taken at stage s ,
in the following order:

1. Declare that s is anX -stage, whereX is to be decided below. If s = 0 or s = 1,
let X = A. Otherwise, look for the longest â ≺ äs such that â has been visited
prior to stage s . Let s− < s be the most recent stage such that äs− ≻ â . If s−

is an A-stage, let X = B, otherwise let X = A.
2. Take actions for each expansionary negative node â . For each Ne-node â
such that â⌢∞ � äs , we do the following:
(a) Set R(â, s + 1) = X c .
(b) For all x < l(â, s), we set hâ(x) ↓= Φ

A
e (x)[s], unless it is already defined.

(c) Take actions for every â ′ whose restraint is transferred to â ; this step
of the construction is known as transferring â ′-restraint to â : for every
â ′ ∈ Left(â) such thatR(â ′, s) = A and lb(â, s) ≥ | dom(hâ′)[s]|, we do
the following:
(i) Set R(â ′, s + 1) = B, since this transferred B-restraint will be held
until the next â ′-expansionary stage.

ON VERY HIGH DEGREES 25

(ii) Injure every negative node î ≻ â ′⌢f, i.e., we set hî = ∅, since this is
a “pseudo” â ′-expansionary stage.

3. Injure the negative nodes on the right, as well as the negative nodes on the left
which have believed in wrong computations.
(a) On the right: for each negative â >left äs such that |â | < s , we set hâ = ∅,
and set R(â, s + 1) = R(äs↾|â|, s + 1). This ensures we do not use a box
of a stronger <A-priority when we visit right of äs later.

(b) On the left: for each negative â <left äs , |â | < s such that R(â, s) = A
and lb(äs↾|â|, s) < | dom(hâ,s)|, we set hâ = ∅. That is, â on the left has
previously believed and set up restraint to preserve A-computations that
are no longer believable. We injure â even though it is to the left, and we
will have to show that this happens only finitely often if â is on the true
path.

4. Injure all the mother nodes to the right.
(a) For each mother node ô >left äs , we set V

ô
k = ∅ for all k, and set uôk,n ↑ for

all k, n.
5. If X = A, we empty all the boxes which need to be cleared.
(a) Action for nodes along äs : for each A-positive node â ≺ äs , and k such

that äs (|â |) specifies (k,∞), we clear the state(â, s)-box of V
ô(â)
k , if it is

not already empty.
(b) Clear all boxes of lower <A-priority: for each mother node ô ≺ äs , a
number x and a string ã >A state(ô, äs , s), we clear the ã-box ofV ôx , if not
already empty.

(c) Clear all boxes filled by some ó >left äs , regardless of the <A-priority:
for all A-positive nodes â and ó such that â ≺ äs and ó >left â with
ô(ó) ≺ äs , and some string ã � state(ô(ó), â, s), some number x, such

that the ã-box of V ô(ó)x is currently full and was filled by ó, we clear the
box.

6. If X = A, we will also fill all the boxes needing to be filled, unless the decision
to fill a particular box made at the beginning of the stage, is now deemed
unwise due to enumerations made in step 5.
(a) For each A-positive â ≺ äs , and k such that äs (|â |) specifies (k,f), we

place J ∅
′

(k)[s] into the state(â, s)-box of V ô(â)k with a fresh use, unless
the box is already full.
An exception to the rule is the following: a node â ≺ äs might want to fill

a box of V ô(â)k (hence â is active when we are defining äs above), but the
actions in step 5 might have caused an enumeration into A below some
ΦA-use, and â is no longer active after step 5 is done. In this case, â would
not fill the box.
That is, we would do the above for each A-positive â ≺ äs , unless in step
5, we had made an enumeration into A below the use of ΦAr (n)[s] (where
â is aPAr,j-node) for some n ≤ 1 + maxL(â, s).

7. If X = B, we will give the B-positive nodes a chance to act.
(a) For each PBe -node â such that â

⌢w � äs , enumerate into B, the least
number x (if there is one) satisfying the following:
• x > 2e and x ∈We,s ,

26 KENG MENG NG

• x > max{t < s | ät <left â}, and
• for everyNe′ -node ó such that ó <left â or ó⌢f � â for some e′, and
for each n ∈ ∪t≤s dom(hó)[t], we also require that x > ϕe′ (B; n)[s].

That is, once a negative node ó <left â has a B-recovery, â will not be able
to enumerate below the recovered use. This is to ensure that B-positive
requirements obey the transferred B-restraint at all times.

3.7. Verification. We say that a node α plays an outcome x at a stage s , if
äs ≻ α⌢x. It is easy to see that there is a leftmost path visited infinitely often:
if α is A-positive and is never permanently active, then 0 is the leftmost outcome
it plays infinitely often; on the other hand if α does become permanently active,
then L(α) eventually settles and α will have to play one of the 2|L(α)| many possible
outcomes. Let TP be the true path of the construction. We list a few facts regarding
the construction:

1. Suppose α is visited infinitely often. Then for each X ∈ {A,B}, there are
infinitely many X -stages s such that äs ≻ α (see lemma 2.3).

2. For each negativeα, dom(hα) is changed only atα-expansionary stages (where
it is increased), or when it is reset (i.e., set to ∅).

3. For a negative α, there are three actions in the construction which can cause
a change in R(α) (and therefore the state variable):
• when we visit left of α,
• during an α-expansionary stage, where we setR(α) based on whether the
current stage is an A or B-stage,

• when we visit right of α, and transfer α-restraint to the right; in this case
we change R(α) from A→ B.

4. Because of fact 3, if ô ≺ α are along the true path, then state(ô, α) eventually
settles. We denote the limit value of state(ô, α) by Stateôα .

For a node α on the true path, we let True(α) be the least stage s such that α is
visited at stage s , the construction never visits left of α after stage s , and for every
ô ≺ α, state(ô, α, s) has settled. Note that if α � â , then True(α) ≤ True(â).
We begin with a few preliminary lemmas. Firstly, we argue that for any segment
ô ≺ α on the true path, once state(ô, α) has settled, no box of a stronger<A-priority
than state(ô, α) can be accessed:

Lemma 3.3. Let ô ≺ α be on the true path, where ô is a mother node. Then, for
every t ≥ True(α), we have

state(ät↾|ô|, ät↾|α|, t) ≥A State
ô
α .

Proof. Let s0 = True(α). Let î be a negative node such that ô ≺ î⌢f � α. We
claim that if there is a î′-expansionary stage t > s0 for some î′ ∈ Right(î), then
R(î) will be set to B (if î is not already holding B-restraint), and R(î) will stay at
B forever: otherwise hî will be reset, and for every ç ∈ Left(î), either hç will be
reset, or R(ç) will be set to B (and stays that way). This is impossible because the
next visit to î after t will have to be î-expansionary, by definition.

ON VERY HIGH DEGREES 27

To prove the lemma, we suppose that there is a t > s0 such that
state(ät↾|ô|, ät↾|α|, t) <A State

ô
α , and derive a contradiction. We have

state(ät↾|ô|, ät↾|α|, t) = óBó
′

Stateôα = óAó
′′

for some strings ó, ó ′ and ó ′′. The (|ó|+1)th digits in state(ät↾|ô|, ät↾|α|, t) and State
ô
α

must correspond to negative nodes î0 and î1 respectively with î0 ≥left î1. Clearly
ô ≺ î1

⌢f � α, and also that R(î1) = A after stage s0.
By the claim at the beginning of this proof, stage t cannot be a î0-expansionary
stage. It follows that R(î0, t) = B. However when α was visited at stage s0 < t,
step 3(a) of the construction would have setR(î′) = A for every î′ ∈ Right(î1). In
fact, step 3(a) was included in the construction to ensure that the situation discussed
here does not arise—we want to prevent a box of a stronger<A-priority from being
accessed later. Clearly R(î′) for all î′ ∈ Right(î1) will have to be A after stage s0,
a contradiction. ⊣

Next, we turn our attention to the positive nodes. For the next two lemmas 3.4
and 3.5, we let ô be aPAe -node andα be an i-daughter node of ô such that ô

⌢∞ ≺ α,
with both lying on the true path. Let L := lims→∞ L(α, s), which may or may not
exist. It is not hard to see that

1. ΦAe is an order⇒ L exists and L = {k | ΦAe (k) ∈M
ô
i }.

2. α becomes permanently active iff L exists, L 6= ∅ and for all k ≤ 1 + maxL,
ΦAe (k) ↓.

3. If α never becomes permanently active, then 0 is the true outcome of α.

In the next lemma, we want to show that the true outcome is consistent with the
“truth”. This becomes a concern because we are combining several modules, each
with their separate outcomes, in a single node. In (ii) we show that if J ∅

′

(k) ↓, then
not only will the true outcome specify (k,f), but there will also be only finitely
many outcomes (k,∞) being played at that level. This ensures that boxes filled by
a positive node on the true path, does not become emptied while the construction
was visiting right of α.

Lemma 3.4. Suppose that α becomes permanently active.

(i) Let L = {k0, . . . , kp}. The true outcome of α is 〈(k0, x0), . . . , (kp, xp)〉 where

for each i = 0, . . . , p, xi =∞ iff J ∅
′

(ki) ↑.
(ii) For each k ∈ L such that J ∅

′

(k) ↓, there can only be finitely many stages t such
that ät ≻ ô⌢∞ and ät(|α|) specifies (k,∞).

Proof. (i) We partition L into the two parts, L∞ := {k ∈ L | J ∅
′

(k) ↑}, and
Lf := L − L∞. We let s0 ≥ True(α) be an A-stage large enough, such that α is
visited at s0, and at every stage t ≥ s0,

• L(α, t) = L,
• α is active at stage t (if it is visited),
• for each k ∈ Lf , J

∅′

(k)[t] ↓ on the correct use, and
• for each k ∈ Lf , the State

ô
α-box of V

ô
k is either unoccupied, or else occupied

by J ∅
′

(k). This is possible because if the Stateôα-box is occupied by a number

other than J ∅
′

(k), α will play an outcome specifying (k,∞) every time it is
visited, until the box is cleared of the erroneous value.

28 KENG MENG NG

At every visit toα after s0,αwill playoneof theoutcomes fromthe list{〈(k0 , a0), . . . ,
(kp, ap)〉 | ai = ∞ or f for all i}. To prove that the true outcome of α is
〈(k0, x0), . . . , (kp, xp)〉, we will do it in two parts. Firstly, we show that for each
k ∈ Lf , there are only finitely many stages such that α plays an outcome specifying
(k,∞). Secondly, we will show that there are infinitely many stages such that α
plays an outcome specifying all of {(k,∞) | k ∈ L∞}.
To prove the first part, we fix a k ∈ Lf . Let s1 ≤ s0 be the least such that

J ∅
′

(k)[s1] ↓ on the correct use. For each k′ ∈ L∞ such that J ∅
′

(k′)[s1] ↓, there
must be a change in ∅′ below the use after stage s1. Wait until all the changes occur,
for all these k′ ∈ L∞, and we let s2 > s0 be the second (or more) visit to α after the
last change. We claim that after stage s2, any outcomes played by α has to specify
(k,f): Pick k′ ∈ L − {k}, such that J ∅

′

(k′)[s1] ↓ with ∅′s1↾j(k′)[s1] 6= ∅′s2↾j(k′)[s1]. We
want to show thatα is visited at some stage u between s1 < u < s2, where the change
has already occured by stage u. If k′ ∈ Lf then u = s0 since any such change has
to occur by stage s0; on the other hand if k′ ∈ L∞ then such a u must exist, by the
choice of s2.
To prove the second part, we let s3 > s0 be a stage where α is visited. We
show that there is a stage s4 ≥ s3 such that α plays an outcome specifying all of
{(k,∞) | k ∈ L∞}. We may assume that L̃ := {k ∈ L∞ | J ∅

′

(k)[s3] ↓} 6= ∅
(otherwise we can let s4 = s3). For each k ∈ L̃, there is a least stage sk4 > s3 such

that α is visited, and ∅′s3↾j(k)[s3] 6= ∅′
sk4

↾j(k)[s3]. Let k̃ be some member of L̃ with the

largest s k̃4 , and let s4 = s
k̃
4 . Therefore, if s

−
4 < s4 is the previous visit to α, then

∅′s3↾j(k̃)[s3]= ∅′
s−4

↾j(k̃)[s3] 6= ∅′s4↾j(k̃)[s3], i.e., the oracle will change below the use for k̃,

but only after stage s−4 .
We argue that this choice of s4 works, in particular we fix a k ∈ L∞ such
that J ∅

′

(k)[s4] ↓, and we want to show that the outcome played by α at stage s4
specifies (k,∞). Assume the computation J ∅

′

(k)[s4] ↓ has persisted for two visits.
Hence k 6= k̃, and therefore condition (OUT.3) in the construction is not met when
deciding the outcome for k. Hence (k,∞) is played at stage s4.
(ii) This is proved in a similar way as in (i). Fix a k ∈ L such that J ∅

′

(k) ↓, and
let s1, s2 be as in (i). The stage s2 works for (i), but in this case we have to wait
until every node α′ ∈ Right(α) which has been visited prior to stage s2, is visited
again at least one more time (if ever), say by stage s5 > s2. Now the argument in (i)
can be used to show that at every stage t > s5 such that ät ≻ ô⌢∞, we either have
ät(|α|) = 0, or else ät(|α|) specifies (k,f). ⊣

The next lemma tells us that each time α plays outcome 0—which will be the
case every time A changes below the use of some computation in L(α)—certain
boxes will also be cleared. (i) states that if k is not eventually in L(α), then all the
ã-boxes for |ã| = môi , which are incorrect locations for the k

th row, will be cleared
eventually. (ii) covers the case when k ∈ limL(α), but yet α has true outcome 0.
This might be possible if we have infinitely many uses for ΦAe (k)[t], so that Φ

A
e (k) ↑,

but each convergent value ΦAe (k)[t] ∈ M
ô
i . Each time α plays outcome 0, the box

might be full, unlike in (i), because some sibling node of α might fill the box after
each change in the use for ΦAe (k)[t]. However, if α is to have true outcome 0, then

ON VERY HIGH DEGREES 29

this box cannot remain permanently filled—it has to be cleared before the next visit
to α⌢0.

Lemma 3.5. Let ô and α be as above.

(i) If α plays outcome 0 at a stage s , then for every number k /∈ L(α, s) and string ã
of length môi , the ã-box of V

ô
k has to be empty at stage s .

(ii) If α is visited at stage s , then for every k and string ã of length môi , if the ã-box
of V ôk gets filled by the actions at stage s (if not already full), then the box will
have to be emptied at least once before α can next play outcome 0.

Proof. (i) Suppose the contrary, let k /∈ L(α, s) and ã of length |ã| = |Stateôα |
be such that the box is full with use uôk,ã [s] ↓. The box must have been filled at

some A-stage t < s , in which ät(|α|) was active at stage t and k ∈ L(α, t). The
fact that k /∈ L(α, s), means that A has to change below the use of the ΦAe (k)[t]-
computation, i.e., change below t. Furthermore this change cannot happen at
stage t itself—otherwise we would have not have filled the box at stage t—hence
the change occurs after uôk,ã [s] > t was set, a contradiction. In fact, we don’t need
the assumption that α plays outcome 0, but this will always be true if k goes out
of L(α).
(ii) Let α be visited at stage s , and uôk,ã ↓ at the end of stage s . This box is filled

at some ô-expansionary stage t ≤ s , in which k ∈ L(α, t). Before α can next play
outcome 0, there must be a change below some computation inL(α, t), i.e., below t.
As in (i), this change has to occur after uôk,ã > t was set, a contradiction. ⊣

In the spirit of minimal pair arguments, one would want to show that at each neg-
ative nodeα, at least one side of computations is preserved between α-expansionary
stages. In the next lemma we show that if t0 is an α-expansionary B-stage, then the
A-computations will be preserved until one of the three things happen:

1. we come to the next α-expansionary stage,
2. hα gets reset because some α′ ∈ Right(α) does not believe in the A-
computations which α had believed in. This happens only finitely often,
as shown in part (ii).

3. the B-side of the computations recover, and the A-restraint is dropped while
the construction was at the right of α. α doesn’t care if this happens, since the
value is now preserved on the B-side.

Lemma 3.6. Let α be anNe-node on the true path.

(i) Suppose t0 ≥ True(α) is an α-expansionary X -stage, such that X ct0↾m 6= X
c
t1↾m

for some t1 > t0, where m = use of Φ
X c

e ↾dom(hα) [t0] and R(α, t1) = X
c . Then,

there must be a stage u such that t0 < u < t1, where either u is α-expansionary,
or else hα is reset at stage u.

(ii) hα is reset only finitely often.

Proof. (i) Let s0 = True(α), and t0, t1 and m be as in the statement of the
lemma. Suppose on the contrary there is no such u. The number k < m has to
enter at an X c-stage t, where t0 < t < t1. By the assumption that there is no such
u, we must have ät >left α⌢∞.
The caseX = A is easy, sowe considerX = B. Wewill show that the enumeration
of k < m into A at stage t contradicts α-believability of the usem at stage t0. Since
uses are chosen fresh, we may assume that k = uôx,ã was set before stage t0, and

30 KENG MENG NG

that ô ≺ α. Since R(α, t1) = A, it follows that R(α, u) = A at every stage
u = t0 + 1, . . . , t1. In fact, the following is true:

Claim 3.6.1. For every α′ ∈ Right(α), and t0 < u < t1, we must have R(α′, u) =
A, and that u is not α′-expansionary.

Proof of claim. Since t0 was α-expansionary, step 3(a) of the construction
would have ensured that R(α′) = A for all α′ ∈ Right(α). This stays that way
until some α′-expansionary stage u, in which we will either transfer α-restraint
by flipping R(α) over to B, or we will reset hα , both of which are impossible by
assumption. ⊣

By Claim 3.6.1 we have state(ô, ät , t) � state(ô, ät↾|α|, t)
⌢A, and by Lemma 3.3,

we in fact have state(ô, ät , t) >A State
ô
α
⌢
B. At stage t, k = uôx,ã was enumerated

under step 5 of the construction. There are three cases:

1. Step 5(b): if this was the action putting k into A, then ã >A State
ô
α
⌢B,

contradicting α-believability of use m at t0.
2. Step 5(a): we either have ät ≻ α⌢f, or ät >left α. The former can immediately
be seen to contradict α-believability, so we assume at stage t, the latter holds.
Let â be the node which wants to clear uôx,ã , where ã = state(â, t). If |â | > |α|,
then clearly ã >A State

ô
α
⌢B, contradicting α-believability just as in 1. above.

Suppose that |â | < |α|, and so it follows that the use m was α-believable at
stage t0, but is not ät↾|α|-believable at stage t, i.e., lb(ät↾|α|, t) < | dom(hα)[t]|.
In this case the construction would promptly reset hα at stage t, contrary to
assumption.

3. Step 5(c): let â ≺ ät be the node which wants to clear a box filled by ó >left
â . Clearly â ≺ α can immediately be seen to contradict α-believability, so
suppose â ⊀ α. If |â | > |α| we would also have ã >A State

ô
α
⌢
B just as in

1. above, while |â | < |α| means that lb(ät↾|α|, t) < | dom(hα)[t]| just as in 2.
above.

All three cases are impossible, hence the enumeration of k cannot happen.
(ii) We note that a consequence of Lemma 3.4(ii), is that there is a stage s1 large
enough, such that for every A-positive node â ≺ α, and every k such that α(|â |)
specifies (k,f), and every â ′ ∈ Right(â) with â ′ ≻ ô(â)⌢∞, we must have â ′

playing (k,f) each time it is visited after stage s1 (unless â ′ is visited for the very
first time). That is, only the outcome (k,f) can be played at level |â |, unless we
are visiting the node for the very first time (and thus the node is not active). We let
s1 ≥ s0 be large enough so that this holds, and argue that hα cannot be reset after
stage s1.
The only way for hα to be reset after stage s1, would be for α to have believed in
some computation which is placed in dom(hα), but which later some α′ ∈ Right(α)
refuses to believe in. We have to go through each case 1–4 of Definition 3.2 and
show that they still apply.
Let s2 > s1 be a stage where hα is reset. Each time hα is reset after stage s1,
there must be an α-expansionary stage before hα can next be reset, so we may as
well assume that s1 < sexp < s2 where sexp is the largest α-expansionary stage
less than s2. Since R(α, s2) = A (otherwise we would leave hα alone at s2), hence
sexp has to be a B-stage setting R(α) = A. Letting m = use of ΦAe ↾dom(hα) [sexp],
by part (i) we know that the A-side has to be preserved, i.e., Asexp↾m= As2↾m, and

ON VERY HIGH DEGREES 31

therefore anywitness to non-believability at stage s2, has to be some uôx,ã < m, which

was set before stage sexp. We let α′ = äs2↾|α|∈ Right(α), i.e., α
′ is the node where

lb(α
′, s2) < | dom(hα)| and refuses to believe in some computation in dom(hα) with

use < m. Corresponding to conditions 1–4 of Definition 3.2, we have one of the
following:

1. For some A-positive node â ′ ≺ α′, we have ã = state(â ′, s2) and α′(|â ′|)

specifies (x,∞): the first thing to note is that ã ≥A State
ô(â′)
α↾|â′|
. If they are

not equal then we have ã >A State
ô(â′)
α

⌢
B, which is impossible because of the

α-believability of use m at stage sexp. Hence, ã = State
ô(â′)
α↾|â′|
. The question

is, what is the true outcome α(|â ′|)? We know α(|â ′|) cannot specify (k,∞)
because of α-believability of m. On the other hand, the true outcome α(|â ′|)
cannot specify (k,f) by the choice of s1, otherwise (k,∞) cannot be played
at level |â ′| anymore. This leaves us with the fact that 0 is the true outcome of
α↾|â′|. By α-believability of m again, it must be the case that k /∈ L(â

′, sexp),
in which case by Lemma 3.5(i), the use uôx,ã has to be set after stage sexp, a
contradiction.

2. For some A-positive node â ′ which has been visited prior to s2, we have
â ′
⌢0 � α′, x ∈ L(â ′, s2) and ã = state(â

′, s2): a contradiction is derived in a
similar way as in 1. above.

3. For some mother node ô ≺ α′, we have ã >A state(ô, α′, s2)⌢B: this is not
possible because ã >A State

ô
α
⌢B, and because of α-believability once again.

4. For some A-positive nodes â ′ and ó such that â ′ ≺ α′ and ó >left â ′, we
have ô(ó) ≺ α, and ã � state(ô(ó), â ′, s2): we have state(ô(ó), â ′, s2) ≥A
Stateô(ó)α↾|â′| , and hence the inequality can be split into two cases: = and >A,

both cases are treated in the same way as above.

Thus all 4 cases are not possible, so the use m has to be α′-believable at stage s2.
This shows that hα can be reset only finitely often. ⊣

Lemma 3.7. Along the true path of the construction, all the negative requirements
are satisfied.

Proof. Let α be an Ne-node on the true path such that ΦAe = Φ
B
e is total. It

is easy to see that if α is visited at some stage s after which hα is never reset, then
necessarily s ≥ True(α): this is because if some negative â such that â⌢f � α has
â-restraint being transferred, then the same step of the construction will also reset
hα . We first claim:

Claim 3.7.1. There are infinitely many α-expansionary stages.

Proof of claim. Suppose that on the contrary, there are finitely many α-
expansionary stages—let sexp be the lastα-expansionary stage. Obviously hα cannot
be reset after sexp, and hence by the observation above we have sexp ≥ True(α).
Since α-expansionary stages only occur if all the computations of Left(α) re-
cover, we let l = max | dom(hâ)[sexp]| for â = α or â ∈ Left(α). Let s2 > sexp be
a stage large enough, so that both As2 and Bs2 are correct up to m = use of Φ

A
e ↾l

and ΦBe ↾l . The only reason why s2 is not α-expansionary, is because the use m is
not α-believable at stage s2. Hence, one of the cases 1–4 of Definition 3.2 must not
apply.

32 KENG MENG NG

Cases 1 and 4 give straightforward contradictions to the correctness of As2↾m.
Suppose that case 2 fails, i.e., for some â with â⌢0 � α, and some k ∈ L(â, s2), we

have uô(â)
k,state(â,s2)

[s2] < m. In this case even though â has true outcome 0, it might

be the case that boxes in the kth-row always get filled by some overly zealous sibling

node of â . Despite this, it follows by Lemma 3.5(ii) that the use uô(â)
k,state(â,s2)

[s2]

has to be cleared before â⌢0 can next be visited after s2, another contradiction to
the correctness of As2↾m. Lastly, suppose that case 3 fails, i.e., u

ô
x,ã[s2] < m for

some ô ≺ α, x and ã >A State
ô
α
⌢
B. If R(α, s2) = B, then the construction would

enumerate uôx,ã [s2] < m intoA at s2. So,R(α, s2) = A but in that case sexp has to be
anB-stage. Since theA-computations have to be preserved after sexp, it follows that
uôx,ã [s2] has to be set before s1, and thus would cause the usem not to beα-believable
at stage s1—a contradiction again. ⊣

By Lemma 3.6(ii), hα is reset only finitely often, hence hα is recursive. As in the
previous theorem, the fact that there are infinitely manyα-expansionary stages does
not immediately imply that hα is total. One has to use Claim 3.7.1 to show that
every use which appears non-believable must be cleared at α-expansionary stages.
Similar to Claim 2.4.3, one can then show that hα is total, i.e., every number is
eventually put in dom(hα).
Finally, it is not hard to see that hα records the correct value. The only thing new
in this construction, is that α-restraint might be transferred while the construction
was visiting right of α (i.e., R(α) flips from A to B). However, this happens only if
the B-computations measured by α recovers, and the B-positive nodes to the right
of α⌢∞ always respects this use the instant it converges. Therefore, all negative
requirements are satisfied. ⊣

Lemma 3.8. Along the true path of the construction, all the positive requirements
are satisfied.

Proof. Let ô be a PAe -node on the true path, such that Φ
A
e is an order. Clearly

∞ is the true outcome of ô; we need to show that {V ôk }k∈N traces J
∅′

correctly. We
fix a number k. Let i be the least such that ΦAe (k) ∈ M

ô
i , and α be the version of

P
A
e,i on the true path, with true outcome o. Hence α will eventually be responsible

for tracing J ∅
′

(k) in V ôk .
We first of all show that |V ôk | < Φ

A
e (k). A box in the k

th row cannot be perma-

nently set by a node â , where |â | 6= |α|: suppose such a â fills a box in the kth row
at stage s , and k ∈ L(â, s). We know k eventually has to leave L(â), so it is not
hard to see that at the first visit to TP↾|â| (the true version of â) after k leaves L(â),
we must have TP↾|â| playing outcome 0. By Lemma 3.5(i), this means that all boxes

on the kth row filled at level |â | has to be empty at that visit.
Hence any box of V ôk can only be filled permanently by a node at level |α|.

However such nodes will only fill a ã-box for |ã| = môi . There are only 2
môi < ΦAe (k)

many choices for ã.
Next, suppose that J ∅

′

(k) ↓. We want to show that J ∅
′

(k) ∈ V ôk . We know
α will become permanently active and has true outcome specifying (k,f). Let
s0 ≥ True(α⌢o) be large enough for our purpose. At stage s0, α would put
J ∅

′

(k) into the Stateôα-box of V
ô
k (unless it is occupied, in which case it has to be

occupied by the right value). The only thing that would stop us, is that step 5 of

ON VERY HIGH DEGREES 33

the construction had made an enumeration below some computation in L(α, s0), in
which case α would not be active at the next visit and plays outcome 0 left of its true
outcome—impossible. At any rate the Stateôα-box on the k

th row has to contain
the correct value at the end of stage s0, and we want to show that this box is never
emptied after s0.
Suppose on the contrary, that at stage t > s0 of the construction, an enumeration
p ≤ uôk,Stateôα

[s0] was made. Now, p must be the use of some box, which is set at

some stage t′ ≤ s0. We may in fact assume that True(α⌢o) < t′ (by letting s0 wait
long enough), and the use p was set by node â at stage t′. There are now three
cases, depending on the position of â ; we want to get a contradiction in all three
cases:

1. â � α: then p is the use of the Stateô(â)â -box in some k
′-row. Since â is along

the true path, the only way for us to clear the use p at stage t, would be through
Step 5a. Therefore the true outcome of â has to specify (k′,∞), and thus p
actually has to be cleared at stage s0, before α sets the use uôk,Stateôα

. This is

impossible.
2. â >left α: step 5(c) of the constructionwas specially included, with the purpose
of clearing all such use, which were set by nodes to the right of the true path.

3. â ≻ α: at stage t′ when we set the use p, we would do it after α sets the use
uôk,Stateôα

[t′]. Since uôk,Stateôα [t
′] < p ≤ uôk,Stateôα [s0], it follows that the use p has

to be cleared before stage s0, another contradiction.

Hence such a use p cannot exist, so the Stateôα-box, once filled by α, remains full.
This shows A is ultrahigh. Next, we want to show that the capping companion
B is non-recursive. B is certainly coinfinite, and since dom(hó) only increases at
ó-expansionary stages for an A-positive ó, it follows that the restraint in step 7(a)
of the construction is finite for a B-positive node on the true path. ⊣

This ends the proof of Theorem 3.1.

§4. Further questions. Several natural questions present themselves. For in-
stance, in Theorem 3.1, if the B-positive requirements make infinitely many enu-
merations, such as in making B ultrahigh, almost complete, or even just high, the

method of transferring B-restraint no longer works. This is because if N̂ to the
right of N drops the A-restraint while holding B restraint for N , it might do so
while believing incorrectly (infinitely often) in certain B-computations.

1. Is there a minimal pair of r.e. ultrahigh, or a minimal pair of r.e. almost
complete?

2. In general, for any arbitrary recursive order f, is there a minimal pair of
superhigh r.e. sets, via f?

3. Is there an r.e. set which is non-cuppable and ultrahigh?

REFERENCES

[1] G. Barmpalias and A. Montalbán, A cappable almost everywhere dominating computably enu-
merable degree, Electronic Notes in Theoretical Computer Science, vol. 167 (2007), pp. 17–21.
[2]M. Bickford and C. Mills, Lowness properties of r.e. sets, Theoretical Computer Science, type-

written unpublished manuscript.

34 KENG MENG NG

[3] G.Chaitin, Information-theoretical characterizations of recursive infinite strings,Theoretical Com-
puter Science, vol. 2 (1976), pp. 45–48.
[4] P. Cholak, R. Downey, andN. Greenberg, Triviality and jump traceability, to appear.
[5] P. Cholak, N. Greenberg, and J. Miller, Uniform almost everywhere domination, this Journal,

vol. 71 (2006), no. 3, pp. 1057–1072.
[6] R. Coles, R. Downey, C. Jockusch, andG. LaForte, Completing pseudojump operators, Annals

of Pure and Applied Logic, vol. 136 (2005), pp. 297–333.
[7] N. Dobrinen and S. Simpson, Almost everywhere domination, this Journal, vol. 69 (2004),

pp. 914–922.
[8] R. Downey, D. Hirschfeldt, A. Nies, and F. Stephan, Trivial reals, Proceedings of the 7th and

8th Asian Logic Conferences, World Scientific, Singapore, (2003), pp. 103–131.
[9] S. Figueira, A. Nies, and F. Stephan, Lowness properties and approximations of the jump, Pro-

ceedings of the Twelfth Workshop of Logic, Language, Information and Computation (WoLLIC 2005),
Electronic Lecture Notes in Theoretical Computer Science, vol. 143 (2006), pp. 45–57.
[10] D. Hirschfeldt, A. Nies, and F. Stephan, Using random sets as oracles, to appear.
[11] S. Ishmukhametov, Weak recursive degrees and a problem of spector, Recursion theory and

complexity (Kazan), vol. 2, 1997, pp. 81–87.
[12] C. Jockusch andR. Shore, Pseudojump operators. I. The r.e. case, Transactions of the American

Mathematical Society, vol. 275 (1983), no. 2, pp. 599–609.
[13] B. Kjös-Hanssen, Low for random reals and positive-measure domination, Proceedings of the

American Mathematical Society, (2006), to appear.
[14] B. Kjös-Hanssen, J. Miller, and R. Solomon, Lowness notions, measure and domination, 2006,

to appear.
[15] S. Kurtz, Randomness and genericity in the degrees of unsolvability, Ph.D. thesis, University of

Illinois at Urbana-Champaign, 1981.
[16] D. Martin, Classes of recursively enumerable sets and degrees of unsolvability, Zeitschrift für

Mathematische Logik und Grundlagen der Mathematik, vol. 12 (1966), pp. 295–310.
[17] A. Nies, Reals which compute little, Technical Report 202, CDMTCS Research Report, The

University of Auckland, 2002.
[18] , Lowness properties and randomness, Advances inMathematics, vol. 197 (2005), pp. 274–

305.
[19] , Computability and randomness, Oxford University Press, 2006, to appear.
[20] S. Simpson, Almost everywhere domination and superhighness, Mathematical Logic Quarterly,

vol. 53 (2007), pp. 462–482.
[21] R. Solovay,Draft of paper (or series of papers) on Chaitin’s work, unpublished notes, 215 pages,

1975.
[22] S. Terwijn andD. Zambella, Algorithmic randomness and lowness, this Journal, vol. 66 (2001),

pp. 1199–1205.

SCHOOL OFMATHEMATICS, STATISTICS AND COMPUTER SCIENCE

VICTORIA UNIVERSITY OFWELLINGTON

PO BOX 600, WELLINGTON, NEW ZEALAND

E-mail: Keng.Meng.Ng@mcs.vuw.ac.nz

